Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Additive Manufacturing for Large Products.  

E-Print Network (OSTI)

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the… (more)

Leirvåg, Roar Nelissen

2013-01-01T23:59:59.000Z

2

Plastic Product Manufacturing (NAICS 3261)  

Science Conference Proceedings (OSTI)

The U.S. plastics product manufacturing industry (NAICS 3261), which consists of more than 12,000 firms with combined annual revenues of about $170 billion, is one of the ten largest manufacturing industries in the country in terms of sales. A large amount of electricity is consumed by the plastics products industry, with more than half of their usage going to machine drives; therefore, it is with motors and drives that the greatest opportunities for energy savings lie. Several electric technology option...

2012-01-31T23:59:59.000Z

3

Energy Department Takes First Step to Spur U.S. Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors...

4

Energy Department Takes First Step to Spur U.S. Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

20, 2012 Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors New Funding Opportunity Announcement Will Support SMR Design and...

5

Energy Department Takes First Step to Spur U.S. Manufacturing of Small  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes First Step to Spur U.S. Manufacturing of Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 20, 2012 - 10:48am Addthis Washington, D.C. - The U.S. Department of Energy today announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. Through the draft Funding Opportunity Announcement announced today, the Department will establish cost-shared agreements with private industry to support the design and licensing of SMRs. "America's choice is clear - we can either develop the next generation

6

First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Step to Spur U.S. Manufacturing of Small Modular Nuclear First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 25, 2012 - 5:06pm Addthis Brenda DeGraffenreid The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. The release of a draft Funding Opportunity Announcement (FOA) last week presents supply-chain procurement opportunities for our nation's small businesses down the line, as industry provides input in advance of a full FOA on engineering, design certification, and licensing through a

7

Energy Department Takes First Step to Spur U.S. Manufacturing of Small  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Takes First Step to Spur U.S. Manufacturing of Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 20, 2012 - 2:06pm Addthis The U.S. Department of Energy today announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. Through the draft Funding Opportunity Announcement announced today, the Department will establish cost-shared agreements with private industry to support the design and licensing of SMRs. "America's choice is clear - we can either develop the next generation

8

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Full-Scale Production Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Design Production and Manufacturing Process Advanced Research Projects Agency: Tech-to-Market Resources - general tech-to-market (T2M) resources. DOE Advanced Manufacturing Office: Manufacturing Demonstration Facility - a collaborative manufacturing community that works to provide real data to

9

Energy Report: U.S. Wind Energy Production and Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing...

10

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

11

Establishing Greener Products and Manufacturing Processes  

E-Print Network (OSTI)

energy monitoring of machine tools,” CIRP Annals - Manufacturing INTERNATIONAL JOURNAL OF PRECISION ENGINEERING

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

12

Property Tax Abatement for Production and Manufacturing Facilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abatement for Production and Manufacturing Facilities Abatement for Production and Manufacturing Facilities Property Tax Abatement for Production and Manufacturing Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Program Info Start Date 5/25/2007 State Montana Program Type Industry Recruitment/Support Rebate Amount 50% tax abatement Provider Montana Department of Revenue In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable energy research and

13

Lean manufacturing in a semiconductor environment : production leveling  

E-Print Network (OSTI)

Intel Corporation's Fab17 located at Hudson, MA underwent a large scale manufacturing ramp-up, increasing its production volume by over 50%. As a result of this manufacturing ramp-up, the factory is faced with various ...

Subramanian, Nima

2007-01-01T23:59:59.000Z

14

Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

15

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

16

Alignment strategies for drug product process development and manufacturing  

E-Print Network (OSTI)

The transfer of information between the drug product development and manufacturing organizations is fundamental to drug product commercialization. This information is used to characterize the product-process interaction ...

Garvin, Christopher John

2012-01-01T23:59:59.000Z

17

Session J: Processing and Product Manufacturing  

Science Conference Proceedings (OSTI)

Design and Manufacture of Fluidized Bed Reactor in Pilot Scale for Multiple ...... for the U.S. Department of Energy's National Nuclear Security Administration ...

18

Energy Impacts of Productivity Improvements in Manufacturing  

E-Print Network (OSTI)

The complexity of industrial processes and the need to consider the interaction of various systems has led in many cases to the maturing of the “energy audit” in to a more sophisticated “industrial assessment.” The assessment team typically looks for potential improvements in energy use in concert with examination of waste streams and potential productivity improvements. The benefits of this new approach are substantial in particular with respect to productivity improvements. Such projects are much easier to interest management in than waste or pure energy ones. In many cases they may also require smaller capital investments as many of the projects involve changes in practices and procedures. In a large number of cases, the impact of productivity projects on energy use in the plant are ignored or underestimated. This is unfortunate as the appropriate tracking of energy impacts would lower implementation payback times and potentially lead to greenhouse gas reduction credits. This paper examines how energy impacts are currently tracked in productivity projects and suggests two techniques for dramatically improving the accuracy of these estimates. Experiences from the DOE Industrial Assessment Center program are used as well as data from the programs publicly available database. It is shown that in many of the recommended productivity improvements there is an associated absolute reduction in energy use. For example, it is common to recommend the elimination of steps in a process by improving quality control etc. Savings are tracked in terms of time and manpower, but the elimination of parts of the process normally results in a reduction in energy consumption. Often, this reduction is underreported. Also very common, however, is that case where a productivity recommendation leads to an increase of total energy use. For example better management of process equipment will lead to greater load factors. Handled incorrectly this can lead to a negative energy impact which could result in increased paybacks and misleading indications about energy efficiency. Analysis shows that even when there is an increase in energy use, the amount of energy per product unit goes down, making a process demonstrably more energy efficient. Arguments are presented why using an Energy Intensity Metric is critical in properly accounting for energy impact of productivity on plant energy use. We present a concept called Virtual Reduction in Operating Time and show how it can be used to improve accounting for energy impacts.

Mitrovic, B.; Muller, M. R.

2002-04-01T23:59:59.000Z

19

Production of manufactured aggregates from flue gas desulfurization by-products  

SciTech Connect

CONSOL R and D has developed a disk pelletization process to produce manufactured aggregates from the by-products of various technologies designed to reduce sulfur emissions produced from coal utilization. Aggregates have been produced from the by-products of the Coolside and LIMB sorbent injection, the fluidized-bed combustion (FBC), spray dryer absorption (SDA), and lime and limestone wet flue gas desulfurization (FGD) processes. The aggregates produced meet the general specifications for use as road aggregate in road construction and for use as lightweight aggregate in concrete masonry units. Small field demonstrations with 1200 lb to 5000 lb of manufactured aggregates were conducted using aggregates produced from FBC ash and lime wet FGD sludge in road construction and using aggregates made from SDA ash and lime wet FGD sludge to manufacture concrete blocks. The aggregates for this work were produced with a bench-scale (200--400 lb batch) unit. In 1999, CONSOL R and D constructed and operated a 500 lb/hr integrated, continuous pilot plant. A variety of aggregate products were produced from lime wet FGD sludge. The pilot plant test successfully demonstrated the continuous, integrated operation of the process. The pilot plant demonstration was a major step toward commercialization of manufactured aggregate production from FGD by-products. In this paper, progress made in the production of aggregates from dry FGD (Coolside, LIMB, SDA) and FBC by-products, and lime wet FGD sludge is discussed. The discussion covers bench-scale and pilot plant aggregate production and aggregate field demonstrations.

Wu, M.M.; McCoy, D.C.; Fenger, M.L.; Scandrol, R.O.; Winschel, R.A.; Withum, J.A.; Statnick, R.M.

1999-07-01T23:59:59.000Z

20

Solder technology in the manufacturing of electronic products  

SciTech Connect

The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

Vianco, P.T.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturers of Noncompliant Products Agree to Civil Penalties to Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions July 1, 2013 - 11:17am Addthis The Department of Energy has settled civil penalty actions it initiated against nine companies for the manufacture and sale in the United States of products that fail to meet federal energy conservation standards. The covered consumer products and commercial/industrial equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased all sales within the United States of the products that violated federal energy conservation standards.

22

Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers of Noncompliant Products Agree to Civil Penalties to Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions July 1, 2013 - 11:17am Addthis The Department of Energy has settled civil penalty actions it initiated against nine companies for the manufacture and sale in the United States of products that fail to meet federal energy conservation standards. The covered consumer products and commercial/industrial equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased all sales within the United States of the products that violated federal energy conservation standards.

23

International photovoltaic products and manufacturers directory, 1995  

DOE Green Energy (OSTI)

This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

1995-11-01T23:59:59.000Z

24

Rapid replenishment at a consumer product goods manufacturer  

E-Print Network (OSTI)

Increasing supply chain velocity has adverse consequences for consumer product goods manufacturers, but creates value and flexibility for retail stores. This thesis outlines a case study of a rapid replenishment pilot ...

Becker, Deborah Eugenia

2007-01-01T23:59:59.000Z

25

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network (OSTI)

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

26

Formulating Detergents and Personal Care ProductsChapter 12 Manufacturing Process  

Science Conference Proceedings (OSTI)

Formulating Detergents and Personal Care Products Chapter 12 Manufacturing Process Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of Chapter 12 Manufacturing Process from

27

Fermentation guide for potatoes. A step-by-step procedure for small-scale ethanol fuel production  

Science Conference Proceedings (OSTI)

This guide describes the steps involved in the successful batch starch conversion and fermentation of potatoes for the production of fuel grade ethanol. The first part of this manual provides an overview of ethanol production from feedstock to fermentation. The second part of the manual is a recipe section that gives step-by-step procedures necessary for successful fermentation. Chapter titles are: major steps in ethanol production; equipment and chemicals; water testing and treatment; feedstock cleaning and crushing; precooking; hydration and dextrinization; cooking; choosing the best enzymes; fermentation; core and cleaning, step-by-step procedure; refinements; and supplies. (DMC)

Not Available

1981-09-01T23:59:59.000Z

28

Smart Manufacturing Processes and Equipment  

Science Conference Proceedings (OSTI)

... on testing machine tool capability for batch production (ISO 26303 ... NC Manufacturing Group (KTH, Step Tools, Sandvik, GE Energy, University of ...

2013-01-02T23:59:59.000Z

29

MANUFACTURING  

Science Conference Proceedings (OSTI)

... Energy Efficiency in Buildings: Solid State Climate Control ... TE materials is green job creation, as Table ... can provide 21,454 US jobs in manufacturing ...

2011-08-01T23:59:59.000Z

30

Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

31

SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION  

DOE Green Energy (OSTI)

The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

Eric J. Carlson; Yong Yang; Chandler Fulton

2004-04-20T23:59:59.000Z

32

Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6,...

33

Technical note: Recent advances in sharing standardized STEP composite structure design and manufacturing information  

Science Conference Proceedings (OSTI)

Composite structures have been developed and used in the aerospace, automobile, sports, and marine industries since the early 1940s. Compared to conventional metallic structures, newer high-performance composite structures provide benefits such as decreased ... Keywords: AP209, Composite structures, Data exchange, ISO 10303, Long-term data retention, STEP

Keith A. Hunten, Allison Barnard Feeney, Vijay Srinivasan

2013-10-01T23:59:59.000Z

34

Advanced Manufacturing Office: About the Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

collapse processing steps to lower the energy intensity of manufactured products. Next-Generation Materials cut energy use and provide new functional properties that enable...

35

DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS  

SciTech Connect

Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

M. M. Wu

2005-02-01T23:59:59.000Z

36

Soap Manufacturing TechnologyChapter 9 Semi-Boiled Soap Production Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 9 Semi-Boiled Soap Production Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 9 Semi-Boiled Soap Production Systems fr

37

One-step method for the production of nanofluids - Energy ...  

A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil ...

38

ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE  

SciTech Connect

In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The unit raw material cost for REML (through-hardened bearing steel) is somewhat greater than raw material cost for the conventional line (case-hardened bearing steel). However, changeover time, tooling costs, gauging costs, utilities and energy costs, and manning of REML are less than the conventional line. Since REML supports near single piece flow, work in process inventory and work flow time are much less on the REML line than on the conventional line. REML allows the reduction in inventory of source steel tube sizes from several hundred to a few dozen. As a result, the business model indicates that the costs incurred on the manufacturing line are less with the REML line than with the conventional line for low manufacturing run volumes. Environment The REML line, when processing through-hardenable steel, requires far less hydrocarbon and other process gases than the conventional line when processing case hardenable steel. The REML line produces fewer greenhouse gas emissions and less liquid and solid waste materials. Broad Applicability The REML benefits will in general be extendible to the manufacture of non-bearing, heat treated and finished machined metal parts in the United States.

Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

2007-11-05T23:59:59.000Z

39

Oil in biomass: a step-change for bioenergy production?  

Science Conference Proceedings (OSTI)

To help meet the rapidly growing demand for biofuels, scientists and policy makers envision that a variety of agricultural, municipal, and forest-derived feedstocks will be used to produce “second-generation” biofuels. Oil in biomass: a step-change for bio

40

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99...

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A study of the manufacturing and product possibilities of a cork/polylactic acid compound  

E-Print Network (OSTI)

A study of the manufacturing and product capabilities of a cork/polylactic acid compound was conducted. Fine granulated cork, 1mm in diameter, was compounded with Natureworks' IngeoTM3051D PLA and extruded into pellets. ...

Reed, Sarah BR

2011-01-01T23:59:59.000Z

42

Full lead time mapping, analysis and improvement for packaging product manufacturing  

E-Print Network (OSTI)

Service level is significant for the customers of a packaging product manufacturing company, especially for the customers with large- volume and high-value orders. To improve the service level will not only provide better ...

Jin, Yi, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

43

Materials Processing & Manufacturing Division  

Science Conference Proceedings (OSTI)

In its broadest scope, the Materials Processing & Manufacturing Division (MPMD) covers manufacturing from product design to production, integrating process ...

44

Normative price for a manufactured product: the SAMICS methodology. Volume II. Analysis. JPL publication 78-98. [Solar Array Manufacturing Industry Costing Standards  

DOE Green Energy (OSTI)

The Solar Array Manufacturing Industry Costing Standards (SAMICS) provide standard formats, data, assumptions, and procedures for determining the price a hypothetical solar array manufacturer would have to be able to obtain in the market to realize a specified after-tax rate of return on equity for a specified level of production. This document presents the methodology and its theoretical background. It is contended that the model is sufficiently general to be used in any production-line manufacturing environment. Implementation of this methodology by the Solar Array Manufacturing Industry Simulation computer program (SAMIS III, Release 1) is discussed.

Chamberlain, R.G.

1979-01-15T23:59:59.000Z

45

One-step method for the production of nanofluids  

DOE Patents (OSTI)

A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.

Kostic, Milivoje (Chicago, IL); Golubovic, Mihajlo (Chicago, IL); Hull, John R. (Downers Grove, IL); Choi, Stephen U. S. (Napersville, IL)

2010-05-18T23:59:59.000Z

46

One-step method for the production of nanofluids  

DOE Patents (OSTI)

A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.

Kostic, Milivoje (Sycamore, IL); Golubovic, Mihajlo (Chicago, IL); Hull, John (Downers Grove, IL); Choi, Stephen U. S. (Naperville, IL)

2011-08-16T23:59:59.000Z

47

Energy Report: U.S. Wind Energy Production and Manufacturing Surges,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: U.S. Wind Energy Production and Manufacturing Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy August 14, 2012 - 9:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released a new report today highlighting strong growth in the U.S. wind energy market in 2011, increasing the U.S. share of clean energy and supporting tens of thousands of jobs, and underscoring the importance of continued policy support and clean energy tax credits to ensure that the manufacturing and jobs associated with this booming global industry remain in America According to the 2011 Wind Technologies Market Report, the United States remained one

48

A collaborative and integrated platform to support distributed manufacturing system using a service-oriented approach based on cloud computing paradigm  

Science Conference Proceedings (OSTI)

Today's manufacturing enterprises struggle to adopt cost-effective manufacturing systems. Overview of the recent manufacturing enterprises shows that successful global manufacturing enterprises have distributed their manufacturing capabilities over the ... Keywords: Cloud computing, Collaborative product development, Distributed product development, Modularity, STEP standard, Service-oriented manufacturing, XML

Omid Fatahi Valilai; Mahmoud Houshmand

2013-02-01T23:59:59.000Z

49

Using Incentive Plans to Boost Productivity in Manufacturing  

Science Conference Proceedings (OSTI)

... with the theory being that fewer employees would cut payroll costs and force the ... company performance rather than as a daily motivator for plant production.

50

Graphene as a manufactured product : a look forward  

E-Print Network (OSTI)

Graphene's unique electrical and mechanical properties have brought it into the spotlight in recent years. With the number of patents increasing rapidly every year, production of the material is becoming more and more ...

Frost, Stephen T

2013-01-01T23:59:59.000Z

51

Costs Models in Design and Manufacturing of Sand Casting Products  

E-Print Network (OSTI)

In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

Perry, Nicolas; Bernard, Alain

2010-01-01T23:59:59.000Z

52

Costs Models in Design and Manufacturing of Sand Casting Products  

E-Print Network (OSTI)

In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

Nicolas Perry; Magali Mauchand; Alain Bernard

2010-11-26T23:59:59.000Z

53

Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dept. Reports: U.S. Wind Energy Production and Manufacturing Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 8:00am Addthis WASHINGTON - The Energy Department released two new reports today showcasing record growth across the U.S. wind market -- increasing America's share of clean, renewable energy and supporting tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time - representing 43 percent of all new electric additions and accounting for $25 billion in U.S. investment.

54

Photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

1991-12-01T23:59:59.000Z

55

Method for manufacturing a well production and sand screen assembly  

SciTech Connect

A method for forming and assembling a well production and sand screen assembly in a well having a screen therein forming an outer annulus and a wash pipe internally of the screen forming an inner annulus comprising further (A) mounting a high pressure fluid pump means and a valve means on each wash pipe, inner annulus, and outer annulus, and (B) connecting the valve means in fluid communication with the high pressure fluid pump means for controlling the ingress and egress of the high pressure fluids and removed formation material for forming a sand pack in the well and simultaneously for applying and maintaining a positive fluid pressure against the overburden during work in the well for preventing cave-ins and sloughing of the unconsolidated formation well walls until the sand pack is formed.

Widmyer, R.H.

1982-10-12T23:59:59.000Z

56

Concurrent consideration of evacuation safety and productivity in manufacturing facility planning using multi-paradigm simulations  

Science Conference Proceedings (OSTI)

Manufacturing facilities are expected to maintain a high level of production and at the same time, employ strict safety standards to ensure the safe evacuation of the people in the event of emergencies (fire is considered in this paper). These two goals ... Keywords: Agent based simulation, BDI, Emergency management, Layout planning

Karthik Vasudevan; Young-Jun Son

2011-11-01T23:59:59.000Z

57

Trade Secrets Laws and Production Efficiency: Model and Empirics from Lean Manufacturing ?  

E-Print Network (OSTI)

Model and Empirics from Lean Manufacturing How does the institutional environment affect production efficiency? Here, we model the effect of the legal protection of trade secrets on the effectiveness of efforts to reduce production cost. We show that, with stronger trade secrets protection, lean manufacturing will be more effective in reducing cost. However, stronger protection has conflicting effects on cost itself. Stronger protection reduces the spill-out of knowledge to competitors, which tends to reduce cost, but it also reduces spill-in of knowledge, which tends to raise cost. We test the model in the U.S. context, using a difference-in-differences design, exploiting changes in state-level trade secrets over time. Consistent with the model, stronger trade secrets protection was associated with a larger effect of lean manufacturing on inventories. An increase in the statutory protection of trade secrets by one standard deviation was associated with lean manufacturing reducing inventories by 2.9%. “Mr Ohno believed just-in-time was a manufacturing advantage for Toyota. And for many years, he would not allow anything to be recorded about it.... I think he also feared Americans would discover this powerful tool and use it against the

Jie Gong; I. P. L. Png

2013-01-01T23:59:59.000Z

58

Energy Department Reports U.S. Wind Energy Production and Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports U.S. Wind Energy Production and Reports U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Department Reports U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 12:00pm Addthis The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time-representing 43% of all new electric additions and accounting for $25 billion in U.S. investment. In the first four years of the Obama Administration, American electricity

59

Reports Show Record High U.S. Wind Energy Production and Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Show Record High U.S. Wind Energy Production and Reports Show Record High U.S. Wind Energy Production and Manufacturing Reports Show Record High U.S. Wind Energy Production and Manufacturing August 6, 2013 - 12:00pm Addthis Two men work on the nacelle of a wind turbine. The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time-representing 43% of all new electric additions and accounting for $25 billion in U.S. investment.

60

Research on Multi-criteria Decision-Making Model of Multi-variety Discrete Production and Manufacture  

Science Conference Proceedings (OSTI)

In this paper, taking econonic, order execution, output and consuming into account, the decision-making model of multi-variety discrete production and manufacture has been presented for the multiobjective decision multi-attribute problem. The analytic ... Keywords: decision-making model, discrete production and manufacture, AHP, MAUF

Jianfang Sun; Fan Zhu; Xiaopeng Xie

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Process for manufacture of inertial confinement fusion targets and resulting product  

DOE Patents (OSTI)

An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

Masnari, Nino A. (Ann Arbor, MI); Rensel, Walter B. (Ann Arbor, MI); Robinson, Merrill G. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI); Wise, Kensall D. (Ann Arbor, MI); Wuttke, Gilbert H. (Ypsilanti Township, Washtenaw County, MI)

1982-01-01T23:59:59.000Z

62

Domestic production of medical isotope Mo-99 moves a step closer  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99 (Mo-99) production, with virtually no losses in Mo-99 yields or uranium recovery. May 13, 2013 From left, Los Alamos scientists Roy Copping, Sean Reilly, and Daniel Rios. Copping examines the Buchi Multivapor P-12 Evaporator, and Reilly and Rios are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. From left, Los Alamos scientists Sean Reilly, Roy Copping, and Daniel Rios. Sean is looking at the Buchi Multivapor P-12 Evaporator, and Roy and Daniel are at the Agilent Technologies Cary 60 UV-Vis Spectrometer. Contact Nancy Ambrosiano Communications Office (505) 667-0471

63

Topic: Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Project. Sustainable Manufacturing Program. Sustainability Characterization for Product Assembly Processes Project. Testbed ...

2012-09-19T23:59:59.000Z

64

Highlights of Industrial Energy Audits with Application in Paper Product Manufacturing  

E-Print Network (OSTI)

Experience in executing comprehensive energy audits in varied industrial plants has resulted in a basic audit methodology and has revealed several interesting energy conservation opportunities applicable to paper products manufacturing. The most difficult and important part of an energy audit is the data collection that is necessary to fully understand the energy flows in the facility. Although many common opportunities exist that can be found in check lists, many opportunities are discovered only by a thorough understanding of the distribution of energy consumption that comes from detailed measurements and data analysis.

Hart, M. N.; Bond, S. K.

1979-01-01T23:59:59.000Z

65

Specific PVMaT R&D on Siemens Cz silicon product manufacturing: Annual Subcontract Report, June 1998 -- June 1999  

DOE Green Energy (OSTI)

This report describes work done by Siemens Solar Industries (SSI) from June 1998 to June 1999 during Phase 1 of a three-phase Photovoltaic Manufacturing Technology (PVMaT 5A2) subcontract from DOE/NREL. The work focuses on improvements in the cost per watt of Cz modules and improved PV module manufacturing technology. The first step toward reducing cost was to reduce wafer thickness. The approach has been a two-step reduction in thickness, from 385 microns to 250 micron cells, and then from 250 microns to 125 micron cells during Phase II. During Phase I, the handling tools, the back-surface-field process, and the confirmation of the environmental integrity of thinner wafers have all been accomplished. Cells with efficiency over 15.5% have been demonstrated in high-volume production. SSI has initiated the development and growth of 200-mm ingot to be fabricated into wafers and eventually cells. Cell and module production with 200-mm cells will begin during Phase II. Hazardous waste reduction has been attacked in two ways. The largest consumable item aside from polysilicon is silicon carbide (SiC) used in the wafer-slicing process. This SiC use has been reduced significantly through recycling and re-use. This program approach is well under way at SSI, with more than 25% of the SiC used being recycled. The largest hazardous waste volume at SSI is the caustic waste generated in the wafer etching processes. The reduction of this waste will be accomplished using subcontractors with extensive environmental compliance experience such that the solution is driven by best available techniques, lowering operating cost as a secondary motive. These three areas of focus thinner cells, larger cells and modules, and hazardous waste reduction have the potential to reduce cost by about 30% per watt. This first phase of large 150-mm-thinner 250-micron cells has demonstrated a potential for 10% cost reduction, with the final yield improvements being implemented in the SSI line now. The follow-on work during Phase II, with thinner cells, larger cells, and continued waste reduction, will allow the 30%, three-year goal to be met.

Jester, T. L.

2000-04-24T23:59:59.000Z

66

Manufacturing technologies  

SciTech Connect

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

67

Heliostat manufacturing analysis  

DOE Green Energy (OSTI)

Results of a manufacturing cost analysis of heliostats are presented. The two primary objectives are: (1) providing a base for uniform cost analysis, and (2) providing facility and manufacturing cost estimates for planning purposes in the development of a heliostat industry. The manufacturing analysis provides materials, labor, equipment, and facility costs for each step in the manufacturing process. Detailed procedures are presented for cost estimates. These include estimating worksheets for each component of the manufacturing costs.

Drumheller, K.

1978-10-01T23:59:59.000Z

68

A traceability information model for CNC manufacturing  

Science Conference Proceedings (OSTI)

This paper proposes an information model for tracing CNC manufacturing operations. The objective of the model is to assure that traceability data is comprehensive and available for every CNC machined product, independent of the relationship between the ... Keywords: CAM, ISO 10303 AP238, Product characteristics, STEP, Traceability

Julio Garrido Campos; Martin Hardwick

2006-05-01T23:59:59.000Z

69

Two fluid model using kinetic theory for modeling of one-step hydrogen production gasifier  

SciTech Connect

A Two Fluid Model (TFM) using kinetic theory of granular flow has been developed to describe an innovative process of hydrogen production in a single step. An extended Multi-species of Solid Phase (MSP) method is proposed to simulate the gas-solid heterogeneous reactions in an entrained flow gasifier, as opposed to Single-species of Solid Phase (SSP) in previous studies. The intrinsic equations of methane steam reforming and water-gas shift reactions are used for a good understanding of the reaction mechanism for high concentration of hydrogen production under higher pressure. On the basis of the results of computing, the main feature of core-annular reaction zone is predicted in the fully developed flow region. And the similar flame-like structure for velocity and temperature is observed to emerge from the feed injection zone at the bottom of gasifier. The model well illustrates the effects of CaO on enhancing the concentration of hydrogen and sequestering CO{sub 2} in the process of coal gasification. The advantages of pressure gasification are also shown that coal conversion increases with increasing pressure while H{sub 2}S concentration and tar content decreases. Moreover, there is a steep increase in H{sub 2}S and tar species initiated from the entrance of gasifier and then a decrease at the next section. The model shows good agreement with the measurements of flow field and gas products concentration in laboratory-scale plants.

Yu, L.; Lu, J.; Zhang, X.P.; Zhang, S.J.; Wang, X.L. [Chinese Academy of Sciences, Beijing (China)

2008-11-15T23:59:59.000Z

70

Process planning for rapid manufacturing of plastic injection mold for short run production.  

E-Print Network (OSTI)

??This thesis presents a process planning methodology for a rapid injection mold tool manufacturing system that involves additive and subtractive techniques, whereby slabs are sequentially… (more)

Karthikeyan, Rajesh Kumar

2010-01-01T23:59:59.000Z

71

Technology Development and Manufacturing ...  

Science Conference Proceedings (OSTI)

... Manufacturing Tax Credits; Loan Guarantees – Renewable Energy • FY 11 Budget- Univ. ... Products China Philippines Czech Republic 25 30 35 ...

2013-06-11T23:59:59.000Z

72

An application reference model for layered manufacturing  

SciTech Connect

The Intelligent Manufacturing Systems (IMS) Test Case 6 project (Rapid Product Development) was set up to demonstrate rapid product development and 3D measurement techniques where the agencies performing the work were distributed over different countries. Test Case 6 provided a unique opportunity to examine the process by which an application protocol (AP) of the Standard for Exchange of Product Data is prepared. The test case had a well defined scope, the production of simple parts by means of layered manufacturing techniques. The information concerned with this manufacture was similarly well defined, due to the requirement that the information be transmitted among the organizations participating in the test case. STEP is an international standard specifying the data content and format for storage and exchange of product data throughout the product`s life cycle. STEP has been under development since 1984 and is just now emerging as an International Standard. STEP is specified as a series of information models using the EXPRESS computer language. For purposes of data exchange, a mapping to a physical file format is specified. Informally, product data can be defined as all the data about a product which one might wish to save. This definition implies some variation in the amount of data to be saved in any one instance. In the case of Test Case 6, one would certainly wish to save the IGES files describing the part. One may or may not wish to save the manufacturing parameters. While there are many parts of STEP with different purposes, the important series of parts for the purposes of standardizing product data are those dealing with application protocols. An application protocol specifies the details of product data within the context of a single application (in this case, layered manufacturing). Other APs deal with such subjects as configuration-managed solid parts and associated drafting.

Kennicott, P.R.

1994-02-01T23:59:59.000Z

73

Lessons Learned During the Manufacture of the NCSX Modular Coils  

Science Conference Proceedings (OSTI)

The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

2009-09-15T23:59:59.000Z

74

Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance  

Science Conference Proceedings (OSTI)

Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

Scholand, Michael; Dillon, Heather E.

2012-05-01T23:59:59.000Z

75

Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing  

E-Print Network (OSTI)

In this paper, an electrospray technique followed by annealing at high temperatures was developed to produce nanocrystals of carbamazepine (CBZ), a poorly water-soluble drug, for continuous pharmaceutical manufacturing ...

Wang, Mao

76

Customized digital manufacturing : concept to construction methods across varying product scales  

E-Print Network (OSTI)

Architectural design and construction is rapidly changing through the extensive adoption of digital design, manufacture and assembly tools. Customized assemblies are paired and recombined to create unique spatial enclosures. ...

Botha, Marcel

2006-01-01T23:59:59.000Z

77

STEP File Analyzer  

Science Conference Proceedings (OSTI)

... The STEP File Analyzer is a software tool that generates a spreadsheet from a STEP (ISO 10303 –STandard for Exchange of Product model data ...

2013-08-06T23:59:59.000Z

78

Multi-step perturbation solution of nonlinear differentiable equations applied to an econometric analysis of productivity  

Science Conference Proceedings (OSTI)

Fourth-order multi-step perturbation (MSP) is described and applied as a general method for numerically solving nonlinear, differentiable, algebraic equations which are first-order conditions of economic optimization problems. MSP is first described ...

Baoline Chen; Peter A. Zadrozny

2009-04-01T23:59:59.000Z

79

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

80

NIST Sustainable Manufacturing Indicators Repository (SMIR)  

Science Conference Proceedings (OSTI)

... manufacturing strongly influence a product's life cycle impacts on the environment and the company's sustainability. Sustainable manufacturing ...

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

"S" Glass Manufacturing Technology Transfer  

SciTech Connect

A glass-ceramic-to metal sealing technology patented by Sandia National Laboratories, Albuquerque (SNLA) was developed by MRC-Mound for use in the manufacture of weapon components. Successful implementation attracted increasingly widespread weapon use of this technology. "S-glass" manufacturing technology was transferred to commercial vendors to ensure that weapons production schedules would be met in the coming years. Such transfer also provided sources of this fledgling technology for the Department of Defense (DOD), aerospace and other commercial uses. The steps involved in the technology transfer are described, from the initial cooperative development work of Sandia and Mound scientists and technologists to the final phase of qualifying commercial vendors for component manufacture.

Buckner, Dean, A.; McCollister, Howard, L.

1988-06-01T23:59:59.000Z

82

Exploring the Relationship Between R&D and Productivity at the Firm Level in French Manufacturing  

E-Print Network (OSTI)

in Z . Griliches (ed. ), R&D, Patents, and Productivity.Z v i . 1986. "Productivity, R&D, and Basic Research at thein Z . Griliches (ed. ), R&D, Patents, and Productivity.

Hall, Bronwyn H.; Mairesse, Jacques

1992-01-01T23:59:59.000Z

83

The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and  

E-Print Network (OSTI)

Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter of a specific property, eq. Liquid Density #12;4 Appendix B Prediction Methods and NIST TDE Equations

Liu, Y. A.

84

Photosynthetic models with maximum entropy production in irreversible charge transfer steps  

Science Conference Proceedings (OSTI)

Steady-state bacterial photosynthesis is modelled as cyclic chemical reaction and is examined with respect to overall efficiency, power transfer efficiency, and entropy production. A nonlinear flux-force relationship is assumed. The simplest two-state ... Keywords: Bacterial photosynthesis, Efficiency, Entropy production, Kinetic models, Power

Davor Jureti?; PašKo Upanovi?

2003-12-01T23:59:59.000Z

85

Step by Step Instructions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Step by Step Instructions Step by Step Instructions For Completing An Information Collection Request 1. A determination must be made if a Federal entity has an Information Collection Request (ICR). To assist in making that determination, the Paperwork Reduction Act (PRA)states the following: The PRA requires each Federal agency to seek and obtain Office of Management and Budget (OMB) approval before undertaking a collection of information directed to ten or more people of the general public, including federal contractors, or continuing a collection for which the OMB approval and validity of the OMB control number are about to expire. 2. Once it's been determined that a program has an ICR, the program works with their Headquarters Point of Contact (POC) and prepare a 60-day Federal

86

US Manufacturing in Context  

Science Conference Proceedings (OSTI)

... manufacturing firms lead the Nation in exports: The $1.3 ... 86% of all US goods exported in 2011 ... growing production of domestic natural gas, and the ...

87

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

88

Distributed object environment for manufacturing. Final report  

DOE Green Energy (OSTI)

This project was initiated as a joint effort between the Department of Energy (DOE) and Ford to accelerate the development of integrated manufacturing systems through the use of emerging object-oriented software integration architectures and international product data standards. The project adopted the Object Management Group (OMG) Common Object Request Broker Architecture (CORBA) as the formal model for system integration and the ISO Standard for Exchange of Product Model Data (STEP) as the formal model for product data integration. No project at the time had brought the combined strengths of CORBA and STEP together to create an integrated system. Because CORBA technologies were just emerging when this project was started in September 1994, a reasonably high risk was assigned to this project. The first objective of this project was to build confidence in the STEP standard by exchanging a STEP description of a power steering pump with a Ford supplier and validating the exchange. This part was successfully exchanged. The second objective was the integration of the Ford in-house configuration management system with a STEP repository using CORBA-based technology. The repository chosen was the KCP Advanced Manufacturing Development System (AMDS), a development repository. This report will describe the power steering pump exchange and CORBA/STEP integration experiences.

Zimmerman, J. [AlliedSignal, Inc., Kansas City, MO (United States). Federal Mfg. and Technologies; Tocco, M. [Ford Powertrain Operations, Dearborn, MI (United States)

1996-10-01T23:59:59.000Z

89

PV Inverter Products Manufacturing and Design Improvements for Cost Reduction and Performance Enhancements: Final Subcontract Report, November 2003 (Revised)  

SciTech Connect

The specific objectives of this subcontracted development work by Xantrex Technology Inc. were to: (1) Capture the newest digital signal processor (DSP) technology to create high-impact,''next generation'' power conversion equipment for the PV industry; (2) Create a common resource base for three PV product lines. This standardized approach to both hardware and software control platforms will provide significant market advantage over foreign competition; (3) Achieve cost reductions through increased volume of common components, reduced assembly labor, and the higher efficiency of producing more products with fewer design, manufacturing, and production test variations; (4) Increase PV inverter product reliability. Reduce inverter size, weight and conversion losses. The contract goals were to achieve an overall cost reduction of 10% to 20% for the three inverters and with no compromise in performance. The cost of the 10-kW inverter was reduced by 56%, and the cost of the 25-kW inverter was reduced by 53%. The 2.5-kW inverter has no basis for comparison, but should benefit equally from this design approach. Not only were the contract cost reduction goals exceeded by a wide margin, but the performance and reliability of the products were also enhanced. The conversion efficiency improvement, as reflected in the 50% conversion loss reduction, adds significant value in renewable energy applications. The size and weight reductions also add value by providing less cumbersome product solutions for system designers.

West, R.

2004-04-01T23:59:59.000Z

90

Specific PVMaT R&D in CdTe Product Manufacturing: Final Subcontract Report, March 2003  

DOE Green Energy (OSTI)

Results of a 3+ year subcontract are presented. The research was conducted under Phase 5A2 of the subcontract. The three areas of effort in the subcontract were (1) manufacturing line improvements, (2) product readiness, and (3) environmental, safety, and health programs. The subcontract consisted of three phases, approximately 1 year each. Phase I included the development, design, and implementation of a high-throughput, low-cost lamination process. This goal was achieved using the support of key experts such as Automation and Robotics Research Institute (ARRI) to identify appropriate lamination equipment vendors, and material handling. Product designs were reviewed by Arizona State University Photovoltaic Testing Laboratory and Underwriters Laboratories. Modifications to the module designs were implemented to meet future testing requirements. A complete review of the Environmental, Health, and Safety programs was conducted, along with training by the Environmental Protection Agency (EP A) and Occupational Safety and Health Administration (OSHA). Work conducted during Phase II included the implementation of an improved potting procedure for the wiring junction. The design of the equipment focused on high-throughput, low-cost operations. During Phase III , First Solar made significant progress in three areas: Manufacturing Readiness; Product Performance; and Environmental, Health, and Safety (EH&S). First Solar's accomplishments in laser scribing significantly exceeded the stated goals. Innovations implemented during Phase III were made possible by adopting a new type of high-frequency, low-pulse-width laser, galvanometer-driven laser-beam system, and numerous advanced, automated, equipment features. Because of the greater than one order of magnitude increase in the throughput and laser life, a factor of two decrease in equipment cost, and complete automation, a major impact on lowering the cost of the PV product is anticipated.

Bohland, J.; McMaster, A.; Henson, S.; Hanak, J.

2004-01-01T23:59:59.000Z

91

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations;  

SciTech Connect

DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

Not Available

2006-04-01T23:59:59.000Z

92

NIST Workshop on Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Day1: 15:15 – 15:30. Kathi Futornick. URS Corporation. Standards Opportunity in Sustainable Product Development and Manufacturing. ...

2009-12-01T23:59:59.000Z

93

Multiple-part-type systems in high volume manufacturing : Kanban System design for automatic production scheduling  

E-Print Network (OSTI)

A Kanban Production System is designed to help a factory line meet fluctuating demands for multiple part types. Based on the parameter settings of the Control-Point Policy, the optimum Kanban levels are obtained. The ...

Lee, Kaizhao

2008-01-01T23:59:59.000Z

94

Electricity Diffusion and Trend Acceleration in Inter-War Manufacturing Productivity  

E-Print Network (OSTI)

counting both the horse power capacity of a steam turbine attached to an electric generator within the plant, and the horse power capacity of all the electric motors that use the electricity so generated to run production machinery in the factory. Clearly... economies typical of a volume production process such as electricity generation, the consequent drastic reduction in power generation capital at the factory level was much faster than the corresponding increase in the generation capital of electric utilities...

Ristuccia, Cristiano A; Solomou, Solomos

2004-06-16T23:59:59.000Z

95

Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales  

SciTech Connect

Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

2011-05-01T23:59:59.000Z

96

Electrolyzer Manufacturing Progress and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

97

Product development of a device for manufacturing medical equipment for use in low-resource settings  

E-Print Network (OSTI)

The objective of this paper is to describe the product design of a device that can be used to create medical supplies on-site in clinics in low-resource settings. The machine uses purely mechanical elements to cut and fold ...

Schlecht, Lisa (Lisa Anne)

2010-01-01T23:59:59.000Z

98

Enabling cognitive manufacturing through automated on-machine measurement planning and feedback  

Science Conference Proceedings (OSTI)

With the manufacturing industry shifting from seller markets to buyer markets, cognitive capabilities have become enablers for high flexibility and changeability that facilitate efficient production for the fast changing markets. Process planning in ... Keywords: Automated and integrated process planning, Cognitive capability, Data modelling, In-process measurement, On-line feedback, STEP/STEP-NC

Yaoyao Fiona Zhao; Xun Xu

2010-08-01T23:59:59.000Z

99

Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report  

Science Conference Proceedings (OSTI)

Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

Azimi, S.A.; Conrad, J.L.; Reed, J.E.

1985-03-01T23:59:59.000Z

100

Next Step for STEP  

SciTech Connect

The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measures being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.

Wood, Claire [CTSI; Bremner, Brenda [CTSI

2013-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... Manufacturing Energy Consumption Survey (MECS ... transportation, manufacturing, and a variety of consumer products. It is the ...

102

2011 Next Generation Manufacturing Study 2011 Next ...  

Science Conference Proceedings (OSTI)

... well: 28% of manufacturers reported they were ... The NGM Study manufacturers report annual revenues ... 0.7% 0.5% Petroleum and Coal Products Mfg ...

103

Bio Solutions Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

search Name Bio Solutions Manufacturing Inc Place Las Vegas, Nevada Zip 89103 Product Waste-to-energy bioremediation developer. References Bio Solutions Manufacturing Inc1...

104

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

105

MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANUFACTURING MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge) Manufacturing 332420 Other Metal Container Manufacturing 332439 Machine Shops 332710 Electroplating, Plating, Polishing, Anodizing, and Coloring 332813 Industrial valve Manufacturing 332911 Other Ordnance and Accessories Manufacturing 332995 All Other Miscellaneous Fabricated Metal Product Manufacturing

106

Manufacturing Portal  

Science Conference Proceedings (OSTI)

... datasets. Manufacturers of … more. In Situ Characterization of Nanoscale Gas-Solid Interactions by TEM Observing and ...

2013-09-09T23:59:59.000Z

107

About Manufacturing  

Science Conference Proceedings (OSTI)

... reflects the changes in prices that manufacturers ... Petroleum Electricity Natural Gas Coal Emissions ... Position Abroad on a Historical Cost Basis ...

2013-07-25T23:59:59.000Z

108

Manufacturing News  

Science Conference Proceedings (OSTI)

... Two New MEP Centers Will Serve Kentucky and South Dakota Manufacturers Release Date: 01/24/2013 Small and mid ...

2010-09-22T23:59:59.000Z

109

Stockpile Transition Enabling Program (STEP): Process and project requirements  

Science Conference Proceedings (OSTI)

The Stockpile Transition Enabling Program (STEP) is aimed at identifying weapon components suitable for use in more than one weapon and for qualifying components so identified for multiple use. Work includes identifying the means to maintain the manufacturing capability for these items. This document provides the participants in STEP a common, consistent understanding of the process and requirements. The STEP objectives are presented and the activities are outlined. The STEP project selections are based on the customer needs, product applicability, and maturity of the technology used. A formal project selection process is described and the selection criteria are defined. The concept of {open_quotes}production readiness{close_quotes} is introduced, along with a summary of the project requirements and deliverables to demonstrate production readiness.

Ma, Kwok Kee

1993-06-01T23:59:59.000Z

110

Green Manufacturing Portal  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Portal. Green Manufacturing Portal. ... see all Green Manufacturing programs and projects ... ...

2012-12-27T23:59:59.000Z

111

Green Manufacturing Events  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Events. Green Manufacturing Events. (showing 1 - 1 of 1). Manufacturing Innovations ...

2011-06-20T23:59:59.000Z

112

Manufacturing Energy Portal  

Science Conference Proceedings (OSTI)

NIST Home > Manufacturing Energy Portal. Manufacturing Energy Portal. ... see all Manufacturing Energy programs and projects ... ...

2013-11-07T23:59:59.000Z

113

Processing and Product Manufacturing  

Science Conference Proceedings (OSTI)

Oct 19, 2010 ... Various polymer coatings were applied to wood specimens using a ... in plasma are the main responsibles for the heating of those materials.

114

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

115

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

116

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

117

The critical role of manufacturing-process innovation on product development excellence in high-technology companies  

E-Print Network (OSTI)

Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

Duarte, Carlos E. A., 1962-

2004-01-01T23:59:59.000Z

118

Capacity, production, and manufacturing of wood-based panels in north America. Forest Service general technical report  

SciTech Connect

This report is an informational report about four wood-based panel industries particleboard, oriented strandboard, medium density fiberboard, and Southern Pine plywood. Items highlighted are trends in manufacturing and new plant costs, industry manufacturing capacity, and location. Recent data show the greatest amount of growth taking place in the oriented strandboard sector. Modest rates of growth are occuring in the Southern Pine Plywood, particleboard, and medium density fiberboard sectors.

Spelter, H.

1994-10-01T23:59:59.000Z

119

Advanced Manufacturing Office: Closed Solicitations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production EE-2E 08112008 09192008 Manufacturing- Industrial Distributed Energy FuelFeedstock Flexibility and Combined Heat and Power U.S. Department of Energy- Industrial...

120

MANUFACTURING NIST Impact Verification Program  

Science Conference Proceedings (OSTI)

... manufactured from structural steel such as oil and gas ... both in the US and around the world. ... of proficiency test data available for production lots.

2013-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Manufacturing News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

122

Manufacturing Growth  

Science Conference Proceedings (OSTI)

... report, even the lithium-ion batteries used in Chevy's much anticipated electric car, the Volt, are supplied by South Korean battery manufacturer LG ...

2013-07-31T23:59:59.000Z

123

Advanced Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

124

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

125

Manufacturing Extension Partnership, Manufacturing Data and ...  

Science Conference Proceedings (OSTI)

... Manufacturing Data & Trends. Manufacturing is a dynamic and changing industry. In this ... Voytek. DATA RESOURCES. Capacity ...

2013-06-17T23:59:59.000Z

126

Ohio Advanced Energy Manufacturing Center  

Science Conference Proceedings (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

127

Ohio Advanced Energy Manufacturing Center  

SciTech Connect

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

128

Means of manufacturing annular arrays  

DOE Patents (OSTI)

A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

Day, R.A.

1985-10-10T23:59:59.000Z

129

Annual Survey of Manufactures | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

are measuring productivity, updating producer price indexes, evaluating and forecasting future industrial activity, benchmarking current data on manufacturing shipments...

130

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

131

Qualification of the Second Batch Production 9-Cell Cavities Manufactured by AES and Validation of the First US Industrial Cavity Vendor for ILC  

SciTech Connect

One of the major goals of ILC SRF cavity R&D is to develop industrial capabilities of cavity manufacture and processing in all three regions. In the past several years, Jefferson Lab, in collaboration with Fermi National Accelerator Laboratory, has processed and tested all the 9-cell cavities of the first batch (4 cavities) and second batch (6 cavities) production cavities manufactured by Advanced Energy Systems Inc. (AES). Over the course, close information feedback was maintained, resulting in changes in fabrication and processing procedures. A light buffered chemical polishing was introduced, removing the weld splatters that could not be effectively removed by heavy EP alone. An 800 Celsius 2 hour vacuum furnace heat treatment procedure replaced the original 600 Celsius 10 hour procedure. Four out of the six 9-cell cavities of the second production bath achieved a gradient of 36-41 MV/m at a Q0 of more than 8·109 at 35 MV/m. This result validated AES as the first “ILC certified” industrial vendor in the US for ILC cavity manufacture.

Geng, R L; Golden, B A; Kushnick, P; Overton, R B; Calderaro, M; Peterson, E; Rathke, J; Champion, M S; Follkie, J

2011-07-01T23:59:59.000Z

132

Materials Processing for Advanced Manufacturing  

Science Conference Proceedings (OSTI)

Oct 28, 2013 ... Their consumption during electrolysis requires the production of a large number of anodes. The final step in the production of anodes is the ...

133

Cost effective manufacturing of the SEA 10X concentrator array  

DOE Green Energy (OSTI)

This report describes a low-cost, mass-producible 10X concentrator system that has been claimed to produce electricity at $0.04/kWh. It details changes in manufacturing techniques that could produce a concentrator system at a selling price of $0.71/W. (A simple design and a minimum number of parts and manufacturing steps reduced production costs.) Present production techniques, changes to improve these techniques, impediments to changes, and solutions to the impediments are described. This 10X concentrator system uses available components and manufacturing processes and one-sun solar cells in conjunction with inexpensive plastic lenses to generate about eight times the amount of electricity normally produced by these cells.

Kaminar, N.; McEntee, J.; Curchod, D. (Solar Engineering Applications Corp., San Jose, CA (United States))

1991-11-01T23:59:59.000Z

134

Innovations in Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

135

Advanced Manufacturing Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Office: News on Twitter Bookmark Advanced Manufacturing Office: News on Google Bookmark Advanced Manufacturing Office: News on Delicious Rank Advanced Manufacturing...

136

DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps Lead to Significant Increase in Compliance with Energy Steps Lead to Significant Increase in Compliance with Energy Efficiency Reporting Requirements DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency Reporting Requirements January 12, 2010 - 12:00am Addthis WASHINGTON DC - The Department of Energy announced today that it has received certifications for over 600,000 residential appliances in 15 different product categories in response to the Department's enhanced energy efficiency enforcement efforts. DOE recently announced that manufacturers had until January 8, 2010 to submit correct energy use data to the Department of Energy before aggressive enforcement actions were taken. The certification data provided by 160 different manufacturers will allow DOE to review manufacturers' compliance with minimum energy

137

Green Manufacturing Programs/Projects for the Systems ...  

Science Conference Proceedings (OSTI)

Green Manufacturing Programs/Projects for the Systems Integration Division. Production Network Supplier Characterization Project. ...

2011-12-23T23:59:59.000Z

138

Clean Energy Manufacturing Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

139

Manufacturing Extension Partnership Homepage  

Science Conference Proceedings (OSTI)

... The Manufacturing Extension Partnership (MEP) is a catalyst for strengthening American manufacturing – accelerating its ongoing transformation ...

2013-08-23T23:59:59.000Z

140

One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis  

NLE Websites -- All DOE Office Websites (Extended Search)

step step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis Xiao-Zhou Zhang a , Noppadon Sathitsuksanoh a,b , Zhiguang Zhu a , Y.-H. Percival Zhang a,b,c,n a Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA b Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061, USA c BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA a r t i c l e i n f o Article history: Received 28 December 2010 Received in revised form 9 April 2011 Accepted 25 April 2011 Keywords: Bacillus subtilis Cellulase engineering Consolidated bioprocessing Endoglucanase Lactate Metabolic engineering Directed evolution a b s t r a c t Although intensive efforts have been made to create recombinant cellulolytic microorganisms,

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

142

Cost model for a small glass manufacturing enterprise.  

E-Print Network (OSTI)

??The cost model developed is for small, glass-manufacturing enterprises to help themdetermine their product costs. It estimates the direct cost in glass manufacturing such as… (more)

Gopisetti, Swetha.

2008-01-01T23:59:59.000Z

143

NREL: News - New Study Shows Solar Manufacturing Costs Not Driven...  

NLE Websites -- All DOE Office Websites (Extended Search)

take an in-depth look at national competitiveness in PV manufacturing September 5, 2013 Production scale, not lower labor costs, drives China's current advantage in manufacturing...

144

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network (OSTI)

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

145

Posted 7/24/12 Manufacturing Engineer  

E-Print Network (OSTI)

, starters, and generators for the commercial transportation, hybrid electric vehicle and aerospace of technologically advanced aerospace and industrial products. We design and manufacture aerospace systems Prairie, WI 53158 Electromagnetic Enterprises (EME) designs and manufactures specialized electric motors

Heller, Barbara

146

Summit Manufacturing: Case Closure (2010-SE-0303)  

Energy.gov (U.S. Department of Energy (DOE))

DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

147

MST: Organizations: Manufacturing Processes & Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Processing Manufacturing Processing Manufacturing Process, Science, and Technology Mark Smith Mark Smith, Senior Manager Manufacturing Process Science and Technology conducts research and development on advanced manufacturing process and materials technologies. It provides manufacturing process development, technical consulting, and technology transfer to support Sandia product realization needs. This organization also provides prototype fabrication and specialized production services, as required, to support Sandia missions. Departments Dianna Blair Mike Kelly Alex Roesler Paul C. McKey Thin Film, Vacuum, and Packaging Organic Materials Ceramics and Glass Meso Mfg. and System Development Dianna Blair, Manager Mike Kelly, Manager Alex Roesler, Manager Paul C. McKey,

148

Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010  

DOE Green Energy (OSTI)

Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

Fatemi, H.

2012-07-01T23:59:59.000Z

149

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Machining PDF format (236 kb) MS&T's machining group consists of two departments: Manufacturing Processing, and Manufacturing Processes and Services. The two departments team to build, procure, and assemble unique prototype and production hardware with diverse quality requirements. The in-house capability can manufacture hardware ranging from microscopic to proportions measured in feet and tons. The group's outside contacts and resources are almost boundless. This team's expertise includes: precision machining, welding, fabrication and assembly, aircraft quality sheet metal construction, and explosives machining and assembly. The department can manage a variety of activities: design modifications, in-house fabrication, outside shop selection and surveillance and manufacturing records management.

150

Manufacturing Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

151

Manufacturing technology  

SciTech Connect

This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

1993-08-01T23:59:59.000Z

152

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network (OSTI)

-volume production, and to direct future public-private partnerships that will facilitate transfer of technology will identify and prioritize topics for public-private R&D on manufacturing of PEM fuel cells. Fuel Cell System

153

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois. The Illinois. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Adams Edgar Lake Piatt Boone Ford Lee Pike

154

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida. The Florida. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 2 Alachua Hardee Orange Baker Hendry Osceola

155

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

South Dakota. The requirements in the South Dakota. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Aurora Faulk McPherson Beadle Grant Meade

156

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio. The requirements Ohio. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Allen Fayette Lorain Preble Ashland Franklin Lucas Putnam

157

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee. The requirements in the 2009 Tennessee. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Anderson Franklin Loudon Scott

158

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi. The Mississippi. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 3 Adams Itawamba Pike Alcorn Jasper Pontotoc

159

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine. The requirements in the 2009 Maine. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Aroostook IECC CLIMATE ZONE 6 Androscoggin

160

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico. The New Mexico. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Catron San Juan Colfax San Miguel

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware. The Delaware. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Kent New Castle Sussex

162

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia. The requirements in the West Virginia. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Barbour Lewis Raleigh Brooke Marion Randolph

163

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

North Carolina. The North Carolina. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Alleghany Avery Watauga

164

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Michigan. The Michigan. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Baraga Houghton Luce Schoolcraft

165

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

New York. The New York. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Allegany Franklin Montgomery Sullivan

166

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington. The requirements in the 2009 Washington. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Ferry Pend Oreille Okanogan Stevens

167

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

skylights that will meet the requirements of the 2009 IECC for residential buildings as it relates to Texas. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements.

168

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

New Jersey. The New Jersey. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Bergen Hunterdon Mercer Morris

169

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon. The requirements in the 2009 Oregon. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Baker Lake Benton Lane Clackamas Lincoln

170

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota. The Minnesota. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Aitkin Grant Mahnomen Roseau

171

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado. The Colorado. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Clear Creek Lake Routt Grand Mineral San Juan

172

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont. The requirements in the 2009 Vermont. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Addison Bennington Caledonia

173

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky. The requirements in the 2009 Kentucky. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Adair Edmonson Knox Nicholas Allen Elliott Larue Ohio

174

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Iowa. The requirements in the 2009 IECC Iowa. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Allamakee Clay Hancock Palo Alto Black Hawk Clayton Hardin Plymouth

175

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pennsylvania. The requirements in the Pennsylvania. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Cameron Elk Potter Tioga Clearfield McKean Susquehanna Wayne

176

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Alabama. The Alabama. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 3 Autauga Dallas Marengo Barbour De Kalb Marion

177

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

meet meet the requirements of the 2009 IECC for residential buildings as it relates to Alaska. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements.

178

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Wisconsin. The Wisconsin. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 7 Ashland Forest Price Bayfield Iron Sawyer

179

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

IECC for residential buildings as it relates to Virginia. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4

180

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Oklahoma. The Oklahoma. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Beaver Cimarron Texas IECC CLIMATE ZONE 3

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island. The Rhode Island. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Bristol Kent Newport Providence

182

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah. The requirements Utah. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Box Elder Morgan Cache Rich Carbon Summit

183

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas. The requirements in the 2009 Kansas. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Cheyenne Hamilton Osborne Sherman

184

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

California. The California. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 6 Alpine Mono IECC CLIMATE ZONE 5

185

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia. The Georgia. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Banks Fannin Habersham Rabun White

186

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Arkansas. The Arkansas. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 4 Baxter Fulton Newton Benton Izard Searcy

187

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana. The Louisiana. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 3 Bienville Franklin Red River Bossier Grant Richland

188

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana. The Indiana. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Using the climate zone map or table, match the jurisdiction to the appropriate IECC climate zone. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. IECC CLIMATE ZONE 5 Adams Franklin Madison St. Joseph

189

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

190

Methods to Manufacture Cermets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacture Cermets Methods to Manufacture Cermets There are many methods to manufacture cermets. One option is shown here. DU dioxide and steel powder are mixed, the mixture is...

191

Carbon fiber manufacturing via plasma technology  

DOE Patents (OSTI)

The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

2002-01-01T23:59:59.000Z

192

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Advanced Manufacturing Trades Training Program Business Program Lead Yvonne Baros Advanced Manufacturing Trades Training Program Tom Souther Advanced Technology Academy...

193

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skills Standards The Academic and Employability Skills Standards align Sandia's training efforts in advanced manufacturing with the recommendations of the Manufacturing Skill...

194

Manufacturing Energy and Carbon Footprints  

E-Print Network (OSTI)

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much is lost? Answering these questions is the focus of this paper and the analysis described herein. Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions, for the fifteen most energy intensive manufacturing sectors, and for the entire U.S. manufacturing sector. Analysts and decision-makers utilize the footprints to better understand the distribution of energy use in energy-intensive industries and the accompanying energy losses. The footprints provide a benchmark from which to calculate the benefits of improving energy efficiency and for prioritizing opportunity analysis. A breakdown of energy consumption by energy type and end use allows for comparison both within and across sectors.

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

195

Process for the manufacture of an electrode for electrochemical process and a cathode for the electrolytic production of hydrogen  

SciTech Connect

An electrically conductive substrate is coated with a material containing an unsintered powder of a metal active for electrochemical proton reduction and colloidal silica and the said material is heated on the substrate successively in an oxidizing atmosphere and then in a reducing atmosphere. The electrode may be employed as a cathode for electrolytic production of hydrogen in an alkaline medium.

Nicolas, E.; Merckaert, L.

1985-08-13T23:59:59.000Z

196

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

197

Manufacturing Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

Not Available

2011-10-01T23:59:59.000Z

198

Explore Careers in Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

199

MST: Organizations: Precision Meso Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

200

2010 Georgia Manufacturing Survey  

Science Conference Proceedings (OSTI)

... Linked to Innovation Manufacturing Wages by Percentages of Respondents ... Manufacturing Strategies by Industry Group (Percentage of firms ...

2013-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Additive Manufacturing - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCES: Research Groups for the Additive Manufacturing of Superalloys Compilation of groups involved in additive manufacturing, 0, 1118, Lynette ...

202

Advanced Manufacturing Office: Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Solicitations on Twitter Bookmark Advanced Manufacturing Office: Solicitations on Google Bookmark Advanced Manufacturing Office: Solicitations on Delicious Rank Advanced...

203

Advanced Manufacturing Office: Webcasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webcasts on Twitter Bookmark Advanced Manufacturing Office: Webcasts on Google Bookmark Advanced Manufacturing Office: Webcasts on Delicious Rank Advanced...

204

Advanced Manufacturing Office: Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Subscribe on Twitter Bookmark Advanced Manufacturing Office: Subscribe on Google Bookmark Advanced Manufacturing Office: Subscribe on Delicious Rank Advanced...

205

Advanced Manufacturing Office: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Workshops on Twitter Bookmark Advanced Manufacturing Office: Workshops on Google Bookmark Advanced Manufacturing Office: Workshops on Delicious Rank Advanced...

206

Specific PVMaT R and D in CdTe Product Manufacturing; Phase II Annual Subcontract Technical Report; May 1999--September 2000  

DOE Green Energy (OSTI)

Just prior to the beginning of Phase II of the PVMaT project Solar Cells, Inc, (SCI) and True North Partners of Scottsdale, AZ, formed a joint venture partnership name First Solar, LLC. By the end of 1999, this event resulted in the construction of a new major manufacturing plant for photovoltaic modules, based on cadmium telluride, located in Perrysburg, a suburb of Toledo, Ohio. This plant was designed to be capable of producing PV modules at a rate of 100 MW per year within about three years. Significantly, a new semiconductor coating system, the heat of the production line, has already shown the capability of the 100 MW per year rate. These events have led to the expansion of the effort on the PVMaT project that included the former SCI team in Toledo, Ohio, a new team of engineering subcontractor, Product Search, Inc., and, later, a new laser team from First Solar, both from Scottsdale, Arizona. These three teams joined in a collaborative effort on Tasks 4: Manufacturing Line Improvements, on Task 5: Product Readiness, and on Task Environmental, Health, and Safety Issues. One Task 4 goal was to address the technical issues of the failed UL 1703 qualification testing in Phase I. Completing this goal, along with module lamination improvement done in Task 5, was instrumental in the design, fabrication, and installation of a high-throughput solar finishing line. The main components of this line, also a Task 4 project, were successfully tested in module finalization on the production line. Developing a novel, single-laser scribing system was another major accomplishment. In Task 5, the major activity was improved module lamination. Progress in Tasks 4 and 5 resulted in improved modules that were submitted for UL 1703 qualification testing. In March 2000, a new encapsulation process came under development, in which the back glass cover plate is substituted by a combination of a polymer layer as a dielectric and aluminum foil as a moisture barrier. The go al of the Environmental, Health, and Safety program is to conduct an extensive review of its current programs and address issues that need improvement.

McMaster, A. (First Solar, LLC)

2001-01-22T23:59:59.000Z

207

STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and methods, such as production scheduling, automation, Computer Integrated Manufacture (CIM), quality control, materials inventory management and staffing that are necessary over...

208

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

The gross output for the petroleum and coal products subsector grew by about 3 percent, ... Manufacturing Energy Consumption Survey, MECS Definition of Fuel Use, ...

209

Advanced Manufacturing Office (Formerly Industrial Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy intensity and efficiently direct energy to forming the product. Examples include additive manufacturing, selective heating, and out-of-the-autoclave composite...

210

MANUFACTURING INSECURITY  

Science Conference Proceedings (OSTI)

... machine tools, used in the production of precision components in the aerospace, gas and diesel ... throughout the medical, textile, oil, glass, heavy ...

2013-07-31T23:59:59.000Z

211

Energy Department Launches New Clean Energy Manufacturing Initiative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Clean Energy Manufacturing New Clean Energy Manufacturing Initiative Energy Department Launches New Clean Energy Manufacturing Initiative March 26, 2013 - 10:56am Addthis News Media Contact (202) 586-4940 OAK RIDGE - As part of the Obama Administration's commitment to revitalizing America's manufacturing sector, today the Energy Department launched the Clean Energy Manufacturing Initiative (CEMI), a new Department initiative focused on growing American manufacturing of clean energy products and boosting U.S. competitiveness through major improvements in manufacturing energy productivity. The initiative includes private sector partnerships, new funding from the Department, and enhanced analysis of the clean energy manufacturing supply chain that will guide the Department's future funding decisions.

212

Defining the needs for non-destructive assay of UF6 feed, product, and tails at gas centrifuge enrichment plants and possible next steps  

SciTech Connect

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of UF{sub 6} bulk material used in the process of enrichment at GCEPS. The inspectors also take destructive assay (DA) samples for analysis off-site which provide accurate, on the order of 0.1 % to 0.5% uncertainty, data on the enrichment of the UF{sub 6} feed, tails, and product. However, DA sample taking is a much more labor intensive and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of the results and contains the possibility of the loss of the continuity of knowledge of the samples during the storage and transit of the material. Use of the IAEA's inspection sampling algorithm shows that while total sample size is fixed by the total population of potential samples and its intrinsic qualities, the split of the samples into NDA or DA samples is determined by the uncertainties in the NDA measurements. Therefore, the larger the uncertainties in the NDA methods, more of the sample taken must be DA samples. Since the DA sampling is arduous and costly, improvements in NDA methods would reduce the number of DA samples needed. Furthermore, if methods of on-site analysis of the samples could be developed that have uncertainties in the 1-2% range, a lot of the problems inherent in DA sampling could be removed. The use of an unattended system that could give an overview of the entire process giving complementary data on the enrichment process as well as accurate measures of enrichment and weights of the UF{sub 6} feed, tails, and product would be a major step in enhancing the ability of NDA beyond present attended systems. The possibility of monitoring the feed, tails, and product header pipes in such a way as to gain safeguards relevant flow and enrichment information without compromising the intellectual property of the operator including proprietary equipment and operational parameters would be a huge step forward. This paper contains an analysis of possible improvements in unattended and attended NDA systems including such process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector measurements reducing the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GeEPs safeguards.

Boyer, Brian D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Moran, Bruce W [IAEA; Lebrun, Alain [IAEA

2009-01-01T23:59:59.000Z

213

Plastics and Extrusion - Manufacturing Facilities, Systems and Equipment  

Science Conference Proceedings (OSTI)

This PQ TechWatch presents steps to improving power quality (PQ) in plastics manufacturing facilities, systems, and equipment. The following sections are included: PQ and EMC for Plastics Manufacturing and Facility Equipment Financial Implications of PQ and EMC Problems Standards Distributed Generation and Energy Storage Power Conditioning in the Plastics Manufacturing Environment Mini Cases in Power Quality

2003-12-31T23:59:59.000Z

214

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

215

Annular array and method of manufacturing same  

DOE Patents (OSTI)

A method for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90.degree.. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings, hold the transducer together until it can be mounted on a lens.

Day, Robert A. (Livermore, CA)

1989-01-01T23:59:59.000Z

216

Manufacturing R&D for the Hydrogen Economy Roadmap Workshop  

E-Print Network (OSTI)

manufacturing and technical standards required for low-cost, high-volume production, and to direct future public-private

217

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

precision machining technology, automated machining and manufacturing technology, welding, photonics technology, microelectromechanical systems (MEMS), and testing and...

218

Cost of quality tradeoffs in manufacturing process and inspection strategy selection  

E-Print Network (OSTI)

In today's highly competitive markets manufacturers must provide high quality products to survive. Manufacturers can achieve higher levels of quality by changing their manufacturing process and/or by product inspection ...

Zaklouta, Hadi

2011-01-01T23:59:59.000Z

219

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D.  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov/manufacturing Advanced Manufacturing Next-Generation Manufacturing As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future.

220

US MANUFACTURERS WITH PRODUCTS CONFORMING ...  

Science Conference Proceedings (OSTI)

... against which the effectiveness and success of future Metric Program “stimulation” can be ... 33, 34 and 35, as might be expected, as well as SICs 30 ...

2010-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The President's Manufacturing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

222

Manufacturing Day 2012  

Science Conference Proceedings (OSTI)

... City, I had the opportunity to visit GAL Manufacturing Corp., an elevator parts manufacturer in the Bronx, right down the road from Yankee Stadium. ...

2013-02-28T23:59:59.000Z

223

Microelectronics Manufacturing Infrastructure  

Science Conference Proceedings (OSTI)

... But the manufacturing infrastructure is aging. ... to create an integrated infrastructure for manufacturing ... will enhance the value and utility of portable ...

2011-10-19T23:59:59.000Z

224

Manufacturing Economics  

Science Conference Proceedings (OSTI)

Table 2   Comparison of five-year estimate of operating costs for CO 2 and disc laser...$0.09 Hours/year 2000 2000 Laser on, kW 50 12.5 Chiller, kW 25 3.25 Total power on, $/h 6.75 1.42 Laser standby, kW 2.5 0.5 Chiller standby, kW 25 1.5 Total standby, $/h 2.48 0.18 $/h production 3.9 0.6525 Electricity consumption Laser gas mix, $/h 1.27 He, N 2 , CO 2 PM parts, $/h 1.63 0.15 Resonator...

225

Photovoltaic manufacturing technology, Phase 1  

DOE Green Energy (OSTI)

This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

Not Available

1992-10-01T23:59:59.000Z

226

Locating Chicago Manufacturing  

E-Print Network (OSTI)

and engineering.3 The Chicago Manufacturing Renaissance Council itself is a unique public-private partnership

Illinois at Chicago, University of

227

Manufacturing Simulation Portal  

Science Conference Proceedings (OSTI)

... in planning by robots in scenarios relevant to … more. ... SUSTAINABLE MANUFACTURING PROCESS ANALYSIS APPLICATIONS DEVELOPMENT. ...

2012-12-27T23:59:59.000Z

228

Manufacturing Services | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Services Do you have a new idea? You may need to file a patent to both develop it and protect it. Find out more below. Search for existing patents Apply for a patent Business Owners Getting a business started, established, and growing is difficult. We want to make that easier. Check out the government services below that are available to businesses, and find out more about what's coming with StartUp America. Start a business Access financing Find opportunities to sell products and services to the government Grow your business Help with exporting for beginners and for experts. Shared Facilities Facilities can be a huge factor in whether you create a new product or

229

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Recognition Awards The AMTTP won Sandia's Silver President's Quality Award and the Manufacturing Science and Technology Center's Gold Recognition and Team Award. Letters of...

230

Advanced Manufacturing Office: Advanced Manufacturing Partnership  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national...

231

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

MEST & SIT Skills Standard Technical Institute Partners Training Areas Program Recognition Partners Contacts News Articles Advanced Manufacturing Trades Training Program (AMTTP)...

232

Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

Ulsh, M.; Wheeler, D.; Protopappas, P.

2011-08-01T23:59:59.000Z

233

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) May 28, 2010 DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards. DOE determined the product was noncompliant based on the company's own testing. Summit must immediately notify each person (or company) to whom Summit distributed the noncompliant products that the product does not meet Federal standards. In addition, Summit must provide to DOE documents and records showing the number of units Summit distributed and to whom. The manufacturer and/or

234

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

DOE Green Energy (OSTI)

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

235

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

SciTech Connect

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

236

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

237

An applied manufacturing system for highly-complex assembly factory  

E-Print Network (OSTI)

This thesis focuses on a manufacturing system at a semiconductor equipment manufacturing company (SEMC). The company faces highly variable demand for its products that require highly-complex assembly within the factory. ...

Umeda, Koji

2008-01-01T23:59:59.000Z

238

Inbound freight consolidation for US manufacturers at China  

E-Print Network (OSTI)

In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

Fang, Yi, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

239

The Challenge of Manufacturing Innovation: Industry, Rurality, and Competitiveness in the State of Georgia 1 Jan Youtie, Economic Development Institute  

E-Print Network (OSTI)

In a globalized market environment, the competitiveness of manufacturing – which we understand as the ability to make and sell products while maintaining or increasing real income – is influenced by many factors, including the growth of productivity and the exchange rate. In this paper, we focus on the role and extent of innovation as a basis for maintaining manufacturing competitiveness. Innovation encompasses steps and activities involved in the introduction and deployment of new or improved ideas within and between companies. Innovation includes product design and development, the development of new processes, organizational innovation, innovative customer service approaches, and the development of innovative linkages with other firms. In understanding innovation, it is important to consider how firms identify, acquire, develop and implement innovations, as well as the context, resources, values, knowledge base, and leadership that contribute to innovation. Successful innovation not only affects the firm engaging in it, but frequently has important “spillovers”, leading to additional benefits for users, suppliers, and regional industrial clusters as well as to the innovating firm. Our analysis draws on preliminary results of the Georgia Manufacturing Survey 2005. We find that innovative strategies are associated with higher returns to the firm and the community compared with strategies based on low price. The paper will also demonstrate that rural and urban manufacturers have comparable adoption rates of technology, but rural manufacturers have less use of “soft ” enablers of innovation. The paper will conclude with a review of various policies and programs of the state of Georgia to encourage innovation among its manufacturing establishments.

Philip Shapira; School Of Public Policy

2005-01-01T23:59:59.000Z

240

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Manufacturing Licenses Available | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing SHARE Manufacturing 200401490 Production of Materials with Superior Properties Utilizing High Magnetic Field (Related ID # 200501531, 200701867, 200802085, 200902312, 201002455, 201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID # 200701983, 200802088) 200701972 Manufacturing Biodiesel from Triglycerides (Related ID # 200702012, 200802186) 200701983 Meso-scale Fluidic Digital Valve 200802083 A Hydraulic Flow Control Device by Means of a Digital Poppet Valve 200802088 Miniature shape memory alloy fluid control valve 200902224 Glass Drawing for Wire Arrays 200902231 Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods 200902291 Method of Machining Carbon and Graphite foams 200902309 Multi-Winding Homopolar Electric Machine Offers

242

Applicability of lean manufacturing and quick response manufacturing in a high-mix low-volume environment  

E-Print Network (OSTI)

As today's manufacturers face increasing pressure to improve costs and compete globally, many are turning to the philosophy of Lean Manufacturing as exemplified by the Toyota Production System. Lean is most successful when ...

Joing, Matthew J. (Matthew John), 1972-

2004-01-01T23:59:59.000Z

243

Soap Manufacturing Technology  

Science Conference Proceedings (OSTI)

Soap producers as well as anyone with an interest in soap technology will benefit from the new AOCS Press Soap Manufacturing Technology book. Soap Manufacturing Technology Surfactants and Detergents aocs articles Detergents division divisions fabric

244

Energy Use in Manufacturing  

Reports and Publications (EIA)

This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

William Gifford

2006-08-14T23:59:59.000Z

245

Ever Step Development Ltd | Open Energy Information  

Open Energy Info (EERE)

Ever Step Development Ltd Ever Step Development Ltd Jump to: navigation, search Name Ever Step Development Ltd. Place Hong Kong, Hong Kong Sector Solar Product Ever Step Development and its sister company Goldmaster Development produce solar and electronic products. References Ever Step Development Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ever Step Development Ltd. is a company located in Hong Kong, Hong Kong . References ↑ "Ever Step Development Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Ever_Step_Development_Ltd&oldid=345230" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

246

Manufacturing Extension Partnership  

Science Conference Proceedings (OSTI)

... research and development programs with manufacturing and military applications including robotic deburring, automated lay up of thermoplastic ...

2009-08-25T23:59:59.000Z

247

Manufacturing Modeling and Simulation  

Science Conference Proceedings (OSTI)

... An integrated data model for manufacturing activities will be defined ... Measurement science techniques, including classic statistics, will be applied ...

2013-01-04T23:59:59.000Z

248

Green Manufacturing News  

Science Conference Proceedings (OSTI)

... New MEP Advisory Board White Paper Assesses the Present and Future of American Manufacturing Release Date: 04/13/2010 ...

2010-10-27T23:59:59.000Z

249

Sustainable Manufacturing Briefing  

Science Conference Proceedings (OSTI)

... enhance their brands. • Is sustainability an opportunity or cost? There is no ... demonstrate, deploy, and accredit new sustainable manufacturing ...

2012-08-29T23:59:59.000Z

250

Testimonials from Manufacturing  

Science Conference Proceedings (OSTI)

... The economic environment is difficult for Cargill Corn Milling, as it is difficult for many manufacturing companies today. ...

2013-01-30T23:59:59.000Z

251

Stepping motor controller  

SciTech Connect

A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

Bourret, Steven C. (Los Alamos, NM); Swansen, James E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

252

Stepping motor controller  

DOE Patents (OSTI)

A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

Bourret, S.C.; Swansen, J.E.

1982-07-02T23:59:59.000Z

253

Quality technique transfer: Manufacturing and software  

Science Conference Proceedings (OSTI)

An argument for quality technique transfer between manufacturing and software is put forward in which it is recognised that the nature of the production process differs and that the emphasis accorded given stages in the respective life cycles ...

Graham A. King

2000-01-01T23:59:59.000Z

254

Level schedule implementation in unstable manufacturing environments  

E-Print Network (OSTI)

American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

López de Haro, Santiago

2008-01-01T23:59:59.000Z

255

Cost modeling for monoclonal antibody manufacturing  

E-Print Network (OSTI)

The Novartis BioPharmOps division is responsible for manufacturing large molecule products, including monoclonal antibodies, for late stage clinical trials and commercial sales. The BioPharmOps site in Huningue, France is ...

Simpson, Christina M. (Christina Margaret)

2011-01-01T23:59:59.000Z

256

Climate VISION: Private Sector Initiatives: Automobile Manufacturers  

Office of Scientific and Technical Information (OSTI)

emissions from their U.S. automotive manufacturing facilities, based on U.S. vehicle production, by 2012 from a base year of 2002. The following documents are available for...

257

Understanding Manufacturing Energy Use Through Statistical Analysis  

E-Print Network (OSTI)

Energy in manufacturing facilities is used for direct production of goods, space conditioning, and general facility support such as lighting. This paper presents a methodology for statistically analyzing plant energy use in terms of these major end uses.

Kissock, J. K.; Seryak, J.

2004-01-01T23:59:59.000Z

258

WTEC Panel Report on ENVIRONMENTALLY BENIGN MANUFACTURING  

E-Print Network (OSTI)

)...............................................................................225 Chaparral Steel/Texas Industries ...................................................................................5 1.3 Total energy-related carbon emissions for selected manufacturing industries, 1994 quite similar to those in Europe, and our rates of waste production and energy usage are beyond those

Gutowski, Timothy

259

EI Summary of All Manufacturing SIC  

U.S. Energy Information Administration (EIA) Indexed Site

All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) The manufacturing sector includes establishments engaged in the mechanical or chemical transformation of materials or substances into new products. These operations are generally conducted in facilities described as plants, factories, or mills, while characteristically using power-driven machines and material-handling equipment. Manufacturing also includes such activities as the assembly of components of manufactured products and the blending of materials, such as lubricating oil, plastics, resins, or liquors.

260

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Blade Manufacturing Improvement Project: Final Report  

SciTech Connect

The Blade Manufacturing Improvement Project explores new, unique and improved materials integrated with innovative manufacturing techniques that promise substantial economic enhancements for the fabrication of wind turbine blades. The primary objectives promote the development of advanced wind turbine blade manufacturing in ways that lower blade costs, cut rotor weight, reduce turbine maintenance costs, improve overall turbine quality and increase ongoing production reliability. Foam Matrix (FMI) has developed a wind turbine blade with an engineered foam core, incorporating advanced composite materials and using Resin Transfer Molding (RTM) processes to form a monolithic blade structure incorporating a single molding tool. Patented techniques are employed to increase blade load bearing capability and insure the uniform quality of the manufactured blade. In production quantities, FMI manufacturing innovations may return a sizable per blade cost reduction when compared to the cost of producing comparable blades with conventional methods.

SHERWOOD, KENT

2002-10-01T23:59:59.000Z

262

Cost analysis methodology: Photovoltaic Manufacturing Technology Project  

DOE Green Energy (OSTI)

This report describes work done under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) Project. PVMaT is a five-year project to support the translation of research and development in PV technology into the marketplace. PVMaT, conceived as a DOE/industry partnership, seeks to advanced PV manufacturing technologies, reduce PV module production costs, increase module performance, and expand US commercial production capacities. Under PVMaT, manufacturers will propose specific manufacturing process improvements that may contribute to the goals of the project, which is to lessen the cost, thus hastening entry into the larger scale, grid-connected applications. Phase 1 of the PVMaT project is to identify obstacles and problems associated with manufacturing processes. This report describes the cost analysis methodology required under Phase 1 that will allow subcontractors to be ranked and evaluated during Phase 2.

Whisnant, R.A. (Research Triangle Inst., Research Triangle Park, NC (United States))

1992-09-01T23:59:59.000Z

263

A Study of the Cross-Industry Transferability of The Intergrated System of Toyota Production and Sales Management: A Case Study of Desktop Computer Manufacturing.  

E-Print Network (OSTI)

??Diversity of consumers, timely needs of the times, combined with market information, production and selling out of products, enterprises can profit possible. Want in the… (more)

Lu, Chun-Fu

2011-01-01T23:59:59.000Z

264

Cadmium telluride photovoltaic manufacturing technology. Annual subcontract report, 7 January 1994--6 January 1995  

DOE Green Energy (OSTI)

This report describes work performed by Golden Photon, Inc. (GPI), to conduct research under the PVMaT program, Phase 2B. The objective of the research is to advance GPI`s manufacturing technology, reduce module production costs, increase average module performance, and identify ways to expand production capacity. More specifically, the tasks established for Phase I were to design and install leasehold improvements for the 2-MW production line; to improve and develop product design, efficiency, and marketability; to ensure uninterrupted qualified supplies and raw materials for production; to address environmental, health, and safety issues encountered during production of photovoltaic modules; and to reduce the cost of manufacturing modules. During the first half of this reporting period, the development, design, and debugging of cell interconnection equipment critical to start-up was completed. During the second and third quarters, the primary focus was on the substrate deposition steps (tin oxide, cadmium sulfide, and cadmium telluride) and cell interconnection steps (division). In general, process development, engineering, and quality teams continued to focus on identifying, baselining, and improving (through redesign) actual process equipment operation parameters to meet the required PV panel specifications and improve process throughput rates and yields.

Weisiger, D.; Albright, S.P.; Brines, J.; Thompson, R. [Photon Energy, Inc., Golden, CO (United States)

1995-11-01T23:59:59.000Z

265

Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting  

Science Conference Proceedings (OSTI)

GE Lighting Solutions will develop precise and efficient manufacturing techniques for the “remote phosphor” platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

2012-03-31T23:59:59.000Z

266

Method of manufacturing large dish reflectors for a solar concentrator apparatus  

SciTech Connect

A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.

Angel, Roger P (Tucson, AZ); Olbert, Blain H (Tucson, AZ)

2011-12-27T23:59:59.000Z

267

Requirements for status for volume fuel cell manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Status for Volume Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July 13-14, 2005 Requirements for Manufactured Fuel Cells Customer Requirements: Commercial Plant Study - Volume: 250,000 fuel stacks per year - Cost: $30/kw net Requirements for Manufactured Fuel Cells Commercial Volume Manufacturing - Material Utilization: >85% - Controlled Environments (Humidity, temperature, dust) - Environmentally safe direct and indirect materials - Hydrogen safety - Make or Buy Decisions on non/proprietary unit cell components - Integrated strategic supply chain - Design for Manufacturing, Assembly, and Service Requirements for Manufactured Fuel Cells Quality Control & Assurance - Accelerated tests and process parameters correlated to key product requirements (QFD)

268

Advanced Manufacturing Office: Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance on Twitter Bookmark Advanced Manufacturing Office: Technical Assistance on Google Bookmark Advanced Manufacturing Office: Technical Assistance on Delicious Rank...

269

Advanced Manufacturing Office: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Advanced Manufacturing Office: Financial Opportunities on Google Bookmark Advanced Manufacturing Office: Financial Opportunities on Delicious Rank...

270

KMC Controls Inc Kreuter Manufacturing Company | Open Energy Information  

Open Energy Info (EERE)

KMC Controls Inc Kreuter Manufacturing Company KMC Controls Inc Kreuter Manufacturing Company Jump to: navigation, search Name KMC Controls, Inc. (Kreuter Manufacturing Company) Place New Paris, Indiana Zip IN 46553 Product Manufacturer of building management control products and systems. References KMC Controls, Inc. (Kreuter Manufacturing Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. KMC Controls, Inc. (Kreuter Manufacturing Company) is a company located in New Paris, Indiana . References ↑ "KMC Controls, Inc. (Kreuter Manufacturing Company)" Retrieved from "http://en.openei.org/w/index.php?title=KMC_Controls_Inc_Kreuter_Manufacturing_Company&oldid=348127" Categories:

271

Trends in Materials and Manufacturing Technologies for Energy ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... 8th Global Innovations Symposium: Trends in Materials and Manufacturing Technologies for Energy Production by Joy A. Hines, David F. Barh, ...

272

Data Standards and Tools to Monitor and Improve Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

applying MTConnect at System Insights in building software and hardware tools that use big data analytics to improve energy and production efficiency in manufacturing systems...

273

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

2002 Manufacturing Energy Consumption Survey Methodology and ... where Op,MECS is the MECS estimate of the amount of petroleum product p produced offsite and ...

274

Resource Consumption in Additive Manufacturing with a PSS Approach.  

E-Print Network (OSTI)

??Since the 1980’s, additive manufacturing (AM) has gradually advanced from rapid prototyping applications towards fabricating end consumer products. Many small companies may prefer accessing AM… (more)

Nopparat, Nanond; Kianian, Babak; Thompson, Anthony

2012-01-01T23:59:59.000Z

275

Fuel Cell Technologies Office: Manufacturing Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development on AddThis.com... Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Education Systems...

276

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Realizing Building End-Use Efficiency with Ermerging Technologies Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

277

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative Realizing Building End-Use Efficiency with Ermerging Technologies

278

Specific PVMaT R and D in CdTe product manufacturing: Phase 1 annual report, 5 May 1998--4 May 1999  

DOE Green Energy (OSTI)

This report documents the work performed by First Solar, LLC, during the first year of this Photovoltaic Manufacturing Technology (PVMaT) subcontract. The following milestones were successfully completed: (1) Initiate lamination development program by interviewing key suppliers and experts such as STR, Inc., ARRI, and automotive glass manufacturers; (2) Complete process specification for high-throughput laminator; (3) Initiate contact with module testing laboratory and complete preliminary module design review; (4) Complete review and survey of current environmental, health and safety (EHS) programs; (5) Complete design specifications for the high-throughput laminator; (6) Complete preliminary testing of modules; (7) Establish Qualification Testing Schedule; (8) Develop plans for critical areas of EHS improvement with the assistance of industry experts such as OSHA On-Site Consultation; (9) Begin de-bug of high-throughput laminator; (10) Initiate qualification testing on First Solar's standard modules; (11) Initiate EHS improvement projects; (12) Complete prove-in of high-throughput laminator at a rate of 30 modules per hour; (13) Complete report on lamination rates, yields, and reductions in labor and equipment costs; (14) Complete qualification testing on First Solar's standard module for IEEE 1262 and UL 1703; and (15) Complete implementation of critical EHS improvements.

Bohland, J.; Kormanyos, K.; Faykosh, G.; Champion, V.; Cox, S.; McCarthur, M.; Dapkus, T.; Kamm, K.; Flis, M.

2000-03-01T23:59:59.000Z

279

Manufacturing Skills Certification System  

Science Conference Proceedings (OSTI)

... system to their business so that they utilize the skills certification system ... provide input to The Manufacturing Institute about aggregate skill needs of ...

2012-09-20T23:59:59.000Z

280

Manufacturing Research & Reports  

Science Conference Proceedings (OSTI)

... Regulatory and Policy Recommendations. The impact of regulations and policies on the manufacturing industry in areas such as tax, energy, trade ...

2013-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Locating American Manufacturing:  

Science Conference Proceedings (OSTI)

... future of manufacturing in America but also ... as defined in the North American Industry Classification ... about two thirds of American metropolitan areas ...

2013-07-31T23:59:59.000Z

282

Manufacturing Portal Overview  

Science Conference Proceedings (OSTI)

... The manufacturing sector is an important source of US innovation, accounting for about 70 percent of US industry R&D. ...

2012-05-09T23:59:59.000Z

283

Wind Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

284

Acoustics by additive manufacturing.  

E-Print Network (OSTI)

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance… (more)

Setaki, F.

2012-01-01T23:59:59.000Z

285

Baldrige by Sector: Manufacturing  

Science Conference Proceedings (OSTI)

Can a manufacturer facing global competition, increased pressure on costs, and the need to show quarterly profits benefit from the Baldrige process ...

2013-08-07T23:59:59.000Z

286

Innovations in Additive Manufacturing  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... Additive Manufacturing's Role in Fabrication and Repair of Aerospace Components: James Sears1; 1South Dakota School of Mines & ...

287

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

288

Integrating Energy Management and Lean Manufacturing  

E-Print Network (OSTI)

There is a close relationship between energy efficiency and lean manufacturing. Lean focuses on the continuous elimination of non-value added activities and waste in a manufacturing process. Energy management focuses on the continuous elimination of wasted energy in a manufacturing process. This paper will focus on industrial facilities that participated in a Power Smart Lean initiative with Manitoba Hydro. The objective of this service is to leverage lean principles by capitalizing on the synergies between lean manufacturing and energy management to increase the incorporation of energy efficiency into a manufacturing plant. Case studies are presented showing the resulting electric and gas saving opportunities from identifying and reducing wasted energy. Examples are presented to show the incidental energy savings realized by facilities that have used lean to improve productivity. Finally, case studies are discussed which demonstrate the utilization of lean approaches and tools with parallels to energy management.

Stocki, M.

2009-05-01T23:59:59.000Z

289

A new DFM approach to combine machining and additive manufacturing  

E-Print Network (OSTI)

Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

Kerbrat, Olivier; Hascoët, Jean-Yves; 10.1016/j.compind.2011.04.003

2011-01-01T23:59:59.000Z

290

Manufacturing fuel-switching capability, 1988  

SciTech Connect

Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

1991-09-01T23:59:59.000Z

291

Combining steam-methane reforming, water-gas shift, and CO{sub 2} removal in a single-step process for hydrogen production. Final report for period March 15, 1997 - December 14, 2000  

DOE Green Energy (OSTI)

The objective of the research project was to determine the feasibility of a simpler, more energy-efficient process for the production of 95+% H{sub 2} from natural gas, and to collect sufficient experimental data on the effect of reaction parameters to guide additional larger-scale process development. The overall objectives were accomplished. 95+% H{sub 2} was produced in a single reaction step by adding a calcium-based CO{sub 2} acceptor to standard Ni-based reforming catalyst. The spent acceptor was successfully regenerated and used in a number of reaction steps with only moderate loss in activity as the number of cycles increased. Sufficient experimental data were collected to guide further larger-scale experimental work designed to investigate the economic feasibility of the process.

Alejandro Lopez Ortiz; Bhaskar Balasubramanian; Douglas P. Harrison

2001-02-01T23:59:59.000Z

292

Windows Vista Step by Step Deluxe Edition  

Science Conference Proceedings (OSTI)

The smart way to learn Windows Vista one step at a time! Updated with expanded coverage, this deluxe edition covers all of the latest Windows Vista features. You ll discover the smartest ways to stay organized with Windows Mail, Windows Contact, Windows ...

Joyce Cox; Joan Preppernau

2008-02-01T23:59:59.000Z

293

Manufacturing research strategic plan  

SciTech Connect

This plan provides an overall strategic roadmap for the DOE-defense programs advanced manufacturing research program which supports the national science based stockpile stewardship program. This plan represents a vision required to develop the knowledge base needed to ensure an enduring national capability to rapidly and effectively manufacture nuclear weapons.

1995-11-01T23:59:59.000Z

294

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Miraial formerly Kakizaki Manufacturing Miraial formerly Kakizaki Manufacturing Jump to: navigation, search Name Miraial (formerly Kakizaki Manufacturing) Place Tokyo, Japan Zip 171-0021 Product Manufacturer of wafer handling products and other components for the global semiconductor industry. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Goodman Manufacturing: Noncompliance Determination (2011-SE-4301) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Noncompliance Determination (2011-SE-4301) Noncompliance Determination (2011-SE-4301) Goodman Manufacturing: Noncompliance Determination (2011-SE-4301) October 17, 2011 DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing . Goodman must immediately notify each person (or company) to whom Goodmany distributed the noncompliant products that the product does not meet Federal standards. In addition, Goodman must provide to DOE documents and records showing the number of units Goodman distributed and to whom. The manufacturer and/or private labeler of the product may be subject to civil

296

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

297

Photovoltaic manufacturing technology, Phase 1  

DOE Green Energy (OSTI)

This report examines manufacturing multiple-band-gap, multiple- junction solar cells and photovoltaic modules. Amorphous silicon alloy material is deposited (using microwave plasma-assisted chemical vapor deposition) on a stainless-steel substrate using a roll-to-roll process that is continuous and automated. Rapid thermal equilibration of the metal substrate allows rapid throughput of large-area devices in smaller production machines. Potential improvements in the design, deposition, and module fabrication process are described. Problems are also discussed that could impede using these potential improvements. Energy Conversion Devices, Inc. (ECD) proposes cost and time estimates for investigating and solving these problems. Manufacturing modules for less than $1.00 per peak watt and stable module efficiencies of greater than 10% are near-term goals proposed by ECD. 18 refs.

Izu, M. (Energy Conversion Devices, Inc., Troy, MI (United States))

1992-03-01T23:59:59.000Z

298

IT/Automation Cost Reduction in Intel’s Manufacturing Environment  

E-Print Network (OSTI)

Intel manufacturing relies heavily on IT and Factory Automation during the manufacturing processes. At Intel, everything from scheduling products on the floor and product delivery systems to statistical process control is ...

Subirana, Brian

2004-03-05T23:59:59.000Z

299

Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Yeelong Wind Power Equipment Manufacturing Co Ltd Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place Hebei Province, China Sector Wind energy Product China-based wind turbine equipment manufacturer. References Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd is a company located in Hebei Province, China . References ↑ "[ Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hebei_Yeelong_Wind_Power_Equipment_Manufacturing_Co_Ltd&oldid=346424

300

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go ManufacturingAvailable formats Cost of Natural Gas Used in Manufacturing Sector Has Fallen Released: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Iskra Wind Turbine Manufacturers Ltd | Open Energy Information  

Open Energy Info (EERE)

Iskra Wind Turbine Manufacturers Ltd Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name Iskra Wind Turbine Manufacturers Ltd Place Nottingham, United Kingdom Sector Wind energy Product Iskra manufactures and markets the AT5-1 home-sized wind turbine rated at 5.3 kW, suitable for low wind speeds. References Iskra Wind Turbine Manufacturers Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iskra Wind Turbine Manufacturers Ltd is a company located in Nottingham, United Kingdom . References ↑ "Iskra Wind Turbine Manufacturers Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Iskra_Wind_Turbine_Manufacturers_Ltd&oldid=347129" Categories: Clean Energy Organizations

302

Advanced Manufacturing Office: U.S. Manufacturer Going Above...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Manufacturer Going Above and Beyond with Superior Energy Performance to someone by E-mail Share Advanced Manufacturing Office: U.S. Manufacturer Going Above and Beyond with...

303

American Energy and Manufacturing Competitiveness Summit | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy and shorten the time needed to bring a product to market. On display at the

304

Taiwan Semiconductor Manufacturing Co Ltd TSMC | Open Energy Information  

Open Energy Info (EERE)

Semiconductor Manufacturing Co Ltd TSMC Semiconductor Manufacturing Co Ltd TSMC Jump to: navigation, search Name Taiwan Semiconductor Manufacturing Co Ltd (TSMC) Place Hsinchu, Taiwan Zip 300 Sector Solar Product Taiwan-based semiconductor company. The firm is also venturing into solar and LED production. References Taiwan Semiconductor Manufacturing Co Ltd (TSMC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Taiwan Semiconductor Manufacturing Co Ltd (TSMC) is a company located in Hsinchu, Taiwan . References ↑ "Taiwan Semiconductor Manufacturing Co Ltd (TSMC)" Retrieved from "http://en.openei.org/w/index.php?title=Taiwan_Semiconductor_Manufacturing_Co_Ltd_TSMC&oldid=352012"

305

Ensuring American Leadership in Clean Energy Manufacturing | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing December 11, 2013 - 1:40pm Addthis Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. David Danielson David Danielson

306

President Obama Announces New Public-Private Manufacturing Innovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President Obama Announces New Public-Private Manufacturing President Obama Announces New Public-Private Manufacturing Innovation Institute President Obama Announces New Public-Private Manufacturing Innovation Institute January 15, 2014 - 1:37pm Addthis Today, President Obama will announce the selection of North Carolina State University to lead the Energy Department's manufacturing innovation institute for next generation power electronics. Check out more in a new animated video and blog post from Secretary Moniz and factsheet that highlight the importance of this new technology on our clean energy future. The President today will announce new steps with the private sector to strengthen the manufacturing sector, boost advanced manufacturing, and attract the good paying jobs that a growing middle class requires. The

307

Manufacturing Renaissance: Return of manufacturing to western countries.  

E-Print Network (OSTI)

??Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers… (more)

Kianian, Babak; Larsson, Tobias

2013-01-01T23:59:59.000Z

308

Imperial Manufacturing: Proposed Penalty (2013-CE-5322) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2013-CE-5322) Proposed Penalty (2013-CE-5322) Imperial Manufacturing: Proposed Penalty (2013-CE-5322) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Imperial Manufacturing, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Imperial Manufacturing: Proposed Penalty (2013-CE-5322) More Documents & Publications Imperial Manufacturing: Order (2013-CE-5322)

309

Solar Thermal Manufacturing Activities  

Reports and Publications (EIA)

This report, Solar Thermal Collector Manufacturing Activities, providesan overview and tables with historical data spanning 2000-2009. These tables willcorrespond to similar tables to be presented in the Renewable Energy Annual 2009 andare numbered accordingly.

Michele Simmons

2010-12-01T23:59:59.000Z

310

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

311

Advanced Manufacturing Partnership  

Energy.gov (U.S. Department of Energy (DOE))

AMO leads DOE's participation in the national interagency Advanced Manufacturing Partnership (AMP). AMO joins with other Federal agencies investing in innovation and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national economy. AMO contributes more broadly to the AMP with activities in Technology Development, Shared Infrastructure and Facilities, Education and Workforce Development.

312

Reduction of rework at a large aerospace manufacturer  

E-Print Network (OSTI)

It is an axiom of the manufacturing of any complex product that errors will occur that require repair or discard of said product. In building aircraft, Raptor Aerospace encounters and repairs numerous deviations from the ...

Lieberman, Jeremy A. (Jeremy Alan)

2012-01-01T23:59:59.000Z

313

US Manufacturing Jobs:  

Science Conference Proceedings (OSTI)

... among the top companies hiring for production occupations is eProduction Solutions, an oil and natural gas production company. ...

2013-07-31T23:59:59.000Z

314

COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS  

Science Conference Proceedings (OSTI)

The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

Peter G. Stansberry; John W. Zondlo

2001-07-01T23:59:59.000Z

315

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA)

How Did Manufacturers Use Natural Gas? Manufacturers used natural gas in processes, in boilers, for nonprocess uses, and as feedstock. In 1991 and 1994, ...

316

Manufacturing Demonstration Facility Technology Collaborations...  

NLE Websites -- All DOE Office Websites (Extended Search)

advanced manufacturing and materials technologies for commercial applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood of...

317

EERE: Advanced Manufacturing Office - Webmaster  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative March 26, 2013 New Energy Department Funding to Establish...

318

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

319

Advanced Manufacturing Office: Better Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Plants on Twitter Bookmark Advanced Manufacturing Office: Better Plants on Google Bookmark Advanced Manufacturing Office: Better Plants on Delicious Rank Advanced...

320

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

322

Process for manufacturing tantalum capacitors  

DOE Patents (OSTI)

A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

1993-02-02T23:59:59.000Z

323

Process for manufacturing tantalum capacitors  

DOE Patents (OSTI)

A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

324

Agent-based distributed manufacturing control: A state-of-the-art survey  

Science Conference Proceedings (OSTI)

Manufacturing has faced significant changes during the last years, namely the move from a local economy towards a global and competitive economy, with markets demanding for highly customized products of high quality at lower costs, and with short life ... Keywords: Distributed manufacturing control, Holonic manufacturing systems, Intelligent manufacturing systems, Multi-agent systems

Paulo Leitão

2009-10-01T23:59:59.000Z

325

Summit Manufacturing: Noncompliance Determination (2010-SE-0303)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Matter of: Summit Manufacturing, Inc. Case Number 2010-SE-0303 NOTICE OF NONCOMPLIANCE DETERMINATION CERTIFICATION Manufacturers of certain covered products are required to certify compliance with the applicable energy conservation standards through submission of a compliance statement and a certification report. 10 CFR § 430.62. See 42 U.S.C. 6296 . The compliance statement is a legal statement by the manufacturer that the information provided in its certification reports is true , accurate and complete, that the basic models certified meet the applicable energy conservation standard, that the energy efficiency information report is the result of testing performed in conformance with the applicable test requirements in 10 CFR part 430, subpart B; and that the manufacturer is

326

Aurora Photovoltaics Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Aurora Photovoltaics Manufacturing Aurora Photovoltaics Manufacturing Jump to: navigation, search Name Aurora Photovoltaics Manufacturing Place Lawrenceville, New Jersey Zip 8648 Sector Solar Product A subsidiary of EPV solar, based in New Jersey, focused on manufacturing of PV cells. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Leitner Shriram Manufacturing Ltd | Open Energy Information  

Open Energy Info (EERE)

Leitner Shriram Manufacturing Ltd Leitner Shriram Manufacturing Ltd Jump to: navigation, search Name Leitner Shriram Manufacturing Ltd Place Chennai, Tamil Nadu, India Zip 600095 Sector Wind energy Product Chennai-based JV between Leitwind and Shriram EPC with the purpose of manufacturing MW-class wind turbines. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

The outcome of our research can be utilized by metal foam manufacturers to improve their product. An example of this is Recemat International, a producer of  

E-Print Network (OSTI)

of different biofuels can be produced, including Fisher-Tropsch liquids (FTL), dimethyl ether (DME that would be used for biofuel production. These fuels include Fischer-Tropsch liquids (FTL), methanol such as dimethyl ether (DME) or Fischer-Tropsch liquids (FTL) made from lignocellulosic biomass. A relatively

Groningen, Rijksuniversiteit

329

A roadmap for a methodology to assess, improve and sustain intra- and inter-enterprise system performance with respect to technology-product life cycle in small and medium manufacturers: Research Article  

Science Conference Proceedings (OSTI)

Increased manufacturing costs are forcing U.S. manufacturing firms to send their operations off shore. Such business practices are greatly impacting the vitality of small and medium manufacturers (SMMs) in the U.S. economy. This article intends to advance ...

Ash Genaidy; Waldemar Karwowski

2008-01-01T23:59:59.000Z

330

Company Name Tax Credit* Manufacturing Facility's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Company Name Tax Credit* Manufacturing Facility's City & State Project Description Carrier Corporation $5.1 million Indianapolis, IN Carrier, a part of UTC Building & Industrial Systems and a subsidiary of United Technologies Corporation, was selected for a $5.1 million dollar 48C Advanced Energy Manufacturing Tax Credit to expand production at its Indianapolis facility to meet increasing demand for its eco-friendly condensing gas furnace product line. The new line includes the most energy efficient gas furnaces on the market-all with at least 92% annual fuel utilization efficiency-and exemplifies Carrier's commitment to economical and environmentally sustainable solutions for achieving improved energy efficiency and performance.

331

Photovoltaic Manufacturing Technology, Phase 1, Final report  

DOE Green Energy (OSTI)

This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

Easoz, J.R.; Herlocher, R.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States))

1991-12-01T23:59:59.000Z

332

Stepping Motor Control System  

E-Print Network (OSTI)

This paper describes a hardware system designed to facilitate position and velocity control of a group of eight stepping motors using a PDP-11. The system includes motor driver cards and other interface cards in addition ...

Larson, Noble G.

333

Developing the Manufacturing Process for Hylene MP Curing Agent  

SciTech Connect

This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

Eastwood, Eric

2009-02-16T23:59:59.000Z

334

Additive Manufacturing: Going Mainstream  

NLE Websites -- All DOE Office Websites (Extended Search)

time. Processes that operate with a heated build chamber take time for preheating and cooling cycles. With all the required steps, some jobs take several days. Global athletic...

335

Pre-CAD-Frication: Re-establishing Automotive Paradigms to a Manufactured Architecture.  

E-Print Network (OSTI)

??Through the late Twentieth Century, leading vehicle manufacturers increasingly eschewed the drive from mass production and instead focused upon lean production, where output has been… (more)

Anderson, Shaun Anthony

2010-01-01T23:59:59.000Z

336

Slideshow: Innovation in the Manufacturing Sector | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy

337

Artisan Manufacturing: Proposed Penalty (2010-CW-0712) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Artisan Manufacturing: Proposed Penalty (2010-CW-0712) Artisan Manufacturing: Proposed Penalty (2010-CW-0712) Artisan Manufacturing: Proposed Penalty (2010-CW-0712) September 8, 2010 DOE alleged in a Notice of Proposed Civil Penalty that Artisan Manufacturing Company, Inc. failed to certify a variety of faucets as compliant with the applicable water conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable water conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Artisan Manufacturing: Proposed Penalty (2010-CW-0712) More Documents & Publications Artisan Manufacturing: Order (2010-CW-0712)

338

Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals  

SciTech Connect

Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

Lowe, Terry C. [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

339

Material Design, Selection, and Manufacturing Methods for System Sustainment  

Science Conference Proceedings (OSTI)

This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

David Sowder, Jim Lula, Curtis Marshall

2010-02-18T23:59:59.000Z

340

Request for Information Manufacturing Technology ...  

Science Conference Proceedings (OSTI)

... Page 4. Confidential. All Rights Reserved. ... o The energy sector is representing significant opportunities for manufacturers. ...

2013-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Semiconductor Manufacturing International Corp SMIC | Open Energy  

Open Energy Info (EERE)

Manufacturing International Corp SMIC Manufacturing International Corp SMIC Jump to: navigation, search Name Semiconductor Manufacturing International Corp (SMIC) Place Shanghai, Shanghai Municipality, China Zip 201203 Sector Solar Product Semiconductor group launching solar cell production from its recycled silicon wafers. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

PV Manufacturing R&D Accomplishments and Status  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) PV Manufacturing Research and Development Project has worked for 11 years in partnership with the U.S. photovoltaic industry to reduce manufacturing costs while significantly scaling up production capacity. Over this period, the PV Manufacturing R&D Project has issued seven solicitations for partnerships that have resulted in over 50 cost-shared R&D subcontracts that addressed the cost and capacity goals of the Project, including 10 that are currently active. The previous and current contracts have typically focused on addressing Project goals in one of two areas: module manufacturing and balance-of-systems (BOS)/systems work. The majority of the DOE investment has been targeted toward module manufacturing. The partnerships have resulted in a significant and measurable increase in PV module/systems production capacity, a decrease in PV manufacturing costs, and a subsequent return on the joint public and private investments facilitated by the Project.

Mooney, D.; Mitchell, R.; Witt, E.; King, R.; Ruby, D.

2003-11-01T23:59:59.000Z

343

Microsoft Word - Ex Parte Memo re Manufactured Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 6, 2013 May 6, 2013 Re Ex Parte Communication On Wednesday May 1, 2013, a group of non-profit and state energy efficiency advocates met with representatives of the Department of Energy to discuss the efficiency standards for Manufactured Housing. See Advanced Notice of Proposed Rulemaking, Energy Efficiency Standards for Manufactured Housing, Docket No. EERE-2009-BT-BC-0021, 75 Fed. Reg. 7556 (Feb. 22, 2010). The efficiency advocates presented information on: a) manufactured homes production, percent of production of manufactured homes that meet energy star standards, and TVA programs to encourage purchase of energy star manufactured homes; b) the need for coordination between DOE and HUD regarding manufactured homes; c) additional information DOE should obtain concerning the impact of air sealing.

344

ATS materials/manufacturing  

SciTech Connect

The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

1997-11-01T23:59:59.000Z

345

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

346

Sustainable Manufacturing in the Systems Integration Division  

Science Conference Proceedings (OSTI)

... Sustainability Modeling and Optimization Project. Sustainability of Unit Manufacturing Processes Project. Sustainable Manufacturing Program. ...

2011-12-23T23:59:59.000Z

347

A modern depleted uranium manufacturing facility  

SciTech Connect

The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

Zagula, T.A.

1995-07-01T23:59:59.000Z

348

Real time intelligent process control system for thin film solar cell manufacturing  

SciTech Connect

This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

George Atanasoff

2010-10-29T23:59:59.000Z

349

California Appliance Efficiency Regulations for Manufacturers  

E-Print Network (OSTI)

California Appliance Efficiency Regulations for Manufacturers CEC-400-2012-FS-004-En Updated 3 electricity or water, California law requires that such products comply with the Appliance Efficiency Regulations* in order to be sold or offered for sale in California. Designed to help California reduce energy

350

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

351

Manufacturing Data & Trends  

Science Conference Proceedings (OSTI)

... America's Future Partners; Right Skills Now; E3: Economy - Energy - Environment. ... Productivity Bureau of Labor Statistics Labor Productivity & Costs. ...

352

Characteristics of Manufacturing Processes  

Science Conference Proceedings (OSTI)

Table 2   Rating of characteristics for common manufacturing processes...AHB, Vol 4 CVD/PVD All 1 5 5 4 3 AHB, Vol 13, p 456 Rating scheme: 1, poorest; 5, best. Ratings from Ref 5 . AHB, ASM Handbook ; EMH, Engineered

353

Turbine airfoil manufacturing technology  

DOE Green Energy (OSTI)

The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

1995-12-31T23:59:59.000Z

354

Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.  

SciTech Connect

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G.; Decision and Information Sciences

2006-07-21T23:59:59.000Z

355

Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.  

SciTech Connect

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G.; Decision and Information Sciences

2006-07-21T23:59:59.000Z

356

Assessing processes in uncertain, complex physical phenomena and manufacturing  

SciTech Connect

PREDICT (Performance and Reliability Evaluation with Diverse Information Combination and Tracking) is a set of structured quantitative approaches for the evaluation of system performance based on multiple information sources. The methodology integrates diverse types and sources of information, and their associated uncertainties, to develop full distributions for performance metrics, such as reliability. The successful application of PREDICT has involved system performance assessment in automotive product development, aging nuclear weapons, and fatigued turbine jet engines. In each of these applications, complex physical, mechanical and materials processes affect performance, safety and reliability assessments. Processes also include the physical actions taken during manufacturing, quality control, inspections, assembly, etc. and the steps involved in product design, development and certification. In this paper, we will examine the various types of processes involved in the decision making leading to production in an automotive system reliability example. Analysis of these processes includes not only understanding their impact on performance and reliability, but also the uncertainties associated with them. The automotive example demonstrates some of the tools used in tackling the complex problem of understanding processes. While some tools and methods exist for understanding processes (man made and natural) and the uncertainties associated with them, many of the complex issues discussed are open for continued research efforts.

Booker, J. M. (Jane M.); Kerscher, W. J. III (William J.); Smith, R. E. (Ronald E.)

2002-01-01T23:59:59.000Z

357

Extra cogeneration step seen boosting output 20%  

SciTech Connect

Cogenerators can now buy a prototype 6.5 MW, pre-packaged cogeneration system that incorporates an added step to its cycle to reduce fuel use by 21%. Larger, custom-designed systems will be on the market in 1985. Fayette Manufacturing Co. will offer the Kalina Cycle system at a discount price of $8.2 million (1200/kW) until the systems are competitive with conventional units. The system varies from conventional cogeneration systems by adding a distillation step, which permits the use of two fluids for the turbine steam and operates at a higher thermodynamic efficiency, with boiling occuring at high temperature and low pressure. Although theoretically correct, DOE will withhold judgment on the system's efficiency until the first installation is operating.

Burton, P.

1984-10-08T23:59:59.000Z

358

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

359

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

360

Transformational Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Industrial Chocolate Manufacture and Use, 4th Edition  

Science Conference Proceedings (OSTI)

The fourth edition of Industrial Chocolate Manufacture and Use provides up-to-date coverage of all major aspects of chocolate manufacture and use, from the growing of cocoa beans to the packaging and marketing of the end product. Industrial Chocolate Manuf

362

Optimisation-based scheduling: A discrete manufacturing case study  

Science Conference Proceedings (OSTI)

This work presents the development and implementation of a production scheduling system for an electrical appliance manufacturer. Based on recent advances in optimisation-based scheduling approaches, two different software architectures based on two ... Keywords: Discrete manufacturing, Electrical appliances, Mixed-integer linear programming, Optimization-based scheduling

Michael C. Georgiadis; Aaron A. Levis; Panagiotis Tsiakis; Ioannis Sanidiotis; Constantinos C. Pantelides; Lazaros G. Papageorgiou

2005-08-01T23:59:59.000Z

363

Energy Efficiency in BP's PTA Manufacturing Plants  

E-Print Network (OSTI)

BP is a leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA manufacturing process has significantly improved over the past several years, which has translated into substantial decreases in greenhouse gas emissions across our global sites. The talk will provide a general overview of the PTA business and manufacturing process, as well as selected examples of enabling technology evolutions leading to this improved performance.

Clark, F.

2010-01-01T23:59:59.000Z

364

Biomass Energy Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Incentive Biomass Energy Production Incentive Eligibility Agricultural Commercial Industrial Savings For Bioenergy Commercial Heating & Cooling Manufacturing Buying &...

365

ESS 2012 Peer Review - Reducing the Costs of Manufacturing Flow Batteries - Dhruv Bhatnagar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Costs of Manufacturing Flow Batteries the Costs of Manufacturing Flow Batteries Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP Next Steps 1. Continued outreach with other with other manufacturers 2. Characterization of the flow battery manufacturing process and determination of process issues 3. Evaluation of the fuel cell, other battery and other industry manufacturing process to address issues identified 4. Coordination with PNNL flow battery component cost

366

Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the bounds of known technology and are adaptable to the high-volume production required to process {approx} 2.5 to 4 tons of U/Mo and produce {approx}16,000 flat plates for U.S. reactors annually ({approx}10,000 of which are needed for HFIR operations). The reference flow sheet is not intended to necessarily represent the best or the most economical way to manufacture a LEU foil fuel for HFIR but simply represents a 'snapshot' in time of technology and is intended to identify the process steps that will likely be required to manufacture a foil fuel. Changes in some of the process steps selected for the reference flow sheet are inevitable; however, no one step or series of steps dominates the overall flow sheet requirements. A result of conceptualizing a reference flow sheet was the identification of the greater number of steps required for a foil process when compared to the dispersion fuel process. Additionally, in most of the foil processing steps, bare uranium must be handled, increasing the complexity of these processing areas relative to current operations. Based on a likely total cost of a few hundred million dollars for a new facility, it is apparent that line item funding will be necessary and could take as much as 8 to 10 years to complete. The infrastructure cost could exceed $100M.

Sease, J.D.; Primm, R.T. III; Miller, J.H.

2007-09-30T23:59:59.000Z

367

Real time intelligent process control system for thin film solar cell manufacturing  

DOE Green Energy (OSTI)

All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

George Atanasoff

2010-10-29T23:59:59.000Z

368

Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duracold Refrigeration Manufacturing: Proposed Penalty Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) February 21, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Duracold Refrigeration Manufacturing Company, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342)

369

Revitalizing Innovation in Michigan for Clean Energy Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing April 25, 2011 - 4:33pm Addthis Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Kerry Duggan What does this mean for me? Michigan has expanded its manufacturing focus beyond automobiles. Companies across Michigan are producing advanced batteries, motors, controllers, lighting devices, wind machines, photovoltaic modules, and other clean energy products. To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Last week, I got

370

Goodman Manufacturing: Proposed Penalty (2011-SE-4301) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2011-SE-4301) Proposed Penalty (2011-SE-4301) Goodman Manufacturing: Proposed Penalty (2011-SE-4301) December 2, 2011 DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S. Federal law subjects manufacturers and private labelers to civil penalties if those parties distribute in the U.S. products that do not meet applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Goodman Manufacturing: Proposed Penalty (2011-SE-4301) More Documents & Publications Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)

371

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

372

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

373

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Electro Microfluidic Dual In-line Package (EMDIP) Electro Microfluidic Dual In-line Package (EMDIP) PDF format (115 kb) EMDIP diagram EMDIP Diagram Microfluidics is experiencing explosive growth in new product developments. Already there are many commercial applications for electro microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of surface micromachined microfluidic devices is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. In order to realize applications for these devices, an efficient method for packaging microfluidic devices is needed. Responding to this need, researchers at Sandia developed the Electro Microfluidic Dual In-Line Package (EMDIP) and the Fluidic Printed Wiring Board (FPWB).

374

Solar collector manufacturing activity, 1992  

DOE Green Energy (OSTI)

This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

Not Available

1993-11-09T23:59:59.000Z

375

Materials Standards for Additive Manufacturing  

Science Conference Proceedings (OSTI)

... ASTM F2924 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion) except for standards ...

2013-06-04T23:59:59.000Z

376

Integrating Materials and Manufacturing Innovation  

Science Conference Proceedings (OSTI)

Jun 13, 2012 ... 06/13 - TMS Launches New Open Access Journal: Integrating Materials and Manufacturing Innovation. Patti Dobranski Communication ...

377

Implementation of Sustainable Manufacturing Standards  

Science Conference Proceedings (OSTI)

... Manufacturing Standards Kathi Futornick, LEED AP Global Sustainability Practice URS Corporation NIST Workshop October 13-15, 2009 ...

2009-10-20T23:59:59.000Z

378

NIST Additive Manufacturing Test Artifact  

Science Conference Proceedings (OSTI)

NIST Additive Manufacturing Test Artifact. Summary. ... The test artifact is to be built using the AM system under investigation. ...

2013-04-26T23:59:59.000Z

379

Why Manufacturing Matters to California  

Science Conference Proceedings (OSTI)

... Sources: Bureau of Labor Statistics, IHS Global Insight. Manufacturing employment (left) ... Sources: Bureau of Labor Statistics, IHS Global Insight. ...

2012-10-01T23:59:59.000Z

380

Project: Manufacturing Services Network Models  

Science Conference Proceedings (OSTI)

... expressivity of a pattern library for manufacturing service capability information, by demonstrating the target information retrieval behavior enabled ...

2013-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Additive Manufacturing: Pursuing the Promise  

NLE Websites -- All DOE Office Websites (Extended Search)

capability have captured the imaginations of investors. Revolutionary Speed, Efficiency, Optimization Additive manufacturing has the potential to vastly accelerate innovation,...

382

Manufacturing Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propylene (C 3 H 6): A normally gaseous olefinic hydrocarbon recovered from refinery processes or petrochemical processes. In the manufacturing ...

383

Teksun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Teksun PV Manufacturing Inc Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name Teksun PV Manufacturing Inc Address 401 Congress Ave Place Austin, Texas Zip 78701 Sector Solar Product Plan to manufacture large scale PV panels for utility scale solar power parks Website http://www.teksunpv.com/ Coordinates 30.266402°, -97.742959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.266402,"lon":-97.742959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

LightManufacturing | Open Energy Information  

Open Energy Info (EERE)

LightManufacturing LightManufacturing Jump to: navigation, search Logo: LightManufacturing Name LightManufacturing Address 855 4th Street Place California Zip 93449 Sector Solar Product heliostat, helisotats, sun trackers, solar thermal manufacturing systems. Year founded 2009 Number of employees 11-50 Company Type For Profit Phone number 415 796-6475 Website http://www.lightmanufacturings Coordinates 35.135012°, -120.6228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.135012,"lon":-120.6228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Out of Bounds Additive Manufacturing  

Science Conference Proceedings (OSTI)

Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

2013-01-01T23:59:59.000Z

386

The business case for continuous manufacturing of pharmaceuticals  

E-Print Network (OSTI)

Manufacturing in the pharmaceutical industry is presently characterized as a batch production system, which has existed in its current form for decades. This structure is the result of historical regulatory policy as well ...

Wilburn, Kristopher Ray

2010-01-01T23:59:59.000Z

387

Microsoft Word - JT Manufacturing Study Report 070522.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Scale-Up and Production Volume on SOFC Manufacturing Cost DOENETL-XXXXXXXX (optional) April 2, 2007 2 Disclaimer This report was prepared as an account of work...

388

Information tracking and sharing in organic photovoltaic panel manufacturing  

E-Print Network (OSTI)

The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative ...

Gong, Ming, M. Eng. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

389

Scheduling and shop floor control in commercial airplane manufacturing  

E-Print Network (OSTI)

Boeing is the premier manufacturer of commercial jetliners and a leader in defense and space systems. Competition in commercial aircraft production is increasing and in order to retain their competitive position, Boeing ...

Sahney, Vikram Neal

2005-01-01T23:59:59.000Z

390

Improving energy efficiency in a pharmaceutical manufacturing environment -- office building  

E-Print Network (OSTI)

Reducing energy consumption without compromising the quality of products in a pharmaceutical manufacturing environment and maintaining the comfort of employees is of critical important in maintaining the financial viability ...

Li, Wu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

391

Department of Energy Announces Next Steps for Asset Revitalization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Steps for Asset Revitalization Next Steps for Asset Revitalization Initiative Department of Energy Announces Next Steps for Asset Revitalization Initiative September 16, 2011 - 11:49am Addthis WASHINGTON, DC - The Department of Energy today announced next steps under the Asset Revitalization Initiative, a Department-wide initiative to examine ways to work with local communities to support the reuse of DOE resources at former Cold War weapons sites around the country. These steps build on the recommendations from the Task Force on Asset Revitalization, which was convened by Secretary Chu in February 2011, and will facilitate local efforts to support beneficial reuse options at DOE sites, including reindustrialization, manufacturing, clean energy development, nature preserves, and educational centers.

392

Additive manufacturing capabilities expanding | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Additive manufacturing capabilities expanding January 01, 2013 Large-scale polymer additive manufacturing equipment located at the Manufacturing Demonstration Facility. Additive...

393

EERE: Clean Energy Manufacturing Initiative Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Manufacturing Initiative Search Search Help Clean Energy Manufacturing Initiative EERE Clean Energy Manufacturing Initiative Printable Version Share this resource Send a...

394

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

395

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network (OSTI)

59, 2010 plenary Papers: Energy and Resource Efficiencyresources. Plenary Papers: Energy and Resource Efficiency •include: plenary Papers: Energy and Resource Efficiency

Dornfeld, David

2010-01-01T23:59:59.000Z

396

Manufacturing/Production Steering Committee Meeting  

SciTech Connect

This presentation discusses the following: (1) Nuclear Material Science - 22/1: Uranium Metallography and Metallurgy, 22/7: Plutonium Metallurgy, 22/8: Plutonium Corrosion; (2) Nuclear Materials Chemistry - 22/2: Actinide Chemistry, 22/7: Analytical Chemistry; (3) Tritium Science & Technology - 22/4: Tritium Science and Technology; and (4) Nuclear Materials Management - 22/5: Nuclear Materials Management, 22/9: Packaging, Storage and Transportation.

Castro, Richard G. [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

397

Manufacturing Productivity Through the Great Recession:  

Science Conference Proceedings (OSTI)

... related support activities Electrical equipment, appliance ... yielding a labor demand coefficient on ... an economic policy and forecasting research center ...

2013-07-29T23:59:59.000Z

398

Processing and Product Manufacturing - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... J5: Electrical Conductivity of Diesel-Biodiesel Blends Evaluated by the ... of their potentially novel physical properties resulting from quantum ...

399

Manufacturing/Production Steering Committee Meeting  

SciTech Connect

JOWOG 30 has been reorganized and reinvigorated over the past couple of years to: (1) Drive an increased level of value and accomplishment; (2) Broaden engagement from LANL to both NNSA and full Weapons Complex; and (3) Incorporate the Strategic Technical Facilities Modernization (STFM) initiative into J30 structure. Recent/Ongoing Exchanges (2011 and 2012) - Current Exchanges entirely focused within the five J30 tasking areas: Capability Gap, Facility Re-Kit, Commissioning, Environmental Liabilities, Safety Basis. Future Exchanges (2012 to 2015) - Continue current tasks according to plan, include additional tasks/teams in areas such as Criticality Safety and Radiation Protection.

Nuckols, Matthew M. [Los Alamos National Laboratory; Hedley, Richard [AWE; McKamy, Dr. Jerry N. [NNSA

2012-08-14T23:59:59.000Z

400

Electric Forklift Conversion Transforms Building Products Manufacturer  

Science Conference Proceedings (OSTI)

In the last six years, market acceptance of electric lift trucks has steadily increased. Advances in motor drive, battery, and charger technology have dramatically improved equipment performance and utility, and therefore industry acceptance – even in demanding multi-shift operations. Roughly 64% of the total North American forklift market and more than 70% of the European Union lift truck market is now electric. For many applications, electric lift trucks offer equal or superior performance ...

2013-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The development of a thin-film rollforming process for pharmaceutical continuous manufacturing  

E-Print Network (OSTI)

In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

Slaughter, Ryan (Ryan R.)

2013-01-01T23:59:59.000Z

402

SPAR-H Step-by-Step Guidance  

SciTech Connect

This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from the psychology literature.

W. J. Galyean; A. M. Whaley; D. L. Kelly; R. L. Boring

2011-05-01T23:59:59.000Z

403

Manufacturing Science and Technology: Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Operations Machining Operations Machining Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing & Systems Development Visiting Us AMTTP Center Organizational chart Organizations Our Business areas Manufacturing Science and Technology David Plummer, Director Manufacturing Enterprise Joe M. Harris, Senior Manager Machining Operations Mathew Donnelly, Manager Machining Services Daryl Reckaway, Acting Manager Electronic Fabrication Phillip L. Gallegos, Manager Manufacturing Process Science and Technology Mark F. Smith, Senior Manager Thin Film, Vacuum, and Packaging Mark F. Smith, Acting Manager Organic Materials Mike Kelly, Manager Ceramic and Glass Alex Roesler, Manager

404

Advanced Manufacturing Office: Motor Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

405

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

406

An evolutionary algorithm for manufacturing cell formation* Jose Fernando Goncalvesa  

E-Print Network (OSTI)

% of the problems. q 2004 Published by Elsevier Ltd. Keywords: Cellular manufacturing; Group technology; Genetic for the production of a given family of products. 0360-8352/$ - see front matter q 2004 Published by Elsevier Ltd-part incidence matrix [A], which is a zero-one matrix of order P!M where PZnumber of products and MZnumber

Resende, Mauricio G. C.

407

Forecast-driven tactical planning models for manufacturing systems  

E-Print Network (OSTI)

Our work is motivated by real-world planning challenges faced by a manufacturer of industrial products. In the first part of the thesis, we study a multi-product serial-flow production line that operates in a low-volume, ...

Chhaochhria, Pallav

2011-01-01T23:59:59.000Z

408

Manufacturing Barriers to High Temperature PEM Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

9/2011 9/2011 1 BASF Fuel Cell, Inc. Manufacturing Barriers to high temperature PEM commercialization 39 Veronica Ave Somerset , NJ 08873 Tel : (732) 545-5100 9/9/2011 2 Background on BASF Fuel Cell  BASF Fuel Cell was established in 2007, formerly PEMEAS Fuel Cells (including E-TEK)  Product line is high temperature MEAs (Celtec ® P made from PBI-phosphoric acid)  Dedicated a new advanced pilot manufacturing facility in Somerset NJ May 2009. Ribbon-cutting hosted by Dr. Kreimeyer (BASF BoD, right) and attended by various US pubic officials including former NJ Governor Jon Corzine (left) 9/9/2011 3 Multi-layer product of membrane (polybenzimidazole and phosphoric acid), gas diffusion material and catalysts Unique characteristics:  High operating temperature

409

Sensor Switch's Bright Manufacturing Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensor Switch's Bright Manufacturing Future Sensor Switch's Bright Manufacturing Future Sensor Switch's Bright Manufacturing Future June 16, 2010 - 12:01pm Addthis Lindsay Gsell It's a simple concept that's saving thousands of dollars in utility bills each year: when a room is empty, turn off the lights. This is the basic concept behind Sensor Switch, a Connecticut-based manufacturer of lighting control products. Sensor Switch's occupancy sensor devices turn off lights when spaces are vacant. They also make devices that dim or turn off lights when sufficient daylight is present. Both types of products provide cost effective energy savings in indoor spaces like office buildings and warehouses. "There's an increasing public demand to save energy, which directly impacts the demand for our products," said Ben Hahn, vice president. "A key part of

410

DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for  

NLE Websites -- All DOE Office Websites (Extended Search)

Institutes Enforcement Action against 4 Showerhead Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products January 28, 2010 - 1:49pm Addthis WASHINGTON DC - The Office of General Counsel has issued Notices of Proposed Civil Penalty to Zoe Industries, Altmans Products LLC, EZ-FLO International, and Watermark Designs, Ltd. for failing to certify to the Department of Energy that showerheads manufactured or distributed by these companies meet the applicable water conservation standard as required by the Energy Policy Conservation Act and DOE's regulations. These Notices of Proposed Civil Penalty collectively propose payments to the government of over $3 million. Unless the manufacturers settle these claims within

411

EL Program: Systems Integration for Manufacturing and ...  

Science Conference Proceedings (OSTI)

... Strategic Goal: Smart Manufacturing, Construction, and Cyber-Physical Systems ... changing manufacturing by enabling a transformation to digitized ...

2013-01-03T23:59:59.000Z

412

Energy Efficiency Standards for Manufactured Housing | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards for Manufactured Housing Section 413 of the Energy...

413

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture autogenicpressurereactions...

414

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

415

Reclaiming Fibrous Material in Manufacturing Processes  

Science Conference Proceedings (OSTI)

Abstract Scope, In the manufacture of faced fiberglass insulation, defects may ... There are approximately 29 fiberglass insulation manufacturing plants across ...

416

Renewable Energy Equipment Manufacturer Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturer Tax Credit Renewable Energy Equipment Manufacturer Tax Credit Eligibility Commercial Industrial Savings For Bioenergy Biofuels Alternative Fuel Vehicles Commercial...

417

Microstructure and Properties and Manufacturing Technologies  

Science Conference Proceedings (OSTI)

Oct 29, 2013 ... Advances in Hydroelectric Turbine Manufacturing and Repair: Microstructure and Properties and Manufacturing Technologies Sponsored by: ...

418

Design for Location? The Impact of Manufacturing Offshore on Technology Competitiveness in the Optoelectronics Industry  

Science Conference Proceedings (OSTI)

This paper presents a case study of the impact of manufacturing offshore on technology competitiveness in the optoelectronics industry. It examines a critical design/facility location decision being faced by optoelectronic component manufacturers. This ... Keywords: design for manufacturing, international, product development, technology choice

Erica Fuchs; Randolph Kirchain

2010-12-01T23:59:59.000Z

419

Application of analytic hierarchy process in just-in-time manufacturing systems: a review  

Science Conference Proceedings (OSTI)

Because of globalisation and an associated global manufacturing environment, cost competitiveness has become necessary. In order to survive, the manufacturing firms have to provide a high level of service to the customers and a high level of throughput ... Keywords: AHP, JIT techniques, analytical hierarchy process, just-in-, manufacturing systems, performance measures, pull production, time

Sanjay Sharma; Narayan Agrawal

2010-07-01T23:59:59.000Z

420

Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

Not Available

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A STEP-compliant computer numerical control based on real-time Ethernet for circuit boardmilling  

Science Conference Proceedings (OSTI)

With the globalisation of manufacturing industry, extendable and networked computer numerical control systems that can support bidirectional and seamless data exchange are in urgent need. This paper presents a STEP-NC compliant controller based on Real-time ... Keywords: Gerber, Real-time Ethernet RTE, STEP-NC, circuit board milling, computer numerical control CNC

Ke Wang; Riliang Liu; Xun Xu; Chenrui Zhang; Lin Yang

2012-12-01T23:59:59.000Z

422

Steam Champions in Manufacturing  

E-Print Network (OSTI)

Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a steam system demands the managerial expertise of a "Steam Champion," which will be described in this paper. Briefly, the steam champion is a facility professional who embodies the skills, leadership, and vision needed to maximize the effectiveness of a plant's steam system. Perhaps more importantly, the steam champion's definitive role is that of liaison between the manufacturer's boardroom and the plant floor. As such, the champion is able to translate the functional impacts of steam optimization into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills.

Russell, C.

2001-05-01T23:59:59.000Z

423

SPAR-H Step-by-Step Guidance  

SciTech Connect

Step-by-step guidance was developed recently at Idaho National Laboratory for the US Nuclear Regulatory Commission on the use of the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method for quantifying Human Failure Events (HFEs). This work was done to address SPAR-H user needs, specifically requests for additional guidance on the proper application of various aspects of the methodology. This paper overviews the steps of the SPAR-H analysis process and highlights some of the most important insights gained during the development of the step-by-step directions. This supplemental guidance for analysts is applicable when plant-specific information is available, and goes beyond the general guidance provided in existing SPAR-H documentation. The steps highlighted in this paper are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff.

April M. Whaley; Dana L. Kelly; Ronald L. Boring; William J. Galyean

2012-06-01T23:59:59.000Z

424

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

1994-12-01T23:59:59.000Z

425

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

emissions. In this paper, energy use and CO 2 emissions ofinformation, this paper estimates industrial energy-relatedenergy-intensive products. Emissions from manufacturing of textiles, and paper

Lu, Hongyou

2013-01-01T23:59:59.000Z

426

EXERGY BASED METHOD FOR SUSTAINABLE ENERGY UTILIZATION ANALYSIS OF A NET SHAPE MANUFACTURING SYSTEM.  

E-Print Network (OSTI)

??The approach advocated in this work implements energy/exergy analysis and indirectly an irreversibility evaluation to a continuous manufacturing process involving discrete net shape production of… (more)

SANKARA, JAYASANKAR

2005-01-01T23:59:59.000Z

427

Multiple stage miniature stepping motor  

DOE Patents (OSTI)

A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

Niven, William A. (Livermore, CA); Shikany, S. David (Danville, CA); Shira, Michael L. (Fremont, CA)

1981-01-01T23:59:59.000Z

428

Manufacturing Composite Structures  

Science Conference Proceedings (OSTI)

... costs of cars, bridges, offshore oil rigs, and ... that capability in place new annual markets in ... adapt those processes for commercial-scale production. ...

2011-10-19T23:59:59.000Z

429

Innovations in Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

> Thrust Areas Research Carbon Fiber and Composites Innovation in Carbon Fiber Production Oak Ridge National Laboratory's Low-Cost Carbon Fiber work is focused on reducing...

430

Green Manufacturing II  

Science Conference Proceedings (OSTI)

A novel pathway for the high energy efficiency production of metal from metal oxide in ionic liquids at low temperature was investigated. This presentation ...

431

Manufacturing and Markets  

Science Conference Proceedings (OSTI)

Title, Author, Publisher, Product Type, In Stock, Date Published. Add to Cart, Image, Click on Title to view details, Member (Student) Price, Non-member Price.

432

Innovation in Materials & Manufacturing  

Science Conference Proceedings (OSTI)

Early spaceflight results have led to such developments as LiquidMetal™ and new turbine blade production methods. These path finding results are only a small ...

433

Composites Manufacturing Technologies:  

Science Conference Proceedings (OSTI)

... With the proliferation of electronic devices in ... An active product development and testing program ... and to reduce rolling resistance, silica additives ...

2004-07-13T23:59:59.000Z

434

Innovation enabling manufacturing processes  

E-Print Network (OSTI)

Global operations for multinational companies today pose a particularly challenging environment for maintaining fluid knowledge transfer and effective communication methodologies. In a continuous drive for product innovation, ...

Lu, Ilyssa Jing

2008-01-01T23:59:59.000Z

435

Vibration mills in the manufacturing technology of slurry fuel from unbeneficiated coal sludge  

Science Conference Proceedings (OSTI)

Coal-water slurry fuel (CWSF) is economically viable provided that its ash content does not exceed 30% and the amount water in the fuel is at most 45%. Two impoundments were revealed that have considerable reserves of waste coal useful for commercial manufacture of CWSF without the beneficiation step. One of the CWSF manufacture steps is the comminution of coal sludge to have a particle size required by the combustion conditions. Vibration mills, which are more compact and energy-intensive that drum mills, can be used in the CWSG manufacture process. The rheological characteristics of CWSF obtained from unbeneficiated waste coal were determined.

E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russia)

2008-08-15T23:59:59.000Z

436

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

at the extent to which manufacturers exercised their ability to choose the mix of energy sources at their discretion. Nonswitchable Minimum Requirements Generally, a...

437

Manufacturing — Its Evolution and Future  

E-Print Network (OSTI)

of the Computer Integrated Manufacturing (CIM) System.CIM’s potential capability to integrate former “bits andto develop and implement CIM system technology and reap its

Merchant, M. Eugene; Dornfeld, David; Wright, Paul K

2005-01-01T23:59:59.000Z

438

NIST SBIR Manufacturing Related Emphasis  

Science Conference Proceedings (OSTI)

... the mission of that department or agency, to give high priority within the SBIR programs to manufacturing-related research and development (R&D). ...

2012-09-11T23:59:59.000Z

439

Implications for the Manufacturing Industry  

Science Conference Proceedings (OSTI)

Plus, Quality and Response Time are Competitive. In Summary, China has ... Significant offshore demand and manufacturing base established by American and ...

440

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

includes descriptions of the 30 groups that comprise the strata of the Manufacturing Energy Consumption Survey. These are the 20 major industrial groups (two-digit SIC) and...

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar collector manufacturing activity 1993  

DOE Green Energy (OSTI)

The report presents national and State-level data on the U.S. solar thermal collector and photovoltaic cell and module manufacturing industry.

Not Available

1994-08-15T23:59:59.000Z

442

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Courtesy of ZCorp The Rapid Prototyping Laboratory (RPL) supports internal design, manufacturing, and process development with three rapid prototyping (RP) technologies:...

443

Advanced Manufacturing Office: Information Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

incentives, tools, and training to help companies of all sizes identify energy saving projects and chart a path toward continuous energy improvement. Advanced Manufacturing...

444

Advanced Manufacturing Office: Financial Opportunities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

organizations offer ways to help manufacturers identify and implement energy-saving projects at their plants. Search the State Incentives and Resource Database to find rebates,...

445

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

446

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

447

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF |...

448

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

B Survey Design, Implementation, and Estimates Introduction The 1991 Manufacturing Energy Consumption Survey (MECS) has been designed by the Energy Information Administration...

449

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

J Related EIA Publications on Energy Consumption Energy Information AdministrationManufacturing Consumption of Energy 1991 526 Appendix J Related EIA Publications on Energy...

450

Wireless technology for integrated manufacturing  

SciTech Connect

This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

1996-08-01T23:59:59.000Z

451

Solar and Wind Manufacturing Incentive  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturers of solar or wind equipment or components in Kansas may be eligible for financing through the Kansas Department of Commerce to support research, development, engineering or...

452

USA Manufacturing: Proposed Penalty (2013-CE-5336) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2013-CE-5336) Proposed Penalty (2013-CE-5336) USA Manufacturing: Proposed Penalty (2013-CE-5336) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. USA Manufacturing: Proposed Penalty (2013-CE-5336) More Documents & Publications USA Manufacturing: Order (2013-CE-5336) Amerikooler: Proposed Penalty (2013-CE-5307)

453

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient November 14, 2011 - 12:22pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? With 50+ assessments and 500+ total recommendations made, this IAC's recommendations could save the average manufacturer evaluated an average $118,636 in electrical, natural gas, waste and productivity costs. This team has saved FUJIFILM Hunt Chemicals U.S.A facility nearly 1,240,976 kW hours of electricity -- an estimated $39,280 per year! Earlier this month, we brought you the story of Chrome Deposit Corporation, a manufacturer that with the help of the University of Delaware Industrial Assessment Center is saving millions of dollars with

454

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

U.S. Energy Information Administration (EIA) Indexed Site

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Cost of Natural Gas Used in Manufacturing Sector Has Fallen MECS 2010 - Release date: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers as well as other consumers. The 36% decrease in the average natural gas price paid by manufacturers

455

Stronger Manufacturers' Energy Efficiency Standards for Residential Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stronger Manufacturers' Energy Efficiency Standards for Residential Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today January 23, 2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing standards that go into effect today, January 23, 2006, for products manufactured in, or imported into, the United States. "Homeowners who choose to buy more energy-efficient air conditioning systems after today will realize significant savings in their energy bills and greatly reduce their energy use," said Secretary of Energy Samuel W. Bodman. "These new energy efficiency standards are the first of several

456

DOE Offers Support for Innovative Manufacturing Plant That Will Produce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Support for Innovative Manufacturing Plant That Will Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost DOE Offers Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost June 16, 2011 - 12:00am Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a $275 million loan guarantee to Calisolar Inc. to commercialize its innovative solar silicon manufacturing process. Calisolar's innovative process should produce silicon for use in solar cells at less than half the cost of traditional polysilicon purification processes, which will reduce the overall cost of solar modules and panels. At full production, the manufacturing plant is expected to produce 16,000 metric tons (MT) of solar silicon annually, equivalent to

457

NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cells/modules grew 53% (compound annual growth rate [CAGR]). At the same time, the U.S. market share has slipped from 30% to 7% (30% CAGR) while China/Taiwan has grown from <2% to 54% (115% CAGR) to become the leader in global production. NREL's manufacturing cost analysis has focused on understanding the regional competitiveness of solar PV manufacturing specifically: What factors have led to China's dramatic growth in PV? Is it sustainable? Can the US compete? NREL's manufacturing cost analysis studies show that: U.S. incentives to strengthen access to capital for investment in innovative solar technologies could offset China's current advantage U.S. incentives are dwarfed by the scale of Chinese incentives

458

Astraeus Wind Modifies Manufacturing in Michigan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan May 14, 2010 - 3:35pm Addthis Lindsay Gsell When the assembly line was introduced to the automobile industry, everything changed. Cars were produced in less time with fewer errors, and each one was exactly the same as the last. As a result, the industry boomed. Astraeus Wind LLC hopes to bring this type of success to wind turbine manufacturing by standardizing the blade manufacturing process. The company wants to experiment with new materials to strengthen the blades while creating an automated process to assemble them, creating identical blades in a fast, efficient manner. CEO Jeff Metts says standardizing this process will help ensure each blade has the same measurements, lower the amount of time needed for production

459

Manufacturing Science and Technology: R & D Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Projects R&D Projects This page is included to give visitors to the web site a sample of the R&D work that this Center undertakes. The Manufacturing Science & Technology Center works mainly in the Development-to-Application part of the Research-to-Development-to-Application cycle.Staff in the Center, however, do perform work in the research-to-development area with the aim of providing our customers with more robust, quicker, and/or less expensive processes to meet Sandia's manufacturing needs. We also do R&D to develop processes required for the manufacture of specialized materials and components that can no longer be obtained either in the commercial market or at one of the DOE's production facilities. Within Sandia, most manufacturing R&D is carried out by the Manufacturing

460

Manufacturers Saving with Lost Foam Metal Casting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting December 18, 2009 - 2:43pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Metal casting was identified as one of the top 10 energy users in manufacturing. The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent fewer materials than traditional processes. One example of this technology is being used by General Motors to make lightweight engine blocks for the fuel-efficient vehicles they manufacture. A government-funded effort to support development of foam metal casting helped reduce an estimated 9.4 million tons of solid waste between 1994 and 2005, which saved industry an estimated 3 trillion Btu.

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Research Leading to High Throughput Manufacturing of Thin-Film CdTe PV Modules: Annual Technical Report, September 2003-September 2004  

DOE Green Energy (OSTI)

First Solar is actively commercializing CdTe-based thin-film photovoltaics. During the past year, major additions of production capability have been completed, as well as process improvements to achieve higher throughput and efficiency and greater durability. This report presents the results of Phase II of the subcontract, entitled ''Research Leading to High Throughput Manufacturing of Thin-Film CdTe PV Modules.'' The subcontract supports several important aspects needed for high-volume manufacturing of high-efficiency modules, including exploration of large-area advanced front-contact window layers, improvements of the semiconductor deposition system, advancement in understanding of post-deposition processing steps and accelerated life testing methods, and progress in the environmental, health and safety programs. Work under this subcontract contributes to the overall manufacturing operation. During Phase II, average module efficiency (total area) on the production line was improved from 7.9% to 8.6% due primarily to process optimization. At the same, time production volume for commercial sales increased from 2.5 MW in 2003 to an estimated 6 MW in 2004. Much of the new 25 MW/yr production line has been qualified, and production volume is steadily increasing.

Powell, R. C.

2004-12-01T23:59:59.000Z

462

Making Products Active with Intelligent Agents for Supporting PLM Making Products Active with Intelligent Agents for  

E-Print Network (OSTI)

within manufacturing enterprises have arose in last years, like Agile Manufacturing and collaboration available systems are usually focused on the use of additional information to support business processes, reducing inconsistencies, and optimizing product's definition and manufacturing activities. In this paper

Paris-Sud XI, Université de

463

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U.S Department of Energy NREL H 2 /FC Manufacturing R&D Workshop Washington, D.C. August 11-12, 2011 * Goal: Research, develop and demonstrate technologies and processes that reduce the cost of components and systems for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base. * Challenge: Move hydrogen and fuel cells from laboratory-scale production into high-volume, low-cost manufacturing. 2 Goal of Manufacturing sub-program U.S. DOE 8/10/11 3 Budget EMPHASIS  Develop novel, robust, ultrasonic bonding processes for MEAs to reduce MEA-pressing cycle time  Develop real-time, online measurement tools to reduce/eliminate ex situ

464

Manufacturing Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

465

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

466

Manufacturing Data | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Data Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Manufacturing Data These Federal datasets contain a wealth of information for manufacturing - either from information in a single dataset or by combining data from more than one place. This site will be enhanced with the addition of new datasets, and new apps using these datasets, as they are developed. Search Terms Category -Any- Geospatial Items per page 25 50 100 Apply Name Downloads Rating TradeStats Express TradeStats Express provides statistics on U.S. merchandise trade at the national and state levels. Data can also be displayed in maps, graphs, tables, or as exports, imports, and trade balances.... Data Extraction

467

Fitcraft Production sro | Open Energy Information  

Open Energy Info (EERE)

Fitcraft Production sro Jump to: navigation, search Name Fitcraft Production sro Place Novy Jicin, Czech Republic Zip 74101 Sector Solar Product Czech manufacturer of silicon...

468

Method for localizing and isolating an errant process step  

SciTech Connect

A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.

Tobin, Jr., Kenneth W. (Harriman, TN); Karnowski, Thomas P. (Knoxville, TN); Ferrell, Regina K. (Knoxville, TN)

2003-01-01T23:59:59.000Z

469

Industrial/manufacturing resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial/manufacturing resources Industrial/manufacturing resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

470

Integrated Paper and Paperboard Manufacturing Plant EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Paper and Paperboard Manufacturing Plant EPI Integrated Paper and Paperboard Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

471

Flat Glass Manufacturing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Flat Glass Manufacturing Plant EPI Flat Glass Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

472

Developing the Manufacturing Process for VCE: Binder for Filled Elastomers  

SciTech Connect

This topical report presents work completed to re-establish the manufacturing process for poly(ethylene-co-vinyl acetate-co-vinyl alcohol) terpolymer called VCE. The new VCE formulations meet the material requirements and have lower melt viscosity, which results in improved production for the next assembly. In addition, the reaction conditions were optimized in order to achieve a satisfactory conversion rate to enable production in a single work shift. Several equipment and process changes were made to yield a manufacturing process with improved product quality, yield, efficiency, and worker safety.

E.A. Eastwood

2009-11-01T23:59:59.000Z

473

CONSOLIDATED CERAMIC PRODUCTS, INC.  

Science Conference Proceedings (OSTI)

For 40 years, Consolidated Ceramic Products, Inc. has been of service to the aluminum industries worldwide. An innovative manufacturer and marketer of ...

474

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers to Halt Sales of Heat Pumps and Air Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

475

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

476

Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits January 8, 2010 - 12:00am Addthis President Obama announced awardees of the clean energy manufacturing tax credit in the American Recovery and Reinvestment Act. In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C program will provide a 30 percent tax credit for investments in 183 manufacturing facilities for clean energy products across 43 states. This tax credit program will help build a robust high technology, US manufacturing capacity to supply clean energy projects with US made parts

477

DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requires Manufacturers to Halt Sales of Heat Pumps and Air Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 12:00am Addthis Washington, DC - Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with federal energy conservation standards. The manufacturers also must notify all of their customers that have been sold noncompliant units. The Department determined that these models were noncompliant based on certification information submitted to DOE for these manufacturers.

478

Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits Fact Sheet: $2.3 Billion in New Clean Energy Manufacturing Tax Credits January 8, 2010 - 12:00am Addthis President Obama announced awardees of the clean energy manufacturing tax credit in the American Recovery and Reinvestment Act. In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C program will provide a 30 percent tax credit for investments in 183 manufacturing facilities for clean energy products across 43 states. This tax credit program will help build a robust high technology, US manufacturing capacity to supply clean energy projects with US made parts

479

Microsoft Expression Design Step by Step, 1st edition  

Science Conference Proceedings (OSTI)

The smart way to learn Microsoft Expression Design one step at a time! Work at your own pace through the easy numbered steps, practice files on CD, and hands-on exercises to master the fundamentals of creating professional-looking designs and illustrations ...

Sara Froehlich

2008-01-01T23:59:59.000Z

480

Design for the Environment Products (Raw Data) | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Design for the Environment Products (Raw Data) Manufacturing DataTools ResearchTech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov Communities...

Note: This page contains sample records for the topic "manufacturing production step" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Large forging manufacturing process  

DOE Patents (OSTI)

A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

Thamboo, Samuel V. (Latham, NY); Yang, Ling (Niskayuna, NY)

2002-01-01T23:59:59.000Z

482

Decade of PV Industry R and D Advances in Silicon Module Manufacturing  

DOE Green Energy (OSTI)

The US Photovoltaic (PV) industry has made significant technical advances in crystalline silicon (Si) module manufacturing through the PV Manufacturing R and D Project during the past decade. Funded Si technologies in this project have been Czochralski, cast polycrystalline, edge-defined film-fed growth (EFG) ribbon, string ribbon, and Si-film. Specific R and D Si module-manufacturing categories that have shown technical growth and will be discussed are in crystal growth and processing, wafering, cell fabrication, and module manufacturing. These R and D advancements since 1992 have contributed to a 30% decrease in PV manufacturing costs and stimulated a sevenfold increase in PV production capacity.

Symko-Davis, M.; Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Laboratory; King, R. [U.S. Department of Energy; Ruby, D.S. [Sandia National Laboratories

2001-01-18T23:59:59.000Z

483

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

484

Manufacturing means jobs ? Mike Arms  

NLE Websites -- All DOE Office Websites (Extended Search)

investment in manufacturing since it was a sector generating not only high-paying direct jobs but also outstanding secondary jobs in supply-chain support and other related...

485

Manufacturing System Design Framework Manual  

E-Print Network (OSTI)

Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

Vaughn, Amanda

2002-01-01T23:59:59.000Z

486

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

487

Overview of the Photovoltaic Manufacturing Technology (PVMaT) project  

SciTech Connect

The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

1993-08-01T23:59:59.000Z

488

Manufacturers use of business services  

SciTech Connect

This paper summarized findings from a Colorado and Utah survey of manufacturing and business service establishments which provided information on the use of business services among different types of firms in this interior region of the United States. The paper provides information which helps to shed light on various areas of inquiry on the relationship between manufacturers and producer services, but certainly calls for additional investigation. Most of the findings are consistent with those found by studies in other areas. Manufacturers are not a major source of sales for business service firms and the availability of business services is not cited as an important location consideration for manufacturers. Given the strong mining and agricultural sectors in these states, the fact that so little trade was with the primary sector may have been surprising. However, most of the responses in the surveys were from the urban areas of Denver and Salt Lake City. One of the hypotheses in the literature, as defined by Perry and Goe, concerns whether the growth in business services and the decline in manufacturing employment is a result of the trend toward the use of contracted services by manufacturers. The aggregate results of the study do not provide much evidence to support the proposition that this occurs. However, the results show that the larger firms internalize certain specialized business services more so than the smaller firms. The greater use company-provided legal services by the larger manufacturers is a case in point. This finding is consistent with Scott`s finding in the printed circuits industry in which larger establishments provided more functions internally than did the smaller establishments. In the case of engineering, architectural, and business management services it appears that many smaller manufacturers do not use such services at all, but that the larger establishments have more needs for professional services.

Calzonetti, F. [West Virginia Univ., Morgantown, WV (United States); Allison, T. [Argonne National Lab., IL (United States)

1992-12-31T23:59:59.000Z

489

Silicon Film[trademark] photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film[trademark] process. This new power module is based on a new large solar cell that is 675 cm[sup 2] in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film[trademark] wafer machine that can manufacture wafer 675 cm[sup 2] in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film[trademark] wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

1993-04-01T23:59:59.000Z

490

A study of the Mighty Motors operating system : making sustainable improvements at a powertrain manufacturing facility  

E-Print Network (OSTI)

Many manufacturing companies are developing their own production or operating system, particularly in an effort to duplicate the widely renowned Toyota Production System. Toyota has demonstrated its potential for improving ...

Dibb, Gregory David, 1974-

2004-01-01T23:59:59.000Z

491

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

492

MSID Products, Tools, & Services  

Science Conference Proceedings (OSTI)

SID Products, Tools, & Services. XML Testbed - collection of XML-Related Tools; Express Engine - STEP (ISO 10303) development ...

2013-09-16T23:59:59.000Z

493

Manufacturing Laboratory (Fact Sheet), NREL (National Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

303-275-4311 Manufacturing Laboratory The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will...

494

Remarks at the Massachusetts Advanced Manufacturing ...  

Science Conference Proceedings (OSTI)

... After a decade of losses, more than half a ... to establish a National Network for Manufacturing ... on "Next Generation Power Electronics Manufacturing ...

2013-07-09T23:59:59.000Z

495

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global...

496

China's Industrial Carbon Dioxide Emissions in Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces Title China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and...

497

NIST Workshop Seeks Manufacturers' Ideas on Using ...  

Science Conference Proceedings (OSTI)

... Workshop Seeks Manufacturers' Ideas on Using Multipurpose Robots. ... and where robots are used in manufacturing ... might make the best use of these ...

2013-05-15T23:59:59.000Z

498

Additive Manufacturing Cluster Strategy | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

499

2012 Near Net Shape Manufacturing Workshop: Registration  

Science Conference Proceedings (OSTI)

Tours of the Quad City Manufacturing and Additive Laboratories and Rock Island Arsenal – Joint Manufacturing and Technology Center (JMTC) Date: Thursday ...

500

Advanced Manufacturing Office: State and Regional Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Since 2002: EIA April 10, 2013 23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative March 26, 2013 More News...