Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

2

Method of manufacturing a niobium-aluminum-germanium superconductive material  

DOE Patents (OSTI)

A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

Wang, John L. (San Francisco, CA); Pickus, Milton R. (Oakland, CA); Douglas, Kent E. (Redondo Beach, CA)

1980-01-01T23:59:59.000Z

3

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations  

Energy.gov (U.S. Department of Energy (DOE))

This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

4

VOC compliance on the ball: Aluminum can manufacturer rolls to California VOC compliance  

SciTech Connect

Since entering the North American beverage can market in 1969, Ball Corp., has increased its market share at a pace more than double the growth of the market itself. In addition to holding numerous patented advancements in can-making technology, Ball prides itself as an environmentally responsible company. When Ball decided to increase production capacity in its Fairfield, California, plant, the challenge was to produce more cans, while still complying with the state`s stringent air emissions regulations. As with other aluminum can manufacturing facilities, Ball`s coating and curing operations generate volatile organic compounds (VOCs). Ball`s permit from the state of California allows only limited amounts of VOC discharges into the atmosphere. With proposed increases in production capacities, however, the Bay Area`s Air Quality Management District--a local US EPA authority--required Ball to incinerate far more VOCs than the existing recuperative abatement system could handle. According to California regulations, facilities that wish to increase VOC emissions must install some type of VOC-control system or provide technological offsets. This regulatory pressure led Ball to seek a solution that would not only comply with emissions regulations, but would not compromise the company`s production process. Ball engineers selected a regenerative thermal oxidizer (RTO) for the Fairfield, Calif., plant. Considering the success Ball has encountered in previous experiences with this type of oxidation unit, the company immediately selected an RTO instead of catalytic oxidizers or other types of pollution control equipment.

Gay, R. [Engelhard Corp., Iselin, NJ (United States)

1997-07-01T23:59:59.000Z

5

Cycle-to-cycle control of multiple input-multiple output manufacturing processes  

E-Print Network (OSTI)

In-process closed-loop control of many manufacturing processes is impractical owing to the impossibility or the prohibitively high cost of placing sensors and actuators necessary for in-process control. Such processes are ...

Rzepniewski, Adam K. (Adam Kamil), 1976-

2005-01-01T23:59:59.000Z

6

DC stray current mitigation for natural gas pipeline adjacent to aluminum manufacturing facility  

SciTech Connect

The production of aluminum can produce large dynamic stray currents in the earth surrounding the production plant. When coated pipelines that are not grounded pass through the dynamic stray current area, they can realize failures at accelerated rates, even with traditional cathodic protection systems in operation. This article tracks a coated 20-in. (51-cm) natural gas pipeline installed near an aluminum production facility and the stray current mitigation design installed to overcome the accelerated failure problem. Other types of stray current mitigation have been attempted in this same area without similar success.

Maxwell, J.L.

1999-11-01T23:59:59.000Z

7

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

8

Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

9

Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder  

Science Journals Connector (OSTI)

Abstract Simulation of temperature fields during selective laser melting (SLM) additive manufacturing of AlSi10Mg powder was performed using the finite element method (FEM). The effects of laser power and scan speed on the SLM thermal behavior were investigated. It showed that the cooling rate of the molten pool elevated slightly from 2.13 × 106 °C/s to 2.97 × 106 °C/s as the laser power increased from 150 W to 300 W, but it enhanced significantly from 1.25 × 106 °C/s to 6.17 × 106 °C/s as the scan speed increased from 100 mm/s to 400 mm/s. The combination of a low laser power (200 W) and a high scan speed (400 mm/s) yielded a low temperature (1059 °C) and an extremely short liquid lifetime (0.19 ms), resulting in the poor wettability and occurrence of micropores in SLM-produced parts. The temperature gradient along the depth direction of the molten pool increased considerably from 10.6 °C/?m to 21.7 °C/?m as the laser power elevated from 150 W to 300 W, while it decreased slightly from 14.9 °C/?m to 13.5 °C/?m as the scan speed increased from 100 mm/s to 400 mm/s. The proper molten pool width (111.4 ?m) and depth (67.5 ?m) were obtained for a successful SLM process using the laser power of 250 W and scan speed of 200 mm/s. SLM of AlSi10Mg powder was also experimentally performed using different laser processing conditions and the microstructures of the SLM-fabricated samples were investigated to verify the reliability of the physical model. A sound metallurgical bonding between the neighboring fully dense layers was achieved at laser power of 250 W and scan speed of 200 mm/s, due to the larger molten pool depth (67.5 ?m) as relative to the layer thickness (50 ?m).

Yali Li; Dongdong Gu

2014-01-01T23:59:59.000Z

10

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" "NAICS Code","June 30 2013","March 31 2013","June 30 2012","Percent Change" ,,,,"(June 30)" ,,,,"2013 versus 2012" "311 Food Manufacturing",875,926,1015,-13.9 "312 Beverage and Tobacco Product Mfg.",26,17,19,35.8 "313 Textile Mills",22,22,25,-13.9 "315 Apparel Manufacturing","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w" "322 Paper Manufacturing",570,583,743,-23.3 "324 Petroleum and Coal Products*",127,113,156,-18.7

11

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 9. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(dollars per short ton)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",51.17,49.59,50.96,50.35,50.94,-1.2 "312 Beverage and Tobacco Product Mfg.",111.56,115.95,113.47,113.49,117.55,-3.5 "313 Textile Mills",115.95,118.96,127.41,117.4,128.07,-8.3 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

12

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 5. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",2256,2561,1864,4817,4343,10.9 "312 Beverage and Tobacco Product Mfg.",38,50,48,88,95,-7.7 "313 Textile Mills",31,29,21,60,59,2.2 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

13

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 8. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",2214,2356,1994,4570,4353,5 "312 Beverage and Tobacco Product Mfg.",48,37,53,85,90,-5.6 "313 Textile Mills",31,29,22,59,63,-6.1 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

14

Aluminum: Reducing chloride emissions from aluminum production  

SciTech Connect

Reynolds Metals Company (RMC), with assistance from a NICE{sup 3} grant, is developing for commercialization a closed-loop control process that greatly reduces chlorine emissions and increases plant efficiency while maintaining metal quality. The process still utilizes chlorine to remove impurities during aluminum processing, but is more effective than current methods. With the new technology chlorine in the stack is monitored and input chlorine is adjusted continuously. This optimization of chlorine use results in substantially less waste because less chlorine has to be bought or produced by aluminum manufacturers. This innovation is a significant improvement over conventional aluminum treatments, in which chlorine is injected in a more costly and wasteful manner. By the year 2010, the new technology has the potential to reduce the energy it takes to create chlorine by 8.4 billion Btu per year and to cut greenhouse gas emissions by 1,377 tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

15

Output Analysis  

Science Journals Connector (OSTI)

Every discrete-event simulation experiment with random input generates random sample paths as output. Each path usually consists of a sequence of dependent observations that serve as the raw material for estim...

George S. Fishman

2001-01-01T23:59:59.000Z

16

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumers in the Manufacturing and Coke Sectors, 2012" Coal Consumers in the Manufacturing and Coke Sectors, 2012" "Company Name","Plant Location" "Top Ten Manufacturers" "American Crystal Sugar Co","MN, ND" "Archer Daniels Midland","IA, IL, MN, ND, NE" "Carmeuse Lime Stone Inc","AL, IL, IN, KY, MI, OH, PA, TN, VA, WI" "Cemex Inc","AL, CA, CO, FL, GA, KY, OH, TN, TX" "Dakota Gasification Company","ND" "Eastman Chemical Company","TN" "Georgia-Pacific LLC","AL, GA, OK, VA, WI" "Holcim (US) Inc","AL, CO, MD, MO, MT, OK, SC, TX, UT" "NewPage Corporation","MD, MI, WI" "U S Steel Corporation","AL, IN, MI, MN"

17

MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANUFACTURING MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge) Manufacturing 332420 Other Metal Container Manufacturing 332439 Machine Shops 332710 Electroplating, Plating, Polishing, Anodizing, and Coloring 332813 Industrial valve Manufacturing 332911 Other Ordnance and Accessories Manufacturing 332995 All Other Miscellaneous Fabricated Metal Product Manufacturing

18

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Quality of Coal Received at Manufacturing and Coke Plants by Census Division and State" 3. Average Quality of Coal Received at Manufacturing and Coke Plants by Census Division and State" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State1",2013,2013,2012,,,"Change" "New England" " Btu",13323,13196,13391,13253,13339,-0.6 " Sulfur",0.84,0.89,0.72,0.87,0.72,20.3 " Ash",5.95,5.81,5.93,5.87,6.09,-3.6 "Maine" " Btu","w","w","w","w","w","w" " Sulfur","w","w","w","w","w","w" " Ash","w","w","w","w","w","w"

19

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Landfill Gas: Consumption for Useful Thermal Output, B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 993 0 116 0 876 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2010 January 118 0 83 30 5 February 110 0 79 27 5 March 132 0 94 32 6 April 131 0 93 33 6 May 132 0 92 34 6 June 139 0 104 30 5 July 140 0 102 33 5 August 132 0 95 32 5 September 148 0 113 30 5

20

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Coke: Consumption for Useful Thermal Output, B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 517 0 111 6 399 2003 763 0 80 9 675 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2010 January 92 0 10 1 81 February 93 0 10 1 82 March 84 0 12 1 71 April 76 0 9 1 66 May 84 0 10 0 75 June 93 0 8 0 86 July 89 0 8 0 80 August 87 0 2 1 84 September 82 0 2 1 79

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 193,120 57,296 105,416 227 30,182 2003 197,827 69,695 92,384 309 35,440 2004 245,389 116,086 90,747 259 38,297 2005 256,441 115,727 111,098 260 29,356 2006 246,687 102,117 98,314 269 45,987 2007 208,198 77,941 81,845 348 48,064 2008 180,034 64,843 79,856 280 35,055 2009 166,449 77,919 52,428 245 35,856 2010 173,078 94,331 41,090 340 37,317 2011 176,349 99,257 40,167 173 36,752 2012 144,266 60,862 24,925 353 58,126 2010 January 14,949 7,995 3,716 38 3,199

22

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Coal: Consumption for Electricity Generation and Useful Thermal Output, C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,005,144 767,803 209,703 1,405 26,232 2003 1,031,778 757,384 247,732 1,816 24,846 2004 1,044,798 772,224 244,044 1,917 26,613 2005 1,065,281 761,349 276,135 1,922 25,875 2006 1,053,783 753,390 273,246 1,886 25,262 2007 1,069,606 764,765 280,377 1,927 22,537 2008 1,064,503 760,326 280,254 2,021 21,902 2009 955,190 695,615 238,012 1,798 19,766 2010 1,001,411 721,431 253,621 1,720 24,638 2011 956,470 689,316 243,168 1,668 22,319 2012 845,066 615,467 208,085 1,450 20,065

23

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Landfill Gas: Consumption for Useful Thermal Output, E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 500 0 61 0 439 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2010 January 61 0 44 14 3 February 58 0 42 13 3 March 67 0 49 15 3 April 67 0 49 15 3 May 68 0 49 16 3 June 73 0 56 14 3 July 73 0 55 16 2 August 69 0 52 15 3 September 79 0 62 14 3 October 75 0 59 14 2

24

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Coal: Consumption for Useful Thermal Output, B. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 17,561 0 2,255 929 14,377 2003 17,720 0 2,080 1,234 14,406 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584 2012 19,333 0 2,790 1,143 15,400 2010 January 1,972 0 371 160 1,440 February 1,820 0 347 139 1,334 March 1,839 0 338 123 1,378 April 2,142 0 284 95 1,764

25

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Liquids: Consumption for Useful Thermal Output, E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 76,737 0 1,669 3,276 71,788 2003 85,488 0 6,963 3,176 75,349 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927 1,039 15,833 2012 18,233 0 5,871 746 11,616 2010 January 3,648 0 614 190 2,843 February 3,027 0 422 157 2,447 March 2,015 0 272 43 1,699

26

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 146,643 88,595 39,320 1,210 17,517 2003 189,260 105,319 62,617 1,394 19,929 2004 185,761 103,793 57,843 1,963 22,162 2005 185,631 98,223 63,546 1,584 22,278 2006 87,898 53,529 18,332 886 15,150 2007 95,895 56,910 24,097 691 14,198 2008 61,379 38,995 14,463 621 7,300 2009 51,690 31,847 11,181 477 8,185 2010 44,968 30,806 9,364 376 4,422 2011 31,152 20,844 6,637 301 3,370 2012 25,702 17,521 5,102 394 2,685 2010 January 6,193 4,381 1,188 48 576

27

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 682,060 0 9,585 727 671,747 2003 746,375 0 10,893 762 734,720 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357 1,064 856,620 2011 893,314 0 16,577 1,022 875,716 2012 883,158 0 19,251 949 862,958 2010 January 73,418 0 1,677 91 71,651 February 67,994 0 1,689 81 66,224

28

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 66,270 3,930 59,149 1,753 1,438 2004 70,489 5,373 60,929 2,098 2,089 2005 68,897 5,650 59,144 2,571 1,532 2006 77,004 8,287 64,217 3,937 563 2007 80,697 8,620 68,657 2,875 544 2008 94,768 10,242 81,300 2,879 346 2009 100,261 9,748 87,086 3,089 337 2010 106,681 10,029 93,405 3,011 236 2011 114,173 11,146 91,279 11,497 251 2012 125,927 12,721 101,379 10,512 1,315 2010 January 8,502 853 7,379 251 19 February 7,882 830 6,823 209 20

29

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Other Waste Biomass: Consumption for Useful Thermal Output, E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 29,854 0 10,655 757 18,442 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0 6,460 1,566 35,458 2012 46,863 0 6,914 1,796 38,153 2010 January 4,885 0 1,088 137 3,661 February 4,105 0 943 137 3,025 March 4,398 0 845 136 3,417 April 4,224 0 399 138 3,688

30

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Coke: Consumption for Useful Thermal Output, E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 14,395 0 3,192 179 11,024 2003 21,170 0 2,282 244 18,644 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012 38,777 0 3,281 315 35,181 2010 January 2,683 0 285 33 2,365 February 2,770 0 302 29 2,439 March 2,424 0 338 36 2,050 April 2,257 0 255 22 1,980

31

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 64,629 2,456 26,514 5,323 30,337 2004 49,443 2,014 21,294 6,935 19,201 2005 55,862 2,485 17,640 6,763 28,974 2006 54,693 2,611 16,348 6,755 28,980 2007 60,840 2,992 19,155 6,692 32,001 2008 66,139 3,409 22,419 5,227 35,085 2009 66,658 3,679 23,586 5,398 33,994 2010 77,150 3,668 22,884 5,438 45,159 2011 74,255 4,488 22,574 5,382 41,810 2012 77,205 4,191 22,654 5,812 44,548 2010 January 7,109 189 2,166 458 4,295 February 6,441 275 2,151 429 3,586

32

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,135,572 2,307,358 3,481,961 75,985 1,270,268 2003 6,498,549 1,809,003 3,450,177 60,662 1,178,707 2004 6,912,661 1,857,247 3,749,945 73,744 1,231,725 2005 7,220,520 2,198,098 3,837,717 69,682 1,115,023 2006 7,612,500 2,546,169 3,847,644 69,401 1,149,286 2007 8,181,986 2,808,500 4,219,827 71,560 1,082,099 2008 7,900,986 2,803,283 4,046,069 67,571 984,062 2009 8,138,385 2,981,285 4,062,633 77,077 1,017,390 2010 8,694,186 3,359,035 4,191,241 87,357 1,056,553

33

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 1,358 0 311 865 182 2004 2,743 0 651 1,628 464 2005 2,719 0 623 1,536 560 2006 2,840 0 725 1,595 520 2007 2,219 0 768 1,136 315 2008 2,328 0 806 1,514 8 2009 2,426 0 823 1,466 137 2010 2,287 0 819 1,316 152 2011 2,044 0 742 1,148 154 2012 1,986 0 522 1,273 190 2010 January 191 0 69 107 14 February 178 0 61 106 11 March 204 0 66 126 12 April 207 0 67 127 13 May 249 0 67 167 15 June 204 0 69 120 14 July 194 0 68 115 11

34

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 137,414 9,168 122,100 3,280 2,865 2004 146,018 11,250 126,584 4,091 4,093 2005 143,822 11,490 124,030 5,232 3,070 2006 162,084 16,617 136,632 7,738 1,096 2007 168,762 17,442 144,490 5,699 1,131 2008 196,802 20,465 170,001 5,668 668 2009 207,585 19,583 181,234 6,106 661 2010 219,954 19,975 193,623 5,905 451 2011 235,990 22,086 183,609 29,820 474 2012 259,564 25,193 204,753 27,012 2,606 2010 January 17,649 1,715 15,406 491 37 February 16,300 1,653 14,198 410 38

35

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,353 2,125 3,691 8 1,529 2003 7,067 2,554 3,245 11 1,257 2004 8,721 4,150 3,223 9 1,339 2005 9,113 4,130 3,953 9 1,020 2006 8,622 3,619 3,482 10 1,511 2007 7,299 2,808 2,877 12 1,602 2008 6,314 2,296 2,823 10 1,184 2009 5,828 2,761 1,850 9 1,209 2010 6,053 3,325 1,452 12 1,264 2011 6,092 3,449 1,388 6 1,248 2012 5,021 2,105 869 13 2,034 2010 January 525 283 130 1 110 February 497 258 131 1 106 March 522 308 119 1 94

36

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 13,694 0 3,118 8,858 1,718 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0 5,807 9,731 1,227 2012 16,310 0 4,180 10,615 1,515 2010 January 1,476 0 518 851 107 February 1,365 0 444 835 86 March 1,572 0 486 992 93 April 1,598 0 495 1,003 100

37

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Liquids: Consumption for Useful Thermal Output, B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 12,228 0 286 384 11,558 2003 14,124 0 1,197 512 12,414 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012 3,097 0 992 122 1,984 2010 January 606 0 105 31 470 February 504 0 78 26 401 March 335 0 46 7 281 April 355 0 86 9 260 May 340 0 93 14 232

38

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Natural Gas: Consumption for Useful Thermal Output, E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 885,987 0 267,675 45,359 572,953 2003 762,779 0 250,120 21,238 491,421 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001 486,274 2011 861,006 0 315,411 40,976 504,619 2012 909,087 0 330,354 48,944 529,788 2010 January 74,586 0 27,368 4,148 43,070 February 65,539 0 24,180 3,786 37,573

39

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 40,020 1,319 2,550 214,137 5,961 12,550 4,732 281,269 2003 38,249 5,551 1,828 200,077 9,282 19,785 3,296 278,068 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167 22,109 17,052 4,854 292,234 2009 38,015 5,341 1,445 190,875 19,830 17,625 5,055 278,187

40

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 18,477 2,600 143 36,265 0 6,902 4,801 69,188 2003 22,780 2,520 196 16,955 0 8,296 6,142 56,889 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155 25,902 0 8,450 5,761 61,420 2010 19,216 845 216 29,791 13 7,917 5,333 63,330 2011 17,234 687 111 24,848 14 7,433 5,988 56,314

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 912,218 553,390 243,561 7,229 108,031 2003 1,174,795 658,868 387,341 8,534 120,051 2004 1,156,763 651,712 358,685 11,763 134,603 2005 1,160,733 618,811 395,489 9,614 136,820 2006 546,529 335,130 112,052 5,444 93,903 2007 595,191 355,999 147,579 4,259 87,354 2008 377,848 242,379 87,460 3,743 44,266 2009 315,420 196,346 66,834 2,903 49,336 2010 273,357 188,987 55,444 2,267 26,660 2011 186,753 125,755 39,093 1,840 20,066 2012 153,189 105,179 29,952 2,364 15,695

42

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Natural Gas: Consumption for Useful Thermal Output, B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 860,024 0 263,619 41,435 554,970 2003 721,267 0 225,967 19,973 475,327 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769 46,324 473,683 2011 839,681 0 308,669 39,856 491,155 2012 886,103 0 322,607 47,883 515,613 2010 January 72,867 0 26,791 4,086 41,990

43

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Coal: Consumption for Useful Thermal Output, E. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 421,084 0 50,041 23,099 347,944 2003 416,700 0 47,817 28,479 340,405 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011 479,822 0 84,855 28,056 366,911 2012 420,923 0 58,275 23,673 338,975 2010 January 44,514 0 8,627 3,445 32,442 February 40,887 0 8,041 3,024 29,823

44

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,287,114 10,659 139,532 1,196 1,135,727 2003 1,265,669 16,545 150,745 1,199 1,097,180 2004 1,360,258 19,973 145,216 1,661 1,193,408 2005 1,352,582 27,373 157,600 1,235 1,166,373 2006 1,399,235 27,455 154,360 1,314 1,216,106 2007 1,335,511 31,568 154,388 2,040 1,147,516 2008 1,262,675 29,150 148,198 1,410 1,083,917 2009 1,136,729 29,565 150,481 1,408 955,276 2010 1,225,571 40,167 155,429 1,338 1,028,637 2011 1,240,937 35,474 146,684 1,504 1,057,275

45

UV Curable Coatings in Aluminum Can Production  

E-Print Network (OSTI)

based coatings. The Coors Brewing Company Can Manufacturing Plant has been utilizing this technology in full scale aluminum can production since 1975, and therefore has had the opportunity to evaluate practical operations of the UV technology...

Donhowe, E. T.

46

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 336,848 61,313 11,513 708,738 117,513 571,509 48,263 1,855,697 2003 333,361 68,329 16,934 610,122 110,263 632,366 54,960 1,826,335 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816 2008 315,244 29,554 18,263 509,330 110,680 610,131 23,729 1,616,931 2009 281,557 32,591 20,308 513,002 99,556 546,974 33,287 1,527,276

47

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 161,803 5,766 132,065 21,953 2,020 2004 161,567 3,705 129,562 25,204 3,096 2005 164,635 4,724 131,080 24,914 3,918 2006 168,716 4,078 135,127 25,618 3,893 2007 162,482 4,557 133,509 21,393 3,022 2008 166,723 4,476 136,080 26,108 59 2009 165,755 3,989 132,877 27,868 1,021 2010 162,436 3,322 130,467 27,509 1,138 2011 152,007 3,433 121,648 25,664 1,262 2012 152,045 3,910 117,598 28,923 1,614 2010 January 13,015 244 10,405 2,260 107

48

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Emissions from Energy Consumption at 1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2002 through 2012 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) 2002 2,423,963 10,881 5,194 2003 2,445,094 10,646 4,532 2004 2,486,982 10,309 4,143 2005 2,543,838 10,340 3,961 2006 2,488,918 9,524 3,799 2007 2,547,032 9,042 3,650 2008 2,484,012 7,830 3,330 2009 2,269,508 5,970 2,395 2010 2,388,596 5,400 2,491 2011 2,287,071 4,845 2,406 2012 2,156,875 3,704 2,148 Notes: The emissions data presented include total emissions from both electricity generation and the production of useful thermal output. See Appendix A, Technical Notes, for a description of the sources and methodology used to develop the emissions estimates.

49

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 22,554 695 18,611 2,952 296 2004 22,330 444 17,959 3,439 488 2005 22,089 560 17,655 3,289 584 2006 22,469 500 18,068 3,356 545 2007 21,796 553 17,885 2,921 437 2008 22,134 509 18,294 3,323 8 2009 22,095 465 17,872 3,622 137 2010 21,725 402 17,621 3,549 152 2011 19,016 388 15,367 3,103 158 2012 18,954 418 14,757 3,577 203 2010 January 1,737 30 1,402 291 14 February 1,562 25 1,276 250 11 March 1,854 36 1,500 306 12

50

Overview of Aluminum  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum Overview of Aluminum Overview of Aluminum Session Coordinator: Mark T. Smith Pacific Northwest National Laboratory VT Merit Review 2008 February 28, 2008 2 Overview of...

51

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

52

Laser Welding of Aluminum and Aluminum Alloys  

E-Print Network (OSTI)

.. ) Laser Welding of Aluminum and Aluminum Alloys Welds made with sharp bevel-groove weld aluminum and by aluminum alloy 5456 have been studied. The results indicate that initial absorption varies of the most dramatic illustrations of the differences in beam characteristics occurs when welding aluminum

Eagar, Thomas W.

53

Aluminum | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum Aluminum U.S. aluminum producers recognize that energy efficiency offers a competitive edge in world markets. The aluminum industry has worked with AMO to develop a range...

54

Aluminum foam, ALPORAS: The production process, properties and applications  

SciTech Connect

The production of foamed aluminum has long been considered difficult to realize because of such problems as the low foamability of molten metal, the varying size of cellular structures, solidification shrinkage and so on. Recently these problems have been solved by a number of researchers and some manufacturers produce foamed aluminum by their own methods. The authors have been employing a batch casting process and manufacturing foamed aluminum under the tradename ALPORAS{reg_sign} since 1986. This paper presents the manufacturing process, physical properties and some typical applications of ALPORAS.

Miyoshi, T.; Itoh, M. [Shinko Wire Co., Ltd., Amagasaki (Japan); Akiyama, S.; Kitahara, A. [Kyushu National Industrial Research Inst., Tosu (Japan). Material Engineering Dept.

1998-12-31T23:59:59.000Z

55

E-Print Network 3.0 - aluminum powder mixtures Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

4210: Manufacturing Processes and Engineering Summary: .S. Colton GIT 2009 17 12;Compacting Pressures for Various Metal Powders P Metal Pressure (MPa) Aluminum... Metal Powder...

56

An optimal replacement problem in aluminum production  

E-Print Network (OSTI)

The aluminum production facility operated by ALCOA in Rockdale, Texas produces aluminum in a continuous manufacturing environment using steel carbon-lined smelting pots. As a result of the production process of running electricity through an electrolytic... technique known as dynamic programming, the minimum expected cost can be determined for a finite horizon Markov decision problem. This was accomplished using value iteration, a computer program written in C language, and data obtained from ALCOA...

Spanks, Lisa Marie

1992-01-01T23:59:59.000Z

57

Spray Rolling Aluminum Strip  

SciTech Connect

Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

2006-05-10T23:59:59.000Z

58

Manufacturing consumption of energy 1994  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

59

New Process for Grain Refinement of Aluminum. Final Report  

SciTech Connect

A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

Dr. Joseph A. Megy

2000-09-22T23:59:59.000Z

60

Manufacturing News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Quantitative Evaluation of Bulk and Interface Microstructures in Al-3003 Alloy Builds Made by Very High Power Ultrasonic Additive Manufacturing  

Science Journals Connector (OSTI)

Ultrasonically consolidated 3003 aluminum alloy builds were prepared with constituent tapes by using a very high power ultrasonic additive manufacturing (UAM) process. Microstructures of interface and...

Hiromichi T. Fujii; M. R. Sriraman…

2011-12-01T23:59:59.000Z

62

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

63

Additive Manufacturing: Implications on Research and Manufacturing  

E-Print Network (OSTI)

Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

Crawford, T. Daniel

64

Additive Manufacturing : Changing the Rules of Manufacturing  

Science Journals Connector (OSTI)

Aspects of 3D printing and additive or layer manufacturing can be treated as modular manufacturing or modular components of manufacturing in the contemporary sense. Such modular manufacturing involves specialized...

2014-06-01T23:59:59.000Z

65

EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries, 1998,  

Gasoline and Diesel Fuel Update (EIA)

e e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 417 444 526 312 Beverage and Tobacco Product Manufacturing 114 128 144 313 Textile Mills 57 45 38 314 Textile Product Mills 31 30 32 315 Apparel Manufacturing 63 40 26 316 Leather and Allied Product Manufacturing 10 6 6 321 Wood Product Manufacturing 91 88 111 322 Paper Manufacturing 153 151 167 323 Printing and Related Support Activities 99 95 99 324 Petroleum and Coal Products Manufacturing 135 212 530 325 Chemical Manufacturing 407 444 639 326 Plastics and Rubber Products Manufacturing 162 169 208 327 Nonmetallic Mineral Product Manufacturing 91 94 126 331 Primary Metal Manufacturing 166 139 230 332 Fabricated Metal Product Manufacturing

66

Climate VISION: Private Sector Initiatives: Aluminum: Resources...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Aluminum Association The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum...

67

ITP Aluminum: Aluminum Industry Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

68

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

69

Manufacturing Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

70

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

71

Green Manufacturing  

SciTech Connect

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31T23:59:59.000Z

72

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - Release date: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17 percent from 2002 to 2010 (Figure 1), according to data from the U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS). line chart:air conditioning in U.S. Manufacturing gross output decreased by only 3 percent over the same period. Taken together, these data indicate a significant decline in the amount of energy used per unit of gross manufacturing output. The significant decline in energy intensity reflects both improvements in energy efficiency and changes in

73

Aluminum-Catalyzed Intramolecular Hydroamination of Aminoalkenes  

E-Print Network (OSTI)

Aluminum-catalyzed intramolecular hydroamination ofgroup 13 metals such as aluminum are exceedingly inexpensive

Koller, Juergen

2011-01-01T23:59:59.000Z

74

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

75

Aluminum monocarbonyl and aluminum isocarbonyl Steve S. Wesolowski,a)  

E-Print Network (OSTI)

Aluminum monocarbonyl and aluminum isocarbonyl Steve S. Wesolowski,a) T. Daniel Crawford,b) Justin of the aluminum monocarbonyl species AlCO and AlOC have been performed to predict the geometries, fragmentation, Ogden, and Oswald6 first isolated aluminum dicarbonyls in solid krypton and identified the species

Crawford, T. Daniel

76

U.S. Energy Requirements for Aluminum Production | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultrahigh-Efficiency Aluminum Production Cells ITP Aluminum: Aluminum Industry Technology Roadmap ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a...

77

DEFLECTION MEASUREMENTS OF 25 mm ALUMINUM COLLARS  

E-Print Network (OSTI)

MEASUREMENTS OF 25 mm ALUMINUM COLLARS· C. Peters LawrenceMEASUREMENTS OF 25 mm ALUMINUM COLLARS" C. Peters Lawrenceinch thick 7075- T6 aluminum alloy plate. Inside corners

Peters, C.

2010-01-01T23:59:59.000Z

78

The President's Manufacturing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

79

Metrics for Sustainable Manufacturing  

E-Print Network (OSTI)

a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

80

Advanced Manufacturing Office Overview  

Energy.gov (U.S. Department of Energy (DOE))

Overview presentation by the Advanced Manufacturing Office for the Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Additive Manufacturing Technology Assessment  

Office of Environmental Management (EM)

subtractive manufacturing 41 methods 1. Additive manufacturing is also called as 3D printing, 42 additive fabrication, or freeform fabrication. These new 43 techniques, while...

82

Regeneration of aluminum hydride  

DOE Patents (OSTI)

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan (Mastic, NY); Reilly, James J. (Bellport, NY)

2009-04-21T23:59:59.000Z

83

ITP Aluminum: Inert Anodes Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

Aluminum is one of the most versatile materials available today that can meet the demanding requirements of tomorrow's products.

84

Additive Manufacturing Technologies  

Science Journals Connector (OSTI)

Rapid Prototyping is the construction of complex three-dimensional parts using additive manufacturing technology.

Jürgen Stampfl; Markus Hatzenbichler

2014-01-01T23:59:59.000Z

85

Enhanced performance CCD output amplifier  

DOE Patents (OSTI)

A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

Dunham, Mark E. (Los Alamos, NM); Morley, David W. (Santa Fe, NM)

1996-01-01T23:59:59.000Z

86

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

87

Aluminum battery alloys  

DOE Patents (OSTI)

Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, D.S.; Scott, D.H.

1984-09-28T23:59:59.000Z

88

Aluminum battery alloys  

DOE Patents (OSTI)

Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, David S. (Richmond, VA); Scott, Darwin H. (Mechanicsville, VA)

1985-01-01T23:59:59.000Z

89

ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum...  

Energy Savers (EERE)

Energy and Environmental Profile of the U.S. Aluminum Industry aluminum.pdf More Documents & Publications ITP Aluminum: Technical Working Group on Inert Anode Technologies...

90

Differences of growth response to aluminum excess of two Melaleuca trees differing in aluminum resistance  

E-Print Network (OSTI)

M, Yamanoshita T, Kojima K. , Role of aluminum-bindingligands in aluminum resistance of Eucalyptus camaldulensissoils, low pH and excess aluminum are the primary factors

Houman, Yoshifumi; Tahara, Ko; Shinmachi, Fumie; Noguchi, Akira; Satohiko, Sasaki; Hasegawa, Isao

2009-01-01T23:59:59.000Z

91

CIRP International Conference on Life Cycle Engineering, Leuven, May 31 Electrical Energy Requirements for Manufacturing Processes  

E-Print Network (OSTI)

into a single plot. The analysis is cast in an exergy framework. The results show: 1) the specific energy. Keywords Energy, Exergy, Manufacturing Processes 1 INTRODUCTION Manufacturing processes include a wide Inputs and Outputs for Manufacturing Processes. 2 EXERGY FRAMEWORK In attempting to account for the many

Gutowski, Timothy

92

Laser Technology: Additive Manufacturing  

Science Journals Connector (OSTI)

Selective Laser Sintering, and in general Additive Manufacturing Processes are becoming mature technologies; in the ... systems that are even utilized for direct parts manufacturing. However, the parts final user...

Srichand Hinduja; Lin Li

2013-01-01T23:59:59.000Z

93

The Advanced Manufacturing Partnership  

E-Print Network (OSTI)

;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

Das, Suman

94

Aluminum Carbothermic Technology  

SciTech Connect

This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major accomplishments for the program include definition of the system thermo-chemistry, demonstration of reactor stage 1, development of reactor stage 2 critical components in a 500 kW module, experimental determination of the vapor recovery reactor fundamentals, detailed design and installation of an advanced stage 1/vapor recovery reactor, feasibility of efficient separation of Al-C metal alloy product, updated capital and operating cost estimates, and development of computer models for all steps of the Advanced Reactor Process.

Bruno, Marshall J.

2005-03-31T23:59:59.000Z

95

Manufacturing Innovation Topics Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

96

Possible Reasons Why Aluminum is a Beneficial Element for Melastoma malabathricum, an Aluminum Accumulator  

E-Print Network (OSTI)

of adaptation to high aluminum condition in native plantit has been well known that aluminum (Al) toxicity restricts

Watanabe, Toshihiro; Osaki, Mitsuru

2009-01-01T23:59:59.000Z

97

Modeling Texture Evolution during Recrystallization in Aluminum  

E-Print Network (OSTI)

Modeling Texture Evolution during Recrystallization in Aluminum Abhijit Brahme1,2 , Joseph Fridy3, Aluminum, Grain Boundary Mobility, Nucleation, Oriented Growth, Oriented Nucleation, Stored Energy, Monte Carlo Modeling. #12;Modeling Texture Evolution during Recrystallization in Aluminum 2 1. Introduction

Rollett, Anthony D.

98

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

99

Enabling Manufacturing Research through Interoperability  

E-Print Network (OSTI)

sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

2009-01-01T23:59:59.000Z

100

More Aluminum due by 1968  

Science Journals Connector (OSTI)

Two more primary aluminum producers are promising more capacity to a hungry aluminum market. Anaconda will build a new potline at its reduction plant at Columbia Falls, Mont., and Reynolds Metals is planning four new ones in the Northwest.These ...

1966-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CIMplementation™: Evaluating Manufacturing Automation  

E-Print Network (OSTI)

in the manufacturing organization if CIMplementation~* is to succeed. 1.0 INTRODUCTION There is much discussion today about Com puter Integrated Manufacturing (CIM). Automation tools like Computer Aided Design (CAD) systems, robots, automated material handling...~ Pressing the frontier of technology in one's own manufactur ing facility will not be without its pitfalls. Second, while automation engineers may be able to piece together the technological pieces of a CIM system, they cannot and do not evaluate...

Krakauer, J.

102

Manufacturing Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers http:energy.goveeresuccess-storiesarticles...

103

Acoustics by additive manufacturing:.  

E-Print Network (OSTI)

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance… (more)

Setaki, F.

2012-01-01T23:59:59.000Z

104

Contribution to Nanotechnology Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning...

105

Manufacturing Demonstration Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is key to stroke recovery * Additive manufacturing allows custom fit glove device using brain machine interface to retrain movement * Gloves are light-weight, low cost and...

106

SSL Manufacturing Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

107

Clean Energy Manufacturing Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing technologies for cleaner energy generation, distribution, and use represents an important opportunity for U.S. economic growth, energy security, and accelerated innovation. Likewise,...

108

Aluminum Zintl anion moieties within sodium aluminum clusters  

SciTech Connect

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup ?}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)] [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States)] [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

2014-02-07T23:59:59.000Z

109

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

110

EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW  

E-Print Network (OSTI)

6th EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW FORMING FOR AUTOMOTIVE CLOSURE PANEL Replacement by aluminum for the closure panels is one of the common methods for lightening car body. However. As a solution to cover the low stamping formability of aluminum, Blow forming technology of aluminum which

Paris-Sud XI, Université de

111

Catalyst Manufacturing Science and  

E-Print Network (OSTI)

Catalyst Manufacturing Science and Engineering Consortium (CMSEC) Rutgers University New Jersey, U, automotive, and energy industries makes and/or uses catalysts, there has been no academic program focusing on the operations required to make catalytic materials. Thus, catalyst manufacturing processes are often designed

112

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools Aluminum Industry of the Future Tools & Publications ITP offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the aluminum industry. DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to better understand (a) the cost of all energy sources supplied to the plant,

113

Digital Additive Manufacturing: From Rapid Prototyping to Rapid Manufacturing  

Science Journals Connector (OSTI)

The emergence of stereolithography in 1998 is a milestone for an entirely new class of layer-based manufacturing processes. This new manufacturing approach which allows direct digital manufacturing from CAD to a ...

K. K. B. Hon

2007-01-01T23:59:59.000Z

114

Solar Manufacturing Technology 2  

Energy.gov (U.S. Department of Energy (DOE))

The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds ten photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost of manufacturing and implementing efficiency-increasing technology in manufacturing processes.

115

Aluminum across the Americas: Caribbean Mobilities and Transnational American Studies  

E-Print Network (OSTI)

E. Jamaica in the World Aluminum Industry, 1838–1973, Vol.2007. Doordan, Dennis. “Promoting Aluminum: Designers andthe American Aluminum Industry. ” Design Issues 9, no. 2 (

Sheller, Mimi

2013-01-01T23:59:59.000Z

116

Aluminum-detoxifying compounds in roots of Eucalyptus camaldulensis  

E-Print Network (OSTI)

M, Yamanoshita T, Kojima K, Role of aluminum-bindingligands in aluminum resistance of Eucalyptus camaldulensisH, Sasaki S, Kojima K. Aluminum distribution and reactive

Tahara, Ko; Hashida, Koh; Ohara, Seiji; Kojima, Katsumi; Shinohara, Kenji

2009-01-01T23:59:59.000Z

117

Economic Input?Output Life-Cycle Assessment of Trade Between Canada and the United States  

Science Journals Connector (OSTI)

We use an economic input?output life-cycle assessment (EIO-LCA) technique to estimate the economy-wide energy intensity and greenhouse gas (GHG) emissions intensity for 45 manufacturing and resource sectors in Canada and the United States. ... Support?Activities?for?Agriculture ...

Jonathan Norman; Alex D. Charpentier; Heather L. MacLean

2007-01-23T23:59:59.000Z

118

Using input-output techniques to address economic and energy issues in Malaysia  

E-Print Network (OSTI)

activities. Expand the basic activity: manufacturing into two activities: 1) high energy intensity 2) low energy intensity Assume they have equal share of output and their input structure is similar: Then assume? Assume electricity intensity: · high energy intensity 1.4 · low energy intensity 0.4 Now calculate

119

Innovative Manufacturing Initiative Project Selections  

Office of Energy Efficiency and Renewable Energy (EERE)

The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

120

Laser Additive Manufacturing of Metals  

Science Journals Connector (OSTI)

Laser Additive Manufacturing (LAM) is based on a repeating layer wise manufacturing process which uses a laser beam to ... ) geometries into simpler two-dimensional (2D) manufacturing steps [1, 2...]. Thus LAM of...

Claus Emmelmann; Jannis Kranz; Dirk Herzog; Eric Wycisk

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Metal Additive Manufacturing: A Review  

Science Journals Connector (OSTI)

This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, o...

William E. Frazier

2014-06-01T23:59:59.000Z

122

Innovations in Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

123

Development of Additive Manufacturing Technology  

Science Journals Connector (OSTI)

Additive Manufacturing (AM) technology came about as a ... of different technology sectors. Like with many manufacturing technologies, improvements in computing power and reduction...

Dr. Ian Gibson; Dr. David W. Rosen…

2010-01-01T23:59:59.000Z

124

Additive Manufacturing for Mass Customization  

Science Journals Connector (OSTI)

Additive manufacturing (AM) is a disruptive manufacturing technology that requires no tooling for production....additively build parts from numerous materials, including polymers, metals and ceramics. Within this...

Phil Reeves; Chris Tuck; Richard Hague

2011-01-01T23:59:59.000Z

125

Additive Manufacturing for Large Products.  

E-Print Network (OSTI)

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the… (more)

Leirvåg, Roar Nelissen

2013-01-01T23:59:59.000Z

126

Sandia National Laboratories: wind manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

127

Scaleable Clean Aluminum Melting Systems  

SciTech Connect

The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

Han, Q.; Das, S.K. (Secat, Inc.)

2008-02-15T23:59:59.000Z

128

Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites  

E-Print Network (OSTI)

) ) Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites by R. Kiehn and T. W................... .. ....... ... ... 3 Literature Review ......... ...... ..... ... . . 3 Conventional Aluminum Brazing ........ 4 Aluminum Composite Joining ........... 5 Aluminum Joining by Unconventional Methods

Eagar, Thomas W.

129

Electrolyzer Manufacturing Progress and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

130

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide,  

E-Print Network (OSTI)

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide, Self-regulating phenomena in materials science: Self-assembly of nanopores during anodic oxidation of aluminum (AAO) Self combined anodic aluminum oxide (AAO) nanostructures with atomic layer deposition (ALD) to fabricate

Rubloff, Gary W.

131

NW Aluminum Industry Study (contracts/subscription)  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscription Contracts Announcements Subscription Strategy Subscription Products Aluminum Study IOUPublic Settlement Slice of the System Billing Procedures Firstgov Northwest...

132

Advanced Manufacture of Reflectors  

Energy.gov (U.S. Department of Energy (DOE))

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

133

Aluminum in Superconducting Magnets Robert J. Weggel  

E-Print Network (OSTI)

Aluminum in Superconducting Magnets Robert J. Weggel Magnet Optimization Research Engineering is aluminum, either ultrapure, as quenchstabilization matrix metal, and/or alloyed and coldworked and heat for magnets in which the stresses and strains are modest. The strongest aluminum alloy commercially available

McDonald, Kirk

134

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network (OSTI)

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J. We present Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios

Dougherty, Daniel J.

135

Aluminum--2004 5. Areferencethatincludesasectionmark()isfoundintheinternet  

E-Print Network (OSTI)

Aluminum--2004 5. Areferencethatincludesasectionmark(§)isfoundintheinternet ReferenceCitedsection. Aluminum ByPatriciaA.Plunkert Domestic survey data and tables were prepared by Benjamin S. Goff.S.GeologicalSurvey(uSGS)requestforproductiondata. CommercialDevelopmentCo.(CDC)ofSt.louis,mO, boughtKaiserAluminumCorp.'s200,000-metric-ton-per-year (t

136

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network (OSTI)

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios and backtracking. It also

Krishnamurthi, Shriram

137

MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan  

E-Print Network (OSTI)

MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan D. Kalyon S. Kovenklioglu Stevens Picatinny Arsenal's process for making alumina coated nanoparticles of aluminum involves the conversion of gaseous aluminum, in the presence of helium carrier gas, to solid nanoparticles and their subsequent

138

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

139

Advanced Drivetrain Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy.

140

Innovations in Manufacturing  

Science Journals Connector (OSTI)

...competition from steam engines and water...Century ofthe Steam Engine is a classic...of the American System of Manufactures...general-purpose machine tools, interchangeable...spe-cialized machine tools, and were con-fined...note that if the system was con-fined...Nel-son provides an assessment of working conditions...

THOMAS WEISS

1983-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

142

Transformational Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

143

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

144

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

145

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

146

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

147

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

148

Complex foamed aluminum parts as permanent cores in aluminum castings  

SciTech Connect

The feasibility of complex shaped aluminum foam parts as permanent cores in aluminum castings has been investigated. The foamed samples were prepared by injection of the foam into sand molds. It turned out that sound castings can be produced if the foam core is properly preheated and/or surface treated before casting. The effect of the foam core on the performance of the casting was evaluated by in compression testing and by measuring structural damping. The gain in the related properties turned out to be much higher than the weight increase of the casting due to the presence of the core. The weight increase may be partially offset through a reduction of the wall-thickness of the shell.

Simancik, F. [Inst. of Materials and Machine Mechanics, Bratislava (Slovakia); Schoerghuber, F. [Illichmann GmbH, Altmuenster (Austria)

1998-12-31T23:59:59.000Z

149

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network (OSTI)

that convert hydrogen into electric energy, (2) hydrogen storage systems, and (3) large-scale hydrogen and prioritize topics for public-private R&D on manufacturing hydrogen storage system components. ScopeManufacturing for the Hydrogen Economy Manufacturing Research & Development of Onboard Hydrogen

150

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

151

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2012 (EIA)

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

152

Leveraging Manufacturing for a Sustainable Future  

E-Print Network (OSTI)

2010): “Sustainable Manufacturing – Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as “the creation of manufacturing products that use materials and processes

Dornfeld, David

2011-01-01T23:59:59.000Z

153

Establishing Greener Products and Manufacturing Processes  

E-Print Network (OSTI)

D. , “Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

154

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network (OSTI)

mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

Dornfeld, David

2010-01-01T23:59:59.000Z

155

Establishing Greener Products and Manufacturing Processes  

E-Print Network (OSTI)

D. , Sustainable Manufacturing – Greening Processes, Systemsor impact low Most  sustainable Increase process efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

156

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Alliance of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers...

157

Precision and Energy Usage for Additive Manufacturing  

E-Print Network (OSTI)

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

158

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

159

Manufacturing Science and Technology: Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Operations Machining Operations Machining Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing & Systems Development Visiting Us AMTTP Center Organizational chart Organizations Our Business areas Manufacturing Science and Technology David Plummer, Director Manufacturing Enterprise Joe M. Harris, Senior Manager Machining Operations Mathew Donnelly, Manager Machining Services Daryl Reckaway, Acting Manager Electronic Fabrication Phillip L. Gallegos, Manager Manufacturing Process Science and Technology Mark F. Smith, Senior Manager Thin Film, Vacuum, and Packaging Mark F. Smith, Acting Manager Organic Materials Mike Kelly, Manager Ceramic and Glass Alex Roesler, Manager

160

Production of anhydrous aluminum chloride composition  

DOE Patents (OSTI)

A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

1981-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum  

E-Print Network (OSTI)

Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum Silicate, Magnesium Silicate, Magnesium Trisilicate, Sodium Magnesium Silicate, Zirconium Silicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Lithium Magnesium Silicate, Lithium Magnesium

Ahmad, Sajjad

162

Advanced Manufacturing Office: Motor Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

163

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

164

Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs  

E-Print Network (OSTI)

Anisotropic grid–adaptive strategies are presented for viscous flow simulations in which the accurate prediction of multiple aerodynamic outputs (such as the lift, drag, and moment coefficients) is required from a single ...

Venditti, David A.

165

Nd:YAG laser welding aluminum alloys  

SciTech Connect

Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

Jimenez, E. Jr.

1992-02-01T23:59:59.000Z

166

Aluminum-stabilized NB3SN superconductor  

DOE Patents (OSTI)

An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

Scanlan, Ronald M. (Livermore, CA)

1988-01-01T23:59:59.000Z

167

Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions Brookhaven National Laboratory Contact BNL About This...

168

Faculty Position in Mechanical Engineering Additive Manufacturing  

E-Print Network (OSTI)

Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

169

Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components  

E-Print Network (OSTI)

Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

Wisconsin at Madison, University of

170

Plumbing Manufacturer's Institute Ex Parte Communication Regarding...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department...

171

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

172

iCons, 2011 Alzheimers and Aluminum: Lesson Plan  

E-Print Network (OSTI)

© iCons, 2011 Alzheimers and Aluminum: Lesson Plan Handouts to explore mechanistic link between Alzheimer's and aluminum 5. Brief proposal expanding Points to Aluminum's Link With Alzheimer's Disease" from 1989. Provide handout

Auerbach, Scott M.

173

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

174

DOE - Office of Legacy Management -- Hunter Douglas Aluminum...  

Office of Legacy Management (LM)

Hunter Douglas Aluminum Plant Div of Bridgeport Brass Co - CA 11 FUSRAP Considered Sites Site: HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT BRASS CO. (CA.11 ) Eliminated from...

175

Magnesium Replacement of Aluminum Cast Components in a Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Magnesium Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a...

176

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN  

E-Print Network (OSTI)

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN A THESISSUBMITTEDTO THE GRADUATE Section(1994)cruiseswere analyzed for their aluminum (Al) content; these two data setswere then combined

Luther, Douglas S.

177

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum (DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

178

Ultrahigh-Efficiency Aluminum Production Cells | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultrahigh-Efficiency Aluminum Production Cells Ultrahigh-Efficiency Aluminum Production Cells ultrahi-effaluminum.pdf More Documents & Publications U.S. Energy Requirements for...

179

NAO Climatology: ROMS output is saved once every 3 days and written to an output file  

E-Print Network (OSTI)

NAO Climatology: ROMS output is saved once every 3 days and written to an output file every 6 days Output after 30 days in 6th file. The Starting Month = July Example: roms_low_his_levts0570dg.0120.nc.gz : July 3 roms_low_his_levts0570dg.0122.nc.gz : July 6 and July 9 roms_low_his_levts0570dg.0124.nc

Gangopadhyay, Avijit

180

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Machining PDF format (236 kb) MS&T's machining group consists of two departments: Manufacturing Processing, and Manufacturing Processes and Services. The two departments team to build, procure, and assemble unique prototype and production hardware with diverse quality requirements. The in-house capability can manufacture hardware ranging from microscopic to proportions measured in feet and tons. The group's outside contacts and resources are almost boundless. This team's expertise includes: precision machining, welding, fabrication and assembly, aircraft quality sheet metal construction, and explosives machining and assembly. The department can manage a variety of activities: design modifications, in-house fabrication, outside shop selection and surveillance and manufacturing records management.

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High Pressure Hydrogen Tank Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

182

ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

183

Electrolyzer Manufacturing Progress and Challenges  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

184

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

185

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

186

Climate VISION: Private Sector Initiatives: Aluminum  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements Aluminum Association Logo The Aluminum Association and its members participating in the Voluntary Aluminum Industry Partnership (VAIP), representing 98% of primary aluminum production in the United States, have committed under the Climate VISION program to a direct carbon intensity reduction of emissions of perfluorocarbons (PFCs) and of emissions of CO2 from the consumption of the carbon anode from the primary aluminum reduction process. The Climate VISION target is a 53% total carbon equivalent reduction from these sources by 2010 from 1990 levels. The industry has been working to reduce greenhouse gas emissions for over a decade and this new commitment equates to an additional direct carbon-intensity reduction of 65% since 2000. As a

187

Gating of Permanent Molds for ALuminum Casting  

SciTech Connect

This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

David Schwam; John F. Wallace; Tom Engle; Qingming Chang

2004-03-30T23:59:59.000Z

188

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network (OSTI)

Manufacturing for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

189

Boosting America's Hydropower Output | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boosting America's Hydropower Output Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado.

190

PV output smoothing with energy storage.  

SciTech Connect

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

191

PREDICTION OF LOW-CYCLE FATIGUE-LIFE BY ACOUSTIC EMISSION. PART 1: 2024-T3 ALUMINUM ALLOY PART 2: ALCLAD 7075-T6/ ALUMINUM ALLOY  

E-Print Network (OSTI)

low-cycle fatigue life of Aluminum sheet alloys by acoustictoughness of structural aluminum alloys. Fracture . Fracturetoughness of structural aluminum alloys, Eng. Fracture Mech.

Baram, J.

2013-01-01T23:59:59.000Z

192

Demand Activated Manufacturing Architecture  

SciTech Connect

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

193

Gesture output: eyes-free output using a force feedback touch surface  

Science Journals Connector (OSTI)

We propose using spatial gestures not only for input but also for output. Analogous to gesture input, the proposed gesture output moves the user's finger in a gesture, which the user then recognizes. We use our concept in a mobile scenario where a motion ... Keywords: eyes free, force feedback, gestures, touch

Anne Roudaut; Andreas Rau; Christoph Sterz; Max Plauth; Pedro Lopes; Patrick Baudisch

2013-04-01T23:59:59.000Z

194

Petrick Technology Trends Of Manufacturing  

E-Print Network (OSTI)

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: � that firms sophisticated modeling and simulation of both new products and production processes; � that additive

195

Design for manufacturability Design verification  

E-Print Network (OSTI)

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

196

Economic impacts and challenges of China’s petroleum industry: An input–output analysis  

Science Journals Connector (OSTI)

It is generally acknowledged that the petroleum industry plays an important role in China’s national economic and social development. The direct, indirect, and induced impacts of China’s petroleum industry are analyzed in this study by using the Input–Output approach. The study also considers the main challenges that China’s economy might face in the future. The research results suggest the following: (1) The total economic impacts coefficients on output, given each unit of final demands change in extraction of petroleum and processing of petroleum, are 1.9180 and 3.2747 respectively, and the corresponding economic impacts coefficients on GDP are 1.0872 and 0.9001 respectively; (2) Extraction of petroleum has a more direct impact on GDP, while processing of petroleum has a greater effect on the total output; (3) Extraction of petroleum’s total economic impacts coefficients on both output and GDP have remained stable in recent years after a period of long decline; processing of petroleum’s total economic impacts coefficient on output is steadily increasing; (4) Import uncertainty, the likelihood of rising oil prices, and net oil exports caused by items manufactured with petroleum products (i.e. “Made in China” goods) are the main challenges the petroleum industry will cause for China’s overall economy.

Tang Xu; Zhang Baosheng; Feng Lianyong; Marwan Masri; Afshin Honarvar

2011-01-01T23:59:59.000Z

197

Manufacturing Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

198

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

199

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

200

Manufacturing Data | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Data Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Manufacturing Data These Federal datasets contain a wealth of information for manufacturing - either from information in a single dataset or by combining data from more than one place. This site will be enhanced with the addition of new datasets, and new apps using these datasets, as they are developed. Search Terms Category -Any- Geospatial Items per page 25 50 100 Apply Name Downloads Rating TradeStats Express TradeStats Express provides statistics on U.S. merchandise trade at the national and state levels. Data can also be displayed in maps, graphs, tables, or as exports, imports, and trade balances.... Data Extraction

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Characterization of porous GASAR aluminum  

SciTech Connect

Experimental and numerical analyses were performed on porous aluminum samples to evaluate microstructure and mechanical properties. Experiments considered of tensile tests on dog-bone specimens containing 9 to 17% porosity, which were instrumented with axial and transverse extensometers. Properties measured included Young`s modulus, Poisson`s ratio remained constant with porosity., For the numerical simulations, 3-D, mesoscale, multilayer models were constructed to evaluate the effects of pore morphology and interactions on material properties. The models allowed systematic spatial positioning of the pore within the cell and the ability to form solid zones. Pore arrangement, the effect of constraint, and gradients on the stress state were investigated. By using different combinations of hex cells as building blocks, several complicated microstructural arrangements were simulated.

Bonenberger, R.J. [FM Technologies, Inc., Fairfax, VA (United States); Kee, A.J. [Geo-Centers, Inc., Fort Washington, MD (United States); Everett, R.K.; Matic, P. [Naval Research Lab., Washington, DC (United States)

1998-12-31T23:59:59.000Z

202

Single Inductor Dual Output Buck Converter  

E-Print Network (OSTI)

of value 3V. The main focus areas are low cross regulation between the outputs and supply of completely independent load current levels while maintaining desired values (1.2V,1.5 V) within well controlled ripple levels. Dynamic hysteresis control is used...

Eachempatti, Haritha

2010-07-14T23:59:59.000Z

203

Bioenergy technology balancing energy output with environmental  

E-Print Network (OSTI)

E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John standards #12;Is it right to grow bioenergy? Or How much bioenergy production is right? #12;Historical bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy

Levi, Ran

204

Modeling Multi Output Filtering Effects in PCMOS  

E-Print Network (OSTI)

Modeling Multi Output Filtering Effects in PCMOS Anshul Singh*, Arindam Basu, Keck-Voon Ling, Nanyang Technological University (NTU), Singapore *NTU-Rice Institute of Sustainable and Applied Infodynamics (ISAID), NTU, Singapore $School of Computer Engineering, NTU, Singapore §School of ECE, Georgia

Mooney, Vincent

205

Title Slide "The broadband acoustic output of  

E-Print Network (OSTI)

Title Slide "The broadband acoustic output of marine seismic airgun sources" Les Hatton CISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #12;Seismic sources ­ marine airguns Introduction Modelling Marine Life Impact Where next Overview #12 Normal speed surface movie of airgun firing Courtesy IO limited #12;Seismic sources ­ marine airguns

Hatton, Les

206

Decontamination and reuse of ORGDP aluminum scrap  

SciTech Connect

The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

1996-12-01T23:59:59.000Z

207

Quick Plastic Forming of Aluminum Sheet Metal  

NLE Websites -- All DOE Office Websites (Extended Search)

General Motors' President North America, Gary Cowger, General Motors' President North America, Gary Cowger, reviews the 2004 Chevy Malibu Maxx after introducing it to the media at the New York Auto Show. (photo courtesy of General Motors) Quick Plastic Forming of Aluminum Sheet Metal Background Aluminum automotive components made using a hot blow forming process are reducing vehicle weight and increasing the fuel efficiency of today's cars. However, before General Motors (GM) and the U.S. Department of Energy (DOE) sponsored research in this technol- ogy, blow forming of aluminum was not a viable process for automakers. The prior blow forming process,

208

Formulation and method for preparing gels comprising hydrous aluminum oxide  

SciTech Connect

Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

Collins, Jack L.

2014-06-17T23:59:59.000Z

209

Aluminum hydroxide and hydrogen produced by water electrolysis  

Science Journals Connector (OSTI)

Thermodynamic and kinetic peculiarities of the water electrolysis in a reactor with aluminum electrodes are...

R. R. Salem

2009-11-01T23:59:59.000Z

210

ALUMINUM--2001 6.1 By Patricia A. Plunkert  

E-Print Network (OSTI)

ALUMINUM--2001 6.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 2001, 11 domestic companies operated 23 primary aluminum reduction plants in the Pacific Northwest, and low metal prices led several aluminum smelters to continue to reduce production

211

ALUMINUM--1998 5.1 By Patricia A. Plunkert  

E-Print Network (OSTI)

ALUMINUM--1998 5.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 1998, 13 domestic companies operated 23 primary aluminum reduction plants to be $5.4 billion. Aluminum recovered from purchased scrap decreased to approximately 3.4 million tons

212

ALUMINUM--1999 5.1 By Patricia A. Plunkert  

E-Print Network (OSTI)

ALUMINUM--1999 5.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 1999, 12 domestic companies operated 23 primary aluminum reduction plants to be $5.5 billion. During the year, two proposed mergers that involved five major aluminum companies were

213

ALUMINUM--2000 6.1 By Patricia A. Plunkert  

E-Print Network (OSTI)

ALUMINUM--2000 6.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 2000, 12 domestic companies operated 23 primary aluminum reduction plants to be $6 billion. Increased energy costs, particularly in the Pacific Northwest, led several aluminum

214

UNIVERSITY of CALIFORNIA ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE  

E-Print Network (OSTI)

UNIVERSITY of CALIFORNIA SANTA CRUZ ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE A thesis submitted deposition (ALD) of aluminum oxide on crystalline silicon and anodized aluminum substrates. A homemade ALD system is used with trimethylaluminum (TMA) and water as precursors to deposit uniform aluminum oxide

Belanger, David P.

215

Out of Bounds Additive Manufacturing Christopher  

E-Print Network (OSTI)

#12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

Pennycook, Steve

216

Beryllium Manufacturing Processes  

SciTech Connect

This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

Goldberg, A

2006-06-30T23:59:59.000Z

217

Advanced Manufacture of Reflectors  

SciTech Connect

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

218

Synthesis of nanocrystalline aluminum matrix composites reinforced with in situ devitrified Al-Ni-La amorphous particles  

E-Print Network (OSTI)

of nanocrystalline aluminum matrix composites reinforcedAbstract Nanocrystalline aluminum matrix composites wereamount of nanoscale aluminum oxide, nitride and carbide

Zhang, Zhihui H; Han, B Q; Witkin, D; Ajdelsztajn, L; Laverna, E J

2006-01-01T23:59:59.000Z

219

Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for  

E-Print Network (OSTI)

Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for removing or etching away aluminum. This etchant is stored inside the acid or corrosive a specific thickness of aluminum that is desired. Note: Once the bottle is empty or you find that it's etch

Kim, Philip

220

ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry  

Energy.gov (U.S. Department of Energy (DOE))

This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World  

Energy.gov (U.S. Department of Energy (DOE))

The Aluminum Vision is intended to stimulate a wide variety of R&D activities to accelerate technology development throughout industry.

222

Corrosion performance of aluminum in coal railcars  

SciTech Connect

Aluminum has been used for construction of coal railcars and on an experimental basis as a metallized coating over steel railcars. When aluminum is used in areas which contact the lading, resistance to general corrosion has been outstanding. Galvanic corrosion of joints which connect the aluminum to a steel undercarriage has not been a problem provided appropriate measures were taken during vehicle construction. Laboratory test data are presented which illustrate the impact of variations in joint preparation on galvanic corrosion performance. Painting the steel and the use of a sealant are recommended to obtain satisfactory long term joint performance. The corrosion performance and long term durability of an aluminum metallized coating has been demonstrated when applied to new cars constructed of carbon steel. Test results of coating durability when applied to cars constructed of constructed of weathering steel or carbon steel which were in revenue coal service prior to coating have been mixed.

Hersh, J.F.

1988-01-01T23:59:59.000Z

223

Advanced Manufacturing Policies and Paradigms for Innovation  

Science Journals Connector (OSTI)

...2013 ). 4 About the Advanced Manufacturing Partnership 2.0; www.manufacturing.gov/amp.html. 5 For example , www1.eere.energy.gov/manufacturing/; www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__%28AVM...

William B. Bonvillian

2013-12-06T23:59:59.000Z

224

Administrator Ready Reference Guide Customizing an Output Style  

E-Print Network (OSTI)

may be in various sections of the instructions. Some things to look for: - line spacing Preview Utility (Tools, Preview Output Styles) or by simply opening the Output Style Editor (Bibliography, Edit button -- to the right of the output style drop- down). The Output Style Preview Utility

University of Technology, Sydney

225

Generalized Input-Output Inequality Systems  

SciTech Connect

In this paper two types of generalized Leontief input-output inequality systems are introduced. The minimax properties for a class of functions associated with the inequalities are studied. Sufficient and necessary conditions for the inequality systems to have solutions are obtained in terms of the minimax value. Stability analysis for the solution set is provided in terms of upper semi-continuity and hemi-continuity of set-valued maps.

Liu Yingfan [Department of Mathematics, Nanjing University of Post and Telecommunications, Nanjing 210009 (China)], E-mail: yingfanliu@hotmail.com; Zhang Qinghong [Department of Mathematics and Computer Science, Northern Michigan University, Marquette, MI 49855 (United States)], E-mail: qzhang@nmu.edu

2006-09-15T23:59:59.000Z

226

Characterizing detonator output using dynamic witness plates  

SciTech Connect

A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

Murphy, Michael John [Los Alamos National Laboratory; Adrian, Ronald J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

227

MST: Organizations: Precision Meso Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

228

Prototype Design, Manufacturing, and Testing  

Science Journals Connector (OSTI)

Prototyping describes the practical realization of the theoretical concept of the nonimaging Fresnel lens. The steps that are to be taken in order to get a working prototype of the lens manufactured are as fol...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

229

Laser Additive Manufacturing in GE  

Science Journals Connector (OSTI)

There has been an increasing interest given to laser additive manufacturing (LAM) in recent years from across the global. GE has been one of the leading industries engaging in this...

Peng, Henry; Li, Yanmin; Guo, Rui; Wu, Zhiwei

230

Photovoltaics Manufacturing in Developing Countries  

Science Journals Connector (OSTI)

The need for energy sources in the developing countries might be partially satisfied by using photovoltaic power systems in addition to conventional means. A review of photovoltaic manufacturing in developing ...

G. Darkazalli; S. Hogan

1991-01-01T23:59:59.000Z

231

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

232

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

233

Fenner acquires PTFE seal manufacturer  

Science Journals Connector (OSTI)

Fenner Plc has announced the acquisition of substantially all of the operating assets and liabilities of EGC, a Houston-based manufacturer of fluoroplastic seals and other related fluoroplastic precision components.

2006-01-01T23:59:59.000Z

234

Funding Opportunity Announcement for Water Power Manufacturing...  

Energy Savers (EERE)

Funding Opportunity Announcement for Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014,...

235

Additive manufacturing: technology, applications and research needs  

Science Journals Connector (OSTI)

Additive manufacturing (AM) technology has been researched and ... complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past...

Nannan Guo; Ming C. Leu

2013-09-01T23:59:59.000Z

236

A Management Strategy for Additive Manufacturing:.  

E-Print Network (OSTI)

??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology.… (more)

Zahn, N.Z.

2014-01-01T23:59:59.000Z

237

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

238

Request for Information (RFI): Advanced Manufacturing Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Office (AMO) Software Tools Request for Information (RFI): Advanced Manufacturing Office (AMO) Software Tools July 25, 2014 - 1:00pm Addthis Funding: This...

239

Solar Manufacturing Technology 2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization...

240

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2014 American Energy & Manufacturing Competitiveness Summit in...  

Office of Environmental Management (EM)

Council on Competitiveness 9 of 10 Advanced Manufacturing Office Director Mark Johnson delivers the lunch keynote during the American Energy & Manufacturing Competitiveness...

242

National Electrical Manufacturers Association (NEMA) Response...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

243

Explore Careers in Manufacturing | Department of Energy  

Office of Environmental Management (EM)

in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous...

244

Advanced Technology Vehicles Manufacturing Loan Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM...

245

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

246

Mother nature as a wire manufacturer | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Mother nature as a wire manufacturer Mother nature as a wire manufacturer With computational models, scientists see how microbe directs electrons New research shows how electrons...

247

Process systems engineering of continuous pharmaceutical manufacturing  

E-Print Network (OSTI)

Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

Abel, Matthew J

2010-01-01T23:59:59.000Z

248

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor  

E-Print Network (OSTI)

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

Calgary, University of

249

Understanding Manufacturing Energy and Carbon Footprints, October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

250

Carbon dioxide emissions, impact on Malaysia's manufacturing productivity growth  

Science Journals Connector (OSTI)

The methods used to measure productivity growth generally ignore the pollutants that are produced by the industrial processes. For example, pollutant emissions generated as undesirable output, apart from the main output of Malaysia's manufacturing sector, are excluded from the productivity accounting framework. This study aims at an extended productivity measure that takes pollutants into account by internalisation of Carbon dioxide (CO2) as a measure of air pollutant emissions into the production function, as an unpriced input. The results show that there was a slowdown in the contribution of total factor productivity (TFP) growth in general, and a negative impact of CO2 emissions produced by the sector in particular, compared to other productivity indicators of the sector when CO2 is internalised in the models.

Elsadig Musa Ahmed

2006-01-01T23:59:59.000Z

251

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

252

E-Print Network 3.0 - aluminum copper iron Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Aluminum alloy... to room temperature was also confirmed. Will investigate different additives, copper, pure aluminum... with aluminum ... Source: McDonald, Kirk - Department...

253

A NEW A15 MULTIFILAMENTARY SUPERCONDUCTOR BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM  

E-Print Network (OSTI)

BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM Gary C. Quinnpsi. Photomicrograph of an Aluminum-Silicon eutectic filledmultifilimentary niobium-aluminum-silicon wire, a) sample #

Quinn, G.C.

2011-01-01T23:59:59.000Z

254

EFFECT OF GRAIN SIZE ON THE ACOUSTIC EMISSION GENERATED DURING PLASTIC DEFORMATION OF ALUMINUM  

E-Print Network (OSTI)

PLASTIC DEFORMATION OF ALUMINUM LAWRENCE BERKELEY LABORATORYDURING PLASTIC DEFORMATION OF ALUMINUM J. Baram Materialsof polycrystalline aluminum, of different grain sizes and at

Baram, J.

2013-01-01T23:59:59.000Z

255

Aluminum and copper in drinking water enhance inflammatory oroxidative events specifically in the brain  

E-Print Network (OSTI)

effects of iron and aluminum on stress-related genelopathy syndrome. Possible aluminum intoxication. N. Engl.Chronic exposure to aluminum in drinking water increases

Bondy, Stephen Bondy C

2006-01-01T23:59:59.000Z

256

Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum  

E-Print Network (OSTI)

STEELS CONTAINING SILICON, ALUMINUM AND MOLYBDENUM Thomasdeoxidizing action of aluminum results in grain refinementquench martensite, Both (a) and Aluminum particle within the

Neill, Thomas John O'

2011-01-01T23:59:59.000Z

257

CHARACTERIZATION OF THE GASEOUS AND SOLID PRODUCTS OF DECOMPOSITION OF ALUMINUM SULFATE  

E-Print Network (OSTI)

OF DECOMPOSITION OF ALUMINUM SULFATE Gary F. Knutsen (M. S.OF DECOMPOSITION OF ALUMINUM SULFATE Contents Abstract . .OF DECOMPOSITION OF ALUMINUM SULFATE Gary F. Knutsen

Knutsen, G.F.

2010-01-01T23:59:59.000Z

258

A Study of Aluminum Dependent Root Growth Inhibition in Arabidopsis thaliana  

E-Print Network (OSTI)

symptom triggered by aluminum, but not the primary cause ofRI (1986) Characterization of hydroxy-aluminum solutionsby aluminum-27 nuclear magnetic resonance spectroscopy. Soil

Nezames, Cynthia

2011-01-01T23:59:59.000Z

259

Transcriptomic analysis reveals differential gene expression in common bean (Phaseoulus vulgaris) for aluminum resistance  

E-Print Network (OSTI)

transition zone is the most aluminum-sensitive apical rootsoils is mainly limited by aluminum toxicity. In addition,L. under conditions of aluminum stress. Plant Physiol 104:

Eticha, Dejene; Zahn, Marc; Rao, Idupulapati M.; Horst, Walter J.

2009-01-01T23:59:59.000Z

260

IMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTIC COMPOSITIONS THROUGH THE APPLICATION OF SUPERPLASTICITY PRINCIPLES  

E-Print Network (OSTI)

IMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTICIMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTICAl-Ge) wire. Al-Ge «00F Aluminum-Germanium Atomic Percentage

Pech, G.J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aluminum Microfoams for Reduced Fuel Consumption and Pollutant Emissions of Transportation Systems  

E-Print Network (OSTI)

on the foamability of Aluminum alloy . Journal of MaterialFoamability of particle reinforced Aluminum Melt. Ma. -wiss.particle-stabilised Aluminum foams . Advanced Engineering

Pilon, Laurent

2008-01-01T23:59:59.000Z

262

Clean Energy Manufacturing Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

263

Mapping the Global Journey of Anthropogenic Aluminum: A Trade-Linked Multilevel Material Flow Analysis  

Science Journals Connector (OSTI)

The countries are ordered by the per capita GDP in 2008 (measured based on purchasing power parity, i.e., GDP PPP, in 1990 international dollars(36)). ... Process efficiency improvement and recycling can contribute to reducing emissions per material output; however, long-term material demand and scrap availability for recycling depend fundamentally on the dynamics of societies' stocks of products in use, an issue that has been largely neglected in climate science. ... The contemporary global aluminum stock in use (0.6 Gt or 90 kg/capita) has reached about 10% of that in known bauxite reserves and represents an embodied energy amt. ...

Gang Liu; Daniel B. Müller

2013-09-11T23:59:59.000Z

264

The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters  

SciTech Connect

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup ?} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup ?}, did the aluminum moieties exhibit Zintl anion-like characteristics.

Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnoeckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)] [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States)] [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kiran, Boggavarapu, E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

2014-03-28T23:59:59.000Z

265

Industrial Activities at DOE: Efficiency, Manufacturing, Process...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

edges, engine pylon covers, and engine nacelle acoustic liners; replace aluminum Air Pollution Control Systems - Silica-titania composites used in air pollution control...

266

Oxidation kinetics of aluminum diboride  

SciTech Connect

The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time–temperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy as a function of conversion. Display Omitted - Highlights: • First reported kinetic parameters for AlB{sub 2} and Al+2B oxidation in air and O{sub 2}. • Possible mechanism of enhanced boron combustion presented. • Moisture sensitivity shown to be problematic for AlB{sub 2}, less for Al+2B.

Whittaker, Michael L., E-mail: michaelwhittaker2016@u.northwestern.edu [Department of Materials Science and Engineering, University of Utah, 122S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Sohn, H.Y. [Department of Metallurgical Engineering, University of Utah, 135S 1460 E, Rm 00412, Salt Lake City, UT 84112 (United States); Cutler, Raymond A. [Ceramatec, Inc., 2425S. 900W., Salt Lake City, UT 84119 (United States)

2013-11-15T23:59:59.000Z

267

Off-set stabilizer for comparator output  

DOE Patents (OSTI)

A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

Lunsford, James S. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

268

The corrosion of aluminum in boric acid solutions  

E-Print Network (OSTI)

vs. Time of at 40oC . vs. Time of 40 C . 34 ~ ~ ~ 35 3S Aluminum in Boric ~ ~ ~ 24S Aluminum in Boric Corrosion Rate Acid Solutions vs. Time of at 50oC . 2S Aluminum in Boric 36 Corrosion Rate Acid Solutions vs. Time of at 50oC 3S... Solutions vs. Time of 3S Aluminum in Boric at 70oC 40 Corrosion Rate Acid Solutions vs. Time of at 70oC 24S Aluminum in Boric ~ ~ ~ . a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ /+1 14. Corrosion Rate Acid Solutions vs. Time of at 90cC 2S Aluminum in Boric 42 15...

Bass, Henry Kinsolving

2012-06-07T23:59:59.000Z

269

PEM Stack Manufacturing: Industry Status  

NLE Websites -- All DOE Office Websites (Extended Search)

© 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of where we have been; 2. Where we are today; 3. Where we would like to transition to; 4. Gaps and proposals. AUGUST 2009 P A G E 3 PEM Stack Manufacturing: Cost Overview * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA.

270

Oak Ridge Manufacturing Demonstration Facility (MDF)  

Office of Energy Efficiency and Renewable Energy (EERE)

The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

271

Designing a National Network for Manufacturing Innovation  

E-Print Network (OSTI)

Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

272

1 - Honeywell Bull in manufacturing automation  

Science Journals Connector (OSTI)

economy, the manufacturing industry has undergone great changes over the past 25 years. Now, with the expansion of computerised manufacturing control applications, computer manufacturers can meet the specialised needs of the manufacturing community. This paper also examines the CIM architecture at all levels, looks at current standards and at Honeywell Bull as a supplier.

R. Anderson

1988-01-01T23:59:59.000Z

273

Manufacturing Spotlight: Boosting American Competitiveness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 - 1:06pm Addthis Libby Wayman Clean Energy Manufacturing Initiative Director Advancing the nation's clean energy manufacturing industry helps to capture the value of U.S. innovation in clean energy technologies, fosters further innovation right here in America, and makes U.S. manufacturers more competitive by reducing their energy costs - all while creating jobs and building a more sustainable planet for future generations. Industry and government are working together to expand American leadership in this sector by bringing new clean energy technologies to the marketplace and making manufacturing processes more energy efficient.

274

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

275

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

276

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

277

Manufacturing Services | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Services Do you have a new idea? You may need to file a patent to both develop it and protect it. Find out more below. Search for existing patents Apply for a patent Business Owners Getting a business started, established, and growing is difficult. We want to make that easier. Check out the government services below that are available to businesses, and find out more about what's coming with StartUp America. Start a business Access financing Find opportunities to sell products and services to the government Grow your business Help with exporting for beginners and for experts. Shared Facilities Facilities can be a huge factor in whether you create a new product or

278

C:\Eco-SSLs\Contaminant Specific Documents\Aluminum\November 2003\Eco-SSL for Aluminum .wpd  

NLE Websites -- All DOE Office Websites (Extended Search)

Aluminum Aluminum Interim Final OSWER Directive 9285.7-60 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 November 2003 This page intentionally left blank TABLE OF CONTENTS SUMMARY ECO-SSLs FOR ALUMINUM 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 2.0 ALUMINUM CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 3.0 EFFECTS OF ALUMINUM ON PLANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 General Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.2 Essentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Effect on Phosphorus and Calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.4 Differential Tolerance of Plants to Aluminum Toxicity

279

Manufacturing Energy and Carbon Footprints (2006 MECS)  

Energy.gov (U.S. Department of Energy (DOE))

Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

280

Power Quality from the Manufacturer’s Standpoint  

E-Print Network (OSTI)

Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

McEachern, A.

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

282

Big Efficieny for Small Manufacturing  

E-Print Network (OSTI)

Big Efficiency for Small Manufacturing Daniel Trombley American Council for an Energy-Efficient Economy Presented to: Industrial Energy Technology Conference New Orleans, LA May 21, 2014 ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial...-Sized Manufacturers http://www.aceee.org/research-report/ie1401 Daniel Trombley dtrombley@aceee.org www.aceee.org ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 ...

Trombley, D.

2014-01-01T23:59:59.000Z

283

ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER  

SciTech Connect

A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving formulations. Disposal of the resulting aluminum and chromium-rich streams are different at the two sites, with vitrification into Low Activity Waste (LAW) glass at Hanford, and solidification in Saltstone at SRS. Prior to disposal, the leachate solutions must be treated to remove radionuclides, resulting in increased operating costs and extended facility processing schedules. Interim storage of leachate can also add costs and delay tank closure. Recent projections at Hanford indicate that up to 40,000 metric tons of sodium would be needed to dissolve the aluminum and maintain it in solution, which nearly doubles the amount of sodium in the entire current waste tank inventory. This underscores the dramatic impact that the aluminum leaching can have on the entire system. A comprehensive view of leaching and the downstream impacts must therefore be considered prior to implementation. Many laboratory scale tests for aluminum and chromium dissolution have been run on Hanford wastes, with samples from 46 tanks tested. Three samples from SRS tanks have been tested, out of seven tanks containing high aluminum sludge. One full-scale aluminum dissolution was successfully performed on waste at SRS in 1982, but generated a very large quantity of liquid waste ({approx}3,000,000 gallons). No large-scale tests have been done on Hanford wastes. Although the data to date give a generally positive indication that aluminum dissolution will work, many issues remain, predominantly because of variable waste compositions and changes in process conditions, downstream processing, or storage limitations. Better approaches are needed to deal with the waste volumes and limitations on disposal methods. To develop a better approach requires a more extensive understanding of the kinetics of dissolution, as well as the factors that effect rates, effectiveness, and secondary species. Models of the dissolution rate that have been developed are useful, but suffer from limitations on applicable compositional ranges, mineral phases, and particle properties that are difficult to measure. The experimental

McCabe, D; Jeff Pike, J; Bill Wilmarth, B

2007-04-25T23:59:59.000Z

284

Aluminum phosphate ceramics for waste storage  

SciTech Connect

The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

Wagh, Arun; Maloney, Martin D

2014-06-03T23:59:59.000Z

285

E-Print Network 3.0 - aluminum metal matrix Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Discontinuously reinforced aluminum composites, Nanophase aluminum alloys, Bulk metallic glasses... of Missouri 1993 Young Metallurgist Award from the Indian...

286

EFFECT OF MECHANICAL DISCONTINUITIES ON THE STRENGTH OF POLYCRYSTALLINE ALUMINUM OXIDE  

E-Print Network (OSTI)

THE STRENGTH OF POLYCRYSTALLINE ALUMINUM OXIDE S. Wallace ofThe variables and number of aluminum oxide (almnina). size~

Wallace, J.S.

2011-01-01T23:59:59.000Z

287

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network (OSTI)

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

288

Development of a Cosmetic Corrosion Test for Aluminum Autobody...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Cosmetic Corrosion Test for Aluminum Autobody Panels AMD 309 Development of a Cosmetic Corrosion Test for Aluminum Autobody Panels AMD 309 Presentation from the U.S. DOE Office...

289

Method of winning aluminum metal from aluminous ore  

DOE Patents (OSTI)

Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

Loutfy, Raouf O. (Naperville, IL); Keller, Rudolf (Naperville, IL); Yao, Neng-Ping (Clarendon Hills, IL)

1981-01-01T23:59:59.000Z

290

Surface alloying of silicon into aluminum substrate.  

SciTech Connect

Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

Xu, Z.

1998-10-28T23:59:59.000Z

291

Application of computer voice input/output  

SciTech Connect

The advent of microprocessors and other large-scale integration (LSI) circuits is making voice input and output for computers and instruments practical; specialized LSI chips for speech processing are appearing on the market. Voice can be used to input data or to issue instrument commands; this allows the operator to engage in other tasks, move about, and to use standard data entry systems. Voice synthesizers can generate audible, easily understood instructions. Using voice characteristics, a control system can verify speaker identity for security purposes. Two simple voice-controlled systems have been designed at Los Alamos for nuclear safeguards applicaations. Each can easily be expanded as time allows. The first system is for instrument control that accepts voice commands and issues audible operator prompts. The second system is for access control. The speaker's voice is used to verify his identity and to actuate external devices.

Ford, W.; Shirk, D.G.

1981-01-01T23:59:59.000Z

292

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013  

Energy.gov (U.S. Department of Energy (DOE))

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

293

Cathode Connector For Aluminum Low Temperature Smelting Cell  

DOE Patents (OSTI)

Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

Brown, Craig W. (Seattle, WA); Beck, Theodore R. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

2003-07-16T23:59:59.000Z

294

Coordinated Output Regulation of Multiple Heterogeneous Linear Systems  

E-Print Network (OSTI)

, the generalizations of coordination of multiple linear dynamic systems to the cooperative output regulation problemCoordinated Output Regulation of Multiple Heterogeneous Linear Systems Ziyang Meng, Tao Yang, Dimos V. Dimarogonas, and Karl H. Johansson Abstract-- The coordinated output regulation problem

Dimarogonas, Dimos

295

Manufacturing Energy and Carbon Footprints  

E-Print Network (OSTI)

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

296

Additive manufacturing method of producing  

E-Print Network (OSTI)

Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

Painter, Kevin

297

ALUMINUM--2003 5.1 By Patricia A. Plunkert  

E-Print Network (OSTI)

, about 1.5 million metric tons per year (Mt/yr) of domestic primary aluminum smelting capacity, including idled potlines at operating smelters, equivalent to about 35% of total capacity, was closed. Aluminum and the container and packaging industries remained the leading markets for aluminum products in Canada

298

Activated aluminum hydride hydrogen storage compositions and uses thereof  

SciTech Connect

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

299

Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi  

E-Print Network (OSTI)

Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi By: Kristen Favel, Tiffany Jung, and Kenny Tam CHBE 484 University of British Columbia April 15, 2009 #12;ii "Aluminum Removal from photographic waste has shown elevated levels of aluminum in the fixer, which exceed sewer discharge standards

300

Mobilizing aluminum in crustal and mantle fluids Craig E. Manning  

E-Print Network (OSTI)

Mobilizing aluminum in crustal and mantle fluids Craig E. Manning Department of Earth and Space December 2005 Available online 9 March 2006 Abstract Aluminum is a major rock-forming element, but its low by formation of polynuclear Na­Al­Si­O clusters and/or polymers. Aluminum should not be assumed to be immobile

Manning, Craig

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid  

E-Print Network (OSTI)

Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid Daniel M. Dabbs, Usha as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous

Aksay, Ilhan A.

302

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network (OSTI)

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 1.0 - 2008 Page 1 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

303

The Effects of Fe3+ Aluminum Silicate Phase Relations in  

E-Print Network (OSTI)

The Effects of Fe3+ and Mn3+ on Aluminum Silicate Phase Relations in North-Central New Mexico, U, New Mexico 87131 (Received 28 November 1983; in revised form 2 October 1984) ABSTRACT Aluminum, then their equilibrium coexistence is invariant. However, the aluminum silicate minerals are not pure in highly oxidized

Lee, Cin-Ty Aeolus

304

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1  

E-Print Network (OSTI)

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1 , S. T. Stewart2 , M. R. Furlanetto1 concurrent VISAR measurements in the same optical path, validation experiments on aluminum have been-shock temperature of 495 K ± 30 K was recorded from a polished free surface of aluminum 2024-T4 subject to a peak

Stewart, Sarah T.

305

Review Article Aluminum-Induced Entropy in Biological Systems  

E-Print Network (OSTI)

Review Article Aluminum-Induced Entropy in Biological Systems: Implications for Neurological years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living of the Al toxicants to which we are being exposed. 1. Introduction Aluminum (Al) is the most common metal

Seneff, Stephanie

306

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network (OSTI)

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 #12 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

307

Optical frequency standards based on mercury and aluminum ions  

E-Print Network (OSTI)

Optical frequency standards based on mercury and aluminum ions W. M. Itano, J. C. Bergquist, A-16 . Keywords: aluminum, atomic clocks, frequency standards, ion traps, mercury 1. INTRODUCTION Optical frequency standards based on the mercury ion and, more recently, the aluminum ion are under devel- opment

308

ccsd00002835, Light scattering from cold rolled aluminum surfaces  

E-Print Network (OSTI)

ccsd­00002835, version 2 ­ 14 Sep 2004 Light scattering from cold rolled aluminum surfaces Damien Camille Soula , 31400 Toulouse, France We present experimental light scattering measurements from aluminum scattering measurements of an s-polarized electromagnetic wave (632.8 nanometers) from a rough aluminum alloy

309

DESCRIBING THE PLASTIC DEFORMATION OF ALUMINUM SOFTBALL BATS  

E-Print Network (OSTI)

DESCRIBING THE PLASTIC DEFORMATION OF ALUMINUM SOFTBALL BATS E. BIESEN1 AND L. V. SMITH2 Washington-mail: lvsmith@wsu.edu Hollow aluminum bats were introduced over 30 years ago to provide improved durability over durability. Accordingly, the plastic deformation from a ball impact of a single-wall aluminum bat

Smith, Lloyd V.

310

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network (OSTI)

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

311

Explore Careers in Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

312

Manufacturers' View on Benchmarking and Disclosure  

U.S. Energy Information Administration (EIA) Indexed Site

Association of Electrical and Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax Incentives Shaheen- Portman Benchmarking and Disclosure Bullitt Center Seattle, Washington The Association of Electrical Equipment and Medical Imaging Manufacturers Energy Savings Performance Contracts ESPCs pay for efficiency upgrades with

313

Secure Manufacturing | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Secure Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security challenges by providing leadership and direction to perform the following activities: solving unique, high-risk manufacturing problems; eliminating the most difficult manufacturability and development obstacles; protecting classified and proprietary materials, components, and information; developing unique technologies to optimize manufacturing and systems performance; and executing projects cost effectively and with timeliness. Y-12 accomplishes this mission to meet the national security challenges of today and those of the future, with capability and expertise in the following areas:

314

Batteries - Materials Processing and Manufacturing Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Processing and Manufacturing Materials Processing and Manufacturing Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * PHEV40 and AEV 100 possible with success in current R&D * Achievable with Li-ion manufacturing improvements and advanced chemistries in current Li-ion R&D * AEV300 more challenging * Requires manufacturing improvements and materials and chemistry improvements * Quantify benefits/ drawbacks of fast charging vs. increased electrode cost Barriers Interfering with Reaching the Targets * Materials cost * Need: Material synthesis in large quantities/ with increased impurities and broader size distributions or advanced manufacturing * Electrode thickness - manufacturing and performance * Separator cost/ performance/ safety

315

MST: Organizations: Manufacturing Processes & Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Processing Manufacturing Processing Manufacturing Process, Science, and Technology Mark Smith Mark Smith, Senior Manager Manufacturing Process Science and Technology conducts research and development on advanced manufacturing process and materials technologies. It provides manufacturing process development, technical consulting, and technology transfer to support Sandia product realization needs. This organization also provides prototype fabrication and specialized production services, as required, to support Sandia missions. Departments Dianna Blair Mike Kelly Alex Roesler Paul C. McKey Thin Film, Vacuum, and Packaging Organic Materials Ceramics and Glass Meso Mfg. and System Development Dianna Blair, Manager Mike Kelly, Manager Alex Roesler, Manager Paul C. McKey,

316

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

317

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

318

Computed Shock Response of Porous Aluminum  

Science Journals Connector (OSTI)

The shock response of powdered aluminum compacted by a driver plate was simulated with a one?dimensional Lagrangiancontinuum mechanicscomputer program. The porous aluminum was mocked up by a series of flat plates separated by gaps to obtain an initial density of 1.35 g/cm3 for the ``powder.'' The compaction process was followed in detail for two cases of driver?plate conditions corresponding to two Stanford Research Institute experiments. The calculations showed an approach to equilibrium behind the shock in each of the porous samples. The equilibrium states established were found to be consistent with the Rankine?Hugoniot jump conditions applied to aluminum of density 1.35 g/cm3. These states did not lie on the Hugoniot curve of solid?density aluminum. This was shown to be due to the significant internal?energy dependency in the equation of state. The calculated results were in good agreement with the SRI experiments. Application of this computational model to more complex cases is indicated.

Ronald Hofmann; Dudley J. Andrews; D. E. Maxwell

1968-01-01T23:59:59.000Z

319

Chemical vapor deposition of aluminum oxide  

DOE Patents (OSTI)

An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

Gordon, Roy (Cambridge, MA); Kramer, Keith (Cleveland, OH); Liu, Xinye (Cambridge, MA)

2000-01-01T23:59:59.000Z

320

Aluminum Solubility in Complex Electrolytes - 13011  

SciTech Connect

Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dS{sub mix} (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

Agnew, S.F. [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States)] [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States); Johnston, C.T. [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)] [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing  

Science Journals Connector (OSTI)

Cleaner production and sustainability are of crucial importance in the field of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologie...

Florent Le Bourhis; Olivier Kerbrat…

2013-12-01T23:59:59.000Z

322

Climate VISION: Private Sector Initiatives: Aluminum: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols GHG Inventory Protocols EPA/IAI PFC Measurement Protocol (PDF 243 KB) Download Acrobat Reader EPA and the International Aluminium Institute have collaborated with the global primary aluminium industry to develop a standard facility-specific PFC emissions measurement protocol. Use of the protocol will help ensure the consistency and accuracy of measurements. International Aluminum Institute's Aluminum Sector Greenhouse Gas Protocol (PDF 161 KB) Download Acrobat Reader The International Aluminum Institute (IAI) Aluminum Sector Addendum to the WBCSD/WRI Greenhouse Gas Protocol enhances and expands for the aluminum sector the World Business Council for Sustainable Development/World Resources Institute greenhouse gas corporate accounting and reporting protocol.

323

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs DOE Aluminum Industry of the Future Collaborative R&D partnerships between DOE Industrial Technologies Program and industry to maximize technology investments. EPA Voluntary Aluminum Industrial Partnership The Voluntary Aluminum Industrial Partnership (VAIP) is an innovative pollution prevention program developed jointly by the U.S. Environmental Protection Agency (EPA) and the primary aluminum industry. Participating companies (Partners) work with EPA to improve aluminum production efficiency while reducing perfluorocarbon (PFC) emissions, potent greenhouse gases that may remain in the atmosphere for thousands of years. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations

324

FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6  

SciTech Connect

Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

Pike, J; Jeffrey Gillam, J

2008-12-17T23:59:59.000Z

325

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

326

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

327

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

328

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

329

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

330

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

331

Fact Sheet: 48C Manufacturing Tax Credits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

48C Manufacturing Tax Credits 48C Manufacturing Tax Credits In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act of 2009 included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C Advanced Manufacturing Tax Credit originally provided a 30% investment tax credit to 183 domestic clean energy manufacturing facilities valued at $2.3 billion. Today the IRS has announced the availability of additional 48C allocations, utilizing $150 million remaining tax credits that were never fully monetized by previous awardees. This tax credit program will help build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. These manufacturing facilities will also

332

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

333

Objective assessment of manufacturing technology investments  

E-Print Network (OSTI)

Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

Rothman, Craig Jeremy

2012-01-01T23:59:59.000Z

334

FACT SHEET: 48C MANUFACTURING TAX CREDITS  

Office of Energy Efficiency and Renewable Energy (EERE)

The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

335

Upcoming Funding Opportunity for Water Power Manufacturing |...  

Energy Savers (EERE)

Water Power Manufacturing Upcoming Funding Opportunity for Water Power Manufacturing March 24, 2014 - 12:00pm Addthis On March 24, 2014, the U.S. Department of Energy (DOE)...

336

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network (OSTI)

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

337

Benefits and Barriers of Smart Manufacturing  

E-Print Network (OSTI)

Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

Trombley, D.; Rogers, E.

2014-01-01T23:59:59.000Z

338

Refrigerator Manufacturers: Order (2013-CE-5341)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

339

Building Blocks for the Future of Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Future of Manufacturing Building Blocks for the Future of Manufacturing Scott Smith 2011.05.04 Even though we grew up on opposite sides of the world, my colleague...

340

SunShot Initiative: Solar Manufacturing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Manufacturing Technology to Solar Manufacturing Technology to someone by E-mail Share SunShot Initiative: Solar Manufacturing Technology on Facebook Tweet about SunShot Initiative: Solar Manufacturing Technology on Twitter Bookmark SunShot Initiative: Solar Manufacturing Technology on Google Bookmark SunShot Initiative: Solar Manufacturing Technology on Delicious Rank SunShot Initiative: Solar Manufacturing Technology on Digg Find More places to share SunShot Initiative: Solar Manufacturing Technology on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment Physics of Reliability: Evaluating Design Insights for Component

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

QTR Webinar: Chapter 8- Industry and Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

342

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

343

Production of sodium-22 from proton irradiated aluminum  

DOE Patents (OSTI)

A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

Taylor, Wayne A. (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

344

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

345

Manufacturing Energy and Carbon Footprints Scope  

Energy.gov (U.S. Department of Energy (DOE))

List of manufacturing sectors selected for analysis along with North American Industry Classification System (NAICS) code descriptions

346

Webinar: Additive Manufacturing for Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

347

Honda: North American Manufacturing Facilities | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents & Publications Johnson Controls: EISA Presentation MEMA: Comments AZ Automotive...

348

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

application of customized sensor driven modeling, measurement simulation technologies, energy management dashboards and a variety of manufacturing metrics for individual...

349

Spot welding of steel and aluminum using insert sheet  

SciTech Connect

Automobile industries have been increasingly interested in the use of aluminum and thus joining of steel and aluminum becomes of importance. The joining of the two types of metal raises a problem of brittle welds caused by the formation of intermetallic compounds. The authors solved the problem by using an insert sheet. This paper deals with the resistance spot welding of steel and aluminum sheets using insert sheets. The insert sheet used in the present development was a steel/aluminum clad sheet of the 0.8 mm thickness with 50% steel and 50% aluminum. The clad sheet was produced by warm rolling of steel and aluminum with a direct resistance heating process. Steel to be warm rolled was of EDDQ of the 0.4 mm thickness and aluminum was of JIS A1050 of 0.6 mm thickness. The mechanical properties of the insert clad sheets were in between those of the steel sheets and the aluminum sheets, while the clad sheets showed much better formability than the aluminum sheets. Resistance spot welding was conducted for 0.8 mm thick EDDQ steel sheets and 1.0 mm thick aluminum alloy (AL-5.5%Mg) sheets under the welding force of 1.96 kN, welding current ranging between 4.2 and 20.1 kA, and welding time from 0.5 to 10 cycles. The steel was spot welded to the steel side of the insert sheet while the aluminum was welded to the aluminum side. What the authors investigated were the applicable welding current range, nugget diameter, tensile shear strength, U-tension strength, and macro- and microstructures. In conclusion, steel sheets can be spot welded to aluminum sheets without difficulty by using clad sheets as insert materials while the strength level of the dissimilar metal spot welds is close to that of aluminum joints.

Oikawa, H.; Saito, T.; Yoshimura, T. [and others

1994-12-31T23:59:59.000Z

350

Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films  

E-Print Network (OSTI)

of the Nitrides of Aluminum and Gallium," J. Electrochem.1) 24 (1962). G. Long and L. M. Foster, "Aluminum Nitride, aRefractory for Aluminum to 2000°C," J. Am. Ceram. Soc. ,

Tao, Jonathan Huai-Tse

2010-01-01T23:59:59.000Z

351

Microarray Analysis on Human Neuroblastoma Cells Exposed to Aluminum, Beta1–42-Amyloid or the Beta1–42-Amyloid Aluminum Complex  

E-Print Network (OSTI)

J (1992) Selective accumulation of aluminum and iron in theB, Tognon G, Zatta P (2005) Aluminum-triggered structuralrole of beta-amyloid(1-42)-aluminum complex in Alzheimer’s

2011-01-01T23:59:59.000Z

352

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network (OSTI)

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

353

Additive manufacturing of metallic tracks on  

E-Print Network (OSTI)

Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

Painter, Kevin

354

Pseudomonas fluorescens -A robust manufacturing platform  

E-Print Network (OSTI)

Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

Lebendiker, Mario

355

e! Science News Semiconductor manufacturing technique holds  

E-Print Network (OSTI)

arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cellse! Science News Semiconductor manufacturing technique holds promise for solar energy Published semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

Rogers, John A.

356

EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING  

E-Print Network (OSTI)

will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

Boyer, Edmond

357

Sustainable Manufacturing via Multi-Scale, Physics-Based Process...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013 Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

358

Request for Information (RFI): Specific Clean Energy Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Focus Areas Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Specific Clean Energy Manufacturing Focus Areas Suitable for a Manufacturing...

359

Request for Information (RFI): Clean Energy Manufacturing Topics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request for Information (RFI): Clean Energy Manufacturing Topics Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Clean Energy Manufacturing Topics...

360

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Private-Public Partnerships for U.S. Advanced Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymer Composite Manufacturing Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing...

362

NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop  

E-Print Network (OSTI)

&D Workshop Fuel Cell Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cell (SOFC) Manufacturing Lines and driving down the cost of fuel cell manufacturing through automation. What are the key technical Membrane Electrode Assembly Manufacturing Hypothetical Fuel Cell Manufacturing Platforms August 11, 2011

363

Helium-filled aluminum flight tubes  

NLE Websites -- All DOE Office Websites (Extended Search)

Helium-filled aluminum flight tubes. Helium-filled aluminum flight tubes. Detector housing for the CCD camera lens, mirror, and scintillator. For more information, contact Instrument Scientist: Hassina Bilheux, bilheuxhn@ornl.gov, 865.384.9630 neutrons.ornl.gov/instruments/HFIR/factsheets/Instrument-cg1d.pdf The CG-1D beam is used for neutron imaging measurements using a white beam. Apertures (with different diameters D (pinhole geometry) are used at the entrance of the helium-filled flight path to allow L/D variation from 400 to 800. L is the distance between the aperture and the detector (where the image is produced). Samples sit on a translation/ rotation stage for alignment and tomography purposes. Detectors for CG-1D include

364

Climate VISION: Private Sector Initiatives: Aluminum: Results  

Office of Scientific and Technical Information (OSTI)

Results Results The Aluminum Association and the federal government have document progress in the Climate Vision program. The results are measured by metrics developed by the industry, in partnership with the government, and reported. Progress will also be tracked under the umbrella of the Voluntary Aluminum Industrial Partnership website. Please check back on this website and the Energy Information Agency website for updates. In 2005, the industry achieved the goal set for 2010. A 56 percent reduction in direct process emissions per ton of production, including combined reductions in PFC's and CO2, exceeds the 53 percent commitment for 2010. Further progress is expected in the industry, however complications from high power costs and potential curtailments make predictions for further reductions

365

Compact waveguide power divider with multiple isolated outputs  

DOE Patents (OSTI)

A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

Moeller, Charles P. (Del Mar, CA)

1987-01-01T23:59:59.000Z

366

Experimental superplastic characterization of advanced aluminum alloys  

E-Print Network (OSTI)

of America Chairman of Advisory Committee: Dr. R. E. Goforth An investigation into the experimental superplastic characterization of advanced aluminum alloys consisted of the design and assembly of an experimental test facility for measuring the effects.... The experimental test apparatus designed and constructed is shown in Figure 2, with four major components assembled together to form the SPF testing system. The four components are the Instron 1137 Universal testing machine, Instron 3117 furnace and Instron...

Kopp, Christopher Carl

2012-06-07T23:59:59.000Z

367

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Wind Manufacturing American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11 6 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas.

368

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

369

GAMS program used to estimate capacity output using a distance function with both good and bad output, variable returns to scale and weak disposability of the bad outputs.  

E-Print Network (OSTI)

." VIMS Marine resource Report N. 2007-6. August 2007. Author: John B. Walden NMFS/NEFSC 166 Water St(obs) weights ; POSITIVE Variable weight, lambda; EQUATIONS CONSTR1(GOUTPUT, OBS) DEA constraint for each output

370

CHAPTER 12 - Source Data for the Manufacturing, Processing, and Mining Industries  

Science Journals Connector (OSTI)

Publisher Summary This chapter provides an overview of the source data for the manufacturing, processing, and mining industries. The manufacturing sector is divided into a number of sectors for the purposes of input-output and may or may not include intermediate processing industries. In many developing countries, industries processing raw materials are the major part of this section of the economy, and final manufacturing industries may be few in number and type. Whatever method of classification is used, the general remarks on source data that follow is applied. Although both large and small businesses usually exist in manufacturing and processing, each industry is often dominated either by large or small businesses. One of the main sources of data is of tax returns for the larger businesses. No difficulty is experienced in obtaining grouped data processed in the taxation department which, when they reach the national income statistician, is in the form of a balancing account for the aggregate businesses covered. As with other sectors, it is important to obtain details of coverage in terms of the number of firms, physical output, or any other information that indicates what proportion of the industry is covered by these accounts.

CARLEEN O'LOUGHLIN

1971-01-01T23:59:59.000Z

371

THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH  

E-Print Network (OSTI)

three prototype Table II. aluminum-carbon bonds and theirPhysics THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, ANDLBL-l0871 The Prototype Aluminum - Carbon Single, Double.

Fox, Douglas J.

2011-01-01T23:59:59.000Z

372

Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs  

E-Print Network (OSTI)

energy distributions of filtered aluminum arcs Johanna Roséndistributions (IEDs) in filtered aluminum vacuum arc plasmasfor vacuum arc plasmas. Aluminum plasma, for example,

Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

2006-01-01T23:59:59.000Z

373

Lithium-aluminum-carbonate-hydroxide hydrate coatings on aluminum alloys: Composition, structure, and processing bath chemistry  

SciTech Connect

A new corrosion resistant coating, being designed for possible replacement of chromate conversion coatings on aluminum alloys, was investigated for composition, structure, and solubility using a variety of techniques. The stoichiometry of the material, prepared by immersion of 1100 Al alloy into a lithium carbonate-lithium hydroxide solution, was approximately Li{sub 2}Al{sub 4}CO{sub 3}(OH){sub 12}{center_dot}3H{sub 2}O. Processing time was shown to be dependent upon the bath pH, and consistent coating formation required supersaturation of the coating bath with aluminum. The exact crystal structure of this hydrotalcite material, hexagonal or monoclinic, was not determined. It was shown that both the bulk material and coatings with the same nominal composition and crystal structure could be formed by precipitation from an aluminum supersatured solution of lithium carbonate. {copyright} {ital 1996 Materials Research Society.}

Drewien, C.A.; Eatough, M.O.; Tallant, D.R.; Hills, C.R.; Buchheit, R.G. [Materials and Process Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

1996-06-01T23:59:59.000Z

374

INSTITUTE FOR SHOCK PHYSICSLaser-Shock Spall Experiments in Aluminum II: Interface Measurements  

E-Print Network (OSTI)

fracture in aluminum alloys at short time scales (10-8 s) · Role of PMMA backing material window -Changing-T6 or 1100-H14 aluminum targets approximately 110 m thick · PMMA with vapor deposited Al mirror Soda. (2006) * Advised by Yoshi Toyoda and Y. M. Gupta Aluminum Thickness (m) Aluminum Alloy Aluminum

Collins, Gary S.

375

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

376

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

377

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

378

Constellation Shaping for Communication Channels with Quantized Outputs  

E-Print Network (OSTI)

average energy are selected more frequently than constellations with higher energy. However, the resultsConstellation Shaping for Communication Channels with Quantized Outputs Chandana Nannapaneni signal constellation and the output is quantized by a uniform scalar quantizer. The goal is to jointly

Valenti, Matthew C.

379

ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO  

E-Print Network (OSTI)

ADIOS ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO NATIONAL RADIO ASTRONOMY OBSERVATORY TABLES ADIOS - ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE COMPUTER TABLE FOR CONTENTS Page I Module and Apple Card (Photograph) Figure 3 Complete Apple/ADIOS System (Photograph) Figure 4 Analog

Groppi, Christopher

380

Most efficient quantum thermoelectric at finite power output  

E-Print Network (OSTI)

Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems; heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output, and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output, but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.

Robert S. Whitney

2014-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Virtual Aluminum Castings An Industrial Application of Integrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Aluminum Castings An Industrial Application of Integrated Computational Materials Engineering Home Author: J. Allison, M. Li, C. Wolverton, X. Su Year: 2006 Abstract: The...

382

Fracture of welded aluminum thin-walled structures  

E-Print Network (OSTI)

A comprehensive methodology was developed in the thesis for damage prediction of welded aluminum thin-walled structures, which includes material modeling, calibration, numerical simulation and experimental verification. ...

Zheng, Li, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

383

Achieving Carbon Neutrality in the Global Aluminum Industry  

Science Journals Connector (OSTI)

Table VII...illustrates a suggested carbon scoreboard. The global aluminum industry can become “carbon neutral,” reducing its current carbon print of 500 million metric tonnes per year... ...

Subodh Das

2012-02-01T23:59:59.000Z

384

Electrodeposition of magnesium and magnesium/aluminum alloys  

DOE Patents (OSTI)

Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

Mayer, A.

1988-01-21T23:59:59.000Z

385

Aluminum-doped Zinc Oxide Nanoink - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

cells, photochromic windows, chemical sensors, and biosensors. Description The optoelectronic properties of AZO nanocrystals can be tuned by controlling their aluminum content....

386

Electrodeposition of magnesium and magnesium/aluminum alloys  

DOE Patents (OSTI)

Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

Mayer, Anton (Los Alamos, NM)

1988-01-01T23:59:59.000Z

387

Joining of parts via magnetic heating of metal aluminum powders  

DOE Patents (OSTI)

A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

Baker, Ian

2013-05-21T23:59:59.000Z

388

Microsoft PowerPoint - Aluminum Concentrations in Storm Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

publication or guarantee its technical correctness. Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm...

389

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Energy Savers (EERE)

(DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

390

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

391

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This presentation does not contain any proprietary,...

392

High-Temperature Aluminum Alloys | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm044smith2012o.pdf More Documents & Publications High-Temperature Aluminum Alloys Vehicle...

393

Advanced Manufacturing Office: MotorMaster+  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorMaster+ to MotorMaster+ to someone by E-mail Share Advanced Manufacturing Office: MotorMaster+ on Facebook Tweet about Advanced Manufacturing Office: MotorMaster+ on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ on Google Bookmark Advanced Manufacturing Office: MotorMaster+ on Delicious Rank Advanced Manufacturing Office: MotorMaster+ on Digg Find More places to share Advanced Manufacturing Office: MotorMaster+ on AddThis.com... MotorMaster+ This photo shows the inner workings of an industrial electric motor with gears. In the lower left hand corner are the words "MotorMaster+" and underneath are the words "Motor-Driven Systems." Download MotorMaster+ now! Version: 4.01.01 Release Date: September 21, 2010 Release Notes Metric Unit Measurements: No

394

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

395

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

396

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Electro Microfluidic Dual In-line Package (EMDIP) Electro Microfluidic Dual In-line Package (EMDIP) PDF format (115 kb) EMDIP diagram EMDIP Diagram Microfluidics is experiencing explosive growth in new product developments. Already there are many commercial applications for electro microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of surface micromachined microfluidic devices is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. In order to realize applications for these devices, an efficient method for packaging microfluidic devices is needed. Responding to this need, researchers at Sandia developed the Electro Microfluidic Dual In-Line Package (EMDIP) and the Fluidic Printed Wiring Board (FPWB).

397

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

398

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

399

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Welding, Fabrication, & Metal Forming Welding, Fabrication, & Metal Forming PDF format (159 kb) The department consists of three trades: welding; fabrication and assembly; and precision metal forming. These interrelated groups use similar equipment and rely on each other's skills. One stop will get you the service of three reliable trades. The team manufactures and assembles prototype hardware and has the in-house capability of producing hardware with sizes ranging from thumbnail to rail-car. Expertise includes aircraft quality sheet metal construction, certified welding, and assembly. The staff has experience managing a variety of activities: design modification assistance; in-house fabrication; and project management and can work with your engineers to transform sketches and ideas into working prototypes.

400

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

402

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

403

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

404

Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) r-Aluminum Oxide Surface  

E-Print Network (OSTI)

Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) r-Aluminum to hydroxylation of the aluminum terminated surface, the two water process was found to be the most exothermic, occurring within 10-2 s. I. Introduction As one of the most important ceramic materials, R-aluminum oxide

Schlegel, H. Bernhard

405

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

406

Advanced Manufacturing Jobs and Innovation Accelerator Challenge |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assistance » Advanced Manufacturing Jobs and Innovation Technical Assistance » Advanced Manufacturing Jobs and Innovation Accelerator Challenge Advanced Manufacturing Jobs and Innovation Accelerator Challenge October 10, 2013 - 12:01pm Addthis The Advanced Manufacturing Jobs and Innovation Accelerator Challenge (Accelerator) is a multi-agency sponsored competition established to enhance existing regional networks of firms and institutions that accelerate technology-related innovation, business formation, and job creation. Funding provided to these regional networks (also called clusters) help academia, utilities, local governments, and private industry and investors expand partnerships, share strategic information more efficiently, and reduce costs by leveraging existing assets and resources (like physical facilities and equipment).

407

Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify...

408

Moving towards green and sustainable manufacturing  

Science Journals Connector (OSTI)

The pressing needs of energy, water and other resource conservation worldwide is ... a major engineering challenge. In manufacturing, developing green technologies (from process and tooling to the ... manufacturi...

David Alan Dornfeld

2014-01-01T23:59:59.000Z

409

Oak Ridge Centers for Manufacturing Technology - Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

in result from Jack Cook making contacts with some of the people who experienced the Oak Ridge Centers for Manufacturing Technology firsthand. Here is his introduction...

410

Oak Ridge National Laboratory Manufacturing Demonstration Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

411

Oak Ridge Centers for Manufacturing Technology ? testimonials  

NLE Websites -- All DOE Office Websites (Extended Search)

testimonials The first testimonial for the successful Oak Ridge Centers for Manufacturing Technology came from Mitchell Burnett. Mitch was among the first hourly paid employees, an...

412

Fiber Reinforced Polymer Composite Manufacturing Workshop  

Office of Energy Efficiency and Renewable Energy (EERE)

A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss manufacturing of composites. The workshop explored emerging FRP composite market applications in clean energy and barriers to the development and widespread commercial use of these lightweight, high-strength and high-stiffness materials. Improving the manufacturing speed and quality-and reducing their manufacturing costs-could accelerate their use in automotive, wind, compressed gas storage and other clean energy and industrial applications.

413

Manufacturing Success Stories | Department of Energy  

Office of Environmental Management (EM)

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers Assessment center has helped Colorado companies save...

414

Federal Energy and Manufacturing Workforce Training Programs...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

manufacturing related workforce training programs. Funded by the National Science Foundation, the Department of Labor and the Department of Energy these programs provide...

415

Establishing Greener Products and Manufacturing Processes  

E-Print Network (OSTI)

Precision Manufacturing, LCA, Machining, SustainabilityNOMENCLATURE API = CMOS = GWP = LCA = LCI = Mfg = MRR = RoHSLife Cycle Assessment (LCA). The following sections will

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

416

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TX National Center for Manufacturing Sciences Ann Arbor, MI Nimbis Services McLean, VA Praxair Tonawanda, NY Rockwell Automation Milwaukee, WI For additional information, please...

417

Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blue Team B (Washington II & III) - Manufacturing Process Technology Facilitators - Kelly Visconti and Steve Sikirica; Note taker - Theresa Miller Red Team (Madison Room) -...

418

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

419

PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING  

Energy.gov (U.S. Department of Energy (DOE))

A briefing to the Secretary's Energy Advisory Board on the clean energy manufacturing delivered by David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy.

420

National Network for Manufacturing Innovation: A Preliminary...  

Energy Savers (EERE)

capabilities from all the partners to build the proving grounds where innovations flourish and to help advance American domestic manufacturing. nstcnnmiprelimdesignfinal.pdf...

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Composite Tube Trailer Design/Manufacturing Needs  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

422

Manufacturing Barriers to High Temperature PEM Commercialization  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

423

Supplemental Comments of the Plumbing Manufacturers Instititute...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Comments of the Plumbing Manufacturers Instititute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016...

424

American Energy and Manufacturing Competitiveness Summit  

Energy.gov (U.S. Department of Energy (DOE))

The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

425

Laser and Intelligent Energy Field Manufacturing  

Science Journals Connector (OSTI)

Laser has demonstrated many important applications, including machining, welding, surface treating, additive manufacturing etc. Multiple hybrid processes had been developed, including...

Zhang, Wenwu

426

Fiber Reinforced Polymer Composite Manufacturing Workshop: Summary...  

Energy Savers (EERE)

for carbon fiber, including bio-based materials or natural gas; lower energy conversion of white fiber to carbon fiber; and composite manufacturing. Dr. Johnson then...

427

Manufacturing Ecosystems and Keystone Technologies (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

428

Additive Manufacturing: Current Status and Future Prospects  

Science Journals Connector (OSTI)

The potential implications of additive manufacturing or 3D printing technology are being recognized across a number ... wider adoption of and greater business value from 3D printing.

Jyotirmoyee Bhattacharjya; Sonali Tripathi…

2014-01-01T23:59:59.000Z

429

Solar Manufacturing Incentive Grant (SMIG) Program  

Energy.gov (U.S. Department of Energy (DOE))

Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

430

Green Manufacturing Initiative Annual Report 2010  

E-Print Network (OSTI)

Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

de Doncker, Elise

431

A National Strategic Plan For Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

across hundreds of sites and thousands of users through conventional social network media and (2) deploy digitally programmable manufacturing equipment to 1,000 high schools....

432

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

433

2014 Manufacturing Energy and Carbon Footprints: Definitions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

434

Advanced Materials and Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

435

Manufacturing Licenses Available | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing SHARE Manufacturing 200401490 Production of Materials with Superior Properties Utilizing High Magnetic Field (Related ID # 200501531, 200701867, 200802085, 200902312, 201002455, 201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID # 200701983, 200802088) 200701972 Manufacturing Biodiesel from Triglycerides (Related ID # 200702012, 200802186) 200701983 Meso-scale Fluidic Digital Valve 200802083 A Hydraulic Flow Control Device by Means of a Digital Poppet Valve 200802088 Miniature shape memory alloy fluid control valve 200902224 Glass Drawing for Wire Arrays 200902231 Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods 200902291 Method of Machining Carbon and Graphite foams 200902309 Multi-Winding Homopolar Electric Machine Offers

436

Economic and environmental evaluation of end-of-life aerospace aluminum options using optimization methods  

E-Print Network (OSTI)

The benefits of recycling have long been understood and the conspicuous energy savings of secondary aluminum production have caused aluminum recycling to increase. Obsolete aircraft are a valuable source of aluminum scrap ...

Chen, Emily, S.B. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

437

Long-term and Highly Aluminum-resistant Root Elongation in a Camphor Tree Cinnamomum camphora  

E-Print Network (OSTI)

for the detoxification of aluminum in roots of tea plant (Oda A, Yamamoto F, Effects of aluminum on growth and biomassT, Beneficial effect of aluminum on growth of plants adapted

Osawa, Hiroki

2009-01-01T23:59:59.000Z

438

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AISI 4340 STEEL MODIFIED WITH ALUMINUM AND SILICON  

E-Print Network (OSTI)

Met. Trans. 1,2163 (1972). Aluminum_~n Iron~, S. L. Case andSTEEL MODIFIED WITH ALUMINUM AND SILIC ON ManjeshwarThe influence of additions of aluminum and combinations of

Bhat, M.S.

2010-01-01T23:59:59.000Z

439

Fabrication and applications of nanocomposite structures using anodized aluminum oxide membranes  

E-Print Network (OSTI)

Hall, Process of Reducing Aluminum from its Fluoride SaltsFrary and Z. Jeffries, Aluminum and its Production, McGraw-1 (1948). J. E. Hatch, Aluminum Properties and Physical

Gapin, Andrew Isaac

2007-01-01T23:59:59.000Z

440

Aluminum-tungsten fiber composites with cylindrical geometry and controlled architecture of tungsten reinforcement  

E-Print Network (OSTI)

Chung, D. “Silicon-Aluminum Network Composites Fabricated byFigure 95 - Fine model with initial aluminum matrix failure.slight necking of the aluminum matrix. Note failed elements

Lucchese, Carl Joesph

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy  

E-Print Network (OSTI)

of an Ultra-Fine Grained Aluminum Alloy, Poster Session,Grained Cryomilled 5083 Aluminum Alloy J.L. WALLEY, E.J.consistent with other MA aluminum alloys and is attributed

Walley, J. L.; Lavernia, E. J.; Gibeling, J. C.

2009-01-01T23:59:59.000Z

442

Control of residual aluminum from conventional treatment to improve reverse osmosis performance  

E-Print Network (OSTI)

2005. The Role of Dissolved Aluminum in Silica Chemistry forDraft Public Health Goal for Aluminum in Drinking Water .1994. Control of Residual Aluminum in Filtered Water . AWWA,

Gabelich, C J; Ishida, K P; Gerringer, F W; Evangelista, R; Kalyan, M; Suffet, I H

2006-01-01T23:59:59.000Z

443

Thermal coatings for titanium-aluminum alloys  

SciTech Connect

Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

Cunnington, G.R.; Clark, R.K.; Robinson, J.C.

1993-04-01T23:59:59.000Z

444

STATEMENT OF CONSIDERATIONS REQUEST BY THE ALUMINUM COMPANY OF AMERICA (ALCOA) FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR AN ADVANCE WAIVER FOR AN ADVANCE WAIVER OF PATENT RIGHTS PURSUANT TO A COST SHARED SUBCONTRACT UNDER RFP NO. 300267 ISSUED BY BATTELLE'S PACIFIC NORTHWEST NATIONAL LABORATORY (PNNL).(W(A)99-001) The waiver request is directed to a cost shared subcontract for the development of a high volume assembly and joining techniques for assembling aluminum automobile structures. The proposal title is "Advanced High Volume Manufacturing Technology Validation for Lightweight Automobile Structures". Alcoa is requesting the US and foreign rights (subject to the standard government license) The estimated cost of the proposed project is $2,309,850 with DOE funding $1,154,925 and Alcoa funding $1,154,925. The project is directly related to an earlier CRADA entitled "Optimization of Extrusion Shaping and Joining

445

Vintage-level energy and environmental performance of manufacturing establishments  

SciTech Connect

This report examines the relationship between an industrial plant`s vintage and its energy and environmental performance. Basic questions related to defining vintage and measuring the effects of the manufacturing industry`s vintage distribution of plant-level capacity and energy intensity are explored in general for six energy-intensive sectors (paper, chlorine, nitrogenous fertilizer, aluminum, steel, and cement) at the four-digit standard industrial classification (SIC) level and in detail for two sectors (steel and cement). Results show that greenfield (i.e., newly opened) plants in the paper, steel, and cement industries exhibit low fossil fuel intensities. These results are consistent with expectations. New plants in the paper and steel industries, where processes are undergoing electrification, exhibit high electricity intensities. An analysis of a subsector of the steel industry -- minimills that use scrap-based, electric arc furnaces -- reveals a decline in electricity intensity of 6.2 kilowatt-hours per ton for each newer year of installed vintage. This estimate is consistent with those of engineering studies and raises confidence that analyses of vintage effects in other industries could be conducted. When a vintage measure is assigned on the basis of investment data rather than trade association data, the vintage/performance relationship results for the cement industry are reasonably robust; thus, the analysis of vintage and performance could be extended to sectors for which only US Bureau of the Census data are available.

Boyd, G.A.; Bock, M.J.; Neifer, M.J. [Argonne National Lab., IL (United States); Karlson, S.H. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Economics; Ross, M.H. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics

1994-05-01T23:59:59.000Z

446

Relationship Among Efficiency and Output Power of Heat Energy Converters  

E-Print Network (OSTI)

Relationship among efficiency and output power of heat-electric energy converters as well as of any converters for transforming of heat energy into any other kind of energy is considered. It is shown, that the parameter efficiency does not determine univocally the output power of a converter. It is proposed to use another parameter for determination of working ability of heat energy converters. It is shown, that high output power can not be achieved by any kind of Stirling-type converters in spite of their high efficiency.

Alexander Luchinskiy

2004-09-02T23:59:59.000Z

447

Manufacturer-To-Retailer versus Manufacturer-To-Consumer Rebates in a Supply Chain  

Science Journals Connector (OSTI)

Starting with a newsvendor model (single-product, single-period, stochastic demand), we build a single-retailer, single-manufacturer supply chain with endogenous manufacturer rebates and retail pricing. The deman...

Goker Aydin; Evan L. Porteus

2009-01-01T23:59:59.000Z

448

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering  

E-Print Network (OSTI)

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering University of Windsor F.A. Salustri, Department of Mechanical, Aerospace, and Industrial Engineering, Ryerson University To appear, Research in Engineering Design, Springer

Salustri, Filippo A.

449

Modeling of additive manufacturing process relevant feature in layer based manufacturing process planning  

Science Journals Connector (OSTI)

Compared with general machining processes, additive manufacturing (AM) process has stabler planning route ... approach is applied to the process planning of additive manufacturing in this paper. The concept of “....

Xi-juan Liu ???

2012-04-01T23:59:59.000Z

450

A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

451

E-Print Network 3.0 - aluminum based composites Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

UT-BATTELLE FOR THE DEPARTMENT OF ENERGY Summary: power electronics. Testing of aluminum conductor, composite-reinforced (ACCR), a new 3M composite... embedded in an aluminum...

452

E-Print Network 3.0 - aluminum strand coating Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

evaporate nickel and aluminum and then reactively deposit NiAl bond coats... coat's oxidation resistance is achieved by the use of sufficient aluminum to result in the...

453

E-Print Network 3.0 - aluminum joined employing Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion and Utilization 3 ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE Summary: tightly clamped aluminum foils, rather than the...

454

E-Print Network 3.0 - aluminum alloy eroded Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

form January 21, 1999) Introduction The use of aluminum alloys for automotive body... behavior in aluminum alloy 6022. Experimental Procedure ... Source: Laughlin, David E. -...

455

Method of forming aluminum oxynitride material and bodies formed by such methods  

DOE Patents (OSTI)

Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

Bakas, Michael P. (Ammon, ID) [Ammon, ID; Lillo, Thomas M. (Idaho Falls, ID) [Idaho Falls, ID; Chu, Henry S. (Idaho Falls, ID) [Idaho Falls, ID

2010-11-16T23:59:59.000Z

456

E-Print Network 3.0 - aluminum automotive components Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department, University of New Hampshire Collection: Engineering 24 1 Introduction 1.1 Aluminum alloys Summary: 1 1 Introduction 1.1 Aluminum alloys Automotive industry demands...

457

E-Print Network 3.0 - aluminum alloy matrix Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

studied at different length scales. At an atomic scale the aluminum... of plasticity, fracture, is studied. Microstructure and properties of aluminum-scandium alloys Recently......

458

E-Print Network 3.0 - aluminum nitride ceramics Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Emily Parker, Vanni Lughi, Noel C. MacDonald Summary: , biocompatibility, and high fracture toughness. As a piezoelectric ceramic, aluminum nitride is compatible... Aluminum...

459

E-Print Network 3.0 - aluminum alloys grain Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

aluminum... -lithium and aluminum-gallium has been studied. In ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure...

460

E-Print Network 3.0 - aluminum casting technology Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

summarizes attempts of incorporating fly ash into aluminum castings to decrease the energy content, material... . It is shown that fly ash can be incorporated in aluminum...

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - aluminum energy conservation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

summarizes attempts of incorporating fly ash into aluminum castings to decrease the energy content, material... of aluminum melts containing up to 10 vol.% fly ash particles....

462

E-Print Network 3.0 - aluminum shape casting Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

summarizes attempts of incorporating fly ash into aluminum castings to decrease the energy content, material... . It is shown that fly ash can be incorporated in aluminum...

463

E-Print Network 3.0 - aluminum cars Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample search results for: aluminum cars Page: << < 1 2 3 4 5 > >> 1 ORNLTM-1999157 ENERGY DIVISION Summary: aluminum content in passenger cars. General Motors is increasing...

464

E-Print Network 3.0 - aluminum hydroxide complexes Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Acids as Competing Sorbates on Amorphous Aluminum Oxide. (3791) Authors: K... sorption of P to amorphous aluminum oxides. Alum initially decreases litter pH, so the...

465

Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass  

E-Print Network (OSTI)

Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass Hak Sung Lee1, * and Bohumil3A 2B2, Canada Abstract: Biomass of nonliving brown seaweed Sargassum fluitans pretreated.5. There are indications that the biomass hydroxyl groups were involved in sequestering the aluminum in the form

Volesky, Bohumil

466

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network (OSTI)

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

467

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain  

E-Print Network (OSTI)

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain Goker Aydin rebates and retail pricing. The demand uncertainty is multiplicative, and the expected demand depends on the effective (retail) price of the product. A retailer rebate goes from the manufacturer to the retailer

Aydin, Goker

468

The use of synthetic hydrocalcite as a chloride-ion getter for a barrier aluminum anodization process  

SciTech Connect

Chloride ion contamination at parts per billion concentrations plaques electrochemists studying barrier anodic aluminum oxide film growth and anodic aluminum oxide capacitor manufacturers. Chloride ion contamination slows film growth and reduces film quality. We have demonstrated that synthetic hydrocalcite substantially reduces the detrimental effects of chloride ion contamination in an aqueous electrolyte commonly used to grow barrier anodic aluminum oxide. We have determined that problems arise if precautions are not taken when using synthetic hydrocalcite as a chloride-ion getter in an aqueous electrolyte. Synthetic hydrocalcite is somewhat hydrophobic. If this powder is added directly to an aqueous electrolyte, some powder disperses; some floats to the top of the bath and forms scum that locally impedes anodic film formation. Commercially available powder contains a wide range of particle sizes including submicrometer-sized particles that can escape through filters into the electrolyte and cause processing problems. These problems can be over come if (1) the getter is placed in filter bags, (2) a piece of filter paper is used to skim trace amounts of getter floating on the top of the bath, (3) dummy runs are performed to scavenge chloride-ion loaded getter micelles dispersed in the bath, and (4) substrates are rinsed with a strong stream of deionized water to remove trace amounts of powder after anodization.

Panitz, J.K.G.; Sharp, D.J.

1995-11-01T23:59:59.000Z

469

Sparse Convolved Gaussian Processes for Multi-output Regression  

E-Print Network (OSTI)

the concentration of different heavy metal pollutants [5]. Modelling multiple output variables is a challenge as we methodology for synthetic data and real world applications on pollution prediction and a sensor network. 1

Rattray, Magnus

470

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs  

E-Print Network (OSTI)

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs Yuval Emek1 , Jochen Seidel2, and leader election. 1 Introduction We study computability in networks, referred to hereafter as distributed

471

Failure mode and effects analysis outputs: are they valid?  

Science Journals Connector (OSTI)

Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that ... this study was to explore the validity of FMEA outputs within a hospital setting in the...

Nada Atef Shebl; Bryony Dean Franklin; Nick Barber

2012-06-01T23:59:59.000Z

472

Grid adaptation for functional outputs of compressible flow simulations  

E-Print Network (OSTI)

An error correction and grid adaptive method is presented for improving the accuracy of functional outputs of compressible flow simulations. The procedure is based on an adjoint formulation in which the estimated error in ...

Venditti, David Anthony, 1973-

2002-01-01T23:59:59.000Z

473

Community Climate System Model (CCSM) Experiments and Output Data  

DOE Data Explorer (OSTI)

The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

474

Watfactory Virtual Manufacturing Process Varying Inputs  

E-Print Network (OSTI)

with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

Zhu, Mu

475

Biologically inspired mutual synchronization of manufacturing machines  

E-Print Network (OSTI)

Biologically inspired mutual synchronization of manufacturing machines Erjen Lefeber,a,1 , Herman machine is developed. This control system is based on a synchronization mechanism of enzymes replacing of a single turnover cycle. In manufacturing, batch machines serve several jobs simultaneously, e.g., heat

Armbruster, Dieter

476

A Global Assessment of Manufacturing: Economic  

E-Print Network (OSTI)

A Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions Keywords production, materials, closed loop, China, emerging economies Abstract We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon

Gutowski, Timothy

477

Mechanical and Manufacturing Engineering Petroleum Engineering Minor  

E-Print Network (OSTI)

Mechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major program. This minor builds on the fundamentals provided by a basis in mechanical engineering and adds

Calgary, University of

478

Evaluating Energy Efficiency Improvements in Manufacturing Processes  

E-Print Network (OSTI)

and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

Boyer, Edmond

479

Simulation Model Driven Engineering for Manufacturing Cell  

E-Print Network (OSTI)

Simulation Model Driven Engineering for Manufacturing Cell Hironori Hibino1 , Toshihiro Inukai2 Abstract. In our research, the simulation model driven engineering for manufacturing cell (SMDE on the simulation model and to extend the range of control applications and simulation applications using the PC

Paris-Sud XI, Université de

480

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents (OSTI)

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

Murduck, James M. (Lisle, IL); Lepetre, Yves J. (Lauris, FR); Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing output aluminum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents (OSTI)

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

1989-07-04T23:59:59.000Z

482

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network (OSTI)

of availability, it is the major option for future power generation. One inherent disadvantage of gas turbines is the degradation of output as the ambient air temperature increases. This reduction in output during times of peak load create a reliability..., power generation for offshore platforms, utility peak load 58 ESL-IE-92-04-10 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992 power generation, emergency power, ship propulsion, and private...

Neeley, J. E.; Patton, S.; Holder, F.

483

Low Temperature PEM Fuel Cell Manufacturing Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

PEM Fuel Cell PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project  Cost drivers were identified for the following: * MEA * Plates * Balance of Plant (BOP) * Fuel Processing Manufacturing Fuel Cell Project - Phase 1 Note that this presentation will be MEA centric as this is the working group I represent...  MEA Cost Drivers Identified: Identifying MEA Cost Drivers * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA. Thus, focus cost reduction efforts on MEA manufacturing methods. Identify gaps in MEA manufacturing technology: How much better can we do? Note: Cost reductions realized from both material price reduction

484

Manufacturing News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing News and Blog Manufacturing News and Blog Manufacturing News and Blog Blog Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 3:53 PM From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. Read The Full Story Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 1:06 PM Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. Read The Full Story Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory

485

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

486

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) May 28, 2010 DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards. DOE determined the product was noncompliant based on the company's own testing. Summit must immediately notify each person (or company) to whom Summit distributed the noncompliant products that the product does not meet Federal standards. In addition, Summit must provide to DOE documents and records showing the number of units Summit distributed and to whom. The manufacturer and/or

487

Revitalizing American Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing American Manufacturing Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | Secretary Chu Secretary Chu Former Secretary of Energy "The Department of Energy has long been charged with accelerating energy

488

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

489

Logistics implications of electric car manufacturing  

Science Journals Connector (OSTI)

The increasingly important role of electric cars manufacturing needs to develop new logistics concepts in automotive industry. This article analyses critical issues in logistics operations of electric cars based on the in-house perspective of the car manufacturer. The purpose of this paper is two-fold. Firstly, to verify existing research about the impact of electric car manufacturing on logistics operations. Secondly, to investigate concrete logistics implications based on different electric car operations models. Therefore, we use manufacturing phenotypes, which can be applied to separate and classify configuration and coordination principles and helps to reach a better understanding of relationships with their logistics implications. The presented model is based on real case study data of global auto industry and supports the academic study of cross-site comparisons. A holistic and consistent understanding of different operations types in electric car manufacturing will be necessary, which will help in evaluating the actual and future supply chain forms in the car industry.

Florian Klug

2014-01-01T23:59:59.000Z

490

Manufacturing Innovation Multi-Topic Workshop  

Energy.gov (U.S. Department of Energy (DOE))

DOE’s Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently released AMO Request for Information (RFI) and a recently amended OSD ManTech RFI. AMO and OSD ManTech sought to know more about the challenges associated with advanced manufacturing technology that potentially could be overcome by pre-competitive collaboration as part of a Manufacturing Innovation Institute.

491

A measurement infrastructure for sustainable manufacturing  

Science Journals Connector (OSTI)

Global resource degradation, climate change, and environmental pollution are worsening due to increasing globalised industrialisation. Manufacturing industries have thus been put under pressure to cope with these problems while maintaining competitiveness. Sustainable manufacturing has been proposed to meet these challenges. The measurement of sustainability in manufacturing enables the quantitative measure of sustainability performance in specific manufacturing processes that will support decision-making for more sustainable processes and products. This paper describes a proposed sustainable manufacturing measurement infrastructure. The centre piece of this infrastructure is a sustainability performance management component that will effectively manage a sustainable indicator repository, measurement process guidelines, and sustainability performance analysis, evaluation, and reporting. The sustainability measurement infrastructure provides a foundation for decision-making tools development and enables users to create a tight integration into business strategy development processes. Examples in this paper are on carbon emissions and energy consumption.

Shaw C. Feng; Che B. Joung

2011-01-01T23:59:59.000Z

492

EI Summary of All Manufacturing SIC  

U.S. Energy Information Administration (EIA) Indexed Site

All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) The manufacturing sector includes establishments engaged in the mechanical or chemical transformation of materials or substances into new products. These operations are generally conducted in facilities described as plants, factories, or mills, while characteristically using power-driven machines and material-handling equipment. Manufacturing also includes such activities as the assembly of components of manufactured products and the blending of materials, such as lubricating oil, plastics, resins, or liquors.

493

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

494

On the mechanism of aluminum ignition in steam explosions  

Science Journals Connector (OSTI)

An available theory [Epstein, M., Fauske, H.K., 1994. A crystallization theory of underwater aluminum ignition. Nucl. Eng. Des. 146, 147–164] of the ignition of aluminum melt drops under water, which is based on the assumption that the aluminum oxide (Al2O3) drop-surface skin first appears in a metastable molten state, is compared with existing experimental data on the ignition of aluminum drops behind shock waves in water [Theofanous, T.G., Chen, X., DiPiazza, P., Epstein, M., Fauske, H.K., 1994. Ignition of aluminum droplets behind shock waves in water, Phys. Fluids 6, 3513–3515]. The predicted and measured ignition temperature of about 1770 K coincides approximately with the spontaneous nucleation temperature of supercooled liquid Al2O3 (1760 K). This suggests that the crystallization of the oxide layer represents a strong ‘barrier’ to aluminum drop ignition under water. Apparently a similar interpretation is applicable to aluminum drop ignition in gaseous oxidizing atmospheres. We conclude from the theory that the low-temperature aluminum ignitions (in the range 1100–1600 K) that have been observed during steam explosions are a consequence of the short aluminum drop oxidation times in this environment relative to the characteristic time for Al2O3 crystallization. Several aspects of the aluminum drop/shock interaction experiments besides ignition are discussed in the paper. In particular, the experiments provide strong evidence that during the course of a vapor explosion metal fragmentation occurs via a thermal mechanism at low pressure and precedes the development of a high-pressure shock.

M Epstein; H.K Fauske; T.G Theofanous

2000-01-01T23:59:59.000Z

495

Manufacturing and testing VLPC hybrids  

SciTech Connect

To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of {+-}0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.

Adkins, L. R.; Ingram, C. M.; Anderson, E. J. [Guidance, Navigation and Sensors, Boeing (United States)

1998-11-09T23:59:59.000Z

496

Integrated Manufacturing for Advanced MEAs  

SciTech Connect

This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOE’s 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

2007-03-30T23:59:59.000Z

497

Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries  

SciTech Connect

The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

Atreya, Arvind

2013-04-15T23:59:59.000Z

498

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

499

Alternative Fuels Data Center: Clean Energy Manufacturing Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Energy Clean Energy Manufacturing Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Google Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Delicious Rank Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Energy Manufacturing Grants The Clean Energy Manufacturing Incentive Grant Program provides financial

500

Manufacturing Industrial Development for the Alternative Energy Systems-Final Report  

SciTech Connect

NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

2013-01-30T23:59:59.000Z