Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Department Takes Major Steps to Increase U.S. Energy Productivity and Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

The Department of Energy today announced expansions of its Clean Energy Manufacturing Initiative in support of the American manufacturing sector and a new initiative to support President Obama’s goal of doubling energy productivity by 2030.

2

Additive Manufacturing for Large Products.  

E-Print Network [OSTI]

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the… (more)

Leirvåg, Roar Nelissen

2013-01-01T23:59:59.000Z

3

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

4

Photographic lens manufacturing and production technologies  

E-Print Network [OSTI]

An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

Kubaczyk, Daniel Mark

2011-01-01T23:59:59.000Z

5

The Productivity Dilemma in Manufacturing  

E-Print Network [OSTI]

The crises facing U.S. industry today due to increasing costs of operation, low productivity, lack of modern equipment, lack of capital, and increasing foreign competition have been widely discussed. The availability of new technology to meet...

Byrer, T. G.

1983-01-01T23:59:59.000Z

6

First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors |  

Broader source: Energy.gov (indexed) [DOE]

First Step to Spur U.S. Manufacturing of Small Modular Nuclear First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 25, 2012 - 5:06pm Addthis Brenda DeGraffenreid The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. The release of a draft Funding Opportunity Announcement (FOA) last week presents supply-chain procurement opportunities for our nation's small businesses down the line, as industry provides input in advance of a full FOA on engineering, design certification, and licensing through a

7

Energy Department Takes First Step to Spur U.S. Manufacturing of Small  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Takes First Step to Spur U.S. Manufacturing of Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 20, 2012 - 2:06pm Addthis The U.S. Department of Energy today announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. Through the draft Funding Opportunity Announcement announced today, the Department will establish cost-shared agreements with private industry to support the design and licensing of SMRs. "America's choice is clear - we can either develop the next generation

8

Energy Department Takes First Step to Spur U.S. Manufacturing of Small  

Broader source: Energy.gov (indexed) [DOE]

Takes First Step to Spur U.S. Manufacturing of Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 20, 2012 - 10:48am Addthis Washington, D.C. - The U.S. Department of Energy today announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. Through the draft Funding Opportunity Announcement announced today, the Department will establish cost-shared agreements with private industry to support the design and licensing of SMRs. "America's choice is clear - we can either develop the next generation

9

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , “Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

10

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network [OSTI]

mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

Dornfeld, David

2010-01-01T23:59:59.000Z

11

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing – Greening Processes, Systemsor impact low Most  sustainable Increase process efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

12

A complete CAD/CAM/CNC solution for STEP-compliant manufacturing  

Science Journals Connector (OSTI)

Abstract STEP-NC or ISO 14649 is the next generation of data models between CAD/CAM and CNC systems. After a decade of investigation, the STEP-NC technology is still under developed. The lack of a complete CAD/CAM/CNC prototype system with full bidirectional data flow hinders the improvement of STEP-NC. This paper proposes a complete CAD/CAM/CNC solution for STEP-compliant manufacturing, so as to explore the functionalities and emphases of STEP-NC technologies. Frameworks of individual CAD/CAM and CNC systems are illustrated in detail. Architectures of STEP-compliant CAD/CAM and CNC systems are studied and several criteria are summarized. Finally, this paper proposes a complete prototype STEP-compliant solution, which consists of a secondary developed STEP-compliant CAD/CAM system on the CATIA platform and an open structured STEP-compliant CNC system.

Wenlei Xiao; Lianyu Zheng; Ji Huan; Pei Lei

2015-01-01T23:59:59.000Z

13

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Broader source: Energy.gov (indexed) [DOE]

Full-Scale Production Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Design Production and Manufacturing Process Advanced Research Projects Agency: Tech-to-Market Resources - general tech-to-market (T2M) resources. DOE Advanced Manufacturing Office: Manufacturing Demonstration Facility - a collaborative manufacturing community that works to provide real data to

14

Alignment strategies for drug product process development and manufacturing .  

E-Print Network [OSTI]

??The transfer of information between the drug product development and manufacturing organizations is fundamental to drug product commercialization. This information is used to characterize the… (more)

Garvin, Christopher John

2012-01-01T23:59:59.000Z

15

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

16

Property Tax Abatement for Production and Manufacturing Facilities |  

Broader source: Energy.gov (indexed) [DOE]

Abatement for Production and Manufacturing Facilities Abatement for Production and Manufacturing Facilities Property Tax Abatement for Production and Manufacturing Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Program Info Start Date 5/25/2007 State Montana Program Type Industry Recruitment/Support Rebate Amount 50% tax abatement Provider Montana Department of Revenue In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable energy research and

17

Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

18

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

Precision Manufacturing, LCA, Machining, SustainabilityNOMENCLATURE API = CMOS = GWP = LCA = LCI = Mfg = MRR = RoHSLife Cycle Assessment (LCA). The following sections will

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

19

Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturers of Noncompliant Products Agree to Civil Penalties to Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions July 1, 2013 - 11:17am Addthis The Department of Energy has settled civil penalty actions it initiated against nine companies for the manufacture and sale in the United States of products that fail to meet federal energy conservation standards. The covered consumer products and commercial/industrial equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased all sales within the United States of the products that violated federal energy conservation standards.

20

Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve  

Broader source: Energy.gov (indexed) [DOE]

Manufacturers of Noncompliant Products Agree to Civil Penalties to Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions July 1, 2013 - 11:17am Addthis The Department of Energy has settled civil penalty actions it initiated against nine companies for the manufacture and sale in the United States of products that fail to meet federal energy conservation standards. The covered consumer products and commercial/industrial equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased all sales within the United States of the products that violated federal energy conservation standards.

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network [OSTI]

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National fiber reinforced composites have enjoyed limited acceptance in the automotive industry due to high costs to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model

22

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

ScienceCinema (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-12-03T23:59:59.000Z

23

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

SciTech Connect (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-09-23T23:59:59.000Z

24

Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing  

E-Print Network [OSTI]

Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing.taisch}@polimi.it Abstract. Energy consumption is one of the main economic, environmental and societal issues. As stated by recent researches, manufacturing plays a major role in energy consumption. To react to this situation

Boyer, Edmond

25

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video  

Office of Energy Efficiency and Renewable Energy (EERE)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

26

R&D, trade, and productivity growth in korean manufacturing  

Science Journals Connector (OSTI)

This paper investigates the effects of both R&D spillovers and trade patterns on productivity in Korean manufacturing, using industry-level data. The results show that domestic and foreign R&D capital stocks play...

Taegi Kim; Changsuh Park

2003-01-01T23:59:59.000Z

27

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network [OSTI]

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

28

Quantifying Energy Savings from Lean Manufacturing Productivity Increases  

E-Print Network [OSTI]

Quantifying Energy Savings from Lean Manufacturing Productivity Increases John Seryak Gary Epstein Mark D’Antonio Engineer jseryak@ers-inc.com President gepstein@ers-inc.com Vice President mdantonio@ers-inc.com Energy & Resource Solutions..., Inc. Haverhill, MA ABSTRACT A number of energy efficiency programs seek a reduction in the energy intensity of manufacturing processes. However, promoting energy efficiency through productivity improvements is not a widely accepted...

Seryak, J.; Epstein, G.; D'Antonio, M.

2006-01-01T23:59:59.000Z

29

Grouping Parts for Multiple Parts Production in Additive Manufacturing  

Science Journals Connector (OSTI)

Abstract Rapid prototyping (RP) has evolved to Additive Manufacturing (AM) in recent years. It can produce functional or end-use parts with small or even medium quantities. And further, due to its unique layer-by-layer construction principle, it can produce different parts at the same time in a same AM machine. To improve the productivity and machine utilization of AM processes under multiple parts production context, this paper propose the conception of ‘Grouping parts’. Based on the Group Technology (GT) used in traditional processing technologies, a modified Group Technology for AM under multiple parts manufacturing context is presented. To group parts, a set of key attributes affecting the AM production time, cost, quality and work preparation are identified to represent the parts, and then a Grey Clustering method is adopted to conduct the similarity analysis. A simple case study is presented in the end to illustrate the proposed conception and its methodology.

Yicha Zhang; Alain Bernard

2014-01-01T23:59:59.000Z

30

Carbon dioxide emissions, impact on Malaysia's manufacturing productivity growth  

Science Journals Connector (OSTI)

The methods used to measure productivity growth generally ignore the pollutants that are produced by the industrial processes. For example, pollutant emissions generated as undesirable output, apart from the main output of Malaysia's manufacturing sector, are excluded from the productivity accounting framework. This study aims at an extended productivity measure that takes pollutants into account by internalisation of Carbon dioxide (CO2) as a measure of air pollutant emissions into the production function, as an unpriced input. The results show that there was a slowdown in the contribution of total factor productivity (TFP) growth in general, and a negative impact of CO2 emissions produced by the sector in particular, compared to other productivity indicators of the sector when CO2 is internalised in the models.

Elsadig Musa Ahmed

2006-01-01T23:59:59.000Z

31

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

32

The pivotal role of rapid manufacturing in the production of cost-effective customised products  

Science Journals Connector (OSTI)

The concept of rapid manufacturing is emerging from the so-called rapid prototyping technologies where additive rather than subtractive techniques will be used to make parts or even completed assemblies. As no tooling is required, one of the main benefits of rapid manufacturing will be the ability to make cost-effective custom products that could all be entirely individualised to a particular consumer or user. Thus, rapid manufacturing is the enabling technology for true cost-effective custom manufacturing and has the potential to revolutionise the design and manufacturing worlds. This paper will introduce results from a current research project that is being undertaken at Loughborough University looking into the effects that will occur to the logistics and supply chain infrastructure with the advent of rapid manufacturing.

Christopher Tuck; Richard Hague

2006-01-01T23:59:59.000Z

33

A decomposition-based approach for the integration of product development and manufacturing system design  

E-Print Network [OSTI]

Using a structured approach to understand the interaction between product design decisions and manufacturing system design is critical to reflect manufacturing system issues early in the product development process. Early ...

Kim, Yong-Suk, 1975-

2002-01-01T23:59:59.000Z

34

Energy Department Takes Major Steps to Increase U.S. Energy Productivi...  

Office of Environmental Management (EM)

Energy Department Takes Major Steps to Increase U.S. Energy Productivity and Manufacturing Energy Department Takes Major Steps to Increase U.S. Energy Productivity and...

35

A roadmap for implementing new manufacturing technology based on STEP-NC  

Science Journals Connector (OSTI)

Manufacturing is changing. New ideas of control, the maturity of CAM techniques and computer technology have enabled the definition of an advanced ... in a phased way, a so-called ‘Roadmap’. The contribution of t...

Jae-Min Cha; Suk-Hwan Suh; Jean-Yves Hascoet…

2014-06-01T23:59:59.000Z

36

Manufacturers of Noncompliant Products Agree to Civil Penalties...  

Energy Savers [EERE]

Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action Showerhead Manufacturer Agrees to Civil Penalty to Resolve Enforcement Action Two Manufacturers Agree to...

37

ONTO-PDM: Product-driven ONTOlogy for Product Data Management interoperability within manufacturing process environment  

Science Journals Connector (OSTI)

This paper proposes an approach for facilitating systems interoperability in a manufacturing environment. It is based on the postulate that an ontological model of a product may be considered as a facilitator for interoperating all application software ... Keywords: Enterprise integration and networking, IEC 62264, ISO 10303, Interoperability, Ontology, Product Data Management

H. Panetto; M. Dassisti; A. Tursi

2012-04-01T23:59:59.000Z

38

DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS  

SciTech Connect (OSTI)

Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

M. M. Wu

2005-02-01T23:59:59.000Z

39

Viable System Model approach for holonic product-driven manufacturing systems  

E-Print Network [OSTI]

Viable System Model approach for holonic product-driven manufacturing systems Carlos Herrera , Sana Control Systems (PDCS) dealing with production planning and control. The framework is based on Viable approach. Keywords: Product-driven systems, intelligent manufacturing systems, viable system model

Boyer, Edmond

40

Implications of additive manufacturing on complexity management within supply chains in a production environment.  

E-Print Network [OSTI]

??Ph. D. This dissertation focuses on developing a generic framework for using additive manufacturing as an appropriate production method to address the management of complexity… (more)

Kieviet, Andre, 1977-

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Resource-based industrialization in Peninsular Malaysia. A case study of the rubber products manufacturing industry.  

E-Print Network [OSTI]

??This economic history and examination of the rubber products manufacturing industry in Peninsular Malaysia contributes to the subject of resource-based industrialization in the field of… (more)

Goldthorpe, Christopher C.

2009-01-01T23:59:59.000Z

42

Additive Manufacturing and Production of Metallic Parts in Automotive Industry.  

E-Print Network [OSTI]

?? Additive Manufacturing (AM) comprises a family of different technologies that build up parts by adding materials layer by layer at a time based on… (more)

Beiker Kair, Alexandros

2014-01-01T23:59:59.000Z

43

Evolutions of rapid product development with rapid manufacturing: concepts and applications  

Science Journals Connector (OSTI)

This paper relates to the recent evolutions of rapid product development and mainly on technological point of view. Critical issues are of several nature, methodologies, product-process knowledge-based approaches, new technologies and applications. The idea is to take into account the knowledge related to the additive manufacturing technologies when defining the main characteristics of the products. The evolution of the capacities of the actual rapid manufacturing technologies enlarges the scope of new product design and manufacturing. The final goal is to increase the efficiency of the rapid product development processes by the use of new technologies and new methodologies.

A. Bernard; G. Taillandier; K.P. Karunakaran

2009-01-01T23:59:59.000Z

44

A tool to estimate materials and manufacturing energy for a product  

E-Print Network [OSTI]

This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing energy for a product. The tool requires as input the product's Bill of Materials and the knowledge on how these ...

Duque Ciceri, Natalia

45

The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and  

E-Print Network [OSTI]

a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter1 The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research

Liu, Y. A.

46

3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development  

Science Journals Connector (OSTI)

The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

Ismet P Ilyas

2013-01-01T23:59:59.000Z

47

A Markovian model for the hybrid manufacturing planning and control method 'Double Speed Single Production Line'  

Science Journals Connector (OSTI)

In this paper, the hybrid production planning & control method Double Speed Single Production Line (DSSPL) is presented, modelled and its performances evaluated and compared to classical Production Planning and Control methods (PPC). DSSPL combines JIT/kanban ... Keywords: Double Speed Single Production Line, Hybrid manufacturing planning & control method, Industrial case study, Markov processes

Naoufel Cheikhrouhou; Christoph Hachen; Rémy Glardon

2009-10-01T23:59:59.000Z

48

ME 4171 Environmentally Conscious Design & Manufacturing (Bras) Assignment Aircraft Fuel Tank Production Pollution Prevention  

E-Print Network [OSTI]

ME 4171 ­ Environmentally Conscious Design & Manufacturing (Bras) Assignment ­ Aircraft Fuel Tank Production Pollution Prevention A local company manufactures a wide variety of fabric fuel tanks for use mainly in the aircraft industry. The main reasons for using fabric in the construction of these tanks

49

The simulation and analysis of continuous single product manufacturing systems  

E-Print Network [OSTI]

production un1t in the process. The purpose of the subroutine 1s to relay to the mainline program what the production 1s during the current t1me interval from that particular production unit. The subroutine determines the level of production by using a one... production un1t in the process. The purpose of the subroutine 1s to relay to the mainline program what the production 1s during the current t1me interval from that particular production unit. The subroutine determines the level of production by using a one...

Snyder, Theodore Robert

2012-06-07T23:59:59.000Z

50

Domestic production of medical isotope Mo-99 moves a step closer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99...

51

Energy Report: U.S. Wind Energy Production and Manufacturing Surges,  

Broader source: Energy.gov (indexed) [DOE]

Report: U.S. Wind Energy Production and Manufacturing Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy August 14, 2012 - 9:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released a new report today highlighting strong growth in the U.S. wind energy market in 2011, increasing the U.S. share of clean energy and supporting tens of thousands of jobs, and underscoring the importance of continued policy support and clean energy tax credits to ensure that the manufacturing and jobs associated with this booming global industry remain in America According to the 2011 Wind Technologies Market Report, the United States remained one

52

Design of an interrelated quality system for a single product manufacturing process with assembly  

Science Journals Connector (OSTI)

The design of a single product manufacturing system with assembly is considered. The processing is on a lot-by-lot basis with the lot size fixed. The decision variables include interrelated single sampling plans, manufacturing process quality levels, incoming raw material quality levels and assembly process quality levels. A solution procedure is given to minimize the expected total of the costs associated with the quality of the finished product subject to a limit on the Average Outgoing Quality Limit of the finished product. An example is provided.

Thomas W. Knowles; M.Zia Hassan

1981-01-01T23:59:59.000Z

53

TEHNOMUS -New Technologies and Products in Machine Manufacturing Technologies (1) CMM : coordinate measuring machine  

E-Print Network [OSTI]

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies (1) CMM : coordinate measuring machine - 1 - COMPARISON OF A MACHINE OF MEASUREMENT WITHOUT CONTACT AND A CMM(1) : OPTIMIZATION products, the process of measurement usually proceeds on a type of machine (for example CMM

Paris-Sud XI, Université de

54

Graphene as a manufactured product : a look forward  

E-Print Network [OSTI]

Graphene's unique electrical and mechanical properties have brought it into the spotlight in recent years. With the number of patents increasing rapidly every year, production of the material is becoming more and more ...

Frost, Stephen T

2013-01-01T23:59:59.000Z

55

One-step method for the production of nanofluids  

DOE Patents [OSTI]

A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.

Kostic, Milivoje (Chicago, IL); Golubovic, Mihajlo (Chicago, IL); Hull, John R. (Downers Grove, IL); Choi, Stephen U. S. (Napersville, IL)

2010-05-18T23:59:59.000Z

56

One-step method for the production of nanofluids  

DOE Patents [OSTI]

A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.

Kostic, Milivoje (Sycamore, IL); Golubovic, Mihajlo (Chicago, IL); Hull, John (Downers Grove, IL); Choi, Stephen U. S. (Naperville, IL)

2011-08-16T23:59:59.000Z

57

Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches  

Broader source: Energy.gov (indexed) [DOE]

Dept. Reports: U.S. Wind Energy Production and Manufacturing Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 8:00am Addthis WASHINGTON - The Energy Department released two new reports today showcasing record growth across the U.S. wind market -- increasing America's share of clean, renewable energy and supporting tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time - representing 43 percent of all new electric additions and accounting for $25 billion in U.S. investment.

58

Product-driven enterprise interoperability for manufacturing systems integration  

Science Journals Connector (OSTI)

The “Babel tower effect”, induced by the heterogeneity of applications available in the operation of enterprises brings to a consistent lack of “exchangeability” and risk of semantic loss whenever cooperation has to take place ... Keywords: enterprise model, integration, interoperability, ontology, product data management

Michele Dassisti; Hervé Panetto; Angela Tursi

2006-09-01T23:59:59.000Z

59

Requirements & Status for Volume Fuel Cell Manufacturing  

E-Print Network [OSTI]

Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July ­Eliminate components, parts and process steps ­Standardize core components across products ­Standardize non-core

60

Batch sizing strategy & production load leveling in a multi-step chemical manufacturing process  

E-Print Network [OSTI]

In the last couple of years Eastman Kodak Company went through major changes in its strategic direction. The same disruptive technologies that they helped develop for digital imaging have shaped a new industry, and the ...

Mazariegos, Carlos

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

19 th International Conference on Production Research MANUFACTURING FEATURES IN CUTTING SHAPES AND PUNCHING HOLES IN SHEET METAL  

E-Print Network [OSTI]

By examining sheet metal parts it is rather evident that each sheet metal shape has its own manufacturing procedure. There are several manufacturing devices behind each procedure. This means that each shape can be divided into manufacturing features, which consist of shapes of sheet metal and their manufacturing methods. When creating rules and structures for manufacturing features, it is possible to prepare simple guides for engineering designers so that they can design parts which are easy to manufacture. A manufacturing guide can be a kind of database. A designing engineer may follow the guidelines of the database. It proposes different kinds of possibilities to produce sheet metal parts. This enables the design of products which are easy to manufacture. In addition, it allows the designer to diversify his or her knowledge of manufacturing methods. In this study, simple sheet metal parts and their manufacturing features are studied. For example, simple shapes such as holes can be made in several ways. Cutting a hole consists of several attributes which determine the requirements for manufacturing. This study tries to validate what kinds of factors are needed in order for the engineering designer to design parts which are simple to manufacture. Keywords: Sheet metal, sheet metal manufacturing, sheet metal features.

M. Lohtander J. Varis

62

Energy Department Reports U.S. Wind Energy Production and Manufacturing  

Broader source: Energy.gov (indexed) [DOE]

Reports U.S. Wind Energy Production and Reports U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Department Reports U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 12:00pm Addthis The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time-representing 43% of all new electric additions and accounting for $25 billion in U.S. investment. In the first four years of the Obama Administration, American electricity

63

Reports Show Record High U.S. Wind Energy Production and Manufacturing |  

Broader source: Energy.gov (indexed) [DOE]

Reports Show Record High U.S. Wind Energy Production and Reports Show Record High U.S. Wind Energy Production and Manufacturing Reports Show Record High U.S. Wind Energy Production and Manufacturing August 6, 2013 - 12:00pm Addthis Two men work on the nacelle of a wind turbine. The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time-representing 43% of all new electric additions and accounting for $25 billion in U.S. investment.

64

Design of a demand driven multi-item-multi-stage manufacturing system : production scheduling, WIP control and Kanban implementation  

E-Print Network [OSTI]

The project is conducted in a multi-item-multi-stage manufacturing system with high volume products. The objectives are to optimize the inventory structure and improve production scheduling process. The stock building plan ...

Zhou, Xiaoyu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

65

Predictive Model for Environmental Assessment in Additive Manufacturing Process  

Science Journals Connector (OSTI)

Abstract Additive Manufacturing is an innovative way to produce parts. However its environmental impact is unknown. To ensure the development of additive manufacturing processes it seems important to develop the concept of DFSAM (Design for Sustainable Additive Manufacturing). In fact, one of the objectives of environmental sustainable manufacturing is to minimize the whole flux consumption (electricity, material and fluids) during manufacturing step. To achieve this goal, it is interesting to get a predictive model of consumptions, integrated in the design step, allowing to evaluate the product's environmental impact during the manufacturing step. This paper presents a new methodology for electric, fluids and raw material consumptions assessment for additive manufacturing processes, in particular for a direct metal deposition process. The methodology will help engineers to design parts optimized for additive manufacturing with an environmental point of view.

Florent Le Bourhis; Olivier Kerbrat; Lucas Dembinski; Jean-Yves Hascoet; Pascal Mognol

2014-01-01T23:59:59.000Z

66

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

67

A Tale of Two Brands: The Joint Effect of Manufacturer Brand and Retailer Brand on Consumers’ Evaluation of Products  

E-Print Network [OSTI]

Consumers’ purchase decisions typically involve two brands: the manufacturer brand (the “what brand to buy” decision) and the retailer brand (the “where to buy” decision). While extant research suggests that consumers’ product evaluation is affected...

Zhu, Ying

2012-10-19T23:59:59.000Z

68

Specific biogas production and role of packing medium in the treatment of rubber thread manufacturing industry wastewater  

Science Journals Connector (OSTI)

Wastewater from three rubber thread manufacturing industries collected from three different...4.../g?COD added when the organic loading rate was altered from 2.0 to 14.0?g?COD/l/d respectively. The biogas production

P. Agamuthu

1999-08-01T23:59:59.000Z

69

Domestic production of medical isotope Mo-99 moves a step closer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99 (Mo-99) production, with virtually no losses in Mo-99 yields or uranium recovery. May 13, 2013 From left, Los Alamos scientists Roy Copping, Sean Reilly, and Daniel Rios. Copping examines the Buchi Multivapor P-12 Evaporator, and Reilly and Rios are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. From left, Los Alamos scientists Sean Reilly, Roy Copping, and Daniel Rios. Sean is looking at the Buchi Multivapor P-12 Evaporator, and Roy and Daniel are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. Contact Nancy Ambrosiano Communications Office (505) 667-0471

70

Laser Additive Manufacturing of Metals  

Science Journals Connector (OSTI)

Laser Additive Manufacturing (LAM) is based on a repeating layer wise manufacturing process which uses a laser beam to ... ) geometries into simpler two-dimensional (2D) manufacturing steps [1, 2...]. Thus LAM of...

Claus Emmelmann; Jannis Kranz; Dirk Herzog; Eric Wycisk

2013-01-01T23:59:59.000Z

71

Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains  

Broader source: Energy.gov [DOE]

The project objective is to develop a smart manufacturing (SM) Platform for two commercial test beds that can be scaled to manufacturing operations to catalyze low-cost commercialization of the...

72

Additive manufacturing technology and material selection for direct manufacture of products based on computer aided design geometric feature analysis  

Science Journals Connector (OSTI)

This paper presents research into the development of an algorithm developed in a Visual Basic programming environment that aids in the selection of materials processed using additive manufacturing (AM) technologies. AM technologies such as selective laser sintering (SLS) and fused deposition modelling (FDM) have limitations on the materials available to them and each system has factors that limit the geometric freedom of the components that they can produce. Thus, materials capable of being processed on these types of technology can be selected through a method of traversing the geometric features of a computer aided design (CAD) model and performing an analysis of each individual feature's attributes. The algorithm developed for this research uses data based on minimum feature size and a model bounding box as criteria in the selection of suitable materials. Through integration with an existing commercially available CAD software package, a component can be automatically analysed for its geometric feature properties and attributes, returning suitable AM systems and material information for selection by the operator. A number of case studies are presented that highlight the successful operation of the AM technology and material selection tool that has been developed.

Paul C. Smith; Mihaela-Elena Lupeanu; Allan E.W. Rennie

2012-01-01T23:59:59.000Z

73

Fermentation guide for common grains: a step-by-step procedure for small-scale ethanol fuel production  

SciTech Connect (OSTI)

This booklet covers in detail all the procedures prior to and including fermentation that are necessary to produce the highest possible yields from small-scale ethanol plants. Batch starch conversion of corn, barley, wheat, and milo using enzymes (..cap alpha..-amylase and glucoamylase) from bacteria and fungi is described. The types of yeast to use in fermenting the mash and the equipment and chemicals needed are detailed. Refinements that can help to improve ethanol production are presented. (DMC)

Not Available

1981-06-01T23:59:59.000Z

74

Capacity analysis, cycle time optimization, and supply chain strategy in multi-product biopharmaceutical manufacturing operations  

E-Print Network [OSTI]

Application of system optimization theory, supply chain principles, and capacity modeling are increasingly valuable tools for use in pharmaceutical manufacturing facilities. The dynamics of the pharmaceutical industry - ...

Fetcho-Phillips, Kacey L. (Kacey Lynn)

2011-01-01T23:59:59.000Z

75

Applying lean thinking to improve the production process of a traditional medium-size British manufacturing company  

Science Journals Connector (OSTI)

A well-organised implementation of lean manufacturing strategy will lead to excellent operations system and continuous improvement through the removal of non-value-added activities. This case study uses value-stream-mapping to investigate non-value-added activities, simply show how lean manufacturing implementation can intelligibility result a framework of improvement. The implementation and improvements will be depicted in the area of lead time, cycle time and quality by applying lean concepts like circle-shape on production line, 5S and Kaizen team on the shop floor of a British medium-size company.

Salman Sigari; Robin Clark

2013-01-01T23:59:59.000Z

76

Lessons Learned During the Manufacture of the NCSX Modular Coils  

SciTech Connect (OSTI)

The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

2009-09-15T23:59:59.000Z

77

Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments  

E-Print Network [OSTI]

2012) Valuation of Increased Production System Performanceby Integrated Production Systems. Production Engineeringing Energy-Ef?cient Production Systems. Annals of the CIRP

Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

2013-01-01T23:59:59.000Z

78

Autogenic Pressure Reactions for Battery Materials Manufacture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

79

Process systems engineering of continuous pharmaceutical manufacturing  

E-Print Network [OSTI]

Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

Abel, Matthew J

2010-01-01T23:59:59.000Z

80

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

2010): “Sustainable Manufacturing – Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as “the creation of manufacturing products that use materials and processes

Dornfeld, David

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Additive Manufacturing for Mass Customization  

Science Journals Connector (OSTI)

Additive manufacturing (AM) is a disruptive manufacturing technology that requires no tooling for production....additively build parts from numerous materials, including polymers, metals and ceramics. Within this...

Phil Reeves; Chris Tuck; Richard Hague

2011-01-01T23:59:59.000Z

82

Introduction of a method for presenting health-based impacts of the emission from products, based on emission measurements of materials used in manufacturing of the products  

SciTech Connect (OSTI)

A method for presenting the health impact of emissions from furniture is introduced, which could be used in the context of environmental product declarations. The health impact is described by the negative indoor air quality potential, the carcinogenic potential, the mutagenic and reprotoxic potential, the allergenic potential, and the toxicological potential. An experimental study of emissions from four pieces of furniture is performed by testing both the materials used for production of the furniture and the complete piece of furniture, in order to compare the results gained by adding emissions of material with results gained from testing the finished piece of furniture. Calculating the emission from a product based on the emission from materials used in the manufacture of the product is a new idea. The relation between calculated results and measured results from the same products differ between the four pieces of furniture tested. Large differences between measured and calculated values are seen for leather products. More knowledge is needed to understand why these differences arise. Testing materials allows us to compare different suppliers of the same material. Four different foams and three different timber materials are tested, and the results vary between materials of the same type. If the manufacturer possesses this type of knowledge of the materials from the subcontractors it could be used as a selection criterion according to production of low emission products. -- Highlights: • A method for presenting health impact of emissions is introduced. • An experimental study of emissions from four pieces of furniture is performed. • Health impact is calculated based on sum of contribution from the materials used. • Calculated health impact is compared to health impact of the manufactured product. • The results show that health impact could be useful in product development and for presentation in EPDs.

Jørgensen, Rikke Bramming, E-mail: rikke.jorgensen@iot.ntnu.no

2013-11-15T23:59:59.000Z

83

Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

84

One-Step Production of Superhydrophobic Coatings on Flat Substrates via Atmospheric Rf Plasma Process Using Non-Fluorinated Hydrocarbons  

Science Journals Connector (OSTI)

One-Step Production of Superhydrophobic Coatings on Flat Substrates via Atmospheric Rf Plasma Process Using Non-Fluorinated Hydrocarbons ... This paper describes the direct deposition of hydrocarbon coatings with a static water contact angle higher than 150 using simple C6 hydrocarbons as a reactive gas in helium plasma generated in ambient air without any preroughening of the silicon (100) substrate. ...

Seul Hee Lee; Zachary R. Dilworth; Erik Hsiao; Anna L. Barnette; Matthew Marino; Jeong Hoon Kim; Jung-Gu Kang; Tae-Hwan Jung; Seong H. Kim

2011-01-31T23:59:59.000Z

85

A two-step photon-intermediate technique for the production of electricity, chemicals or lasers in nuclear energy conversion  

Science Journals Connector (OSTI)

The authors have developed an energy conversion concept, called Photon-Intermediate Direct Energy Conversion (PIDEC), that makes possible a two-step conversion of high grade nuclear energy (fission or fusion) to electricity or other useful high grade energy forms without intermediate thermalization. In PIDEC the nuclear fuel has a low average density, with local scale lengths significantly shorter than the range of the energetic nuclear reaction products. In the first step of the process, the nuclear energetic reaction product energy is transported to a fluorescer gas which converts it into photons. Then, in the second step of the process, the photons are transported out of the nuclear reactor to a medium which converts the photon energy to the desired product high grade energy form, such as electricity. We calculate that electricity can be produced, non-thermally, with an efficiency of up to 30%. With the addition of intermediate and bottoming thermal cycles, efficiency for electricity production could be as high as 70%, double that of conventional nuclear power plants. In addition to electric power, photolysis makes other product forms possible. These products include useful feedstock, or combustion chemicals, such as hydrogen and carbon monoxide, and excited molecular and atomic states, used for laser amplifiers or oscillators.

M.A. Prelas; F.P. Boody; E.J. Charlson; G.H. Miley

1990-01-01T23:59:59.000Z

86

Single-Step Syngas-to-Dimethyl Ether Processes for Optimal Productivity, Minimal Emissions, and Natural Gas-Derived Syngas  

Science Journals Connector (OSTI)

Single-step conversion of synthesis gas (syngas, H2/CO mixture) to dimethyl ether (DME, CH3OCH3) is very attractive as a route for indirect coal liquefaction, natural gas utilization, and production of synthetic liquid fuels, fuel additives, and chemicals. ... The main driving force for developing a single-step syngas-to-DME process is to produce DME at a cost lower than that from the commercially available two-step process, namely, syngas-to-methanol followed by methanol dehydration in sequential reactors. ... Furthermore, the composition of most commercially available syngas (except that produced by a CO2?methane reformer) is not the optimal composition (1:1 H2:CO) for the syngas-to-DME reactor. ...

X. D. Peng; A. W. Wang; B. A. Toseland; P. J. A. Tijm

1999-09-28T23:59:59.000Z

87

Optimization of biodiesel production from waste lard by a two-step transesterification process under mild conditions  

Science Journals Connector (OSTI)

Abstract The aim of this work is to investigate a two-step homogenous catalyzed waste lard transesterification reaction for low cost biodiesel production. For this purpose, two 23 full factorial design of experiments was applied. Six variables, namely esterification time (60–120 min), H2SO4 concentration (20–40 wt.%), MeOH:FFA (15:1–23:1), transesterification time (30–60 min), KOH concentration (1–2 wt.%), and MeOH:triglycerides (6:1–9:1), that typically affect the production process were studied. The esterification step is significantly affected mostly by the reaction time and the MeOH:FFA ratio value. Specifically, their increase brings a reduction of the FFA acidity. Likewise, the transesterification step is positively affected primarily by three independent variables, namely reaction time, KOH concentration and MeOH:triglyceride ratio. Furthermore two empirical models describing evolution of the two-step transesterification reaction were developed. They can become useful tools for further scaling-up the process by predicting its reaction yield within a 95% of confidence level.

Ioannis Sarantopoulos; Efthalia Chatzisymeon; Spyros Foteinis; Theocharis Tsoutsos

2014-01-01T23:59:59.000Z

88

SSL Manufacturing Roadmap  

Broader source: Energy.gov [DOE]

Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

89

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor Attention: Air Filter product manufacturers  

E-Print Network [OSTI]

Commission intends to maintain a simple online database of air filter product performance information. We link below) for your California-market filter products to the Energy Commission. Air be utilized to demonstrate compliance with the air filter product performance requirements in ASHRAE 62

90

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

91

Metabolite Profiling Identified Methylerythritol Cyclodiphosphate Efflux as a Limiting Step in Microbial Isoprenoid Production  

E-Print Network [OSTI]

Isoprenoids are natural products that are all derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These precursors are synthesized either by the mevalonate (MVA) pathway or the 1-Deoxy-D-Xylulose ...

Zhou, Kang

92

Digital Photonic Production: High Power ultrashort Lasers, Laser Additive Manufacturing and Laser Micro/ Nano Fabrication  

Science Journals Connector (OSTI)

The high power optical technologies enter a new era: The age of DIGITAL PHOTONIC PRODUCTION. Very recently new lasers in new time- and wavelength domains with high average powers have...

Poprawe, Reinhart; Gillner, Arnold; Hoffmann, Dieter; Kelbassa, Ingomar; Loosen, Peter; Wissenbach, Konrad

93

Direct photonic production: towards high speed additive manufacturing of individualized goods  

Science Journals Connector (OSTI)

Especially the scale-scope dilemma is boosted by global trends like mass customization and open innovation which result in a highly fluctuating demand for individualized products at costs matching or beating thos...

H. Schleifenbaum; A. Diatlov; C. Hinke; J. Bültmann…

2011-08-01T23:59:59.000Z

94

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations  

Broader source: Energy.gov [DOE]

This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

95

Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion  

Science Journals Connector (OSTI)

The effect of storage temperature and time on lipid composition of Scenedesmus sp. was studied. When stored at 4 °C or higher, the free fatty acid content in the wet biomass increased from a trace to 62.0% by day 4. Using two-step catalytic conversion, algae oil with a high free fatty acid content was converted to biodiesel by pre-esterification and transesterification. The conversion rate of triacylglycerols reached 100% under the methanol to oil molar ratio of 12:1 during catalysis with 2% potassium hydroxide at 65 °C for 30 min. This process was scaled up to produce biodiesel from Scenedesmus sp. and Nannochloropsis sp. oil. The crude biodiesel was purified using bleaching earth. Except for moisture content, the biodiesel conformed to Chinese National Standards.

Lin Chen; Tianzhong Liu; Wei Zhang; Xiaolin Chen; Junfeng Wang

2012-01-01T23:59:59.000Z

96

Electrolyzer Manufacturing Progress and Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

97

Step by Step Instructions  

Broader source: Energy.gov (indexed) [DOE]

Step by Step Instructions Step by Step Instructions For Completing An Information Collection Request 1. A determination must be made if a Federal entity has an Information Collection Request (ICR). To assist in making that determination, the Paperwork Reduction Act (PRA)states the following: The PRA requires each Federal agency to seek and obtain Office of Management and Budget (OMB) approval before undertaking a collection of information directed to ten or more people of the general public, including federal contractors, or continuing a collection for which the OMB approval and validity of the OMB control number are about to expire. 2. Once it's been determined that a program has an ICR, the program works with their Headquarters Point of Contact (POC) and prepare a 60-day Federal

98

Product development of a device for manufacturing medical equipment for use in low-resource settings  

E-Print Network [OSTI]

The objective of this paper is to describe the product design of a device that can be used to create medical supplies on-site in clinics in low-resource settings. The machine uses purely mechanical elements to cut and fold ...

Schlecht, Lisa (Lisa Anne)

2010-01-01T23:59:59.000Z

99

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

100

Commercial thermoacoustic products and next?step developments in acoustic cooling  

Science Journals Connector (OSTI)

CFIC?Qdrive committed to development and commercialization of thermoacoustic energy conversion devices in 1999 by combining the newly developed acoustic perspective and tools developed at Los Alamos with a deep well of Stirling?cycle experience to achieve a total physics model with both inertial and viscous behavior of the working fluid. Such acoustic?Stirling devices combine the mechanical simplicity robustness and efficiency. Focusing first on refrigeration for cryogenics; this work has led to a family of standard products that have found uses worldwide from air?quality sampling and oil refinery support to military aviation oxygen liquefaction. This paper details the basic operation of these acoustic? Stirling products and the key technological elements that make them viable and attractive in cryogenics; then examines the implications for less?cold uses like food?storage and air?conditioning; with a discussion of achievable performance in accessible applications. We review the work now underway to develop devices to meet those opportunities with environmentally benign cooling of superior performance.

John Corey; Philip Spoor

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Guidance on the establishment of acceptable daily exposure limits (ADE) to support Risk-Based Manufacture of Pharmaceutical Products  

Science Journals Connector (OSTI)

Health-based limits for active pharmaceutical ingredients (API) referred to as acceptable daily exposures (ADEs) are necessary to the pharmaceutical industry and used to derive acceptance limits for cleaning validation purposes and evaluating cross-carryover. \\{ADEs\\} represent a dose of an API unlikely to cause adverse effects if an individual is exposed, by any route, at or below this dose every day over a lifetime. Derivations of \\{ADEs\\} need to be consistent with ICH Q9 as well as other scientific approaches for the derivation of health-based limits that help to manage risks to both product quality and operator safety during the manufacture of pharmaceutical products. Previous methods for the establishment of acceptance limits in cleaning validation programs are considered arbitrary and have largely ignored the available clinical and toxicological data available for a drug substance. Since the ADE utilizes all available pharmaceutical data and applies scientifically acceptable risk assessment methodology it is more holistic and consistent with other quantitative risk assessments purposes such derivation of occupational exposure limits. Processes for hazard identification, dose response assessment, uncertainty factor analysis and documentation are reviewed.

Edward V. Sargent; Ellen Faria; Thomas Pfister; Robert G. Sussman

2013-01-01T23:59:59.000Z

102

Manufacturing Initiative | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

103

MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Broader source: Energy.gov (indexed) [DOE]

MANUFACTURING MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge) Manufacturing 332420 Other Metal Container Manufacturing 332439 Machine Shops 332710 Electroplating, Plating, Polishing, Anodizing, and Coloring 332813 Industrial valve Manufacturing 332911 Other Ordnance and Accessories Manufacturing 332995 All Other Miscellaneous Fabricated Metal Product Manufacturing

104

Prototype Design, Manufacturing, and Testing  

Science Journals Connector (OSTI)

Prototyping describes the practical realization of the theoretical concept of the nonimaging Fresnel lens. The steps that are to be taken in order to get a working prototype of the lens manufactured are as fol...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

105

Understanding Life Cycle Social Impacts in Manufacturing: A processed-based approach  

E-Print Network [OSTI]

socially sustainable manufacturing processes, software toolsc t Developing sustainable products and processes is growingsustainable manufacturing systems and production processes

Hutchins, Margot J.; Robinson, Stefanie L.; Dornfeld, David

2013-01-01T23:59:59.000Z

106

Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing  

Science Journals Connector (OSTI)

Cleaner production and sustainability are of crucial importance in the field of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologie...

Florent Le Bourhis; Olivier Kerbrat…

2013-12-01T23:59:59.000Z

107

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

108

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

109

Manufacturing News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

110

Dimensional metrology interoperability and standardization in manufacturing systems  

Science Journals Connector (OSTI)

Dimensional metrology is an important part of any manufacturing system. It consists of distinct components and requires a large, diverse, and interconnected knowledge base. How to pass information seamlessly with minimal cost and minimal data loss between different components of a dimensional metrology system is a major issue that concerns software and hardware vendors, standards developers, and customers. This paper focuses on the four main elements of a dimensional metrology system: product definition, measurement process plan definition, measurement process execution, and analysis and reporting of quality data. The activities and software modules that are involved in these elements are discussed. Key issues that cause interoperability problems are identified. These issues are discussed as they relate to the current situation in dimensional metrology standards development. The STEP (ISO 10303) standards are the product of an international effort to achieve interoperability for manufacturing systems. Extending STEP is an appropriate way to solve the interoperability problem within dimensional metrology systems. Further development of STEP standards is proposed so that Geometric Dimensioning and Tolerancing (GD&T) information already available in STEP can be linked with manufacturing feature information, measurement technology, and measurement results. The proposed STEP data model is an attempt to provide a standard that will support automatic measurement process plan generation for in-process on-machine measurement. Some case studies are under way to test the model.

Yaoyao Zhao; Xun Xu; Tom Kramer; Fred Proctor; John Horst

2011-01-01T23:59:59.000Z

111

Next Step for STEP  

SciTech Connect (OSTI)

The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measures being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.

Wood, Claire [CTSI; Bremner, Brenda [CTSI

2013-08-09T23:59:59.000Z

112

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

113

Manufacturing News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

114

The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis  

Science Journals Connector (OSTI)

...Roberto Amendolia and Can Li The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial...fuels by electrolysis in water using solar energy. A CO2-H2-based economy may address...

2013-01-01T23:59:59.000Z

115

Petrick Technology Trends Of Manufacturing  

E-Print Network [OSTI]

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: � that firms sophisticated modeling and simulation of both new products and production processes; � that additive

116

Beryllium Manufacturing Processes  

SciTech Connect (OSTI)

This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

Goldberg, A

2006-06-30T23:59:59.000Z

117

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

118

Innovations in Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

119

DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Steps Lead to Significant Increase in Compliance with Energy Steps Lead to Significant Increase in Compliance with Energy Efficiency Reporting Requirements DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency Reporting Requirements January 12, 2010 - 12:00am Addthis WASHINGTON DC - The Department of Energy announced today that it has received certifications for over 600,000 residential appliances in 15 different product categories in response to the Department's enhanced energy efficiency enforcement efforts. DOE recently announced that manufacturers had until January 8, 2010 to submit correct energy use data to the Department of Energy before aggressive enforcement actions were taken. The certification data provided by 160 different manufacturers will allow DOE to review manufacturers' compliance with minimum energy

120

Additive Manufacturing: Implications on Research and Manufacturing  

E-Print Network [OSTI]

Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

Crawford, T. Daniel

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Additive Manufacturing : Changing the Rules of Manufacturing  

Science Journals Connector (OSTI)

Aspects of 3D printing and additive or layer manufacturing can be treated as modular manufacturing or modular components of manufacturing in the contemporary sense. Such modular manufacturing involves specialized...

…

2014-06-01T23:59:59.000Z

122

Energy consumption and greenhouse gas emissions from enzyme and yeast manufacture for corn and cellulosic ethanol production  

Science Journals Connector (OSTI)

Enzymes and yeast are important ingredients in the production of ethanol, yet the energy consumption and emissions associated with their production ... are often excluded from life-cycle analyses of ethanol. We p...

Jennifer B. Dunn; Steffen Mueller; Michael Wang; Jeongwoo Han

2012-12-01T23:59:59.000Z

123

Clean Energy Manufacturing Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

124

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

125

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

126

Indian Wind Turbine Manufacturers Association | Open Energy Informatio...  

Open Energy Info (EERE)

Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

127

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network [OSTI]

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

128

MST: Organizations: Manufacturing Processes & Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Processing Manufacturing Processing Manufacturing Process, Science, and Technology Mark Smith Mark Smith, Senior Manager Manufacturing Process Science and Technology conducts research and development on advanced manufacturing process and materials technologies. It provides manufacturing process development, technical consulting, and technology transfer to support Sandia product realization needs. This organization also provides prototype fabrication and specialized production services, as required, to support Sandia missions. Departments Dianna Blair Mike Kelly Alex Roesler Paul C. McKey Thin Film, Vacuum, and Packaging Organic Materials Ceramics and Glass Meso Mfg. and System Development Dianna Blair, Manager Mike Kelly, Manager Alex Roesler, Manager Paul C. McKey,

129

STEP-by-STEP Program Summary  

Broader source: Energy.gov [DOE]

STEP-by-STEP Program Summary, from the Tool Kit Framework: Small Town University Energy Program (STEP).

130

Resource Conservative Manufacturing Transforming Waste into High Value Resource through Closed-Loop Product Systems (ResCoM)  

E-Print Network [OSTI]

with a materials information module. The platform will help guide design decisions by illustrating the benefits in account the complex, dynamic interaction between product design (design for multiple product lifecycles), supply chain management (integrated supply chains), business model development (closed-loop business

Arleo, Angelo

131

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machining Machining PDF format (236 kb) MS&T's machining group consists of two departments: Manufacturing Processing, and Manufacturing Processes and Services. The two departments team to build, procure, and assemble unique prototype and production hardware with diverse quality requirements. The in-house capability can manufacture hardware ranging from microscopic to proportions measured in feet and tons. The group's outside contacts and resources are almost boundless. This team's expertise includes: precision machining, welding, fabrication and assembly, aircraft quality sheet metal construction, and explosives machining and assembly. The department can manage a variety of activities: design modifications, in-house fabrication, outside shop selection and surveillance and manufacturing records management.

132

One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

step step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis Xiao-Zhou Zhang a , Noppadon Sathitsuksanoh a,b , Zhiguang Zhu a , Y.-H. Percival Zhang a,b,c,n a Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA b Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061, USA c BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA a r t i c l e i n f o Article history: Received 28 December 2010 Received in revised form 9 April 2011 Accepted 25 April 2011 Keywords: Bacillus subtilis Cellulase engineering Consolidated bioprocessing Endoglucanase Lactate Metabolic engineering Directed evolution a b s t r a c t Although intensive efforts have been made to create recombinant cellulolytic microorganisms,

133

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION  

E-Print Network [OSTI]

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

Schumacher, Russ

134

TREC STEP | Open Energy Information  

Open Energy Info (EERE)

Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: TREC-STEP1 This article is a stub. You can help OpenEI by expanding...

135

Multiple-part-type systems in high volume manufacturing : long-term capacity planning & time-based production control  

E-Print Network [OSTI]

This project examines a production station that faces fluctuating demand with seasonal pattern. The cumulative capacity exceeds the cumulative demand in a one year period; however, its weekly capacity is not able to meet ...

Hua, Xia, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

136

Residual Stress Evaluation of Materials Manufactured by High-Energy Process  

Science Journals Connector (OSTI)

This paper presents several applications of the step by step hole drillling method for measuring residual stress distribution introduced in different components manufactured by the high energy process.

J. F. Flavenot; J. Lu

1990-01-01T23:59:59.000Z

137

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

138

Manufacturing Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

139

Advanced Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

140

Green Manufacturing  

SciTech Connect (OSTI)

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manufacturing Energy and Carbon Footprints  

E-Print Network [OSTI]

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

142

Chemical Engineering Journal 93 (2003) 6980 Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon  

E-Print Network [OSTI]

Chemical Engineering Journal 93 (2003) 69­80 Production of COx-free hydrogen for fuel cells via Abstract The stringent COx-free hydrogen requirement for the current low temperature fuel cells has Hydrogen is the most promising fuel for the low temper- ature fuel cells, however, chemical processes

Goodman, Wayne

143

Evaluating preproduction prototypes of new energy-efficiency products in realistic test beds is an essential step before market  

E-Print Network [OSTI]

enables more cost-effective determination of energy-saving opportunities and ongoing verification. · The greatest barrier preventing wider use of geothermal (ground-source) heat pumps is high initial cost. Two 3Evaluating preproduction prototypes of new energy-efficiency products in realistic test beds

Oak Ridge National Laboratory

144

Pseudomonas fluorescens -A robust manufacturing platform  

E-Print Network [OSTI]

Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

Lebendiker, Mario

145

Explore Careers in Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

146

MST: Organizations: Precision Meso Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

147

Manufacturer-To-Retailer versus Manufacturer-To-Consumer Rebates in a Supply Chain  

Science Journals Connector (OSTI)

Starting with a newsvendor model (single-product, single-period, stochastic demand), we build a single-retailer, single-manufacturer supply chain with endogenous manufacturer rebates and retail pricing. The deman...

Goker Aydin; Evan L. Porteus

2009-01-01T23:59:59.000Z

148

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

149

Energy Department Launches New Clean Energy Manufacturing Initiative |  

Broader source: Energy.gov (indexed) [DOE]

New Clean Energy Manufacturing New Clean Energy Manufacturing Initiative Energy Department Launches New Clean Energy Manufacturing Initiative March 26, 2013 - 10:56am Addthis News Media Contact (202) 586-4940 OAK RIDGE - As part of the Obama Administration's commitment to revitalizing America's manufacturing sector, today the Energy Department launched the Clean Energy Manufacturing Initiative (CEMI), a new Department initiative focused on growing American manufacturing of clean energy products and boosting U.S. competitiveness through major improvements in manufacturing energy productivity. The initiative includes private sector partnerships, new funding from the Department, and enhanced analysis of the clean energy manufacturing supply chain that will guide the Department's future funding decisions.

150

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Washington. The requirements in the 2009 Washington. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Ferry Pend Oreille Okanogan Stevens

151

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

skylights that will meet the requirements of the 2009 IECC for residential buildings as it relates to Texas. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements.

152

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Jersey. The New Jersey. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Bergen Hunterdon Mercer Morris

153

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oregon. The requirements in the 2009 Oregon. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Baker Lake Benton Lane Clackamas Lincoln

154

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Minnesota. The Minnesota. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Aitkin Grant Mahnomen Roseau

155

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colorado. The Colorado. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Clear Creek Lake Routt Grand Mineral San Juan

156

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vermont. The requirements in the 2009 Vermont. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Addison Bennington Caledonia

157

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky. The requirements in the 2009 Kentucky. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Adair Edmonson Knox Nicholas Allen Elliott Larue Ohio

158

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iowa. The requirements in the 2009 IECC Iowa. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Allamakee Clay Hancock Palo Alto Black Hawk Clayton Hardin Plymouth

159

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pennsylvania. The requirements in the Pennsylvania. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Cameron Elk Potter Tioga Clearfield McKean Susquehanna Wayne

160

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alabama. The Alabama. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 3 Autauga Dallas Marengo Barbour De Kalb Marion

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

meet meet the requirements of the 2009 IECC for residential buildings as it relates to Alaska. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements.

162

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wisconsin. The Wisconsin. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Ashland Forest Price Bayfield Iron Sawyer

163

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IECC for residential buildings as it relates to Virginia. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4

164

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oklahoma. The Oklahoma. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Beaver Cimarron Texas IECC CLIMATE ZONE 3

165

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rhode Island. The Rhode Island. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Bristol Kent Newport Providence

166

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utah. The requirements Utah. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Box Elder Morgan Cache Rich Carbon Summit

167

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kansas. The requirements in the 2009 Kansas. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Cheyenne Hamilton Osborne Sherman

168

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California. The California. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Alpine Mono IECC CLIMATE ZONE 5

169

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Georgia. The Georgia. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Banks Fannin Habersham Rabun White

170

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arkansas. The Arkansas. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Baxter Fulton Newton Benton Izard Searcy

171

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Louisiana. The Louisiana. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 3 Bienville Franklin Red River Bossier Grant Richland

172

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Indiana. The Indiana. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Adams Franklin Madison St. Joseph

173

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Illinois. The Illinois. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Adams Edgar Lake Piatt Boone Ford Lee Pike

174

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Florida. The Florida. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 2 Alachua Hardee Orange Baker Hendry Osceola

175

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

South Dakota. The requirements in the South Dakota. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Aurora Faulk McPherson Beadle Grant Meade

176

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ohio. The requirements Ohio. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Allen Fayette Lorain Preble Ashland Franklin Lucas Putnam

177

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tennessee. The requirements in the 2009 Tennessee. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Anderson Franklin Loudon Scott

178

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mississippi. The Mississippi. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 3 Adams Itawamba Pike Alcorn Jasper Pontotoc

179

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maine. The requirements in the 2009 Maine. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Aroostook IECC CLIMATE ZONE 6 Androscoggin

180

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico. The New Mexico. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Catron San Juan Colfax San Miguel

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delaware. The Delaware. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Kent New Castle Sussex

182

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

West Virginia. The requirements in the West Virginia. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Barbour Lewis Raleigh Brooke Marion Randolph

183

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Carolina. The North Carolina. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Alleghany Avery Watauga

184

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michigan. The Michigan. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Baraga Houghton Luce Schoolcraft

185

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New York. The New York. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Allegany Franklin Montgomery Sullivan

186

Estimating the expected latency to failure due to manufacturing defects  

E-Print Network [OSTI]

Manufacturers of digital circuits test their products to find defective parts so they are not sold to customers. Despite extensive testing, some of their products that are defective pass the testing process. To combat this problem, manufacturers...

Dorsey, David Michael

2004-09-30T23:59:59.000Z

187

PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX M. Im, X. Den& II. C. Ovshinsky,R. Crucetand S.R Ovshimky  

E-Print Network [OSTI]

PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX PLANT M. Im, X. Den& II. C assembled in sovlux plant using these solar cell material have demonstrated an initial efficiency of 9. roofiop modules. Lightweight, flexible rooftop modules with initial efficiency up to 9.3% were producedat

Deng, Xunming

188

A numerical approach for 3D manufacturing tolerances synthesis  

E-Print Network [OSTI]

step is generally performed to verify that the expected generated deviations fit of each set-up. It is thus necessary to determine these manufacturing tolerances. This step is called vector named x(k) for the set-up k. They propose that each manufacturing set-up generates

Paris-Sud XI, Université de

189

Defining the needs for non-destructive assay of UF6 feed, product, and tails at gas centrifuge enrichment plants and possible next steps  

SciTech Connect (OSTI)

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of UF{sub 6} bulk material used in the process of enrichment at GCEPS. The inspectors also take destructive assay (DA) samples for analysis off-site which provide accurate, on the order of 0.1 % to 0.5% uncertainty, data on the enrichment of the UF{sub 6} feed, tails, and product. However, DA sample taking is a much more labor intensive and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of the results and contains the possibility of the loss of the continuity of knowledge of the samples during the storage and transit of the material. Use of the IAEA's inspection sampling algorithm shows that while total sample size is fixed by the total population of potential samples and its intrinsic qualities, the split of the samples into NDA or DA samples is determined by the uncertainties in the NDA measurements. Therefore, the larger the uncertainties in the NDA methods, more of the sample taken must be DA samples. Since the DA sampling is arduous and costly, improvements in NDA methods would reduce the number of DA samples needed. Furthermore, if methods of on-site analysis of the samples could be developed that have uncertainties in the 1-2% range, a lot of the problems inherent in DA sampling could be removed. The use of an unattended system that could give an overview of the entire process giving complementary data on the enrichment process as well as accurate measures of enrichment and weights of the UF{sub 6} feed, tails, and product would be a major step in enhancing the ability of NDA beyond present attended systems. The possibility of monitoring the feed, tails, and product header pipes in such a way as to gain safeguards relevant flow and enrichment information without compromising the intellectual property of the operator including proprietary equipment and operational parameters would be a huge step forward. This paper contains an analysis of possible improvements in unattended and attended NDA systems including such process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector measurements reducing the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GeEPs safeguards.

Boyer, Brian D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Moran, Bruce W [IAEA; Lebrun, Alain [IAEA

2009-01-01T23:59:59.000Z

190

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

191

Cost of quality tradeoffs in manufacturing process and inspection strategy selection  

E-Print Network [OSTI]

In today's highly competitive markets manufacturers must provide high quality products to survive. Manufacturers can achieve higher levels of quality by changing their manufacturing process and/or by product inspection ...

Zaklouta, Hadi

2011-01-01T23:59:59.000Z

192

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain  

E-Print Network [OSTI]

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain Goker Aydin rebates and retail pricing. The demand uncertainty is multiplicative, and the expected demand depends on the effective (retail) price of the product. A retailer rebate goes from the manufacturer to the retailer

Aydin, Goker

193

Cost Effective Cooling Strategies for Manufacturing Facilities  

E-Print Network [OSTI]

Industrial plants are designed for a specific purpose of manufacturing products or a group of products in the most cost effective way. One factor which is often very poorly addressed is the environmental requirements for the workplace. Environmental...

Kumar, R.

194

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov/manufacturing Advanced Manufacturing Next-Generation Manufacturing As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future.

195

U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis  

SciTech Connect (OSTI)

The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers’ readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

Fullenkamp, Patrick H; Holody, Diane S

2014-06-15T23:59:59.000Z

196

STEP Participant Survey Report  

Broader source: Energy.gov [DOE]

STEP Participant Survey Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

197

STEP Intern Job Description  

Broader source: Energy.gov [DOE]

STEP Intern Job Description, from the Tool Kit Framework: Small Town University Energy Program (STEP).

198

STEP Preferred Contractors  

Broader source: Energy.gov [DOE]

STEP Preferred Contractors, from the Tool Kit Framework: Small Town University Energy Program (STEP).

199

STEP Financial Incentives Summary  

Broader source: Energy.gov [DOE]

STEP Financial Incentives Summary, from the Tool Kit Framework: Small Town University Energy Program (STEP).

200

STEP Partner Presentation  

Broader source: Energy.gov [DOE]

STEP Partner Presentation, from the Tool Kit Framework: Small Town University Energy Program (STEP).

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

STEP Participant Financing Options  

Broader source: Energy.gov [DOE]

STEP Participant Financing Options, from the Tool Kit Framework: Small Town University Energy Program (STEP).

202

The President's Manufacturing Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

203

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

204

Advanced Manufacturing Office Overview  

Broader source: Energy.gov [DOE]

Overview presentation by the Advanced Manufacturing Office for the Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

205

Additive Manufacturing Technology Assessment  

Office of Environmental Management (EM)

subtractive manufacturing 41 methods 1. Additive manufacturing is also called as 3D printing, 42 additive fabrication, or freeform fabrication. These new 43 techniques, while...

206

Food products qualifying for and carrying front-of-pack symbols: a cross-sectional study examining a manufacturer led and a non-profit organization led program  

Science Journals Connector (OSTI)

Strengths of this study include the large number of food categories and subcategories examined, as well as the inclusion of both a non-profit led and a manufacturer led system. In addition, the FOP systems...

Teri E Emrich; Joanna E Cohen; Wendy Y Lou; Mary R L’Abbé

2013-09-01T23:59:59.000Z

207

Manufacturing Services | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Services Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Services Do you have a new idea? You may need to file a patent to both develop it and protect it. Find out more below. Search for existing patents Apply for a patent Business Owners Getting a business started, established, and growing is difficult. We want to make that easier. Check out the government services below that are available to businesses, and find out more about what's coming with StartUp America. Start a business Access financing Find opportunities to sell products and services to the government Grow your business Help with exporting for beginners and for experts. Shared Facilities Facilities can be a huge factor in whether you create a new product or

208

Additive Manufacturing Technologies  

Science Journals Connector (OSTI)

Rapid Prototyping is the construction of complex three-dimensional parts using additive manufacturing technology.

Jürgen Stampfl; Markus Hatzenbichler

2014-01-01T23:59:59.000Z

209

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) |  

Broader source: Energy.gov (indexed) [DOE]

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) May 28, 2010 DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards. DOE determined the product was noncompliant based on the company's own testing. Summit must immediately notify each person (or company) to whom Summit distributed the noncompliant products that the product does not meet Federal standards. In addition, Summit must provide to DOE documents and records showing the number of units Summit distributed and to whom. The manufacturer and/or

210

Upcoming Webinar February 11: Additive Manufacturing for Fuel Cells  

Broader source: Energy.gov [DOE]

On Tuesday, February 11, the Energy Department will present a live webinar on additive manufacturing to stimulate discussion in the hydrogen and fuel cell community on the application of additive manufacturing to prototyping and production.

211

Inbound freight consolidation for US manufacturers at China  

E-Print Network [OSTI]

In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

Fang, Yi, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

212

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Broader source: Energy.gov (indexed) [DOE]

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

213

A Global Assessment of Manufacturing: Economic  

E-Print Network [OSTI]

A Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions Keywords production, materials, closed loop, China, emerging economies Abstract We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon

Gutowski, Timothy

214

U.S. Manufacturing Energy Use and Loss: The Big Picture  

E-Print Network [OSTI]

A first step in realizing industrial energy efficiency opportunities is to understand how industry is using, and losing, energy. The U.S. Manufacturing Energy and Carbon Footprints provide a reliable macro-scale reference for manufacturing energy...

Brueske, S.; Sabouni, R.

2014-01-01T23:59:59.000Z

215

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Broader source: Energy.gov (indexed) [DOE]

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

216

Manufacturing Licenses Available | Tech Transfer | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Manufacturing SHARE Manufacturing 200401490 Production of Materials with Superior Properties Utilizing High Magnetic Field (Related ID # 200501531, 200701867, 200802085, 200902312, 201002455, 201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID # 200701983, 200802088) 200701972 Manufacturing Biodiesel from Triglycerides (Related ID # 200702012, 200802186) 200701983 Meso-scale Fluidic Digital Valve 200802083 A Hydraulic Flow Control Device by Means of a Digital Poppet Valve 200802088 Miniature shape memory alloy fluid control valve 200902224 Glass Drawing for Wire Arrays 200902231 Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods 200902291 Method of Machining Carbon and Graphite foams 200902309 Multi-Winding Homopolar Electric Machine Offers

217

Method for analysis and dynamism of factory structure in automotive manufacturing  

Science Journals Connector (OSTI)

A turbulent environment characterized by unsteady economic cycles, customized products, a growing bandwidth of products, an exploding number of variants and shorter product life cycles force manufacturers to permanent adaptation of their factories. Flexible ... Keywords: Capacity structure, Changeability, Manufacturing, Method

Carina Löffler; Engelbert Westkämper; Karl Unger

2011-08-01T23:59:59.000Z

218

Cost modeling for monoclonal antibody manufacturing  

E-Print Network [OSTI]

The Novartis BioPharmOps division is responsible for manufacturing large molecule products, including monoclonal antibodies, for late stage clinical trials and commercial sales. The BioPharmOps site in Huningue, France is ...

Simpson, Christina M. (Christina Margaret)

2011-01-01T23:59:59.000Z

219

Level schedule implementation in unstable manufacturing environments  

E-Print Network [OSTI]

American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

López de Haro, Santiago

2008-01-01T23:59:59.000Z

220

4D printing : towards biomimetic additive manufacturing  

E-Print Network [OSTI]

Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

Tsai, Elizabeth Yinling

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Technology Vehicles Manufacturing (ATVM) Loan Program  

Broader source: Energy.gov [DOE]

The Advanced Technology Vehicles Manufacturing (ATVM) loan program was established in Section 136 of the Energy Independence and Security Act of 2007 to support the production of fuel-efficient,...

222

Validation of Gene Therapy Manufacturing Processes  

Science Journals Connector (OSTI)

Specific issues of concern in the validation of gene therapy viral vector manufacturing processes include quality of raw materials, safety testing of cell and viral banks, production and purification of the ve...

Dominick Vacante; Gail Sofer; Stephen Morris…

2002-01-01T23:59:59.000Z

223

Laser Technology: Additive Manufacturing  

Science Journals Connector (OSTI)

Selective Laser Sintering, and in general Additive Manufacturing Processes are becoming mature technologies; in the ... systems that are even utilized for direct parts manufacturing. However, the parts final user...

Srichand Hinduja; Lin Li

2013-01-01T23:59:59.000Z

224

The Advanced Manufacturing Partnership  

E-Print Network [OSTI]

;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

Das, Suman

225

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Broader source: Energy.gov (indexed) [DOE]

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

226

EI Summary of All Manufacturing SIC  

U.S. Energy Information Administration (EIA) Indexed Site

All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) The manufacturing sector includes establishments engaged in the mechanical or chemical transformation of materials or substances into new products. These operations are generally conducted in facilities described as plants, factories, or mills, while characteristically using power-driven machines and material-handling equipment. Manufacturing also includes such activities as the assembly of components of manufactured products and the blending of materials, such as lubricating oil, plastics, resins, or liquors.

227

Manufacturing Innovation Topics Workshop  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

228

Solar hydrogen production using Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} solid solutions via a thermochemical, two-step water-splitting cycle  

SciTech Connect (OSTI)

The reactivity of Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} (x=0.025, 0.05, 0.075 and 0.1) solid solutions during the redox and two-step water-splitting cycles has been investigated in this work. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) patterns and field-emission scanning electron microscopy (FE-SEM) indicate that there are two reaction mechanisms in the O{sub 2}-releasing step and the shift in the reaction mechanisms occurs in the O{sub 2}-releasing step because of sintering at high temperatures, and a decrease in the concentration of lattice oxygen occurs as the O{sub 2}-releasing step proceeds. The reaction in the O{sub 2}-releasing step follows a second-order mechanism over a temperature range of 1000-1170 Degree-Sign C and a contracting-area model over a temperature range of 1170-1500 Degree-Sign C. According to direct gas mass spectroscopy (DGMS), ceria doped at 5 mol% Li exhibits the highest reactivity in the O{sub 2}-releasing step during both redox cycles in air and two-step water-splitting cycles, whereas ceria doped at 2.5 mol% Li yields the highest amount of hydrogen (4.79 ml/g) in the H{sub 2}-generation step during the two-step water-splitting cycles, which is higher than ceria doped with other metals. DGMS and electrochemical impedance spectroscopy (EIS) suggest that the average reaction rate in the H{sub 2}-generation step is influenced by the concentration of extrinsic oxygen vacancies, and thus, the reactivity in the H{sub 2}-generation step, to some degree, could be tuned by varying the concentration of extrinsic oxygen vacancies (Li content). - Graphical abstract: Average reduction fraction of Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} (x=0.025, 0.05, 0.075 and 0.10) solid solutions versus Li content in the O{sub 2}-releasing step during the redox cycles in air and the two-step water-splitting cycles. Highlights: Black-Right-Pointing-Pointer We have investigated Li-doped ceria for hydrogen production using two-step water-splitting cycles. Black-Right-Pointing-Pointer The sintering effect on the reaction mechanisms was first clarified. Black-Right-Pointing-Pointer The shift of reaction mechanisms occurs during the O{sub 2}-releasing step. Black-Right-Pointing-Pointer The reaction-mechanism shift occurs because of sintering at high temperatures. Black-Right-Pointing-Pointer Doping at 2.5 mol% Li results in the highest H{sub 2} yield and cyclability for hydrogen production.

Meng, Qing-Long; Lee, Chong-il; Shigeta, Satoshi [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan); Kaneko, Hiroshi [Solutions Research Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Solutions Research Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan); Tamaura, Yutaka, E-mail: ytamaura@chem.titech.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)

2012-10-15T23:59:59.000Z

229

Technology Transfer of Computational Intelligence for Manufacturing Process Control  

E-Print Network [OSTI]

Technology Transfer of Computational Intelligence for Manufacturing Process Control Alice E. Smith applications is a large and uncertain step. This paper focuses on the technology transfer issues and solutions

Smith, Alice E.

230

Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting  

SciTech Connect (OSTI)

GE Lighting Solutions will develop precise and efficient manufacturing techniques for the “remote phosphor” platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

2012-03-31T23:59:59.000Z

231

Ever Step Development Ltd | Open Energy Information  

Open Energy Info (EERE)

Ever Step Development Ltd Ever Step Development Ltd Jump to: navigation, search Name Ever Step Development Ltd. Place Hong Kong, Hong Kong Sector Solar Product Ever Step Development and its sister company Goldmaster Development produce solar and electronic products. References Ever Step Development Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ever Step Development Ltd. is a company located in Hong Kong, Hong Kong . References ↑ "Ever Step Development Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Ever_Step_Development_Ltd&oldid=345230" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

232

Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner  

Science Journals Connector (OSTI)

Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2579–3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo.

Alice Cheng; Aiza Humayun; David J Cohen; Barbara D Boyan; Zvi Schwartz

2014-01-01T23:59:59.000Z

233

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

234

Requirements for status for volume fuel cell manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Status for Volume Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July 13-14, 2005 Requirements for Manufactured Fuel Cells Customer Requirements: Commercial Plant Study - Volume: 250,000 fuel stacks per year - Cost: $30/kw net Requirements for Manufactured Fuel Cells Commercial Volume Manufacturing - Material Utilization: >85% - Controlled Environments (Humidity, temperature, dust) - Environmentally safe direct and indirect materials - Hydrogen safety - Make or Buy Decisions on non/proprietary unit cell components - Integrated strategic supply chain - Design for Manufacturing, Assembly, and Service Requirements for Manufactured Fuel Cells Quality Control & Assurance - Accelerated tests and process parameters correlated to key product requirements (QFD)

235

Ammonia Production via a Two-Step Al2O3/AlN Thermochemical Cycle. 3. Influence of the Carbon Reducing Agent and Cyclability  

Science Journals Connector (OSTI)

petcoke ... The AlN-hydrolysis steps were performed at 900 and 1100 °C for petcoke and wood charcoal, respectively, under a 80% H2O?Ar flow. ... Complete conversion of Al2O3 to AlN was attained after 1 h when petcoke (PC) was used. ...

M. E. Gálvez; I. Hischier; A. Frei; A. Steinfeld

2008-02-22T23:59:59.000Z

236

KMC Controls Inc Kreuter Manufacturing Company | Open Energy Information  

Open Energy Info (EERE)

KMC Controls Inc Kreuter Manufacturing Company KMC Controls Inc Kreuter Manufacturing Company Jump to: navigation, search Name KMC Controls, Inc. (Kreuter Manufacturing Company) Place New Paris, Indiana Zip IN 46553 Product Manufacturer of building management control products and systems. References KMC Controls, Inc. (Kreuter Manufacturing Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. KMC Controls, Inc. (Kreuter Manufacturing Company) is a company located in New Paris, Indiana . References ↑ "KMC Controls, Inc. (Kreuter Manufacturing Company)" Retrieved from "http://en.openei.org/w/index.php?title=KMC_Controls_Inc_Kreuter_Manufacturing_Company&oldid=348127" Categories:

237

Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd | Open...  

Open Energy Info (EERE)

Sector: Wind energy Product: Mainly involved in the manufacture of large-scale wind turbines, blades, and control systems. Coordinates: 21.846979, 111.949898 Show Map...

238

Improving energy efficiency in a pharmaceutical manufacturing environment  – office building .  

E-Print Network [OSTI]

??Reducing energy consumption without compromising the quality of products in a pharmaceutical manufacturing environment and maintaining the comfort of employees is of critical important in… (more)

Li, Wu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

239

Resource Consumption in Additive Manufacturing with a PSS Approach.  

E-Print Network [OSTI]

??Since the 1980’s, additive manufacturing (AM) has gradually advanced from rapid prototyping applications towards fabricating end consumer products. Many small companies may prefer accessing AM… (more)

Nopparat, Nanond; Kianian, Babak; Thompson, Anthony

2012-01-01T23:59:59.000Z

240

UGC National Conference on Advances in Computer Integrated Manufacturing (NCACIM) February 16-17, 2007. Department of Production and Industrial Engineering, J.N.V. University, Jodhpur-342011  

E-Print Network [OSTI]

machining. Thus, a different power supply is required for micro EDM. This paper discusses the step. POWER SUPPLY FOR MICRO EDM In conventional EDMs, which are concerned with the machining of macroscopic and currents associated with such EDMs are of the order of 300V and 60A. When machining large parts, sparks

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Enabling Manufacturing Research through Interoperability  

E-Print Network [OSTI]

sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

2009-01-01T23:59:59.000Z

242

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative Realizing Building End-Use Efficiency with Ermerging Technologies

243

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Realizing Building End-Use Efficiency with Ermerging Technologies Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

244

A new DFM approach to combine machining and additive manufacturing  

E-Print Network [OSTI]

Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

Kerbrat, Olivier; Hascoët, Jean-Yves; 10.1016/j.compind.2011.04.003

2011-01-01T23:59:59.000Z

245

A measurement infrastructure for sustainable manufacturing  

Science Journals Connector (OSTI)

Global resource degradation, climate change, and environmental pollution are worsening due to increasing globalised industrialisation. Manufacturing industries have thus been put under pressure to cope with these problems while maintaining competitiveness. Sustainable manufacturing has been proposed to meet these challenges. The measurement of sustainability in manufacturing enables the quantitative measure of sustainability performance in specific manufacturing processes that will support decision-making for more sustainable processes and products. This paper describes a proposed sustainable manufacturing measurement infrastructure. The centre piece of this infrastructure is a sustainability performance management component that will effectively manage a sustainable indicator repository, measurement process guidelines, and sustainability performance analysis, evaluation, and reporting. The sustainability measurement infrastructure provides a foundation for decision-making tools development and enables users to create a tight integration into business strategy development processes. Examples in this paper are on carbon emissions and energy consumption.

Shaw C. Feng; Che B. Joung

2011-01-01T23:59:59.000Z

246

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

247

Investigation of structure and properties of the Nb rods manufactured by different deformation and heat treatment regimes in mass production conditions for the Nb{sub 3}Sn strands  

SciTech Connect (OSTI)

From 2009 the mass production of the Nb{sub 3}Sn strands for ITER with the yield of several tens of tons per year operates at JSC Chepetsky Mechanical Plant (Glazov, Russia). In order to enhance the stability of output characteristics of the produced Nb{sub 3}Sn strands, to increase the Nb filaments dimensional homogeneity the manufacture regimes improvement of the used semiproducts such as Nb rods intended for the superconducting filaments formation in the finished strands has been carried out. In the work the investigations of the Nb rheological behavior, the influence of heat treatment in the wide temperature range from 700 to 1300 °C on the predeformed Nb rods structure and mechanical properties have been performed. Different production routes of the Nb rods, including such operations like forging, extrusion and drawing combined with the recrystallization annealings, were used. Composite Nb{sub 3}Sn strands have been produced and their electrophysical properties have been tested. For the first time influence of the niobium rods manufacture regimes on the current carrying capacity of the industrial Nb{sub 3}Sn strands has been investigated.

Abdyukhanov, I. M.; Vorobieva, A. E.; Alekseev, M. V.; Mareev, K. A.; Dergunova, E. A.; Peredkova, T. N. [JSC Bochvar High-Technology Research Institute of Inorganic Materials, 5a Rogova St., Moscow, 123060 (Russian Federation); Shikov, A. K. [NRC Kurchatov Institute, 1 Akademika Kurchatova Sq., Moscow, 123182 (Russian Federation); Utkin, K. V.; Vorobieva, A. V.; Kharkovsky, D. N. [JSC Chepetsky Mechanical Plant, 7 Belova St., Glazov, 427620 (Russian Federation)

2014-01-27T23:59:59.000Z

248

CIMplementation™: Evaluating Manufacturing Automation  

E-Print Network [OSTI]

in the manufacturing organization if CIMplementation~* is to succeed. 1.0 INTRODUCTION There is much discussion today about Com puter Integrated Manufacturing (CIM). Automation tools like Computer Aided Design (CAD) systems, robots, automated material handling...~ Pressing the frontier of technology in one's own manufactur ing facility will not be without its pitfalls. Second, while automation engineers may be able to piece together the technological pieces of a CIM system, they cannot and do not evaluate...

Krakauer, J.

249

A novel methodology of design for Additive Manufacturing applied to Additive Laser Manufacturing process  

Science Journals Connector (OSTI)

Abstract Nowadays, due to rapid prototyping processes improvements, a functional metal part can be built directly by Additive Manufacturing. It is now accepted that these new processes can increase productivity while enabling a mass and cost reduction and an increase of the parts functionality. However, the physical phenomena that occur during these processes have a strong impact on the quality of the produced parts. Especially, because the manufacturing paths used to produce the parts lead these physical phenomena, it is essential to considerate them right from the parts design stage. In this context, a new numerical chain based on a new design for Additive Manufacturing (DFAM) methodology is proposed in this paper, the new DFAM methodology being detailed; both design requirements and manufacturing specificities are taken into account. The corresponding numerical tools are detailed in the particular case of thin-walled metal parts manufactured by an Additive Laser Manufacturing (ALM) process.

Remi Ponche; Olivier Kerbrat; Pascal Mognol; Jean-Yves Hascoet

2014-01-01T23:59:59.000Z

250

An advanced STEP-NC controller for intelligent machining processes  

Science Journals Connector (OSTI)

Major improvements in high speed machining technologies are not followed by suitable evolutions of the programming standard ISO 6983, also called G-code. New STEP-NC standard aims at performing high level intelligent NC programming adapted to modern ... Keywords: CNC Controller, Multiprocess manufacturing, Optimization, STEP-NC, Simulation

Matthieu Rauch; Raphael Laguionie; Jean-Yves Hascoet; Suk-Hwan Suh

2012-06-01T23:59:59.000Z

251

Manufacturing Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers http:energy.goveeresuccess-storiesarticles...

252

Acoustics by additive manufacturing:.  

E-Print Network [OSTI]

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance… (more)

Setaki, F.

2012-01-01T23:59:59.000Z

253

Contribution to Nanotechnology Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning...

254

Manufacturing Demonstration Facility  

Broader source: Energy.gov (indexed) [DOE]

is key to stroke recovery * Additive manufacturing allows custom fit glove device using brain machine interface to retrain movement * Gloves are light-weight, low cost and...

255

Clean Energy Manufacturing Initiative  

Broader source: Energy.gov [DOE]

Manufacturing technologies for cleaner energy generation, distribution, and use represents an important opportunity for U.S. economic growth, energy security, and accelerated innovation. Likewise,...

256

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Miraial formerly Kakizaki Manufacturing Miraial formerly Kakizaki Manufacturing Jump to: navigation, search Name Miraial (formerly Kakizaki Manufacturing) Place Tokyo, Japan Zip 171-0021 Product Manufacturer of wafer handling products and other components for the global semiconductor industry. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Design and manufacturing tolerances optimisation with quality loss functions  

Science Journals Connector (OSTI)

The competition in the current world market has forced the manufacturers to produce products with low cost and high quality. Production of high quality products at low cost requires the concurrent optimisation of design and manufacturing tolerances along with quality loss. Tolerance allocation is a design tool for minimising over-all cost of manufacturing, while meeting target levels for quality. Since, in traditional method, the allocation of tolerances is based on designer's own experience, it may significantly affect a product's quality and the resulting manufacturing costs. Hence, in this work, the tolerance allocation problem is formulated as a non-linear integer model by considering both the design and manufacturing tolerances so as to minimise the manufacturing cost and quality loss. Genetic algorithm is employed to solve the model and an example is presented to illustrate the methodology. Results are compared with conventional techniques and the performances are analysed.

P. Muthu; V. Dhanalakshmi; K. Sankaranarayanasamy

2010-01-01T23:59:59.000Z

258

Goodman Manufacturing: Noncompliance Determination (2011-SE-4301) |  

Broader source: Energy.gov (indexed) [DOE]

Noncompliance Determination (2011-SE-4301) Noncompliance Determination (2011-SE-4301) Goodman Manufacturing: Noncompliance Determination (2011-SE-4301) October 17, 2011 DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing . Goodman must immediately notify each person (or company) to whom Goodmany distributed the noncompliant products that the product does not meet Federal standards. In addition, Goodman must provide to DOE documents and records showing the number of units Goodman distributed and to whom. The manufacturer and/or private labeler of the product may be subject to civil

259

Global manufacturing model and case studies  

E-Print Network [OSTI]

chain network. 3. 7 Level of firm's global manufacturing competitiveness. . . . 3. 8 A typical unit-cost curve. . 3. 9 Ford Fiesta production network in Western Europe. . . . . . . 35 38 39 42 3. 10 Integrated information system, 51 3. 11 World..., Japan, and Europe. 4. 1 Hofstede's scores of USA and Mexico. 91 4. 2 Average daily wage plus benefits and taxes by occupation. . . . 94 CHAPTER I INTRODUCTION Black & Decker, a $5 billion U. S. -based manufacturer of hand tools, provides an example...

Kijtawesataporn, Komsun

2012-06-07T23:59:59.000Z

260

REMEDIAT1NG AT MANUFACTURED GAS  

E-Print Network [OSTI]

, comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas, and metals. Tar resid- uals were produced from the vola- tiIe component of bituminous coals in coal

Peters, Catherine A.

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Catalyst Manufacturing Science and  

E-Print Network [OSTI]

Catalyst Manufacturing Science and Engineering Consortium (CMSEC) Rutgers University New Jersey, U, automotive, and energy industries makes and/or uses catalysts, there has been no academic program focusing on the operations required to make catalytic materials. Thus, catalyst manufacturing processes are often designed

262

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

263

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect (OSTI)

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

264

Combining steam-methane reforming, water-gas shift, and CO{sub 2} removal in a single-step process for hydrogen production. Final report for period March 15, 1997 - December 14, 2000  

SciTech Connect (OSTI)

The objective of the research project was to determine the feasibility of a simpler, more energy-efficient process for the production of 95+% H{sub 2} from natural gas, and to collect sufficient experimental data on the effect of reaction parameters to guide additional larger-scale process development. The overall objectives were accomplished. 95+% H{sub 2} was produced in a single reaction step by adding a calcium-based CO{sub 2} acceptor to standard Ni-based reforming catalyst. The spent acceptor was successfully regenerated and used in a number of reaction steps with only moderate loss in activity as the number of cycles increased. Sufficient experimental data were collected to guide further larger-scale experimental work designed to investigate the economic feasibility of the process.

Alejandro Lopez Ortiz; Bhaskar Balasubramanian; Douglas P. Harrison

2001-02-01T23:59:59.000Z

265

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go ManufacturingAvailable formats Cost of Natural Gas Used in Manufacturing Sector Has Fallen Released: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17

266

Iskra Wind Turbine Manufacturers Ltd | Open Energy Information  

Open Energy Info (EERE)

Iskra Wind Turbine Manufacturers Ltd Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name Iskra Wind Turbine Manufacturers Ltd Place Nottingham, United Kingdom Sector Wind energy Product Iskra manufactures and markets the AT5-1 home-sized wind turbine rated at 5.3 kW, suitable for low wind speeds. References Iskra Wind Turbine Manufacturers Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iskra Wind Turbine Manufacturers Ltd is a company located in Nottingham, United Kingdom . References ↑ "Iskra Wind Turbine Manufacturers Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Iskra_Wind_Turbine_Manufacturers_Ltd&oldid=347129" Categories: Clean Energy Organizations

267

Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Yeelong Wind Power Equipment Manufacturing Co Ltd Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place Hebei Province, China Sector Wind energy Product China-based wind turbine equipment manufacturer. References Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd is a company located in Hebei Province, China . References ↑ "[ Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hebei_Yeelong_Wind_Power_Equipment_Manufacturing_Co_Ltd&oldid=346424

268

Ensuring American Leadership in Clean Energy Manufacturing | Department of  

Broader source: Energy.gov (indexed) [DOE]

Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing December 11, 2013 - 1:40pm Addthis Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. David Danielson David Danielson

269

American Energy and Manufacturing Competitiveness Summit | Department of  

Broader source: Energy.gov (indexed) [DOE]

American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy and shorten the time needed to bring a product to market. On display at the

270

National Network for Manufacturing Innovation: A Preliminary Design  

Broader source: Energy.gov [DOE]

The Federal investment in the National Network for Manufacturing Innovation (NNMI) serves to create an effective manufacturing research infrastructure for U.S. industry and academia to solve industry-relevant problems. The NNMI will consist of linked Institutes for Manufacturing Innovation (IMIs) with common goals, but unique concentrations. In an IMI, industry, academia, and government partners leverage existing resources, collaborate, and co-invest to nurture manufacturing innovation and accelerate commercialization. As sustainable manufacturing innovation hubs, IMIs will create, showcase, and deploy new capabilities, new products, and new processes that can impact commercial production. They will build workforce skills at all levels and enhance manufacturing capabilities in companies large and small. Institutes will draw together the best talents and capabilities from all the partners to build the proving grounds where innovations flourish and to help advance American domestic manufacturing.

271

Taiwan Semiconductor Manufacturing Co Ltd TSMC | Open Energy Information  

Open Energy Info (EERE)

Semiconductor Manufacturing Co Ltd TSMC Semiconductor Manufacturing Co Ltd TSMC Jump to: navigation, search Name Taiwan Semiconductor Manufacturing Co Ltd (TSMC) Place Hsinchu, Taiwan Zip 300 Sector Solar Product Taiwan-based semiconductor company. The firm is also venturing into solar and LED production. References Taiwan Semiconductor Manufacturing Co Ltd (TSMC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Taiwan Semiconductor Manufacturing Co Ltd (TSMC) is a company located in Hsinchu, Taiwan . References ↑ "Taiwan Semiconductor Manufacturing Co Ltd (TSMC)" Retrieved from "http://en.openei.org/w/index.php?title=Taiwan_Semiconductor_Manufacturing_Co_Ltd_TSMC&oldid=352012"

272

MECS 2006- Forest Products  

Broader source: Energy.gov [DOE]

Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

273

President Obama Announces New Public-Private Manufacturing Innovation  

Broader source: Energy.gov (indexed) [DOE]

President Obama Announces New Public-Private Manufacturing President Obama Announces New Public-Private Manufacturing Innovation Institute President Obama Announces New Public-Private Manufacturing Innovation Institute January 15, 2014 - 1:37pm Addthis Today, President Obama will announce the selection of North Carolina State University to lead the Energy Department's manufacturing innovation institute for next generation power electronics. Check out more in a new animated video and blog post from Secretary Moniz and factsheet that highlight the importance of this new technology on our clean energy future. The President today will announce new steps with the private sector to strengthen the manufacturing sector, boost advanced manufacturing, and attract the good paying jobs that a growing middle class requires. The

274

Digital Additive Manufacturing: From Rapid Prototyping to Rapid Manufacturing  

Science Journals Connector (OSTI)

The emergence of stereolithography in 1998 is a milestone for an entirely new class of layer-based manufacturing processes. This new manufacturing approach which allows direct digital manufacturing from CAD to a ...

K. K. B. Hon

2007-01-01T23:59:59.000Z

275

Reduction of rework at a large aerospace manufacturer  

E-Print Network [OSTI]

It is an axiom of the manufacturing of any complex product that errors will occur that require repair or discard of said product. In building aircraft, Raptor Aerospace encounters and repairs numerous deviations from the ...

Lieberman, Jeremy A. (Jeremy Alan)

2012-01-01T23:59:59.000Z

276

Imperial Manufacturing: Proposed Penalty (2013-CE-5322) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Proposed Penalty (2013-CE-5322) Proposed Penalty (2013-CE-5322) Imperial Manufacturing: Proposed Penalty (2013-CE-5322) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Imperial Manufacturing, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Imperial Manufacturing: Proposed Penalty (2013-CE-5322) More Documents & Publications Imperial Manufacturing: Order (2013-CE-5322)

277

Solar Manufacturing Technology 2  

Broader source: Energy.gov [DOE]

The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds ten photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost of manufacturing and implementing efficiency-increasing technology in manufacturing processes.

278

STEP Participant Survey Executive Summary  

Broader source: Energy.gov [DOE]

STEP Participant Survey Executive Summary, from the Tool Kit Framework: Small Town University Energy Program (STEP).

279

STEP Utility Data Release Form  

Broader source: Energy.gov [DOE]

STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

280

Advanced Manufacture of Reflectors  

SciTech Connect (OSTI)

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS  

SciTech Connect (OSTI)

The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

Peter G. Stansberry; John W. Zondlo

2001-07-01T23:59:59.000Z

282

Innovative Manufacturing Initiative Project Selections  

Office of Energy Efficiency and Renewable Energy (EERE)

The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

283

Metal Additive Manufacturing: A Review  

Science Journals Connector (OSTI)

This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, o...

William E. Frazier

2014-06-01T23:59:59.000Z

284

Summit Manufacturing: Noncompliance Determination (2010-SE-0303)  

Broader source: Energy.gov (indexed) [DOE]

the the Matter of: Summit Manufacturing, Inc. Case Number 2010-SE-0303 NOTICE OF NONCOMPLIANCE DETERMINATION CERTIFICATION Manufacturers of certain covered products are required to certify compliance with the applicable energy conservation standards through submission of a compliance statement and a certification report. 10 CFR § 430.62. See 42 U.S.C. 6296 . The compliance statement is a legal statement by the manufacturer that the information provided in its certification reports is true , accurate and complete, that the basic models certified meet the applicable energy conservation standard, that the energy efficiency information report is the result of testing performed in conformance with the applicable test requirements in 10 CFR part 430, subpart B; and that the manufacturer is

285

Aurora Photovoltaics Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Aurora Photovoltaics Manufacturing Aurora Photovoltaics Manufacturing Jump to: navigation, search Name Aurora Photovoltaics Manufacturing Place Lawrenceville, New Jersey Zip 8648 Sector Solar Product A subsidiary of EPV solar, based in New Jersey, focused on manufacturing of PV cells. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Leitner Shriram Manufacturing Ltd | Open Energy Information  

Open Energy Info (EERE)

Leitner Shriram Manufacturing Ltd Leitner Shriram Manufacturing Ltd Jump to: navigation, search Name Leitner Shriram Manufacturing Ltd Place Chennai, Tamil Nadu, India Zip 600095 Sector Wind energy Product Chennai-based JV between Leitwind and Shriram EPC with the purpose of manufacturing MW-class wind turbines. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

288

PRODUCTS & MATERIALS  

Science Journals Connector (OSTI)

...1995-96 Spectrum Chemical and Safety Prod-ucts Catalog features products for molecular and life science laboratories and cleanroom environments. Spectrum Chemical Manu-facturing. Circle 150. SCIENCE * VOL. 268 * 23 JUNE 1995

1995-06-23T23:59:59.000Z

289

Company Name Tax Credit* Manufacturing Facility's  

Broader source: Energy.gov (indexed) [DOE]

Company Company Name Tax Credit* Manufacturing Facility's City & State Project Description Carrier Corporation $5.1 million Indianapolis, IN Carrier, a part of UTC Building & Industrial Systems and a subsidiary of United Technologies Corporation, was selected for a $5.1 million dollar 48C Advanced Energy Manufacturing Tax Credit to expand production at its Indianapolis facility to meet increasing demand for its eco-friendly condensing gas furnace product line. The new line includes the most energy efficient gas furnaces on the market-all with at least 92% annual fuel utilization efficiency-and exemplifies Carrier's commitment to economical and environmentally sustainable solutions for achieving improved energy efficiency and performance.

290

Development of Additive Manufacturing Technology  

Science Journals Connector (OSTI)

Additive Manufacturing (AM) technology came about as a ... of different technology sectors. Like with many manufacturing technologies, improvements in computing power and reduction...

Dr. Ian Gibson; Dr. David W. Rosen…

2010-01-01T23:59:59.000Z

291

Sandia National Laboratories: wind manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

292

Slideshow: Innovation in the Manufacturing Sector | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy

293

Artisan Manufacturing: Proposed Penalty (2010-CW-0712) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Artisan Manufacturing: Proposed Penalty (2010-CW-0712) Artisan Manufacturing: Proposed Penalty (2010-CW-0712) Artisan Manufacturing: Proposed Penalty (2010-CW-0712) September 8, 2010 DOE alleged in a Notice of Proposed Civil Penalty that Artisan Manufacturing Company, Inc. failed to certify a variety of faucets as compliant with the applicable water conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable water conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Artisan Manufacturing: Proposed Penalty (2010-CW-0712) More Documents & Publications Artisan Manufacturing: Order (2010-CW-0712)

294

Microsoft Word - Ex Parte Memo re Manufactured Housing  

Broader source: Energy.gov (indexed) [DOE]

May 6, 2013 May 6, 2013 Re Ex Parte Communication On Wednesday May 1, 2013, a group of non-profit and state energy efficiency advocates met with representatives of the Department of Energy to discuss the efficiency standards for Manufactured Housing. See Advanced Notice of Proposed Rulemaking, Energy Efficiency Standards for Manufactured Housing, Docket No. EERE-2009-BT-BC-0021, 75 Fed. Reg. 7556 (Feb. 22, 2010). The efficiency advocates presented information on: a) manufactured homes production, percent of production of manufactured homes that meet energy star standards, and TVA programs to encourage purchase of energy star manufactured homes; b) the need for coordination between DOE and HUD regarding manufactured homes; c) additional information DOE should obtain concerning the impact of air sealing.

295

Semiconductor Manufacturing International Corp SMIC | Open Energy  

Open Energy Info (EERE)

Manufacturing International Corp SMIC Manufacturing International Corp SMIC Jump to: navigation, search Name Semiconductor Manufacturing International Corp (SMIC) Place Shanghai, Shanghai Municipality, China Zip 201203 Sector Solar Product Semiconductor group launching solar cell production from its recycled silicon wafers. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Load-dependent Optimization of Honeycombs for Sandwich Components – New Possibilities by Using Additive Layer Manufacturing  

Science Journals Connector (OSTI)

Abstract Due to their feasible geometric complexity, additive layer manufacturing (ALM) processes show a highpotential for the production of lightweight components.Therefore, ALM processes enable the realization of bionic-designedcomponents like honeycombs, which are optimized depending upon load and outer boundary conditions.This optimization is based on a closed-loop, three-steps methodology: At first, each honeycomb is conformed to the surface of the part. Secondly, the structure is optimizedfor lightweight design.It is possible to achieve a homogeneous stress distribution in the part by varying the wall thickness, honeycombdiameter and the amount of honeycombs, depending on the subjected stresses and strains. At last, the functional components like threads or bearing carriers are integrated directly into the honeycomb core.Using all these steps as an iterative process, it is possible to reduce the mass of sandwich components about 50 percent compared to conventional approaches.

Fabian Riss; Johannes Schilp; Gunther Reinhart

2014-01-01T23:59:59.000Z

297

Membrane separation processes for clean production  

SciTech Connect (OSTI)

Clean production can be considered as a strategic element in manufacturing technology for present and future products in the chemical industry. Demand is focused on the development of cost-effective technologies, the optimization of processes including separation steps, alternative processes for the reduction of waste, optimization of the use of resources and improvements in production efficiency. In many cases an environmentally friendly alternative to conventional separation processes could be membrane separation. Membrane separation techniques are suitable for mixtures of liquids, gases and vapors. Some examples of successful applications in the areas of waste water treatment and vapor recovery are given. Demands, advantages and problems of separation with membranes are also discussed.

Paul, D.; Ohlrogge, K. [GKSS Research Center, Geesthacht (Germany)

1998-12-31T23:59:59.000Z

298

EA-1692: Red River Environmental Products, LLC Activated Carbon...  

Broader source: Energy.gov (indexed) [DOE]

2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

299

CPCN Step-by-Step Guide | Open Energy Information  

Open Energy Info (EERE)

Step-by-Step Guide Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: CPCN Step-by-Step GuideLegal Abstract California Public Utilities...

300

STEP-NC enabled on-line inspection in support of closed-loop machining  

Science Journals Connector (OSTI)

The object-oriented STEP-NC data model provides a seamless and integrated programming interface for on-machine (or also known as on-line or in-line) inspections as well as interoperable manufacturing. This paper proposes a STEP-NC data model for on-line ... Keywords: Closed-loop machining, Machining, On-machine inspection, STEP-NC

Fiona Zhao; Xun Xu; Shane Xie

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.  

SciTech Connect (OSTI)

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G.; Decision and Information Sciences

2006-07-21T23:59:59.000Z

302

2-Step IMAT and 2-Step IMRT in three dimensions  

SciTech Connect (OSTI)

In two dimensions, 2-Step Intensity Modulated Arc Therapy (2-Step IMAT) and 2-Step Intensity Modulated Radiation Therapy (IMRT) were shown to be powerful methods for the optimization of plans with organs at risk (OAR) (partially) surrounded by a target volume (PTV). In three dimensions, some additional boundary conditions have to be considered to establish 2-Step IMAT as an optimization method. A further aim was to create rules for ad hoc adaptations of an IMRT plan to a daily changing PTV-OAR constellation. As a test model, a cylindrically symmetric PTV-OAR combination was used. The centrally placed OAR can adapt arbitrary diameters with different gap widths toward the PTV. Along the rotation axis the OAR diameter can vary, the OAR can even vanish at some axis positions, leaving a circular PTV. The width and weight of the second segment were the free parameters to optimize. The objective function f to minimize was the root of the integral of the squared difference of the dose in the target volume and a reference dose. For the problem, two local minima exist. Therefore, as a secondary criteria, the magnitude of hot and cold spots were taken into account. As a result, the solution with a larger segment width was recommended. From plane to plane for varying radii of PTV and OAR and for different gaps between them, different sets of weights and widths were optimal. Because only one weight for one segment shall be used for all planes (respectively leaf pairs), a strategy for complex three-dimensional (3-D) cases was established to choose a global weight. In a second step, a suitable segment width was chosen, minimizing f for this global weight. The concept was demonstrated in a planning study for a cylindrically symmetric example with a large range of different radii of an OAR along the patient axis. The method is discussed for some classes of tumor/organ at risk combinations. Noncylindrically symmetric cases were treated exemplarily. The product of width and weight of the additional segment as well as the integral across the segment profile was demonstrated to be an important value. This product was up to a factor of 3 larger than in the 2-D case. Even in three dimensions, the optimized 2-Step IMAT increased the homogeneity of the dose distribution in the PTV profoundly. Rules for adaptation to varying target-OAR combinations were deduced. It can be concluded that 2-Step IMAT and 2-Step IMRT are also applicable in three dimensions. In the majority of cases, weights between 0.5 and 2 will occur for the additional segment. The width-weight product of the second segment is always smaller than the normalized radius of the OAR. The width-weight product of the additional segment is strictly connected to the relevant diameter of the organ at risk and the target volume. The derived formulas can be helpful to adapt an IMRT plan to altering target shapes.

Bratengeier, Klaus [Klinik und Poliklinik fuer Strahlentherapie, Universitaet Wuerzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg (Germany)

2005-12-15T23:59:59.000Z

303

Advanced Manufacturing: Using Composites for Clean Energy  

Broader source: Energy.gov [DOE]

Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

304

President Obama Announces Two New Public-Private Manufacturing Innovation Institutes and Launches the First of Four New Manufacturing Innovation Institute Competitions  

Office of Energy Efficiency and Renewable Energy (EERE)

The President announces new steps in partnership with the private sector to boost advanced manufacturing, strengthen our capabilities for defense, and attract the types of high-quality jobs that a growing middle class requires.

305

Experimental studying on development of slurry-layer casting system for additive manufacturing of ceramics  

Science Journals Connector (OSTI)

Compared with powder-based process of additive manufacturing, slurry-based process can fabricate the ceramic ... the slurry with different formation used in the additive manufacturing of ceramic products, this st...

Hsiao Chuan Yen

2014-10-01T23:59:59.000Z

306

An empirical analysis of manufacturing re-shoring and supply chain risk  

E-Print Network [OSTI]

After an exodus of jobs in the last few years, the U.S. is committed to improving its manufacturing competiveness by investing in manufacturing innovation and increasing its labor force productivity. With rising labor costs ...

Kyratzoglou, loannis M

2013-01-01T23:59:59.000Z

307

Environmentally benign manufacturing of compact disc stampers [Final Phase II report  

SciTech Connect (OSTI)

Optical data storage is currently a $10B/yr. business. With the introduction of the high capacity Digital Versatile Disc (D/D) as well as the continued growth of CD-Audio and CD-ROM worldwide sales of optical data products as a whole are growing at rate of more than 10% per year. In North America, more than 2.5 billion optical discs will be sold in 1998. By 1999, the numbers of optical discs produced for the North American market will grow to almost three billion. The optical disc manufacturing industry is dominated by Asian and European companies (e.g. Sony of Japan and Philips of Netherlands). Prism Corporation has created a process that could significantly improve US competitiveness in the business of optical disc production. The objectives of the Phase II STTR project were to build and test an ion machining system (IMS) for stamper fabrication, prove overall manufacturing system feasibility by fabrication stampers and replicas, and evaluate alternative materials and alternative process parameters to optimize the process. During tie period of the Phase II project Prism Corporation was able to meet these objectives. In the course of doing so, adjustments had been made to better the project and in turn the final product. An ion machining system was designed and built that produced stampers ready for the molding process. Also, many control steps in the manufacturing process were studied to improve the current process and make it even more compatible with the industry standards, fitting seamlessly into current manufacturing lines.

None

1999-07-08T23:59:59.000Z

308

Solid-State Lighting R&D Manufacturing Roadmap  

Broader source: Energy.gov [DOE]

This document provides a description of activities the Department plans to undertake to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products, representing industry consensus on the expected evolution of SSL manufacturing, best practices, and opportunities for improvement and collaboration.

309

Key Green Engineering Research Areas for Sustainable Manufacturing: A Perspective from Pharmaceutical and Fine Chemicals Manufacturers  

Science Journals Connector (OSTI)

(25) This example clearly expresses a need to better integrate bioprocessing design with engineering and life cycle principles to be able to develop greener, more effective and sustainable processes, which can be both chemo- or biobased, or have a hybrid structure. ... Novel, intensified, integrated, and more energy efficient separation methods are required to drive a step change in the green and sustainable manufacture of pharmaceuticals. ... In general, the following are some of the key research challenges regarding mass and energy integration: ...

Concepción Jiménez-González; Peter Poechlauer; Quirinus B. Broxterman; Bing-Shiou Yang; David am Ende; James Baird; Carl Bertsch; Robert E. Hannah; Phil Dell’Orco; Henk Noorman; Sandy Yee; Raf Reintjens; Andrew Wells; Viviane Massonneau; Julie Manley

2011-02-22T23:59:59.000Z

310

Advanced Drivetrain Manufacturing  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy.

311

Innovations in Manufacturing  

Science Journals Connector (OSTI)

...competition from steam engines and water...Century ofthe Steam Engine is a classic...of the American System of Manufactures...general-purpose machine tools, interchangeable...spe-cialized machine tools, and were con-fined...note that if the system was con-fined...Nel-son provides an assessment of working conditions...

THOMAS WEISS

1983-05-20T23:59:59.000Z

312

2009 Solid-State Lighting Vancouver Manufacturing Workshop Highlights  

Broader source: Energy.gov [DOE]

Well over 150 lighting industry leaders gathered in Vancouver, Washington, on June 24-25, 2009, for the second DOE Solid-State Lighting (SSL) Manufacturing Workshop. The primary purpose was to review and refine a "strawman" roadmap for SSL manufacturing, based on insights and recommendations from the first workshop, which was held in April in Fairfax, Virginia. These insights and recommendations focused on identifying and overcoming the key barriers to developing lower-cost, higher-quality SSL products. The outcome of both workshops will be a working roadmap to guide SSL manufacturing in general and to inform a new DOE manufacturing initiative.

313

A simulation study integrated with analytic hierarchy process (AHP) in an automotive manufacturing system  

Science Journals Connector (OSTI)

A variety of circumstances, such as developing a new product, changing the design of an existing product, changing the production volume, or changing the product mix, can drive the need for a manufacturing system redesign. Simulation technology has been ... Keywords: analytic hierarchy process, automotive, manufacturing system design, simulation, transmission

Te Xu; Dug Hee Moon; Seung Geun Baek

2012-04-01T23:59:59.000Z

314

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

315

Transformational Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

316

Manufacturing News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

317

ESS 2012 Peer Review - Reducing the Costs of Manufacturing Flow Batteries - Dhruv Bhatnagar, SNL  

Broader source: Energy.gov (indexed) [DOE]

the Costs of Manufacturing Flow Batteries the Costs of Manufacturing Flow Batteries Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP Next Steps 1. Continued outreach with other with other manufacturers 2. Characterization of the flow battery manufacturing process and determination of process issues 3. Evaluation of the fuel cell, other battery and other industry manufacturing process to address issues identified 4. Coordination with PNNL flow battery component cost

318

Goodman Manufacturing: Proposed Penalty (2011-SE-4301) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Proposed Penalty (2011-SE-4301) Proposed Penalty (2011-SE-4301) Goodman Manufacturing: Proposed Penalty (2011-SE-4301) December 2, 2011 DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S. Federal law subjects manufacturers and private labelers to civil penalties if those parties distribute in the U.S. products that do not meet applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Goodman Manufacturing: Proposed Penalty (2011-SE-4301) More Documents & Publications Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)

319

Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) |  

Broader source: Energy.gov (indexed) [DOE]

Duracold Refrigeration Manufacturing: Proposed Penalty Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) February 21, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Duracold Refrigeration Manufacturing Company, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342)

320

Integration of additive manufacturing process characteristics in a design method  

Science Journals Connector (OSTI)

So as to adapt to an increasingly competitive market, companies need to minimise costs and reduce development time while maintaining high quality. This adaptation requires taking into account all elements of the product life cycle, from needs analysis to manufacturing, at an early stage of design. Because of recent developments, additive manufacturing technologies are now considered as manufacturing processes. The development of a design method suitable to these processes has become a major issue for their development. We have developed a method of Design for Additive Manufacturing (DFAM). This method, based on analysis of topological characteristic of the part studied, is used to evaluate the manufacturability of the part with additive processes. We have also developed an approach to decompose a CAD model that can separate interesting geometries manufactured by additive processes. We tested this method on different test parts, particularly in one area of the medical sector.

Julien Kerninon; Pascal Mognol; Jean-Yves Hascoët

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Revitalizing Innovation in Michigan for Clean Energy Manufacturing |  

Broader source: Energy.gov (indexed) [DOE]

Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing April 25, 2011 - 4:33pm Addthis Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Kerry Duggan What does this mean for me? Michigan has expanded its manufacturing focus beyond automobiles. Companies across Michigan are producing advanced batteries, motors, controllers, lighting devices, wind machines, photovoltaic modules, and other clean energy products. To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Last week, I got

322

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

that convert hydrogen into electric energy, (2) hydrogen storage systems, and (3) large-scale hydrogen and prioritize topics for public-private R&D on manufacturing hydrogen storage system components. ScopeManufacturing for the Hydrogen Economy Manufacturing Research & Development of Onboard Hydrogen

323

Automated Part Tracking and Metrology Applied to a Manufacturing Process  

E-Print Network [OSTI]

This paper presents a case study in the design of an automated part tracking and metrology systems for an industrial manufacturing system. A major productivity challenge of this facility is managing each batch of parts as it is formed, treated...

Morelli, F.; Halbert, T.; Hignight, M.; Kell, Z.; Lacy, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

324

The new role of intranet/internet technology for manufacturing  

Science Journals Connector (OSTI)

Information processing is essential in manufacturing, where products are produced based on available information from various sources. A number of techniques and methodologies have been developed and utilised to ...

Dr Henry Lau

1998-01-01T23:59:59.000Z

325

High Pressure Hydrogen Tank Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

326

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electro Microfluidic Dual In-line Package (EMDIP) Electro Microfluidic Dual In-line Package (EMDIP) PDF format (115 kb) EMDIP diagram EMDIP Diagram Microfluidics is experiencing explosive growth in new product developments. Already there are many commercial applications for electro microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of surface micromachined microfluidic devices is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. In order to realize applications for these devices, an efficient method for packaging microfluidic devices is needed. Responding to this need, researchers at Sandia developed the Electro Microfluidic Dual In-Line Package (EMDIP) and the Fluidic Printed Wiring Board (FPWB).

327

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

328

LightManufacturing | Open Energy Information  

Open Energy Info (EERE)

LightManufacturing LightManufacturing Jump to: navigation, search Logo: LightManufacturing Name LightManufacturing Address 855 4th Street Place California Zip 93449 Sector Solar Product heliostat, helisotats, sun trackers, solar thermal manufacturing systems. Year founded 2009 Number of employees 11-50 Company Type For Profit Phone number 415 796-6475 Website http://www.lightmanufacturings Coordinates 35.135012°, -120.6228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.135012,"lon":-120.6228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Teksun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Teksun PV Manufacturing Inc Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name Teksun PV Manufacturing Inc Address 401 Congress Ave Place Austin, Texas Zip 78701 Sector Solar Product Plan to manufacture large scale PV panels for utility scale solar power parks Website http://www.teksunpv.com/ Coordinates 30.266402°, -97.742959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.266402,"lon":-97.742959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

331

Rapid response manufacturing (RRM). Final CRADA report  

SciTech Connect (OSTI)

US industry is fighting to maintain its competitive edge in the global market place. Markets fluctuate rapidly. Companies have to be able to respond quickly with improved, high quality, cost efficient products. Because companies and their suppliers are geographically distributed, rapid product realization is dependent on the development of a secure integrated concurrent engineering environment operating across multiple business entities. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies implemented in a secure environment. This documents the work done under this CRADA to develop capabilities, which permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process. Lockheed Martin Energy Systems (LMES), through a CRADA with the National Center for Manufacturing Sciences (NCMS), worked within a consortium of major industrial firms--Ford, General Motors, Texas Instruments, United Technologies, and Eastman Kodak--and several small suppliers of advanced manufacturing technology--MacNeal-Schwendler Corp., Teknowledge Corp., Cimplex Corp., Concentra, Spatial Technology, and Structural Dynamics Research Corp. (SDRC)--to create infrastructure to support the development and implementation of secure engineering environments for Rapid Response Manufacturing. The major accomplishment achieved under this CRADA was the demonstration of a prototypical implementation of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined parts in a secure NWC compliant environment. Specifically, methods needed to permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process were developed and demonstrated. An important aspect of this demonstration was the implementation of a Product Information Management System that supports secure concurrent engineering in an open environment.

Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

1998-02-10T23:59:59.000Z

332

Evaluating manufacturing machine control language standards: an implementer's view  

Science Journals Connector (OSTI)

The focus of this paper is: how can standards for manufacturing machine control languages be evaluated? What is required of a standard defining one of these languages so that implementations will interoperate? The paper provides a set of specific questions ... Keywords: AP 238, BCL, DMIS, EIA-274-D, ISO 10303, ISO 14649, STEP-NC, control, language, machine, standard

Thomas R. Kramer

2007-08-01T23:59:59.000Z

333

Dimensional metrology interoperability and standardization in manufacturing systems  

Science Journals Connector (OSTI)

Dimensional metrology is an important part of any manufacturing system. It consists of distinct components and requires a large, diverse, and interconnected knowledge base. How to pass information seamlessly with minimal cost and minimal data loss between ... Keywords: DMIS, Dimensional metrology, Interoperability, STEP, Standard development

Yaoyao Zhao; Xun Xu; Tom Kramer; Fred Proctor; John Horst

2011-11-01T23:59:59.000Z

334

Washington: Battery Manufacturer Brings Material Production Home  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE-supported company, EnerG2, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles.

335

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network [OSTI]

University, Germany Edited by Prof. Dr. -lng. habil. Prof.E. h. Dr. -lng. E. h. Dr. h.c. Reimund Neugebauer Prof. T.

Dornfeld, David

2010-01-01T23:59:59.000Z

336

Manufacturing/Production Steering Committee Meeting  

SciTech Connect (OSTI)

This presentation discusses the following: (1) Nuclear Material Science - 22/1: Uranium Metallography and Metallurgy, 22/7: Plutonium Metallurgy, 22/8: Plutonium Corrosion; (2) Nuclear Materials Chemistry - 22/2: Actinide Chemistry, 22/7: Analytical Chemistry; (3) Tritium Science & Technology - 22/4: Tritium Science and Technology; and (4) Nuclear Materials Management - 22/5: Nuclear Materials Management, 22/9: Packaging, Storage and Transportation.

Castro, Richard G. [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

337

Washington: Battery Manufacturer Brings Material Production Home...  

Office of Environmental Management (EM)

Recovery and Reinvestment Act (ARRA) funds from EERE, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be...

338

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Alliance of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers...

339

Precision and Energy Usage for Additive Manufacturing  

E-Print Network [OSTI]

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

340

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Manufacture of a heat-resistant alloy with modified specifications for HTGR structural applications  

SciTech Connect (OSTI)

A method of manufacturing a nuclear grade nickel-base heat-resistant alloy in application to heliumcooled reactor primary circuit components has been developed. The Hastelloy-XR alloy, a version of Hastelloy-X, was made available by combining the basic studies of the oxidation behavior of Hastelloy-X and the improvement of manufacturing techniques. In the primary and remelting steps, the choice of appropriate processes was made by performing numerical analyses of the statistical deviation of both chemical composition and the products' mechanical properties. The feasibility of making larger electroslag remelting ingots with reasonable control of macrosegregation was examined by the calculation of a molten metal pool shape during melting. The hot workability of Hastelloy-XR was confirmed to be equivalent to that of Hastelloy-X and the importance of controlling the thermal and mechanical processes more closely was stressed in obtaining a higher level of quality assurance for the nuclear applications. The possibility of enhancing the high-temperature mechanical performance of Hastelloy-XR was suggested based on the preliminary test results with the heats manufactured with controlled boron content.

Sahira, K.; Kondo, T.; Takeiri, T.

1984-07-01T23:59:59.000Z

342

New Products  

Science Journals Connector (OSTI)

...security of unmatched sample traceability. Manufactured from high-quality polypropylene in a fully automated class-7 cleanroom environment ensures the laser-etched alphanumeric tubes exhibit absolute product consistency, near-zero contaminants...

2013-01-11T23:59:59.000Z

343

Forest Products  

Broader source: Energy.gov [DOE]

Purchased energy remains the third largest manufacturing cost for the forest products industry–despite its extensive use of highly efficient co-generation technology. The industry has worked with...

344

Manufacturing Science and Technology: Organizations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machining Operations Machining Operations Machining Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing & Systems Development Visiting Us AMTTP Center Organizational chart Organizations Our Business areas Manufacturing Science and Technology David Plummer, Director Manufacturing Enterprise Joe M. Harris, Senior Manager Machining Operations Mathew Donnelly, Manager Machining Services Daryl Reckaway, Acting Manager Electronic Fabrication Phillip L. Gallegos, Manager Manufacturing Process Science and Technology Mark F. Smith, Senior Manager Thin Film, Vacuum, and Packaging Mark F. Smith, Acting Manager Organic Materials Mike Kelly, Manager Ceramic and Glass Alex Roesler, Manager

345

Advanced Manufacturing Office: Motor Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

346

Revolutionizing Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

347

DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institutes Enforcement Action against 4 Showerhead Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products January 28, 2010 - 1:49pm Addthis WASHINGTON DC - The Office of General Counsel has issued Notices of Proposed Civil Penalty to Zoe Industries, Altmans Products LLC, EZ-FLO International, and Watermark Designs, Ltd. for failing to certify to the Department of Energy that showerheads manufactured or distributed by these companies meet the applicable water conservation standard as required by the Energy Policy Conservation Act and DOE's regulations. These Notices of Proposed Civil Penalty collectively propose payments to the government of over $3 million. Unless the manufacturers settle these claims within

348

Sensor Switch's Bright Manufacturing Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sensor Switch's Bright Manufacturing Future Sensor Switch's Bright Manufacturing Future Sensor Switch's Bright Manufacturing Future June 16, 2010 - 12:01pm Addthis Lindsay Gsell It's a simple concept that's saving thousands of dollars in utility bills each year: when a room is empty, turn off the lights. This is the basic concept behind Sensor Switch, a Connecticut-based manufacturer of lighting control products. Sensor Switch's occupancy sensor devices turn off lights when spaces are vacant. They also make devices that dim or turn off lights when sufficient daylight is present. Both types of products provide cost effective energy savings in indoor spaces like office buildings and warehouses. "There's an increasing public demand to save energy, which directly impacts the demand for our products," said Ben Hahn, vice president. "A key part of

349

Manufacturing Barriers to High Temperature PEM Commercialization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9/2011 9/2011 1 BASF Fuel Cell, Inc. Manufacturing Barriers to high temperature PEM commercialization 39 Veronica Ave Somerset , NJ 08873 Tel : (732) 545-5100 9/9/2011 2 Background on BASF Fuel Cell  BASF Fuel Cell was established in 2007, formerly PEMEAS Fuel Cells (including E-TEK)  Product line is high temperature MEAs (Celtec ® P made from PBI-phosphoric acid)  Dedicated a new advanced pilot manufacturing facility in Somerset NJ May 2009. Ribbon-cutting hosted by Dr. Kreimeyer (BASF BoD, right) and attended by various US pubic officials including former NJ Governor Jon Corzine (left) 9/9/2011 3 Multi-layer product of membrane (polybenzimidazole and phosphoric acid), gas diffusion material and catalysts Unique characteristics:  High operating temperature

350

Department of Energy Announces Next Steps for Asset Revitalization  

Broader source: Energy.gov (indexed) [DOE]

Next Steps for Asset Revitalization Next Steps for Asset Revitalization Initiative Department of Energy Announces Next Steps for Asset Revitalization Initiative September 16, 2011 - 11:49am Addthis WASHINGTON, DC - The Department of Energy today announced next steps under the Asset Revitalization Initiative, a Department-wide initiative to examine ways to work with local communities to support the reuse of DOE resources at former Cold War weapons sites around the country. These steps build on the recommendations from the Task Force on Asset Revitalization, which was convened by Secretary Chu in February 2011, and will facilitate local efforts to support beneficial reuse options at DOE sites, including reindustrialization, manufacturing, clean energy development, nature preserves, and educational centers.

351

PI & Project Team Step-By-Step Procedure  

E-Print Network [OSTI]

Proposal Management PI & Project Team Cancel PAF Step-By-Step Procedure Last updated: 4/1/2013 1;Proposal Management PI & Project Team Cancel PAF Step-By-Step Procedure Last updated: 10/01/09 2 of 2 http of 2 http://eresearch.umich.edu Project Team Cancel PAF A PAF can be cancelled during the following

Shyy, Wei

352

PI & Project Team Step-By-Step Procedure  

E-Print Network [OSTI]

Proposal Management PI & Project Team Grants.gov Step-By-Step Procedure Last updated: 8/1/2013 1 Management PI & Project Team Grants.gov Step-By-Step Procedure Last updated: 8/1/2013 4 of 21 http of 21 http://eresearch.umich.edu Grants.gov from eRPM This procedure is a supplement to the rest

Shyy, Wei

353

Faculty Position in Mechanical Engineering Additive Manufacturing  

E-Print Network [OSTI]

Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

354

EXERGY BASED METHOD FOR SUSTAINABLE ENERGY UTILIZATION ANALYSIS OF A NET SHAPE MANUFACTURING SYSTEM.  

E-Print Network [OSTI]

??The approach advocated in this work implements energy/exergy analysis and indirectly an irreversibility evaluation to a continuous manufacturing process involving discrete net shape production of… (more)

SANKARA, JAYASANKAR

2005-01-01T23:59:59.000Z

355

Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices  

Broader source: Energy.gov [DOE]

Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and systems constraints on the viability of a mass market thermoelectric product are discussed

356

Continual Energy Management Dynamics| Energy Efficiency in U.S. Automotive Manufacturing Industry.  

E-Print Network [OSTI]

?? Managers at automotive manufacturers are seeking ways to reduce energy consumption, costs, carbon emissions, and waste from production processes. Researchers and practitioners perceive energy… (more)

Onus, Cem O.

2014-01-01T23:59:59.000Z

357

Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components  

E-Print Network [OSTI]

Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

Wisconsin at Madison, University of

358

Manufacturing and testing VLPC hybrids  

SciTech Connect (OSTI)

To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of {+-}0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.

Adkins, L. R.; Ingram, C. M.; Anderson, E. J. [Guidance, Navigation and Sensors, Boeing (United States)

1998-11-09T23:59:59.000Z

359

Plumbing Manufacturer's Institute Ex Parte Communication Regarding...  

Broader source: Energy.gov (indexed) [DOE]

Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department...

360

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Offers Support for Innovative Manufacturing Plant That Will Produce  

Broader source: Energy.gov (indexed) [DOE]

Support for Innovative Manufacturing Plant That Will Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost DOE Offers Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost June 16, 2011 - 12:00am Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a $275 million loan guarantee to Calisolar Inc. to commercialize its innovative solar silicon manufacturing process. Calisolar's innovative process should produce silicon for use in solar cells at less than half the cost of traditional polysilicon purification processes, which will reduce the overall cost of solar modules and panels. At full production, the manufacturing plant is expected to produce 16,000 metric tons (MT) of solar silicon annually, equivalent to

362

NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar PV Manufacturing Cost Analysis Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cells/modules grew 53% (compound annual growth rate [CAGR]). At the same time, the U.S. market share has slipped from 30% to 7% (30% CAGR) while China/Taiwan has grown from <2% to 54% (115% CAGR) to become the leader in global production. NREL's manufacturing cost analysis has focused on understanding the regional competitiveness of solar PV manufacturing specifically: What factors have led to China's dramatic growth in PV? Is it sustainable? Can the US compete? NREL's manufacturing cost analysis studies show that: U.S. incentives to strengthen access to capital for investment in innovative solar technologies could offset China's current advantage U.S. incentives are dwarfed by the scale of Chinese incentives

363

Astraeus Wind Modifies Manufacturing in Michigan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan May 14, 2010 - 3:35pm Addthis Lindsay Gsell When the assembly line was introduced to the automobile industry, everything changed. Cars were produced in less time with fewer errors, and each one was exactly the same as the last. As a result, the industry boomed. Astraeus Wind LLC hopes to bring this type of success to wind turbine manufacturing by standardizing the blade manufacturing process. The company wants to experiment with new materials to strengthen the blades while creating an automated process to assemble them, creating identical blades in a fast, efficient manner. CEO Jeff Metts says standardizing this process will help ensure each blade has the same measurements, lower the amount of time needed for production

364

Manufacturing Science and Technology: R & D Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D Projects R&D Projects This page is included to give visitors to the web site a sample of the R&D work that this Center undertakes. The Manufacturing Science & Technology Center works mainly in the Development-to-Application part of the Research-to-Development-to-Application cycle.Staff in the Center, however, do perform work in the research-to-development area with the aim of providing our customers with more robust, quicker, and/or less expensive processes to meet Sandia's manufacturing needs. We also do R&D to develop processes required for the manufacture of specialized materials and components that can no longer be obtained either in the commercial market or at one of the DOE's production facilities. Within Sandia, most manufacturing R&D is carried out by the Manufacturing

365

Manufacturers Saving with Lost Foam Metal Casting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting December 18, 2009 - 2:43pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Metal casting was identified as one of the top 10 energy users in manufacturing. The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent fewer materials than traditional processes. One example of this technology is being used by General Motors to make lightweight engine blocks for the fuel-efficient vehicles they manufacture. A government-funded effort to support development of foam metal casting helped reduce an estimated 9.4 million tons of solid waste between 1994 and 2005, which saved industry an estimated 3 trillion Btu.

366

USA Manufacturing: Proposed Penalty (2013-CE-5336) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Proposed Penalty (2013-CE-5336) Proposed Penalty (2013-CE-5336) USA Manufacturing: Proposed Penalty (2013-CE-5336) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. USA Manufacturing: Proposed Penalty (2013-CE-5336) More Documents & Publications USA Manufacturing: Order (2013-CE-5336) Amerikooler: Proposed Penalty (2013-CE-5307)

367

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient |  

Broader source: Energy.gov (indexed) [DOE]

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient November 14, 2011 - 12:22pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? With 50+ assessments and 500+ total recommendations made, this IAC's recommendations could save the average manufacturer evaluated an average $118,636 in electrical, natural gas, waste and productivity costs. This team has saved FUJIFILM Hunt Chemicals U.S.A facility nearly 1,240,976 kW hours of electricity -- an estimated $39,280 per year! Earlier this month, we brought you the story of Chrome Deposit Corporation, a manufacturer that with the help of the University of Delaware Industrial Assessment Center is saving millions of dollars with

368

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

U.S. Energy Information Administration (EIA) Indexed Site

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Cost of Natural Gas Used in Manufacturing Sector Has Fallen MECS 2010 - Release date: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers as well as other consumers. The 36% decrease in the average natural gas price paid by manufacturers

369

Stronger Manufacturers' Energy Efficiency Standards for Residential Air  

Broader source: Energy.gov (indexed) [DOE]

Stronger Manufacturers' Energy Efficiency Standards for Residential Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today January 23, 2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing standards that go into effect today, January 23, 2006, for products manufactured in, or imported into, the United States. "Homeowners who choose to buy more energy-efficient air conditioning systems after today will realize significant savings in their energy bills and greatly reduce their energy use," said Secretary of Energy Samuel W. Bodman. "These new energy efficiency standards are the first of several

370

Forest Products (2010 MECS)  

Broader source: Energy.gov [DOE]

Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

371

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

372

Summary of decontamination cover manufacturing experience  

SciTech Connect (OSTI)

Decontamination cover forming cracks and vent cup assembly leaks through the decontamination covers were early manufacturing problems. The decontamination cover total manufacturing process yield was as low as 55%. Applicable tooling and procedures were examined. All manufacturing steps from foil fabrication to final assembly leak testing were considered as possible causes or contributing factors to these problems. The following principal changes were made to correct these problems: (1) the foil annealing temperature was reduced from 1375{degrees} to 1250{degrees}C, (2) the decontamination cover fabrication procedure (including visual inspection for surface imperfections and elimination of superfluous operations) was improved, (3) the postforming dye penetrant inspection procedure was revised for increased sensitivity, (4) a postforming (prewelding) 1250{degrees}C/1 h vacuum stress-relief operation was added, (5) a poststress relief (prewelding) decontamination cover piece-part leak test was implemented, (6) the hold-down fixture used during the decontamination cover-to-cup weld was modified, and concomitantly, and (7) the foil fabrication process was changed from the extruding and rolling of 63-mm-diam vacuum arc-remelted ingots (extrusion process) to the rolling of 19-mm-square arc-melted drop castings (drop cast process). Since these changes were incorporated, the decontamination cover total manufacturing process yield has been 91 %. Most importantly, more than 99% of the decontamination covers welded onto vent cup assemblies were acceptable. The drastic yield improvement is attributed primarily to the change in the foil annealing temperature from 1375{degrees} to 1250{degrees}C and secondarily to the improvements in the decontamination cover fabrication procedure.

Ulrich, G.B.; Berry, H.W.

1995-02-01T23:59:59.000Z

373

SPAR-H Step-by-Step Guidance  

SciTech Connect (OSTI)

This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring

2011-05-01T23:59:59.000Z

374

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

375

High Pressure Hydrogen Tank Manufacturing  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

376

ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

377

Electrolyzer Manufacturing Progress and Challenges  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

378

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

379

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

380

Production  

Science Journals Connector (OSTI)

Production is obtained from proved reserves but the determinants of the scale of production in the industry and country components of the world total are many and complex with some unique to the individual com...

D. C. Ion

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Process for ammonia syngas manufacture  

SciTech Connect (OSTI)

This patent describes an improved process for reforming hydrocarbons to obtain a synthesis gas containing an approximately stoichiometric amount of hydrogen and nitrogen from which ammonia may be formed in which a hydrocarbon is reacted with steam and air in a reforming operation to obtain a first effluent. This effluent consists of hydrogen, nitrogen and carbon monoxide. The carbon monoxide is reacted in a shift conversion stage to produce a second effluent consisting of hydrogen, nitrogen, and carbon dioxide. The improved process has the additional steps of separating the second effluent into a first stream and a second stream. The first stream is reacted with air in a fuel cell to produce a byproduct stream and a product stream which is passed through a de-oxygenation stage to produce a purified stream. The second stream and the purified stream is passed into a pressure swing adsorption unit in which the synthesis gas and a waste fuel stream are separated.

Jungerhans, R.R.J.

1986-03-25T23:59:59.000Z

382

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

Manufacturing for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

383

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cells Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U.S Department of Energy NREL H 2 /FC Manufacturing R&D Workshop Washington, D.C. August 11-12, 2011 * Goal: Research, develop and demonstrate technologies and processes that reduce the cost of components and systems for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base. * Challenge: Move hydrogen and fuel cells from laboratory-scale production into high-volume, low-cost manufacturing. 2 Goal of Manufacturing sub-program U.S. DOE 8/10/11 3 Budget EMPHASIS  Develop novel, robust, ultrasonic bonding processes for MEAs to reduce MEA-pressing cycle time  Develop real-time, online measurement tools to reduce/eliminate ex situ

384

Rapid manufacturing: impact on supply chain methodologies and practice  

Science Journals Connector (OSTI)

This paper demonstrates the use of Rapid Manufacturing (RM) as the enabling technology for flexible manufacturing in a number of industrial sectors. This paper discusses the evolution of Rapid Prototyping (RP) to RM and the current issues that require further research for the successful integration of this technology within manufacturing companies. The use of RM will have particular impact on supply chain management paradigms such as lean and agile and has particular strategic fit with mass customisation. The effect of RM will have on these paradigms is discussed and confirmed with example cases from automotive production, motor sport and medical devices industries. In conclusion, RM has already been shown in the three cases to offer benefits, particularly where fast reconfiguration of the manufacturing process is required and with the production of customised components.

Christopher Tuck; Richard Hague; Neil Burns

2007-01-01T23:59:59.000Z

385

Industrial/manufacturing resources | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial/manufacturing resources Industrial/manufacturing resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

386

Integrated Paper and Paperboard Manufacturing Plant EPI | ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Paper and Paperboard Manufacturing Plant EPI Integrated Paper and Paperboard Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

387

Flat Glass Manufacturing Plant EPI | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flat Glass Manufacturing Plant EPI Flat Glass Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

388

Developing the Manufacturing Process for VCE: Binder for Filled Elastomers  

SciTech Connect (OSTI)

This topical report presents work completed to re-establish the manufacturing process for poly(ethylene-co-vinyl acetate-co-vinyl alcohol) terpolymer called VCE. The new VCE formulations meet the material requirements and have lower melt viscosity, which results in improved production for the next assembly. In addition, the reaction conditions were optimized in order to achieve a satisfactory conversion rate to enable production in a single work shift. Several equipment and process changes were made to yield a manufacturing process with improved product quality, yield, efficiency, and worker safety.

E.A. Eastwood

2009-11-01T23:59:59.000Z

389

KLA-Tencor's Inspection Tool Reduces LED Manufacturing Costs  

Broader source: Energy.gov [DOE]

With the help of DOE funding, KLA-Tencor is developing an improved inspection tool for LED manufacturing that promises to significantly increase overall process yields and minimize expensive waste. The power of the inspection tool lies in optical detection techniques coupled with defect source analysis software to statistically correlate front-end geometric anomalies in the substrate to killer defects on the back end of the manufacturing line, which give rise to an undesirable or unusable end product.

390

Design of Vibration Absorbers for Step Motions and Step Disturbances  

E-Print Network [OSTI]

Design of Vibration Absorbers for Step Motions and Step Disturbances Joel Fortgang William Singhose or from external disturbances. The technique of adding a vibration ab- sorber has proven useful at eliminating vibrations from external disturbances and rotational imbalances. Traditionally, vibration

Singhose, William

391

Demand Activated Manufacturing Architecture  

SciTech Connect (OSTI)

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

392

Design for manufacturability Design verification  

E-Print Network [OSTI]

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

393

Second generation heliostat. Volume II. Definition of a heliostat manufacturing facility. Final report  

SciTech Connect (OSTI)

The heliostat design is described. A study is performed to provide the definition of a heliostat manufacturing facility capable of producing 50,000 heliostats per year and to generate the manufacturing costs associated with that level of production. The heliostat plant site, plant layout, and cost of the plant are discussed. The manufacture of heliostats, including special requirements for the heliostat mirror, and production costs are given. (LEW)

Not Available

1981-04-01T23:59:59.000Z

394

Manufacturing and Testing of Accelerator Superconducting Magnets  

E-Print Network [OSTI]

Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

Rossi, L

2014-01-01T23:59:59.000Z

395

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Broader source: Energy.gov (indexed) [DOE]

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 12:00am Addthis Washington, DC - Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

396

Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits |  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits January 8, 2010 - 12:00am Addthis President Obama announced awardees of the clean energy manufacturing tax credit in the American Recovery and Reinvestment Act. In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C program will provide a 30 percent tax credit for investments in 183 manufacturing facilities for clean energy products across 43 states. This tax credit program will help build a robust high technology, US manufacturing capacity to supply clean energy projects with US made parts

397

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Broader source: Energy.gov (indexed) [DOE]

Manufacturers to Halt Sales of Heat Pumps and Air Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

398

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Broader source: Energy.gov (indexed) [DOE]

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

399

Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits |  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits January 8, 2010 - 12:00am Addthis President Obama announced awardees of the clean energy manufacturing tax credit in the American Recovery and Reinvestment Act. In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C program will provide a 30 percent tax credit for investments in 183 manufacturing facilities for clean energy products across 43 states. This tax credit program will help build a robust high technology, US manufacturing capacity to supply clean energy projects with US made parts

400

Manufacturing Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Manufacturing Fuel Cell Manhattan Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

402

Manufacturing Data | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Data Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Manufacturing Data These Federal datasets contain a wealth of information for manufacturing - either from information in a single dataset or by combining data from more than one place. This site will be enhanced with the addition of new datasets, and new apps using these datasets, as they are developed. Search Terms Category -Any- Geospatial Items per page 25 50 100 Apply Name Downloads Rating TradeStats Express TradeStats Express provides statistics on U.S. merchandise trade at the national and state levels. Data can also be displayed in maps, graphs, tables, or as exports, imports, and trade balances.... Data Extraction

403

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

404

1 Copyright 2014 by ASME Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference  

E-Print Network [OSTI]

to "a crowdsourcing-based design model that leverages cloud computing, service-oriented architecture and manufacturing (CBDM) refers to "a service-oriented product development model in which service consumers are able to configure products or services as well as reconfigure manufacturing systems through Infrastructure-as-a-Service

405

SPAR-H Step-by-Step Guidance  

SciTech Connect (OSTI)

Step-by-step guidance was developed recently at Idaho National Laboratory for the US Nuclear Regulatory Commission on the use of the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method for quantifying Human Failure Events (HFEs). This work was done to address SPAR-H user needs, specifically requests for additional guidance on the proper application of various aspects of the methodology. This paper overviews the steps of the SPAR-H analysis process and highlights some of the most important insights gained during the development of the step-by-step directions. This supplemental guidance for analysts is applicable when plant-specific information is available, and goes beyond the general guidance provided in existing SPAR-H documentation. The steps highlighted in this paper are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff.

April M. Whaley; Dana L. Kelly; Ronald L. Boring; William J. Galyean

2012-06-01T23:59:59.000Z

406

Out of Bounds Additive Manufacturing Christopher  

E-Print Network [OSTI]

#12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

Pennycook, Steve

407

Design study for wire and arc additive manufacture  

Science Journals Connector (OSTI)

Additive Manufacture (AM) is a technique whereby freeform structures are produced by building up material in a layer by layer fashion. Among the different AM processes, Wire and Arc Additive Manufacture (WAAM) has the ability to manufacture large custom-made metal workpiece with high efficiency. A design study has been performed to explore the process capabilities of fabricating complicated geometries using WAAM. Features such as enclosed structures, crossing structures, and balanced building structures have been investigated in this study. Finite Element (FE) models are employed to take the thermo-mechanical performance into account. Robot tool path design has been performed to transfer the WAAM component designs into real components efficiently. This paper covers these essential design steps from a technical as well as practical point of view.

Jörn Mehnen; Jialuo Ding; Helen Lockett; Panos Kazanas

2014-01-01T23:59:59.000Z

408

Manufacture of refrigeration oils  

SciTech Connect (OSTI)

Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

1981-12-08T23:59:59.000Z

409

PRODUCTS & MATERIALS  

Science Journals Connector (OSTI)

...Phar-macia Biotech. Circle 141. Cell Culture Production The CellCube offers the fastest, most com-pact system available for high-volume...culture production, according to the manu-facturer. The CellCube not only saves up to four times the space of roller bottles...

1995-08-04T23:59:59.000Z

410

A study of the Mighty Motors operating system : making sustainable improvements at a powertrain manufacturing facility  

E-Print Network [OSTI]

Many manufacturing companies are developing their own production or operating system, particularly in an effort to duplicate the widely renowned Toyota Production System. Toyota has demonstrated its potential for improving ...

Dibb, Gregory David, 1974-

2004-01-01T23:59:59.000Z

411

Method for localizing and isolating an errant process step  

DOE Patents [OSTI]

A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.

Tobin, Jr., Kenneth W. (Harriman, TN); Karnowski, Thomas P. (Knoxville, TN); Ferrell, Regina K. (Knoxville, TN)

2003-01-01T23:59:59.000Z

412

STEP and fundamental physics  

E-Print Network [OSTI]

The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's Equivalence Principle from their present sensitivity of 2 parts in $10^{13}$ to 1 part in $10^{18}$ through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status, and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity, and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels.

James Overduin; Francis Everitt; Paul Worden; John Mester

2014-01-20T23:59:59.000Z

413

STEP and fundamental physics  

E-Print Network [OSTI]

The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's Equivalence Principle from their present sensitivity of 2 parts in $10^{13}$ to 1 part in $10^{18}$ through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status, and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity, and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these ...

Overduin, James; Worden, Paul; Mester, John

2014-01-01T23:59:59.000Z

414

STEP and fundamental physics  

Science Journals Connector (OSTI)

The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's equivalence principle from their present sensitivity of two parts in 1013 to one part in 1018 through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels.

James Overduin; Francis Everitt; Paul Worden; John Mester

2012-01-01T23:59:59.000Z

415

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 761-771 3D Texture Mapping for Rapid Manufacturing  

E-Print Network [OSTI]

, and product design [6]. · Layer manufacturing: Layer-based additive manufacturing processes Manufacturing Yong Chen University of Southern California, yongchen@usc.edu ABSTRACT Inspired by the developments of biomimetic design and layer manufacturing, we present a microstructure design method which uses

Chen, Yong

416

Hybrid rapid manufacturing of metallic objects  

Science Journals Connector (OSTI)

While CNC machining, the subtractive method, is the only option when it comes to high quality components, the need for human intervention to generate the CNC programs makes it a slow and costly route. On the other hand, rapid prototyping (RP), the additive method, is able to convert the design into the physical objects without any human intervention but its total automation comes with compromises in the qualities of geometry and material. A balance between these two extremes is hybrid rapid manufacturing (HRM). In HRM, the near-net shape of the component is built in layers (additive method) and the same is finish-machined (subtractive method). While the priority during material addition is material integrity, the same is on geometric quality during material subtraction. As the focuses in both these steps are different, they are very fast. The existing HRM processes for metallic objects are reviewed in this paper followed by a brief description of ArcHLM under development at IIT Bombay. The generic ArcHLM facility or Hybrid FMS will be able to demonstrate its various applications of for fresh manufacture and repair of tools and components.

K.P. Karunakaran; S. Suryakumar; U. Chandrasekhar; A. Bernard

2010-01-01T23:59:59.000Z

417

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

418

Advanced Manufacturing Policies and Paradigms for Innovation  

Science Journals Connector (OSTI)

...2013 ). 4 About the Advanced Manufacturing Partnership 2.0; www.manufacturing.gov/amp.html. 5 For example , www1.eere.energy.gov/manufacturing/; www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__%28AVM...

William B. Bonvillian

2013-12-06T23:59:59.000Z

419

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

420

Streamlining the additive manufacturing digital spectrum: A systems approach  

Science Journals Connector (OSTI)

Abstract Additive manufacturing (AM) promises great potential benefits for industrial manufacturers who require low volume and functional, highly complex, end-use products. Commercial adoption of AM has been slow due to factors such as quality control, production rates, and repeatability. However, given AM's potential, numerous research efforts are underway to improve the quality of the product realization process. A major area of opportunity is to complement existing efforts with advancements in end-to-end digital implementations of AM processes. New paradigms are needed to support more efficient and consistent design-to-product transformations. Systematically configured digital implementations would facilitate informational transformations through standard interfaces, streamlining the AM digital spectrum. Here, we propose the development of a federated, information systems architecture for additive manufacturing. We establish an information requirements workflow for streamlining information throughput during product realization. The architecture is delivered through the development of a solution stack, including the identification of areas where advancements in information representations will have the highest impact. The architecture will specify the stages of the product realization process, and the interfaces needed to link those stages together. Common data structures and interfaces will allow developers and end users of additive manufacturing technologies to simplify, coordinate, validate, and verify end-to-end digital implementations.

Duck Bong Kim; Paul Witherell; Robert Lipman; Shaw C. Feng

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Warns Manufacturers Who Submitted Incomplete Certification Reports |  

Broader source: Energy.gov (indexed) [DOE]

Warns Manufacturers Who Submitted Incomplete Certification Warns Manufacturers Who Submitted Incomplete Certification Reports DOE Warns Manufacturers Who Submitted Incomplete Certification Reports February 2, 2010 - 1:53pm Addthis Washington, DC - The Department of Energy's Office of General Counsel has sent warning letters to 9 manufacturers or trade associations that submitted incomplete energy-efficiency test data to comply with DOE's energy-efficiency standards. This data was submitted during the 30-day grace period that ran from December 9, 2009, to January 8, 2010. Data for about 600,000 products was submitted. In this case, however, the data was incomplete. In light of the apparent attempt to comply with Department's regulations, the warning letters simply identify various substantive deficiencies in the data submitted, demand their expeditious

422

TekSun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

TekSun PV Manufacturing Inc TekSun PV Manufacturing Inc Jump to: navigation, search Name TekSun PV Manufacturing Inc Place Austin, Texas Zip 78701 Product US-based installer of PV systems; rportedly planning to buy a 120MW amorphous silicon PV manufacturing line from Applied Materials. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Vermont Manufacturing Plant Opens with Support from the Recovery Act |  

Broader source: Energy.gov (indexed) [DOE]

Vermont Manufacturing Plant Opens with Support from the Recovery Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The facility was funded in part by a $8.5 million grant through the American Recovery and Reinvestment Act, also known as the stimulus bill "Today's ribbon cutting puts Barre at the forefront of green innovation in America's automotive industry," said Secretary Chu. "This is another

424

DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers  

Broader source: Energy.gov (indexed) [DOE]

Initiates Enforcement Actions Against 4 Showerhead Initiates Enforcement Actions Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) March 7, 2010 - 3:41pm Addthis The Office of General Counsel has issued a Notice of Proposed Civil Penalty to Hudson-Reed Limited for failing to certify to DOE that showerheads manufactured or distributed within the United States meet the applicable water conservation standards as required by the Energy Policy and Conservation Act (EPCA) and DOE regulations. This Notice of Proposed Civil Penalty proposes payments to the government of $1,920,200. Under federal law, manufacturers of some products covered by EPCA are required to

425

EPAct at One Event - Clipper Wind Manufacturing Facility | Department of  

Broader source: Energy.gov (indexed) [DOE]

EPAct at One Event - Clipper Wind Manufacturing Facility EPAct at One Event - Clipper Wind Manufacturing Facility EPAct at One Event - Clipper Wind Manufacturing Facility August 2, 2006 - 8:37am Addthis Remarks for Energy Secretary Samuel Bodman Thank you, Tom, for the introduction. I enjoyed my tour of your new manufacturing facility this morning, and am very excited about the tremendous strides being made here in the development of wind turbine technology, and its integration into our national economy. I'd also like to thank Senator Grassley for his ardent support for increasing the amount of windpower in the U.S. and especially his leadership on the production tax credit for renewable energy. Congressman Leach and Congressman Nussle have also provided unwavering support to this industry and to this region. Their staffs are represented here and I thank

426

Vermont Manufacturing Plant Opens with Support from the Recovery Act |  

Broader source: Energy.gov (indexed) [DOE]

Vermont Manufacturing Plant Opens with Support from the Recovery Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The facility was funded in part by a $8.5 million grant through the American Recovery and Reinvestment Act, also known as the stimulus bill "Today's ribbon cutting puts Barre at the forefront of green innovation in America's automotive industry," said Secretary Chu. "This is another

427

Suzhou Eagle Electric Vehicle Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Place Suzhou, China Sector Vehicles Product China-based manufacturer of golf carts, industrial and other 4-wheel electric vehicles. Coordinates 31.3092°, 120.613121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3092,"lon":120.613121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

A.J. Rose Manufacturing Company | Open Energy Information  

Open Energy Info (EERE)

A.J. Rose Manufacturing Company A.J. Rose Manufacturing Company Jump to: navigation, search Name A.J. Rose Manufacturing Company Address 38000 Chester Road Place Avon, OH Zip 44011 Sector Renewable Energy Product Manufacturing Phone number 440-934-2859 Website http://www.ajrose.com Coordinates 41.468414°, -82.046652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.468414,"lon":-82.046652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Beijing Goldwind Kechuang Wind Turbine Manufacturer | Open Energy  

Open Energy Info (EERE)

Goldwind Kechuang Wind Turbine Manufacturer Goldwind Kechuang Wind Turbine Manufacturer Jump to: navigation, search Name Beijing Goldwind Kechuang Wind Turbine Manufacturer Place Beijing, Beijing Municipality, China Zip 100000 Sector Wind energy Product A manufacturer set up by Goldwind in Beijing for producing wind turbines. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Consolidated Manufacturing Complex | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consolidated Manufacturing ... Consolidated Manufacturing ... Consolidated Manufacturing Complex An integral part of Y-12's transformation, the Consolidated Manufacturing Complex will fulfill the NNSA mission of placing production processes in right-sized, modern facilities. The CMC will consolidate several mission-critical processes required to meet Y-12 customer needs. Updating processing methods and right-sizing the facility will mean a significant reduction, projected at more than 250,000 square feet, in the footprint. CMC will eliminate several 40- to 65-year-old facilities and alleviate concerns associated with aged facilities built to different codes and standards. Functions being evaluated for inclusion in CMC are lithium operations, general machining operations, depleted uranium operations and deuterium

431

Laser Additive Manufacturing in GE  

Science Journals Connector (OSTI)

There has been an increasing interest given to laser additive manufacturing (LAM) in recent years from across the global. GE has been one of the leading industries engaging in this...

Peng, Henry; Li, Yanmin; Guo, Rui; Wu, Zhiwei

432

Photovoltaics Manufacturing in Developing Countries  

Science Journals Connector (OSTI)

The need for energy sources in the developing countries might be partially satisfied by using photovoltaic power systems in addition to conventional means. A review of photovoltaic manufacturing in developing ...

G. Darkazalli; S. Hogan

1991-01-01T23:59:59.000Z

433

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

434

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

435

Fenner acquires PTFE seal manufacturer  

Science Journals Connector (OSTI)

Fenner Plc has announced the acquisition of substantially all of the operating assets and liabilities of EGC, a Houston-based manufacturer of fluoroplastic seals and other related fluoroplastic precision components.

2006-01-01T23:59:59.000Z

436

Optical manufacturing requirements for an AVLIS plant  

SciTech Connect (OSTI)

A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

Primdahl, K.; Chow, R.; Taylor, J.R.

1997-07-14T23:59:59.000Z

437

Funding Opportunity Announcement for Water Power Manufacturing...  

Energy Savers [EERE]

Funding Opportunity Announcement for Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014,...

438

Additive manufacturing: technology, applications and research needs  

Science Journals Connector (OSTI)

Additive manufacturing (AM) technology has been researched and ... complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past...

Nannan Guo; Ming C. Leu

2013-09-01T23:59:59.000Z

439

A Management Strategy for Additive Manufacturing:.  

E-Print Network [OSTI]

??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology.… (more)

Zahn, N.Z.

2014-01-01T23:59:59.000Z

440

Request for Information (RFI): Advanced Manufacturing Office...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Manufacturing Office (AMO) Software Tools Request for Information (RFI): Advanced Manufacturing Office (AMO) Software Tools July 25, 2014 - 1:00pm Addthis Funding: This...

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar Manufacturing Technology 2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization...

442

2014 American Energy & Manufacturing Competitiveness Summit in...  

Office of Environmental Management (EM)

Council on Competitiveness 9 of 10 Advanced Manufacturing Office Director Mark Johnson delivers the lunch keynote during the American Energy & Manufacturing Competitiveness...

443

National Electrical Manufacturers Association (NEMA) Response...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

444

Explore Careers in Manufacturing | Department of Energy  

Office of Environmental Management (EM)

in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous...

445

Advanced Technology Vehicles Manufacturing Loan Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM...

446

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

447

Mother nature as a wire manufacturer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mother nature as a wire manufacturer Mother nature as a wire manufacturer With computational models, scientists see how microbe directs electrons New research shows how electrons...

448

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor  

E-Print Network [OSTI]

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

Calgary, University of

449

Understanding Manufacturing Energy and Carbon Footprints, October...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

450

FROM PLANT AND LOGISTICS CONTROL TO MULTI-ENTERPRISE COLLABORATION: Milestone report of the Manufacturing & Logistics Systems Coordinating Committee  

E-Print Network [OSTI]

, product life cycles shrink, and profit margins decrease. In addition, the capital costs of manufacturing of the Manufacturing & Logistics Systems Coordinating Committee S.Y. Nofa* , G. Morelb , L. Monostoric , A. Molinad , F-765-494-1299 Abstract: Current and emerging manufacturing and logistics systems are posing new challenges

Boyer, Edmond

451

Tecumseh Products Company | Open Energy Information  

Open Energy Info (EERE)

Place: Tecumseh, Michigan Zip: 49286 Product: Manufacturer of hermetic compressors for air conditioning and refrigeration products, gasoline engines and power train components....

452

Climate VISION: Private Sector Initiatives: Forest Products:...  

Office of Scientific and Technical Information (OSTI)

GHG Information The forest products industry helps reduce greenhouse gases every day. We carefully manage forests that absorb carbon dioxide; manufacture products that store...

453

Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd | Open Energy  

Open Energy Info (EERE)

Jingye Bearing Manufacture for Rolling Mills Co Ltd Jingye Bearing Manufacture for Rolling Mills Co Ltd Jump to: navigation, search Name Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd Place Beijing Municipality, China Sector Wind energy Product Beijing-based wind turbine bearing maker. References Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd is a company located in Beijing Municipality, China . References ↑ "Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Beijing_Jingye_Bearing_Manufacture_for_Rolling_Mills_Co_Ltd&oldid=342621

454

Assign Ad Hoc Reviewer Step-By-Step Procedure  

E-Print Network [OSTI]

Proposal Management Reviewer Assign Ad Hoc Reviewer Step-By-Step Procedure Last updated: 12/19/2013 1 of 2 http://eresearch.umich.edu Assign an Ad Hoc Reviewer Based on the information provided as a Reviewer. Anyone who has an account in the system can be added as an Ad Hoc Reviewer. Who Can Assign Ad Hoc

Shyy, Wei

455

Download Grid Data to Excel Step-by-Step Procedure  

E-Print Network [OSTI]

Browser Security 4 Download Grid Data to Excel Detail Trans Page 1. Click Download . Notes: To save the Security tab. Internet Options ­ Security Page 3. Click . 3 2 #12;M-Pathways M-Pathways Download Grid DataM-Pathways Download Grid Data to Excel Step-by-Step Procedure 1 of 5 Last updated: 5

Eustice, Ryan

456

Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications  

Science Journals Connector (OSTI)

This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called 'electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar ? crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step.

ChaBum Lee; Joshua A Tarbutton

2014-01-01T23:59:59.000Z

457

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor |  

Broader source: Energy.gov (indexed) [DOE]

Study Shows Solar Manufacturing Costs Not Driven Primarily by Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor September 5, 2013 - 12:00pm Addthis Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's competitive advantage comes from production scale-enabled, in part, through preferred access to capital (indirect

458

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor |  

Broader source: Energy.gov (indexed) [DOE]

New Study Shows Solar Manufacturing Costs Not Driven Primarily by New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor September 5, 2013 - 12:00pm Addthis Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's competitive advantage comes from production scale-enabled, in part, through preferred access to capital (indirect

459

Impact of integrative design on additive manufacturing quality  

Science Journals Connector (OSTI)

To move additive manufacturing (AM) into a realm of credible manufacturing, quality evaluation techniques must be established to highlight the potential gains of AM technologies in the field of production quality in terms of dimensional control. This research aims to express the relationship among AM-enabled integrative design and quality evaluation techniques. The methodology proposed is backed by a comprehensive literature review that covers AM dimensional quality and conventional quality assessment techniques for production. The research proposes modelling the positive impact of integrating design using Taguchiâ??s quality loss function (QLF) and tolerance stack-up models. In addition, the research provides a straightforward way to evaluate AM-enabled integrated designs that promotes the proliferation of AM technology as a sustainable and credible manufacturing method. A case study is presented that describes how to apply Taguchiâ??s QLF to AM integrated designs.

David M. Dietrich; Elizabeth Cudney

2011-01-01T23:59:59.000Z

460

Characterization of Process Efficiency Improvement in Laser Additive Manufacturing  

Science Journals Connector (OSTI)

Abstract Laser additive manufacturing (LAM) enables production of complex parts with good mechanical properties. Nevertheless, part manufacturing is still relatively slow and the process efficiency could be improved to achieve total breakthrough into series production. In this study, the process efficiency improvements via higher laser power and thicker powder layers are studied. Effect of the building parameters must be understood when increasing build rate. Track-wise and layer-wise manufacturing strategy involves different independent and dependent thermal cycles which all affect part properties. Effects of the processing parameters such as speed and power on single-track formation are examined, since the part quality depend strongly on each single-track and layer. It was concluded that heat input has important effect on the penetration depth and possibility to melt thicker powder layers. These were noticed to be crucial for improving process efficiency.

Ville Matilainen; Heidi Piili; Antti Salminen; Tatu Syvänen; Olli Nyrhilä

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Starr Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Starr Manufacturing Inc Address 4175 Warren Sharon Rd Place Vienna, Ohio Zip 44473 Sector Biofuels, Biomass, Buildings, Carbon, Efficiency, Hydrogen, Renewable Energy, Services, Wind energy Product Engineering/architectural/design; Manufacturing; Research and development;Retail product sales and distribution;Trainining and education Phone number 330-394-9891 Website http://www.starrmfg.com Coordinates 41.2378232°, -80.6685983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2378232,"lon":-80.6685983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

PEM Stack Manufacturing: Industry Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

© 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of where we have been; 2. Where we are today; 3. Where we would like to transition to; 4. Gaps and proposals. AUGUST 2009 P A G E 3 PEM Stack Manufacturing: Cost Overview * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA.

463

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

464

Oak Ridge Manufacturing Demonstration Facility (MDF)  

Office of Energy Efficiency and Renewable Energy (EERE)

The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

465

Designing a National Network for Manufacturing Innovation  

E-Print Network [OSTI]

Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

466

1 - Honeywell Bull in manufacturing automation  

Science Journals Connector (OSTI)

economy, the manufacturing industry has undergone great changes over the past 25 years. Now, with the expansion of computerised manufacturing control applications, computer manufacturers can meet the specialised needs of the manufacturing community. This paper also examines the CIM architecture at all levels, looks at current standards and at Honeywell Bull as a supplier.

R. Anderson

1988-01-01T23:59:59.000Z

467

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

468

Egypt's next steps Ahmed Zewail  

E-Print Network [OSTI]

1 Egypt's next steps Ahmed Zewail 3 Feb 2011 Mubarak must step down, a new constitution must change, writes Ahmed Zewail. CAIRO The revolt that has erupted across Egypt is in many ways historic than a better future for Egypt and its people. In this difficult time, the military has earned

Zewail, Ahmed

469

Process oil manufacturing process  

SciTech Connect (OSTI)

A method is described for producing a naphthenic process oil having reduced sulfur, nitrogen and polynuclear aromatics contents from a naphthenic feed containing same and having an atmospheric boiling range of about 650/sup 0/ to about 1200/sup 0/F. comprising: A. passing the feed into a first hydrotreating stage having a hydrotreating catalyst therein, the stage maintained at a temperature of about 600/sup 0/ to about 750/sup 0/F. and at a hydrogen partial pressure of about 400 to about 1500 psig, to convert at least a portion of the sulfur to hydrogen sulfide and the nitrogen to ammonia; B. passing the hydrotreated feed from the first hydrotreating stage in an intermediate stripping stage wherein hydrogen sulfide, ammonia, or both is removed; C. passing the hydrotreated feed from the intermediate stage into a second hydrotreating stage having therein a hydrotreating catalyst selected from the group consisting of nickel-molybdenum, cobalt-molybdenum, nickel-tungsten and mixtures thereof, the second hydrotreating stage maintained at a temperature lower than that of the first hydrotreating stage and at a hydrogen partial pressure ranging between about 400 and about 1,500 psig; D. monitoring the polynuclear aromatics content, the degree of saturation, or both of the product exiting the second hydrotreating stage; and, E. adjusting the temperature in the second hydrotreating stage to keep the polynuclear aromatics content, the degree of saturation, or both below a limit suitable for process oil.

Corman, B.G.; Korbach, P.F.; Webber, K.M.

1989-01-31T23:59:59.000Z

470

Manufacturing Spotlight: Boosting American Competitiveness | Department of  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 - 1:06pm Addthis Libby Wayman Clean Energy Manufacturing Initiative Director Advancing the nation's clean energy manufacturing industry helps to capture the value of U.S. innovation in clean energy technologies, fosters further innovation right here in America, and makes U.S. manufacturers more competitive by reducing their energy costs - all while creating jobs and building a more sustainable planet for future generations. Industry and government are working together to expand American leadership in this sector by bringing new clean energy technologies to the marketplace and making manufacturing processes more energy efficient.

471

Reducing paint waste in a colour sample manufacturing industry  

Science Journals Connector (OSTI)

Colour sample manufacturing industry provides an important support for the paint manufacturers. It manufactures colour samples that help original paint manufacturers to sell paint by allowing potential customers to accurately visualise a specific colour. One of the burning issues in colour sampling manufacturing is accurately predicting the tally gallons. It involves an estimation of paint volume to cover a given surface area of paper. The as-is tally gallons estimation process is rudimentary and largely depends upon the human experience. Ideally, this quantity should be enough to cover the target surface area regardless of colour appearance. However, this is not the case with existing process. Currently, lighter colours run out in the middle of the production run while darker colour appearances have significant amount of left over paint. The amount of painting waste is as high as 15% (by volume) in some cases. The objective of this paper is to present a predictive model to better estimate the tally gallons by minimising painting waste. It presents a case study of a US colour sample manufacturing company. The results show that the proposed multiple linear regression approach reduces the leftover paint significantly.

Bimal Nepal; Bharatendra K. Rai

2010-01-01T23:59:59.000Z

472

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

473

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

474

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

475

Energy Manufacturing: Principles and Recent June 28 July 1, 2011  

E-Print Network [OSTI]

) June 29, 2011 Wednesday (Solar Panels) 8:30 ­ 9:00 Introduction of Solar Energy - Steven Danyluk in algae biofuel production, overview of various photovoltaic solar cell technologies and manufacturing:30 ­ 17:30 Design of Advanced Heat-transfer fluids for Concentrated Solar Power - Amy Sun, Sandia (SNL

MacIver, Malcolm A.

476

Energy Department Recognizes 11 Manufacturers for Energy Efficiency Achievements  

Office of Energy Efficiency and Renewable Energy (EERE)

Building on the Administration’s efforts to double energy productivity and help American businesses save money by saving energy, the Energy Department today recognized 11 companies that have met ambitious energy-efficiency goals through the Better Buildings, Better Plants Program. Across the country, manufacturers spend more than $200 billion each year to power their plants.

477

SEP Success Story: Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs  

Broader source: Energy.gov [DOE]

Capitalizing on its origins in yacht manufacturing, Energetx Composites recently re-tooled its operations and is now applying its well-honed fiberglass technology expertise to produce wind turbine blades. As a result of this shift, the company expects to create 300 jobs at its Holland, Michigan-based production facility over the next several years. Learn more.

478

Manufacturing Energy and Carbon Footprints (2006 MECS)  

Broader source: Energy.gov [DOE]

Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

479

Power Quality from the Manufacturer’s Standpoint  

E-Print Network [OSTI]

Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

McEachern, A.

480

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Big Efficieny for Small Manufacturing  

E-Print Network [OSTI]

Big Efficiency for Small Manufacturing Daniel Trombley American Council for an Energy-Efficient Economy Presented to: Industrial Energy Technology Conference New Orleans, LA May 21, 2014 ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial...-Sized Manufacturers http://www.aceee.org/research-report/ie1401 Daniel Trombley dtrombley@aceee.org www.aceee.org ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 ...

Trombley, D.

2014-01-01T23:59:59.000Z

482

Colorado Statewide Forest Products Industry Profile  

E-Print Network [OSTI]

,500,000 in Manufactured Wood Products · $ 750,000 in Forest Product Business Expenditures · $ 500,000 in Additional employees) ­ 2 Wyoming Sawmill Closures (> 300 employees) ­ 3 New Pellet Manufacturers ­ 2 New (?) Excelsior Harvest­ 15 million cubic feet (MCF) of Total Timber Harvest · 3/4 for Primary Manufacturing at our

483

Microsoft Word - JT Manufacturing Study Report 070522.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Impact of Scale-Up and Production The Impact of Scale-Up and Production Volume on SOFC Manufacturing Cost DOE/NETL-XXXX/XXXX (optional) April 2, 2007 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

484

Conventional machining methods for rapid prototyping and direct manufacturing  

Science Journals Connector (OSTI)

The material and product accuracy limitations of rapid prototyped products can often prevent the use of rapid prototyping (RP) processes for production of final end-use products. Conventional machining processes are well-developed technologies with the capability of employing a wide range of materials in the creation of highly accurate components. This paper presents an overview of how conventional machining processes can be used for RP and direct manufacturing processes. The methodologies of computer numerical control machining for rapid prototyping (CNC-RP) and wire electronic discharge machining for rapid prototyping (WEDM-RP) are presented in this paper. A general discussion of selection criteria and cost comparisons among both current additive RP and conventional machining approaches to rapid manufacturing are also presented.

Zhi Yang; Richard A. Wysk; Sanjay Joshi; Matthew C. Frank; Joseph E. Petrzelka

2009-01-01T23:59:59.000Z

485

The International Journal of Flexible Manufacturing Systems, 16, 1144, 2004 c 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.  

E-Print Network [OSTI]

multistage assembly processes (MAP) such as the automotive, aerospace, appliance, and electronics industries a characteristic feature of modern manufacturing and new product development in automotive, aerospace, and other-based-competition--New paradigm and challenges The US automotive industry has dominated world auto markets for years. The mass

Zhou, Shiyu

486

STEP Non-Participant Survey Report  

Broader source: Energy.gov [DOE]

STEP Non-Participant Survey Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

487

Recent progress in the photovoltaic manufacturing technology project (PVMaT)  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

Witt, C.E.; Mitchell, R.L.; Thomas, H. (National Renewable Energy Lab., Golden, CO (United States)); Herwig, L.O. (USDOE, Washington, DC (United States)); Ruby, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Sellers, R.

1994-12-09T23:59:59.000Z

488

SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits  

Broader source: Energy.gov [DOE]

E3, a joint federal initiative between the Energy Department’s State Energy Program, the Environmental Protection Agency, the Department of Labor, USDA, the Small Business Administration, and the National Institute of Standards and Technology’s Manufacturing Extension Partnership, is helping manufacturing facilities increase competitiveness through efficient production processes, reducing waste, lowering costs, growing jobs and encouraging innovation. Learn more.

489

The Impact of Dr.Shigeo Shingo on Modern Manufacturing Practices  

E-Print Network [OSTI]

1 The Impact of Dr.Shigeo Shingo on Modern Manufacturing Practices IE 361 Dr. Stephen B. Vardem manufacturing fundamentals. Biography Dr. Shigeo's expertise was a result of his vast experience and knowledge. In addition, by focusing on production rather than management alone, he was able to establish himself

Vardeman, Stephen B.

490

Project Engineer Freedman Seating, a leading manufacturer of bus and commercial truck seats and  

E-Print Network [OSTI]

Responsibilities Lead/execute engineering continuous improvement and product improvement. Lead/provide failure will be considered) with at least 3 years engineering experience in a manufacturing environment. Knowledgeable Project Engineer Freedman Seating, a leading manufacturer of bus and commercial truck seats

Heller, Barbara

491

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013  

Broader source: Energy.gov [DOE]

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

492

Additive manufacturing method of producing  

E-Print Network [OSTI]

Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

Painter, Kevin

493

Manage energy use in manufacturing | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improve building and plant performance Improve building and plant performance » Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing

494

Infrared imaging: A versatile NDT method for manufacturing  

SciTech Connect (OSTI)

The non-contact, non-invasive, highly adaptable nature of infrared technology offers many advantages over traditional non-destructive testing methods such as x-ray and ultrasound. Recent performance improvements accompanied by cost reductions are enabling broader implementation across a wide variety of industries. Most promising for future growth are application specific configurations packaged as integrated modules. Among the many industries that benefit from infrared technology, manufacturing has experienced the greatest gain. Environments including both continuous and batch manufacturing involve many critical thermal processes. Through the use of infrared imaging equipment, these processes can be easily monitored and optimized to ensure product quality and process efficiency.

West, L.M. [FLIR Systems, Inc., Portland, OR (United States)

1995-12-31T23:59:59.000Z

495

Realised levels of geometric complexity in additive manufacturing  

Science Journals Connector (OSTI)

The emergence of Additive Manufacturing (AM) is seen by many as a promising addition to the existing spectrum of manufacturing technology. Assessing a sample of 43 AM produced components, this paper investigates features of complex part geometry. It is found that the measured levels of geometric complexity approximate the normal distribution. Results indicate several factors promoting complexity: membership of the medical industry, organisational stability and the utilisation of powder bed or polymer vat AM technology. The current paper provides some empirical evidence that AM adoption may lead to advances in product performance for a wide range of applications.

Martin Baumers; Chris Tuck; Richard Hague

2011-01-01T23:59:59.000Z

496

Approaches for Additive Manufacturing of 3D Electronic Applications  

Science Journals Connector (OSTI)

Abstract Additive manufacturing processes typically used for mechanical parts can be combined with enhanced technologies for electronics production to enable a highly flexible manufacturing of personalized 3D electronic devices. To illustrate different approaches for implementing electrical and electronic functionality, conductive paths and electronic components were embedded in a powder bed printed substrate using an enhanced 3D printer. In addition, a modified Aerosol Jet printing process and assembly technologies adapted from the technology of Molded Interconnect Devices were applied to print circuit patterns and to electrically interconnect components on the surface of the 3D substrates.

J. Hoerber; J. Glasschroeder; M. Pfeffer; J. Schilp; M. Zaeh; J. Franke

2014-01-01T23:59:59.000Z

497

EIA Energy Efficiency-Table 3c. Capacity Adjusted Value of Production a by  

Gasoline and Diesel Fuel Update (EIA)

c c Page Last Modified: May 2010 Table 3c. Capacity Adjusted Value of Production 1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 430 468 552 312 Beverage and Tobacco Product Manufacturing 98 120 131 313 Textile Mills 57 50 44 314 Textile Product Mills 31 34 36 315 Apparel Manufacturing 66 53 31 316 Leather and Allied Product Manufacturing 11 8 7 321 Wood Product Manufacturing 87 94 110 322 Paper Manufacturing 159 160 177 323 Printing and Related Support Activities 104 109 107 324 Petroleum and Coal Products Manufacturing 134 215 523 325 Chemical Manufacturing 415 470 657 326 Plastics and Rubber Products Manufacturing 158 183 212 327 Nonmetallic Mineral Product Manufacturing 85 97 134

498

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

Wohlgemuth, J. [Amoco/Enron Solar, Frederick, MD (United States)] [Amoco/Enron Solar, Frederick, MD (United States)

1996-06-01T23:59:59.000Z

499

A methodology for building a semantically annotated multi-faceted ontology for product family modelling  

Science Journals Connector (OSTI)

Product family design is one of the prevailing approaches in realizing mass customization. With the increasing number of product offerings targeted at different market segments, the issue of information management in product family design, that is related to an efficient and effective storage, sharing and timely retrieval of design information, has become more complicated and challenging. Product family modelling schema reported in the literature generally stress the component aspects of a product family and its analysis, with a limited capability to model complex inter-relations between physical components and other required information in different semantic orientations, such as manufacturing, material and marketing wise. To tackle this problem, ontology-based representation has been identified as a promising solution to redesign product platforms especially in a semantically rich environment. However, ontology development in design engineering demands a great deal of time commitment and human effort to process complex information. When a large variety of products are available, particularly in the consumer market, a more efficient method for building a product family ontology with the incorporation of multi-faceted semantic information is therefore highly desirable. In this study, we propose a methodology for building a semantically annotated multi-faceted ontology for product family modelling that is able to automatically suggest semantically-related annotations based on the design and manufacturing repository. The six steps of building such ontology: formation of product family taxonomy; extraction of entities; faceted unit generation and concept identification; facet modelling and semantic annotation; formation of a semantically annotated multi-faceted product family ontology (MFPFO); and ontology validation and evaluation are discussed in detail. Using a family of laptop computers as an illustrative example, we demonstrate how our methodology can be deployed step by step to create a semantically annotated MFPFO. Finally, we briefly discuss future research issues as well as interesting applications that can be further pursued based on the MFPFO developed.

Soon Chong Johnson Lim; Ying Liu; Wing Bun Lee

2011-01-01T23:59:59.000Z

500

Manufacturers' View on Benchmarking and Disclosure  

U.S. Energy Information Administration (EIA) Indexed Site

Association of Electrical and Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax Incentives Shaheen- Portman Benchmarking and Disclosure Bullitt Center Seattle, Washington The Association of Electrical Equipment and Medical Imaging Manufacturers Energy Savings Performance Contracts ESPCs pay for efficiency upgrades with