Sample records for manufacturing joint venture

  1. Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture

    E-Print Network [OSTI]

    Yang, Eui-Hyeok

    Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Policy Number & Name: 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Approval

  2. Hoechst and Wacker plan joint venture in PVC

    SciTech Connect (OSTI)

    Young, I.

    1992-12-02T23:59:59.000Z

    Restructuring of Europe's petrochemical industry has taken a further step with the announcement that Hoechst (Frankfurt) and Wacker Chemie (Munich) are planning a joint venture in polyvinyl chloride (PVC). The venture would include production, R D, sales and marketing, plus both companies' PVC recycling activities. However, their vinyl chloride monomer (VCM) plants, and Hoechst's Kalle PVC film business, have been left out. Erich Schnitzler, head of Hoechst's PVC business unit, does not anticipate problems with the European Community's competition directorate. We are both among the middle-sized European PVC producers, and together we would have a 9%-10% market share. Our joint venture would not limit competition. Both partners are hoping for approval from Brussels in first-quarter 1993. Hoechst has 255,000 m.t./year of PVC capacity at Gendorfand Knapsack, while Wacker has 365,000 m.t./year at Burghausen and Cologne. All the units, except Wacker's Cologne plant, are back integrated to VCM. The joint venture would buy VCM from the two parent companies and on the merchant market.

  3. E-Print Network 3.0 - american-polish joint venture Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results for: american-polish joint venture Page: << < 1 2 3 4 5 > >> 1 ALBERTA LAW REFORM INSTITUTE EDMONTON, ALBERTA Summary: ALBERTA LAW REFORM INSTITUTE EDMONTON, ALBERTA...

  4. Joint Venture Established Between Russian Weapons Plant And the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Established Between Russian Weapons Plant And the Largest Dialysis Provider in the U.S. | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  5. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Presentation slides from the joint Fuel Cell...

  6. Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.

    E-Print Network [OSTI]

    Khan, Sardar Zaheer Ahmad

    2011-01-01T23:59:59.000Z

    ??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local… (more)

  7. HYBRID MODES OF ORGANIZATION Alliances, Joint Ventures, Networks, and other `strange' animals.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 HYBRID MODES OF ORGANIZATION Alliances, Joint Ventures, Networks, and other `strange' animals version: December 2010) halshs-00624291,version1-16Sep2011 #12;2 HYBRID MODES OF ORGANIZATION Alliances of these arrangements, hereafter identified as "hybrids", remains difficult to quantify, they play a major role

  8. Mexico joins the venture: Joint Implementation and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Imaz, M.; Gay, C.; Friedmann, R.; Goldberg, B.

    1998-11-01T23:59:59.000Z

    Joint Implementation (JI) and its pilot phase of Activities Implemented Jointly (AIJ) are envisioned as an economic way of reducing global emissions of greenhouse gases. This paper draws upon the Mexican experience with AIJ to identify Mexican concerns with AIJ/JI and proposed solutions to these. Three approved Mexican AIJ projects (Ilumex, Scolel Te, and Salicornia) are described in detail. The Ilurnex project promotes the use of compact fluorescent lamps in Mexican homes of the States of Jalisco and Nuevo Leon, to reduce electric demand. Scolel Te is a sustainable forest management project in Chiapas. Salicornia examines the potential for carbon sequestration with a Halophyte-based crop irrigated with saline waters in Sonora. These three projects are reviewed to clarify the issues and concerns that Mexico has with AIJ and JI and propose measures to deal with them. These initial Mexican AIJ projects show that there is a need for creation of standard project evaluation procedures, and criteria and institutions to oversee project design, selection, and implementation. Further JI development will be facilitated by national and international clarification of key issues such as additionality criteria, carbon-credit sharing, and valuation of non-GHG environmental and/or social benefits and impacts for AIJ projects. Mexico is concerned that JI funding could negatively impact official development assistance or that OECD countries will use JI to avoid taking significant GHG mitigation actions in their own countries. The lack of carbon credit trading in the AIJ stage must be removed to provide useful experience on how to share carbon credits. National or international guidelines are needed to ensure that a portion of the carbon credits is allocated to Mexico.

  9. Potential sites for joint venture biomass fueled power plants. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-02T23:59:59.000Z

    The US Army is investigating wood-fired boilers. One application is for wood fuels to fire fixed power plant installations where the technology is well proven. Approximately 170 Army bases were evaluated for their heating and electrical needs versus fuel availability from on-base forests. Approximately 20 bases met the minimum demand and resource criteria. Potential joint venture partner classes were identified as new Contractor Owned/Contractor Operated (COCO) entrepreneurs; existing utilities and industries in the vicinity of the bases; and existing Government Owned/Contractor Operated (GOCO) entrepreneurs.

  10. Venture Capital Finance

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Venture Capital Finance Brian Baynes, Partner, Flagship Ventures

  11. alpha rotary joint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    337 389 494 In 1977, 175 joint fishing ventures with the participation-215. In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations...

  12. activities implemented jointly: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    337 389 494 In 1977, 175 joint fishing ventures with the participation-215. In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations...

  13. acromioclavicular joint separations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    337 389 494 In 1977, 175 joint fishing ventures with the participation-215. In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations...

  14. venture.mcmaster.ca What is Venture?

    E-Print Network [OSTI]

    Thompson, Michael

    the excitement of engineering to life. Through interactive projects, campers explore their potential and expand hands-on projects that encourage creativity and curiosity · Qualified staff of enthusiastic McMaster Engineering students · Campers have access to McMaster's top resources · Venture classes are designed

  15. Manufacturing

    Office of Environmental Management (EM)

    Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

  16. acute prosthetic joint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 110 Joint Degrees & Promotion towards European Students Computer...

  17. anatomical joint angles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 110 Joint Degrees & Promotion towards European Students Computer...

  18. atlanto-axial joint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 13 Joint Degrees & Promotion towards European Students Computer...

  19. artificial joint replacements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 152 Joint Degrees & Promotion towards European Students Computer...

  20. ankle joint mobility: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 214 Joint Degrees & Promotion towards European Students Computer...

  1. acromioclavicular joint reconstruction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 68 Joint Degrees & Promotion towards European Students Computer...

  2. acromioclavicular joint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 14 Joint Degrees & Promotion towards European Students Computer...

  3. animals jointly organized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 109 Joint Degrees & Promotion towards European Students Computer...

  4. anticorrosive field joint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 48 Joint Degrees & Promotion towards European Students Computer...

  5. ankle joint position: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 205 Joint Degrees & Promotion towards European Students Computer...

  6. articular process joints: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 146 Joint Degrees & Promotion towards European Students Computer...

  7. atlanto-occipital joint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 15 Joint Degrees & Promotion towards European Students Computer...

  8. Foreign Fishery Developments Japanese Joint

    E-Print Network [OSTI]

    -215. In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nationsForeign Fishery Developments Japanese Joint Fishing Ventures Stabilize Activity Trawling Skipjack tuna harvest Whaling Other harvests Aquaculture Refrigeration operations Fish processing Average $1

  9. artificial atlanto-odontoid joint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1981,193 joint ventures with the par- ticipation of Japanese capital were operating in 47 nations 111 Joint Degrees & Promotion towards European Students Computer...

  10. Agency conflicts in financial contracting with applications to venture capital and CDO markets

    E-Print Network [OSTI]

    Garrison, Kedran

    2005-01-01T23:59:59.000Z

    In these papers I examine efficient financial contracting when incentive problems play a significant role. In the first chapter (joint with Z. Fluck and S. Myers) we focus on the venture capital industry. We build a two-stage ...

  11. Malibu Joint Venture | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held &InformationWindMali Western

  12. Climate Leaders Joint Venture | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615Boulder27. ItInc

  13. Gamesa Santana Joint Venture | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create aGA SNCGTGalip Solar

  14. Florida Venture Capital Program (Florida)

    Broader source: Energy.gov [DOE]

    The Florida Venture Capital Program provides equity investments and convertible debt instruments to emerging Florida companies and companies locating in Florida with long-term growth potential. ...

  15. LANL announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2 J.N. Shadid,a CoverVenture

  16. LANS Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2RecoveryBioenergy »0FebruaryVenture

  17. Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen EnergyVelankani Group Jump to:Venti EnergyVentures Jump

  18. West Virginia Venture Capital (West Virginia)

    Broader source: Energy.gov [DOE]

    The West Virginia Venture Capital provides investment funds to eligible businesses stimulating economic growth and providing or retaining jobs within the state through qualified venture capital...

  19. Venture Capital Program (North Dakota)

    Broader source: Energy.gov [DOE]

    The Venture Capital Program, provided by the ND Department of Commerce, is an innovative financial program that provides flexible financing through debt and equity investments for new or expanding...

  20. An Introduction to Venture Capital Granite representatives

    E-Print Network [OSTI]

    Anderson, Richard

    May 2006 An Introduction to Venture Capital #12;2 Granite representatives Sam Kingsland ­ Managing;3 Introduction to Granite Ventures Founded in 1992 Granite has 9 investment professionals Over $1B under

  1. A Tale of Two Brands: The Joint Effect of Manufacturer Brand and Retailer Brand on Consumers’ Evaluation of Products

    E-Print Network [OSTI]

    Zhu, Ying

    2012-10-19T23:59:59.000Z

    depends on the reference point evoked, and whether each of the two brands is perceived as a gain or loss relative to the reference point. Five lab experiments provide empirical support for the hypothesized effects. Study 1 reveals that the joint effect...

  2. Oceanshore Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy Resources Jump to: navigation,Oceanshore Ventures

  3. Venture Capital Institutions and Venture Capitalists’ Investment Activities: An Empirical Study on China 

    E-Print Network [OSTI]

    Guo, Di

    2010-01-01T23:59:59.000Z

    This thesis explores institutions under which venture capital investment operates in China and whether and how these institutions affect venture capitalists’ (VCs) investment preferences, ex-ante project screening ...

  4. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

  5. Battery Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio JumpVentures Jump to: navigation, search Logo:

  6. Battelle Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers Point Housing,Illinois:County is a countyVentures Jump to:

  7. SP Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar Power Plant Jump to:SESAmerica,SP Ventures

  8. Footprint Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFlux PowerFootprint Ventures Jump to:

  9. RAISING MONEY SOME TIPS ON WORKING WITH VENTURE CAPITALISTS

    E-Print Network [OSTI]

    Knowles, David William

    1 RAISING MONEY SOME TIPS ON WORKING WITH VENTURE CAPITALISTS You've got it! You've developed a product or business concept that should make you and your team rich. Now you want to raise venture money or more venture capitalists (VCs). The partners in the firm raises money to form a venture fund

  10. Land-incentivized joint ventures for infrastructure development in India

    E-Print Network [OSTI]

    Hingorani, Pritika

    2010-01-01T23:59:59.000Z

    Over the next 20 years, it is projected that India will make the transition from a primarily rural economy to one in which more than half of its 1.1 billion strong population will live in urban areas. As this demographic ...

  11. Joint Venture Established Between Russian Weapons Plant And the Largest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider in the U.S. | National

  12. Alvan Blanch Green Fuels joint venture | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place: Folsom,IncAltoona,GeotermalAlvan Blanch

  13. Designing the organizational structure for an entrepreneurial venture

    E-Print Network [OSTI]

    Martinez Delgado, Juan Carlos

    2010-01-01T23:59:59.000Z

    BS Grupo is a Peruvian entrepreneurial venture begun in 2000. The company has grown relatively fast, becoming a leading training provider in Peru. The venture delivers high level and specialized training services in the ...

  14. Venture Global Calcasieu Pass, LLC- (Formerly Venture Global LNG, LLC)- 14-88-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on May 13, 2014, by Venture Global LNG, LLC (VGP) requesting long-term, multi-contract authority to export (in addition...

  15. Steve Kropper WindPole Ventures, LLC

    E-Print Network [OSTI]

    On Wind Is More Valuable Than Wind Power "The Bloomberg of Wind" #12;PROBLEM 300 MW wind needs backup. No construction. No tech risk. Big economic advantage $15k vs $65k. Invenergy, #5 in wind asset. 6 states prepaidSteve Kropper WindPole Ventures, LLC Lexington, MA 617-306-9312 kropper@windpole.com Information

  16. Technology Venture Development Community Partnerships Strategic Initiatives

    E-Print Network [OSTI]

    Technology Venture Development Community Partnerships · Strategic Initiatives · Faculty Outreach) 587-3836 Technology Commercialization Office (TCO) Intellectual Property Protection · Technology and Start the Commercialization Process www.TeCh venTUreS.UTAh.eDU Technology commercialization starts

  17. Technology Venture Development Community Partnerships Strategic Initiatives

    E-Print Network [OSTI]

    Technology Venture Development Community Partnerships · Strategic Initiatives · Faculty Outreach) 587-3836 Technology Commercialization Office (TCO) Intellectual Property Protection · Technology) 585-3844 INTRODUCTION www.TeCh venTUreS.UTAh.eDUwww.TeCh venTUreS.UTAh.eDU Technology

  18. Solar Manufacturing Incentive Grant (SMIG) Program

    Broader source: Energy.gov [DOE]

    Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

  19. New Ventures Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to: navigation,0558143° LoadingNorthSuffolk,New Ventures

  20. Clear Power Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address: 13615Boulder JumpVentures Jump to:

  1. NPI Ventures Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Information Exploration/Development WaterNNGProgramNPI Ventures

  2. Technology Ventures Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & Solutions Home Jessi3bl'sNeedsVentures

  3. Lab seeks ideas for venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space control NewsUWFiveMarch »Santa'sVenture

  4. Summit Energy Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside Wind Farm JumpVentures LLC Jump to:

  5. Sino Transpacific Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt LtdShrubSimpsonville,Transpacific Ventures LLC Jump

  6. Maayan Ventures Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger <Industries Inc Place:Maayan Ventures

  7. Green Spark Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place: Golden, COIndianaLondon,Wind Farm JumpVentures LLC

  8. El Dorado Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty, SouthEggEl Cerrito,Ventures Jump to:

  9. A Road Map for Success: How Northwest Manufactured Housing Conservation Efforts Revolutionized an Industry.

    SciTech Connect (OSTI)

    Gilbertson, William L.

    1993-04-01T23:59:59.000Z

    The evolution of an ongoing Bonneville Power Administration effort to improve the energy efficiency of manufactured homes is chronicled in this informal history. Over the past nine years, Bonneville`s manufactured housing project has undertaken many activities, including technical studies, cooperative ventures, design studies, and information dissemination. These activities are covered.

  10. Ventures in science status report, Summer 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshops that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.

  11. Puna Geothermal Venture's Plan for a 25 MW Commercial Geothermal...

    Open Energy Info (EERE)

    Venture's Plan for a 25 MW Commercial Geothermal Power Plant on Hawaii's Big Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Puna...

  12. Lasting social impact : Community Development Venture Capital investing

    E-Print Network [OSTI]

    Silberberg, Hattie Paige

    2008-01-01T23:59:59.000Z

    Community Development Venture Capital Funds (CDVC) funds are an emerging group of Community Development Financial Institutions, that make equity investments in businesses in economically distressed areas. As equity investors, ...

  13. Small Business Venture Capital Tax Credit Program (Manitoba, Canada)

    Broader source: Energy.gov [DOE]

    The Small Business Venture Capital Tax Credit Program (SBVCTC) assists eligible small corporations to issue new equity to primarily new investors. The small corporation will be able to issue from ...

  14. Extreme Value Analysis and Ventures into Space and Time

    E-Print Network [OSTI]

    Gilleland, Eric

    Extreme Value Analysis and Ventures into Space and Time 15 Center for Atmospheric Research Copyright NCAR 2013 #12;Extreme Value Analysis'arrive jamais" --Emil Gumbel Copyright NCAR 2013 Extreme Value Analysis #12;Copyright

  15. Venture Capital Fund Performance and the IPO Market

    E-Print Network [OSTI]

    McKenzie, Michael; Janeway, William

    2008-01-01T23:59:59.000Z

    ). For example, Cochrane, 2000, Quigley and Woodward, 2003 and Hwang, Quigley and Woodward, 2005, infer aggregate information about the performance of private equity investing using data on the returns to individual venture capital projects. Peng, 2001, Chen... , Baeirl and Kaplan, 2002, Woodward and Hall, 2004, and Hwang, Quigley and Woodward, 2005 use a repeat valuation model to construct an index of venture capital from which overall industry performance may be inferred. A problem with these studies...

  16. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, M.E.; Harkins, B.D.

    1993-11-30T23:59:59.000Z

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  17. High pressure ceramic joint

    DOE Patents [OSTI]

    Ward, Michael E. (Poway, CA); Harkins, Bruce D. (San Diego, CA)

    1993-01-01T23:59:59.000Z

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  18. Challenges for internationalization models : the case of e-commerce ventures' informal internationalization

    E-Print Network [OSTI]

    François, Sébastien (Sébastien Emmanuel)

    2012-01-01T23:59:59.000Z

    This paper investigates if internationalization models can be applied to American e-commerce ventures. Empirical results show that e-commerce ventures do not follow internationalization models, in which companies either ...

  19. Venture Capital and private equity in India : systems analysis and development framework

    E-Print Network [OSTI]

    Surineni, Shravan Kumar

    2012-01-01T23:59:59.000Z

    Venture Capital (VC) has been an important driver of innovation, entrepreneurship and economic growth in the U.S. and around the world for the past few decades. The astounding success of Venture Capital prompted various ...

  20. Venture Global Calcasieu Pass, LLC- FE Dkt. No.- 15-25-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed February 9, 2015, by Venture Global Calcasieu Pass, LLC (Venture Global), seeking a long-term multi-contract...

  1. Manufacturing technologies

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  2. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30T23:59:59.000Z

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  3. University Venture Development Fund Transforming today's research and development into tomorrow's businesses

    E-Print Network [OSTI]

    Bertini, Robert L.

    University Venture Development Fund Transforming today's research and development into tomorrow: University Venture Development Fund P.O. Box 243 Portland, OR 97207 Phone (503) 725-4911 It is highly this process. Thank you for supporting the University Venture Development Fund! PDX_DOCS:401207.2 [33137

  4. 2014 RICE ALLIANCE ENERGY & CLEAN TECHNOLOGY VENTURE FORUM PARTICIPATING SPEAKERS & INVESTORS

    E-Print Network [OSTI]

    2014 RICE ALLIANCE ENERGY & CLEAN TECHNOLOGY VENTURE FORUM PARTICIPATING SPEAKERS & INVESTORS Louis for full-scale commercialization. #12;2014 RICE ALLIANCE ENERGY & CLEAN TECHNOLOGY VENTURE FORUM Albanese Investment Manager Louis Albanese is an investment manager at Saudi Aramco Energy Ventures (SAEV

  5. Manufacturing technology

    SciTech Connect (OSTI)

    Blaedel, K.L.

    1997-02-01T23:59:59.000Z

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  6. Joint Fuel Cell Bus Workshop Summary Report

    E-Print Network [OSTI]

    Joint Fuel Cell Bus Workshop Summary Report Prepared for: U.S. Department of Energy (DOE/EERE) U was jointly sponsored by the Energy Efficiency and Renewable Energy office of the DOE and the Federal Transit the entire range of operating conditions and cycles · Cost (manufacturing, capital, operations

  7. Additive Manufacturing: Implications on Research and Manufacturing

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

  8. Ceramic joints

    DOE Patents [OSTI]

    Miller, Bradley J. (Worcester, MA); Patten, Jr., Donald O. (Sterling, MA)

    1991-01-01T23:59:59.000Z

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  9. Laboratory announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space Combined Routes & SchedulesVenture

  10. Point Venture, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc Jump to:Venture, Texas: Energy Resources Jump to:

  11. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  12. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31T23:59:59.000Z

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  13. International joint ventures in Russia: The influence of culture on alliance success.

    E-Print Network [OSTI]

    Kobernyuk, Elena

    2011-01-01T23:59:59.000Z

    ??The second group suggests that non-equity IJVs in Russia adopt an organisational culture which is more similar to that of the partner, which has majority… (more)

  14. Jules Verne or Joint Venture? Investigation of a Novel Concept for Deep Geothermal Energy Extraction.

    E-Print Network [OSTI]

    Wachtmeister, Henrik

    2012-01-01T23:59:59.000Z

    ?? Geothermal energy is an energy source with potential to supply mankind with both heat and electricity in nearly unlimited amounts. Despite this potential geothermal… (more)

  15. innovati nNovel Biomass Conversion Process Results in Commercial Joint Venture

    E-Print Network [OSTI]

    biomass feedstocks such as corn stover, agricultural waste, and energy crops. The pretreatment enables

  16. Solar Thermal Utility-Scale Joint Venture Program (USJVP) Final Report

    SciTech Connect (OSTI)

    MANCINI,THOMAS R.

    2001-04-01T23:59:59.000Z

    Several years ago Sandia National Laboratories developed a prototype interior robot [1] that could navigate autonomously inside a large complex building to aid and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities.

  17. Lab announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering | Jefferson LabactiveVenture

  18. Lab announces selection of partner for venture acceleration initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space control NewsUW MadisonVoluntaryVenture

  19. Deadline for Venture Acceleration Fund is March 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1 EIADeadline for Venture Acceleration Fund

  20. Five companies received funding through new venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National NuclearNew venture

  1. Puna Geothermal Venture 8MW Expantion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum County Place:PulteGroup JumpValleyVenture

  2. EcoElectron Ventures Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow CarbonOpen1 June, 2013EastonEnergyVentures

  3. The Role of Venture Capital in Building Technology Companies in the Ottawa Region

    E-Print Network [OSTI]

    Callahan, John

    The Role of Venture Capital in Building Technology Companies in the Ottawa Region John Callahan in building technology companies in the Ottawa region. We find four distinct periods of venture capital are relatively distinct in terms of the investors present in the market, the companies seeking capital

  4. The survival of venture capital backed companies : an analysis of the French case

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The survival of venture capital backed companies : an analysis of the French case Sophie Pommet whether venture capital adds value to innovative French companies in terms of increasing their survival time. To this end, we use a hand-collected data set based on a sample of 139 French companies that went

  5. Three dimensional neutronics calculations for the TAMU Nuclear Science Center Triga reactor using BOLD VENTURE

    E-Print Network [OSTI]

    Yupari, Ricardo

    1985-01-01T23:59:59.000Z

    , other pr ogr ams such as thermal hydraulics, ar e expected to be implemented as soon as their development is completed at ORNL. Due to the lar ge memory requirements of the BOLD VENTURE system, only the neutr onics computational module VENTURE...

  6. Advanced Manufacturing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Better Buildings, Better Plants Clean Energy Manufacturing Initiative Combined Heat and Power Innovative Manufacturing Initiative National Network for Manufacturing Innovation...

  7. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    Computer simulation Facilities design Finite element analysis Green manufacturing Industrial materialsManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  8. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2008-01-01T23:59:59.000Z

    a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

  9. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30T23:59:59.000Z

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  10. University of Minnesota Start-up Guide Office for Technology Commercialization (OTC) -Venture Center

    E-Print Network [OSTI]

    Amin, S. Massoud

    ....................................................................................... 18 APPENDIX D: UNIVERSITY FUNDING OPPORTUNITIESUniversity of Minnesota Start-up Guide Office for Technology Commercialization (OTC) - Venture on University of Minnesota research Revised September 2010 1000 Westgate Drive: Suite 160 St. Paul, MN 55114 612

  11. Nonprofit disease foundation investments in biotechnology companies : an evaluation of venture philanthropy

    E-Print Network [OSTI]

    Fielding, Sarah (Sarah Tabbals)

    2011-01-01T23:59:59.000Z

    In the past decade, the practice of venture philanthropy, defined in this research as the provision of capital by a nonprofit entity to a for-profit company, has become an increasingly common asset allocation strategy for ...

  12. Venture Capitalists' Decision to Withdraw: The Role of Portfolio Configuration From a Real Options Lens

    E-Print Network [OSTI]

    Li, Yong; Chi, Tailan

    2012-01-01T23:59:59.000Z

    When does a venture capital firm withdraw from an investment project prior to its completion? This study offers a real options view on this decision by examining the contingent effects of portfolio configuration. We explore how project withdrawal...

  13. Seeds of growth : the challenges of venture capital in the Australian landscape

    E-Print Network [OSTI]

    Lu, Adrian C. (Adrian Chian)

    2012-01-01T23:59:59.000Z

    The Australian venture capital (VC) industry is young and relatively immature compared to the United States. Even though the first Australian VC firm appeared in 1970, the industry remained a niche with low levels of ...

  14. Interaction model of private equity and venture capital developing factors in Chile and Latin America

    E-Print Network [OSTI]

    Sevil Esteban, Ángel

    2012-01-01T23:59:59.000Z

    Private equity and venture capital (PE/VC) are efficient resource allocation systems that provide equity capital to selected entrepreneurs, industries or firms that contribute to advance the economic welfare of society. ...

  15. Growth strategies : how software start-ups can leverage alliances, acquisitions, IPOs and venture capital

    E-Print Network [OSTI]

    Ybanez, Sergio D

    2007-01-01T23:59:59.000Z

    The identification of the different factors impacting a software start-up company's decision to pursue an alliance, acquisition, IPO or venture capital to sustain growth is the main objective of this research study. First ...

  16. The role of venture capitalists in financing and developing high-technology start-ups

    E-Print Network [OSTI]

    Hsu, David H

    2001-01-01T23:59:59.000Z

    This dissertation addresses the interaction between venture capitalists (VCs) and start-up development through three essays. A common theme is that VCs serve important extra-financial and information brokering roles. In ...

  17. RRR Niobium Manufacturing Experience

    SciTech Connect (OSTI)

    Graham, Ronald A. [ATI Wah Chang, An Allegheny Technologies Company, Albany, Oregon 97321 (United States)

    2007-08-09T23:59:59.000Z

    ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

  18. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2008-01-01T23:59:59.000Z

    for implementing green manufacturing”. Trans. of NAMRI/SME,the imple- mentation of green manufacturing, where a wedgemanufacturing scope of the assessment. While it is always important in the development of green

  19. Trends in U.S. Venture Capital Investments Related to Energy: 1980 through the Third Quarter of 2010

    SciTech Connect (OSTI)

    Dooley, James J.

    2010-11-08T23:59:59.000Z

    This report documents trends in U.S. venture capital investments over the period 1980 through the third quarter of calendar year 2010 (2010 Q1+Q2+Q3). Particular attention is given to U.S. venture capital investments in the energy/industrial sector over the period 1980-2010 Q1+Q2+Q3 as well as in the more recently created cross-cutting category of CleanTech over the period 1995-2010 Q1+Q2+Q3. During the early 1980s, U.S. venture capital investments in the energy/industrial sector accounted for more than 20% of all venture capital investments. However subsequent periods of low energy prices, the deregulation of large aspects of the energy industry, and the emergence of fast growing new industries like computers (both hardware and software), biotechnology and the Internet quickly reduced the priority accorded to energy/industrial investments. To wit, venture capital investments related to the energy/industrial sector accounted for only 1% of the $132 billion (in real 2010 US$) invested in 2000 by the U.S. venture capital community. The significant increase in the real price of oil that began in 2003-2004 correlates with renewed interest and increased investment by the venture capital community in energy/industrial investment opportunities. Venture capital investments for 2009 for the energy/industrial sector accounted for $2.4 billion or slightly more than 13% of all venture capital invested that year. The total venture capital invested in energy/industrial during the first three quarters of 2010 is close to $2.4 billion accounting for slightly less than 15% of all venture capital investments during the first three quarters of 2010. In 2009, the aggregate amount invested in CleanTech was $2.1 billion (11% of the total US venture capital invested in that lean year) and for the first three quarters of 2010 US venture capital investments in CleanTech have already exceeded $2.8 billion (18% of all US venture capital investments made during the first three quarters of 2010). Between 2004 and 2009, U.S. venture capital investments in energy/industrial as well as CleanTech have more than quadrupled in real terms.

  20. Hollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients

    E-Print Network [OSTI]

    Perkins, Richard A.

    of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients MEP · MANUFACTURING EXTENSION PARTNERSHIP NationalInstituteofStandardsandTechnology March2013

  1. Butt Joint Tool Commissioning

    SciTech Connect (OSTI)

    Martovetsky, N N

    2007-12-06T23:59:59.000Z

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  2. Women & early-stage entrepreneurship : examining the impact of the venture funding crisis on male and female-led technology start-ups

    E-Print Network [OSTI]

    Swaminathan, Shuba

    2010-01-01T23:59:59.000Z

    Women in technology have always been a minority and the number of women who are founders of venture backed start-ups is even lower. This research empirically investigates venture capital funding received by entrepreneurs ...

  3. VENTURERS CC FIXTURES 2013 Sun 21/4 Kilmington away 2:00

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    VENTURERS CC FIXTURES 2013 Sun 21/4 Kilmington away 2:00 Sun 28/4 Bathford home 2:00 Tue 30/4 Novia home 6:00 Wed 1/5 Monkton Combe away 6:00 Wed 8/5 Atworth away 6:00 Thu 9/5 Royal Oak away 6:00 Sun 12/5 Priston away 2:30 Wed 15/5 Kingswood away 6:00 Sun 19/5 Bristol Venturers home 2:00 Thu 23/5 Bradford 39

  4. Enabling Manufacturing Research through Interoperability

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

    2009-01-01T23:59:59.000Z

    sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

  5. Big Ideas: Creativity, Design and Innovation Camp Photo Permission Venture Engineering and Science at McMaster University is excited to offer, for the first

    E-Print Network [OSTI]

    Haykin, Simon

    Big Ideas: Creativity, Design and Innovation Camp Photo Permission Form Venture Engineering and Science at McMaster University is excited to offer, for the first time, The Big Ideas: Creativity, Design and Innovation Camp. This is a new program from Venture Engineering and Science and Actua programs. Venture

  6. DOE-EERC jointly sponsored research program

    SciTech Connect (OSTI)

    Hendrikson, J.G.; Sondreal, E.A.

    1999-09-01T23:59:59.000Z

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC21-93MC30098 funded through the Office of Fossil Energy and administered at the Federal Energy Technology Center (FETC) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy and Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying efficient, nonpolluting energy technologies that can compete effectively in meeting market demands for clean fuels, chemical feedstocks, and electricity in the 21st century. The objective of the JSRP was to advance the deployment of advanced technologies for improving energy efficiency and environmental performance through jointly sponsored research on topics that would not be adequately addressed by the private sector alone. Examples of such topics include the barriers to hot-gas cleaning impeding the deployment of high-efficiency power systems and the search for practical means for sequestering CO{sub 2} generated by fossil fuel combustion. The selection of particular research projects was guided by a combination of DOE priorities and market needs, as provided by the requirement for joint venture funding approved both by DOE and the private sector sponsor. The research addressed many different energy resource and related environmental problems, with emphasis directed toward the EERC's historic lead mission in low-rank coals (LRCs), which represent approximately half of the U.S. coal resources in the conterminous states, much larger potential resources in Alaska, and a major part of the energy base in the former U.S.S.R., East Central Europe, and the Pacific Rim. The Base and JSRP agreements were tailored to the growing awareness of critical environmental issues, including water supply and quality, air toxics (e.g., mercury), fine respirable particulate matter (PM{sub 2.5}), and the goal of zero net CO{sub 2} emissions.

  7. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer Somers About UsDepartment of Energy

  8. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DC 20585 AprilJohansenof

  9. Locating Chicago Manufacturing

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Renaissance Council, is among the nation's leading public high schools focused on manufac- turing area's econ- omy, including how important manufacturing is to that economy, which manufac- turing

  10. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing manufacturing industries and result in creative new products. Stronger, more corrosion-resistant and lower cost steel alloys are being developed and commercialized to...

  11. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  12. Acoustics by additive manufacturing:.

    E-Print Network [OSTI]

    Setaki, F.

    2012-01-01T23:59:59.000Z

    ??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance… (more)

  13. SSL Manufacturing Roadmap

    Broader source: Energy.gov [DOE]

    Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

  14. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  15. OneVentures Pty Ltd Level 2, 18 Bulletin Place, Sydney, NSW 2000 Australia

    E-Print Network [OSTI]

    Chen, Ying

    OneVentures Pty Ltd Level 2, 18 Bulletin Place, Sydney, NSW 2000 Australia Office +61 (2) 8205 7379 technologies in Australia and was acquired by a UK publicly listed company returning $30m cash and an excellent, Australia's National ICT centre of excellence. She also has a number of advisory positions with One

  16. VentureBeat Smart meters could breathe life into flagging chip market

    E-Print Network [OSTI]

    Lu, Chenyang

    VentureBeat Smart meters could breathe life into flagging chip market April 1, 2009 | Camille Ricketts Even as the downturn dries up cleantech capital, smart-meter makers continue to do quite well, and major utilities like PG&E jumping on board, it looks like the smart-meter industry will hold strong

  17. The Ups and Downs of Collaborative Ventures: A Case Study on Being a Collaborator

    E-Print Network [OSTI]

    Berkowitz, Alan R.

    , CRA Institute of Ecosystem Studies (IES) PO Box AB, Millbrook, NY 12545. Telephone: 845-677-7600 x202, 2004). As Research Administrators, we seek to facilitate collaborative ventures while protecting). Institute of Ecosystem Studies Founded in 1983, the Institute of Ecosystem Studies (IES) combines research

  18. Volume 3 | Fall 2010 INNOVATIONSThe Official Newsletter for Technology Venture Development at The University of Utah

    E-Print Network [OSTI]

    its efforts to commercialize promising clean- energy technologies.TheTechnology CommercializationVolume 3 | Fall 2010 INNOVATIONSThe Official Newsletter for Technology Venture Development Development Center will help drive technology commercialization at the U With one clip of a giant scissors

  19. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Boucherie, Richard J.

    MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 14, No. 4, Fall 2012, pp. 495­511 ISSN 1523 research directions, expanding upon the key points raised by Green [Green LV (2012) The vital role of operations analysis in improving healthcare delivery. Manufacturing Service Oper. Management 14

  20. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Soares, João Luís Cardoso

    ;Green and Soares: Note Manufacturing & Service Operations Management 9(1), pp. 54­61, © 2007 INFORMS 55MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 9, No. 1, Winter 2007, pp. 54­61 issn 1523-Dependent Waiting Time Probabilities in M t /M/s t Queuing Systems Linda V. Green Graduate School of Business

  1. Joint Stiffness Identification of Six-revolute Industrial Serial Robots Claire Dumas

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Joint Stiffness Identification of Six-revolute Industrial Serial Robots Claire Dumas , St the stiffness of industrial robots from robot manufacturers. As a consequence, this paper introduces a robust and fast procedure that can be used to identify the joint stiffness values of any six-revolute serial robot

  2. Manufacturing Renaissance: Return of manufacturing to western countries.

    E-Print Network [OSTI]

    Kianian, Babak; Larsson, Tobias

    2013-01-01T23:59:59.000Z

    ??Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers… (more)

  3. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deposition Manufacturing 201303127 Methods and Materials for Room Temperature Polymer Additive Manufacturing 201303140 Reactive Polymer Fused Deposition Manufacturing 201303151...

  4. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01T23:59:59.000Z

    issues in green design and manufacturing." ManufacturingFOR IMPLEMENTING GREEN MANUFACTURING David Dornfeld BerkeleyCalifornia KEYWORDS Green Manufacturing, Technology,

  5. Assessing Youth Perceptions and Knowledge of Agriculture: The Impact of Participating in an AgVenture Program

    E-Print Network [OSTI]

    Luckey, Alisa

    2012-07-16T23:59:59.000Z

    Agriculture touches the lives of individuals every day, and some do not even realize it. As a means to educate society, agricultural education programs, such as "AgVenture," have been established to educate youth about the importance of agriculture...

  6. Private equity and venture capital in emerging markets : a case study of Egypt and the MENA region

    E-Print Network [OSTI]

    Ismail, Ayman (Ayman Adel), 1973-

    2009-01-01T23:59:59.000Z

    Private equity and venture capital investments in emerging markets grew significantly over the past five years (2003-2008), both in absolute and relative terms. In this study, we examine the industry's role in emerging ...

  7. Joint Institute for Nanoscience Annual Report 2003

    SciTech Connect (OSTI)

    Baer, Donald R.; Campbell, Charles

    2004-02-01T23:59:59.000Z

    The Joint Institute for Nanoscience (JIN) is a cooperative venture of the University of Washington and Pacific Northwest National Laboratory to encourage and enhance high-impact and high-quality nanoscience and nanotechnology of all types. This first annual report for the JIN summarizes activities beginning in 2001 and ending at the close of fiscal year 2003 and therefore represents somewhat less than two years of activities. Major portions of the JIN resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by Pacific Northwest National Laboratory (PNNL) staff scientists and University of Washington (UW) professors. These fellowships were awarded on the basis of applications that included research proposals. JIN co-sponsors an annual Nanoscale Science and Technology Workshop held in Seattle. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The initial JIN agreement recognized that expansion of cooperation beyond UW and PNNL would be highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N?). In concept, N? is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.

  8. MDF | Manufacturing Demonstration Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration...

  9. CIMplementation™: Evaluating Manufacturing Automation

    E-Print Network [OSTI]

    Krakauer, J.

    management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

  10. Overview of the Photovoltaic Manufacturing Technology (PVMaT) project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

    1993-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

  11. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  12. ATS materials/manufacturing

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

    1997-11-01T23:59:59.000Z

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  13. Joint Institute for Nanoscience Annual Report 2004

    SciTech Connect (OSTI)

    Baer, Donald R.; Campbell, Charles

    2005-02-01T23:59:59.000Z

    Due to the inherently interdisciplinary nature of nanoscience and nanotechnology, research in this arena is often significantly enhanced through creative cooperative activities. The Joint Institute for Nanoscience (JIN) is a venture of the University of Washington (UW) and Pacific Northwest National Laboratory (PNNL) to encourage and enhance high impact and high quality nanoscience and nanotechnology research that leverages the strengths and capabilities of both institutions, and to facilitate education in these areas. This report summarizes JIN award activities that took place during fiscal year 2004 and provides a historical list of JIN awardees, their resulting publications, and JIN-related meetings. Major portions of the JIN efforts and resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by PNNL staff scientists and UW professors. JIN fellowships are awarded on the basis of applications that include research proposals. They have been very successful in expanding collaborations between PNNL and UW, which have led to many excellent joint publications and presentations and enhanced the competitiveness of both institutions for external grant funding. JIN-based interactions are playing a significant role in creating new research directions and reshaping existing research programs at both the UW and PNNL. The JIN also co-sponsors workshops on Nanoscale Science and Technology, four of which have been held in Seattle and one in Richland. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant, Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology, has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The JIN agreement recognizes that cooperation beyond UW and PNNL is highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N4). In concept, N4 is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.

  14. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  15. Additive Manufacturing for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  16. Bolt Manufacture: Process Selection

    E-Print Network [OSTI]

    Colton, Jonathan S.

    file · Selective Laser Sintering (SLS) 3 D P i ti· 3-D Printing · Light Engineered Net Shaping (LENS Processes and Systems Prof. J.S. Colton © GIT 2009 20 #12;3D Printing Process (Soligen) ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 21 #12;3D Printing Head (Soligen)3D Printing

  17. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE

  18. Manufacturing Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWater ConservationDepartmentEnergy Manufacturing Energy6

  19. Manufacturing Tech Team | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Tech Team Manufacturing Tech Team Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy...

  20. Leveraging Manufacturing for a Sustainable Future

    E-Print Network [OSTI]

    Dornfeld, David

    2011-01-01T23:59:59.000Z

    for Implementing Green Manufacturing”, NAMRI Trans. , 35,Strategies for Green Manufacturing,” Proc. 4th CIRPAnd, in specific green manufacturing? This will depend on

  1. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    Strategies for Green Manufacturing, " Proceedings HighFH), Implementing green manufacturing, as the first stepASME, Evanston, IL, Green Manufacturing uk/sustainability/

  2. Appropriate use of Green Manufacturing Frameworks

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2010-01-01T23:59:59.000Z

    for Implementing Green Manufacturing,” Trans. North AmericanAppropriate use of Green Manufacturing Frameworks C. Reich-for sustainable or green manufacturing systems and products,

  3. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    for implementing green manufacturing,” Trans. North AmericaStrategies for Green Manufacturing,” Proc. of the 4th CIRPAppropriate Use of Green Manufacturing Frameworks,” Proc. of

  4. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    Operation Strategies for Green Manufacturing, Proceedings ofSymposium on Green Manufacturing and Applications (ISGMAfor implementing green manufacturing. Transactions of NAMRI/

  5. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

  6. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

  7. Leveraging Manufacturing for a Sustainable Future

    E-Print Network [OSTI]

    Dornfeld, David

    2011-01-01T23:59:59.000Z

    2010): “Sustainable Manufacturing – Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as “the creation of manufacturing products that use materials and processes

  8. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    D. , “Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

  9. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

  10. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    D. , Sustainable Manufacturing – Greening Processes, Systemsor impact low Most  sustainable Increase process efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

  11. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    Perkins, Richard A.

    to process improvements to green manufacturing. MEP also works with partners at the state and federal levelsHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING to successfully commercialize federal technologies #12;The Manufacturing Extension Partnership

  12. Posted 10/18/11 MANUFACTURING ENGINEER

    E-Print Network [OSTI]

    Heller, Barbara

    manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

  13. Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

  14. Manufacturing Demonstration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL

  15. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  16. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

  17. Rolling contact orthopaedic joint design

    E-Print Network [OSTI]

    Slocum, Alexander Henry, Jr

    2013-01-01T23:59:59.000Z

    Arthroplasty, the practice of rebuilding diseased biological joints using engineering materials, is often used to treat severe arthritis of the knee and hip. Prosthetic joints have been created in a "biomimetic" manner to ...

  18. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  19. Ventures in science status report, Summer 1992. [Program description and Evaluation Report

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshops that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.

  20. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  1. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Energy Savers [EERE]

    More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

  2. Manufacturing Spotlight: Boosting American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  3. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from industry to assess applicability of new technologies that can reduce manufacturing energy intensity or produce new, energy-efficient products. As part of the technology...

  4. Laboratory characterization of rock joints

    SciTech Connect (OSTI)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01T23:59:59.000Z

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  5. Design for manufacturability Design verification

    E-Print Network [OSTI]

    Patel, Chintan

    ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

  6. Petrick Technology Trends Of Manufacturing

    E-Print Network [OSTI]

    #12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: · that firms sophisticated modeling and simulation of both new products and production processes; · that additive

  7. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

  8. Collaborative Ventures and Value of Learning: Integrating the Transaction Cost and Strategic Option Perspectives on the Choice of Market Entry Modes

    E-Print Network [OSTI]

    Chi, Tailan; McGuire, Donald J.

    1996-01-01T23:59:59.000Z

    This paper employs a simple stochastic model to investigate how transaction cost and strategic option considerations interact to influence a firm’s evaluation of collaborative venturing as a market entry mode. After demonstrating how uncertainty...

  9. INL Joint Appointment Agreements The Joint Appointment Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Idaho National Laboratory is designed to enhance research collaboration between INL and university staff. Joint appointees develop or conduct research and development at...

  10. The Ceramic Manufacturability Center: A new partnership with US industry

    SciTech Connect (OSTI)

    Tennery, V.J. [Oak Ridge National Lab., TN (United States); Morris, T.O. [Oak Ridge Y-12 Plant, TN (United States)

    1993-12-01T23:59:59.000Z

    The Ceramic Manufacturability Center (CMC) is a new facility at the Oak Ridge National Laboratory (ORNL) established as a direct response to current US industry needs. It was created as part of a highly integrated program jointly funded by the US Department of Energy Defense Programs, Energy Efficiency and Renewable Energy, and Energy Research divisions. The CMC is staffed by personnel from ORNL and the Y-12 Plant, both managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Its mission is to improve the technology needed to manufacture high-precision ceramic components inexpensively and reliably. This mission can be accomplished by strengthening the US machine tool industry and by joining with ceramic material suppliers and end users to provide a path to commercialization of these ceramic components.

  11. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1991-01-01T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  12. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  13. Beryllium Manufacturing Processes

    SciTech Connect (OSTI)

    Goldberg, A

    2006-06-30T23:59:59.000Z

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

  14. MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS

    E-Print Network [OSTI]

    Magee, Joseph W.

    MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

  15. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger [University of Arizona

    2014-12-17T23:59:59.000Z

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  16. Optimizing Manufactured Housing Energy Use

    E-Print Network [OSTI]

    McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

    2004-01-01T23:59:59.000Z

    Heater 40 gallon capacity Solar Water Heater ? 66 gallon capacity Duct Joints Industry Standard Sealed with Mastic Duct System Perimeter Duct System Main Trunk Line House Leakage ACH 50 = 10 ACH 50 = 9 Figure 1 Floor Plan...

  17. Jointly Sponsored Research Program

    SciTech Connect (OSTI)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31T23:59:59.000Z

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  18. Joint Center for Artificial Photosynthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Union address, January 26, 2011 Overview The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an...

  19. Joint Center for Artificial Photosynthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCAP North JCAP Headquarters Joint Center for Artificial Photosynthesis California Institute of Technology Jorgensen Laboratory, Mail Code 132-80 1200 East California Boulevard...

  20. Joint Center for Artificial Photosynthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology....

  1. Opportunities and Challenges to Sustainable Manufacturing and CMP

    E-Print Network [OSTI]

    Dornfeld, David

    2009-01-01T23:59:59.000Z

    for Implementing Green Manufacturing,” Trans. North AmericanBoyd, S. , LMAS Green Manufacturing Research Presentation,MANUFACTURING AND GREEN MANUFACTURING Sustainability is

  2. Additive Manufacturing Opportunities for Transportation | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Opportunities for Transportation Mar 13 2015 10:00 AM - 11:00 AM Lonnie Love, Manufacturing Systems Research Group Transportation Science Seminar Series...

  3. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

  4. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

  5. A Management Strategy for Additive Manufacturing:.

    E-Print Network [OSTI]

    Zahn, N.Z.

    2014-01-01T23:59:59.000Z

    ??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology.… (more)

  6. National Electrical Manufacturers Association (NEMA) Response...

    Broader source: Energy.gov (indexed) [DOE]

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  7. Additive Manufacturing Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

  8. Welcome and Advanced Manufacturing Partnership (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

  9. Mechanical and Manufacturing Engineering Mechatronics Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

  10. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  11. Process systems engineering of continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Abel, Matthew J

    2010-01-01T23:59:59.000Z

    Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

  12. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

  13. Manufacturing System Design Framework Manual

    E-Print Network [OSTI]

    Vaughn, Amanda

    2002-01-01T23:59:59.000Z

    Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

  14. Wind Energy Manufacturing Tax Incentive

    Broader source: Energy.gov [DOE]

    With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

  15. Joint Seminar Risk Management Institute &

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    Joint Seminar Risk Management Institute & Department of Decision Sciences Details of Seminar Date and statistics is leading to a greatly broadened theory of regression which draws on tools of convex analysis with factor analysis in finance and economics. Risk Management Institute Joint Seminar #12;

  16. Designing a National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

  17. Joint Capability Technology Demonstration (JCTD) Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Agenda outlines the activities of the 2014...

  18. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  19. Manufacturing for the Hydrogen Economy Manufacturing Research & Development

    E-Print Network [OSTI]

    to coordinate and leverage the current federal efforts focused on manufacturability issues such as low-cost of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

  20. Manufacturing Innovation in the DOE

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007Naval Reactors' Cyber SecurityManufacturingManufacturing

  1. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013

    Broader source: Energy.gov [DOE]

    Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

  2. Joint probabilities and quantum cognition

    SciTech Connect (OSTI)

    Acacio de Barros, J. [Liberal Studies, 1600 Holloway Ave., San Francisco State University, San Francisco, CA 94132 (United States)

    2012-12-18T23:59:59.000Z

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  3. Manufacturing Energy and Carbon Footprints

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  4. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  5. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  6. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2012-05-22T23:59:59.000Z

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  7. Systems, Inc. Manufacturing Program Manager

    E-Print Network [OSTI]

    70819 #12;Advanced Energy Systems, Inc. Outline ·Introduction ·Accomplishments Phase I ·Technical Approach - Second Year ·Manufacturing Schedule Assessment -Top Level Phase II #12;Advanced Energy Systems Design and FEA of 5 cell RF Cavity, He Vessel, Power Coupler, & Cryostat -Interfaces to external piping

  8. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  9. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  10. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  11. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D Additive Manufacturing © Christopher B. Williams Electron Beam Melting Electron Beam Melting Direct Metal

  12. Mechanics and Design, Manufacturing Professor Hani Naguib

    E-Print Network [OSTI]

    Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials. Apple Canada(Se12), Revenue: $5,067,109 9. CGI Group(Se12), Revenue: $4,786,857 10. Siemens Canada(Se12

  13. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    using additive manufacturing in applications such as, but not limited to the net shape manufacture of) Promoting Well-Being, Finding Cures; (3) Building Communities, Expanding Opportunities; and (4) Harnessing

  14. Montana Manufacturing Center www.mtmanufacturingcenter.com

    E-Print Network [OSTI]

    Dyer, Bill

    Montana Manufacturing Center www.mtmanufacturingcenter.com University Technical Assistance Program and wellness industry. Commenting on the strategy, Chief Opera- tions Officer and Six Sigma Green Belt Brad achieve that. NLI offers premier manufacturing and laboratories services (www

  15. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01T23:59:59.000Z

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  16. Building Blocks for the Future of Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Future of Manufacturing Building Blocks for the Future of Manufacturing Scott Smith 2011.05.04 Even though we grew up on opposite sides of the world, my colleague...

  17. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

  18. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  19. Benefits and Barriers of Smart Manufacturing

    E-Print Network [OSTI]

    Trombley, D.; Rogers, E.

    2014-01-01T23:59:59.000Z

    Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

  20. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  1. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  2. Webinar: Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  3. Electromagnetic compatibility in semiconductor manufacturing

    SciTech Connect (OSTI)

    Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

    1995-12-31T23:59:59.000Z

    Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

  4. Manufacturing Industrial Development for the Alternative Energy Systems-Final Report

    SciTech Connect (OSTI)

    Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

    2013-01-30T23:59:59.000Z

    NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

  5. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M [Los Alamos National Laboratory

    2012-08-01T23:59:59.000Z

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  6. Advanced Manufacturing | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing

  7. Manufacturing Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctobertoPerspective

  8. Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013 Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

  9. Machine Tool Design and Operation Strategies for Green Manufacturing

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Operation Strategies for Green Manufacturing Nancy DIAZ 1 ,to implement green manufacturing in machining includingopportunities to green manufacturing exist at all levels of

  10. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    SWOT Anal- ysis for Green Manufacturing Strategy Selection,”Yung, K. L. , 2010, “Green Manufacturing Using IntegratedDornfeld, D. , 2013, Green Manufacturing: Fundamentals and

  11. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    how to think about green manufacturing and sustainability.for sustainable or green manufacturing is that it is not anthe implementation of green manufacturing, where a wedge

  12. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

  13. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Analysis May 2013 Additive Manufacturing in China: Aviationan overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  14. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

  15. Contact Manufacturing Demonstration Facility Craig Blue, Ph.D...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov...

  16. Low Temperature PEM Fuel Cell Manufacturing Needs

    E-Print Network [OSTI]

    Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

  17. Energy Manufacturing Matthew Realff and Steven Danyluk

    E-Print Network [OSTI]

    Das, Suman

    Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

  18. 8th Global Conference on Sustainable Manufacturing

    E-Print Network [OSTI]

    Berlin,Technische Universität

    manufacturing in the UAE · Potentials of renewables · Education for sustainability engineering · Green supply8th Global Conference on Sustainable Manufacturing Architecture for Sustainable Engineering for research institutes and industrial partners related to the area of sustainable manufacturing. It enables

  19. Additive manufacturing of metallic tracks on

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture

  20. e! Science News Semiconductor manufacturing technique holds

    E-Print Network [OSTI]

    Rogers, John A.

    arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cellse! Science News Semiconductor manufacturing technique holds promise for solar energy Published semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

  1. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  2. Pseudomonas fluorescens -A robust manufacturing platform

    E-Print Network [OSTI]

    Lebendiker, Mario

    Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

  3. Manufacturing Research & Development for Systems that will

    E-Print Network [OSTI]

    focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

  4. EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING

    E-Print Network [OSTI]

    Boyer, Edmond

    will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

  5. Technique and application for quantifying dynamic shoulder joint kinematics and glenohumeral joint contact patterns

    E-Print Network [OSTI]

    Massimini, Daniel Frank

    2014-01-01T23:59:59.000Z

    The shoulder (glenohumeral) joint has the greatest range of motion of all human joints; as a result, it is particularly vulnerable to dislocation and injury. The ability to accurately measure dynamic in-vivo joint kinematics ...

  6. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorageReviewFlow of

  7. Joint measurability through Naimark's theorem

    E-Print Network [OSTI]

    Roberto Beneduci

    2014-04-05T23:59:59.000Z

    We use Naimark's dilation theorem in order to characterize the joint measurability of two POVMs. Then, we analyze the joint measurability of two commutative POVMs $F_1$ and $F_2$ which are the smearing of two self-adjoint operators $A_1$ and $A_2$ respectively. We prove that the compatibility of $F_1$ and $F_2$ is connected to the existence of two compatible self-adjoint dilations $A_1^+$ and $A_2^+$ of $A_1$ and $A_2$ respectively. As a corollary we prove that each couple of self-adjoint operators can be dilated to a couple of compatible self-adjoint operators. Next, we analyze the joint measurability of the unsharp position and momentum observables and show that it provides a master example of the scheme we propose. Finally, we give a sufficient condition for the compatibility of two effects.

  8. NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop

    E-Print Network [OSTI]

    &D Workshop Fuel Cell Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cell (SOFC) Manufacturing Lines and driving down the cost of fuel cell manufacturing through automation. What are the key technical Membrane Electrode Assembly Manufacturing Hypothetical Fuel Cell Manufacturing Platforms August 11, 2011

  9. Joint Institutes | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |JenniferB. StorerJohnofJoint GenomeJoint

  10. First metatarsophalangeal joint range of motion : influence of ankle joint position and gastrocsoleus muscle stretching.

    E-Print Network [OSTI]

    North, Ian Graham

    2008-01-01T23:59:59.000Z

    ??[Truncated abstract] First metatarsophalangeal joint (MTPJ1) motion is an important factor in normal weight transference during walking. Disruptions to normal range can influence joints both… (more)

  11. Research on advanced photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

    1991-11-01T23:59:59.000Z

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  12. Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL Low-Cost

  13. UChicagoTech, the University of Chicago Center for Technology Development & Ventures, launched the Innovation Fund in 2010 to accelerate the commercialization of promising,

    E-Print Network [OSTI]

    He, Chuan

    at the University of Chicago. Since 2010, the fund has invested $1.5 millionin a total of 23 projectsacross the University. These projects have received more than $7 millionso far in follow-on funding. Innovation FundUChicagoTech, the University of Chicago Center for Technology Development & Ventures, launched

  14. THE MASTER OF ENGINEERING IN MANUFACTURING ENGINEERING PROGRAM PLANNING SHEET

    E-Print Network [OSTI]

    for Manufacturing ME 526 Simulation of Physical Processes ME 535 Green Manufacturing METHE MASTER OF ENGINEERING IN MANUFACTURING ENGINEERING PROGRAM PLANNING SHEET be at the 500 level or above. 1. Core Manufacturing Requirement ­ 24 credits

  15. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29T23:59:59.000Z

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  16. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24T23:59:59.000Z

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  17. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE Fuel

  18. Manufacturing Initiative | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail5,722,326ManhattanEnergyManufacturing

  19. Microstructurally based thermomechanical fatigue lifetime model of solder joints for electronic applications

    SciTech Connect (OSTI)

    Frear, D.R.; Rashid, M.M.; Burchett, S.N.

    1993-07-01T23:59:59.000Z

    We present a new methodology for predicting the fatigue life of solder joints for electronics applications. This approach involves integration of experimental and computational techniques. The first stage involves correlating the manufacturing and processing parameters with the starting microstructure of the solder joint. The second stage involves a series of experiments that characterize the evolution of the microstructure during thermal cycling. The third stage consists of a computer modeling and simulation effort that utilizes the starting microstructure and experimental data to produce a reliability prediction of the solder joint. This approach is an improvement over current methodologies because it incorporates the microstructure and properties of the solder directly into the model and allows these properties to evolve as the microstructure changes during fatigue.

  20. JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO

    E-Print Network [OSTI]

    Toronto, University of

    JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2001 TRANSPORTATION TOMORROW SURVEY of Transportation, Ontario Additions in 1996 Regional Municipalities of Niagara, Waterloo Counties of Peterborough not to participate) #12;JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2001 TRANSPORTATION TOMORROW SURVEY

  1. Metrology Challenges for High Energy Density Science Target Manufacture

    SciTech Connect (OSTI)

    Seugling, R M; Bono, M J; Davis, P

    2009-02-19T23:59:59.000Z

    Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

  2. Modeling joint friction in structural dynamics.

    SciTech Connect (OSTI)

    Segalman, Daniel Joseph

    2005-05-01T23:59:59.000Z

    The presence of mechanical joints--typified by the lap joint--in otherwise linear structures has been accommodated in structural dynamics via ad hoc methods for a century. The methods range from tuning linear models to approximate non-linear behavior in restricted load ranges to various methods which introduce joint dissipation in a post-processing stage. Other methods, employing constitutive models for the joints are being developed and their routine use is on the horizon.

  3. Joint Genome Institute's Automation Approach and History

    E-Print Network [OSTI]

    Roberts, Simon

    2006-01-01T23:59:59.000Z

    Joint Genome Institute’s Automation Approach and Historythroughput environment; – automation does not necessarilyissues “Islands of Automation” – modular instruments with

  4. Joint Working Group-39, Manufacturing Technology Subworking Group-F, remote handling and automation

    SciTech Connect (OSTI)

    Merrill, R.D.

    1995-02-01T23:59:59.000Z

    The terms of reference were reviewed and continue to encompass the scope of activities of the SUBWOG. No revisions to the terms of reference were proposed. The list of site contacts who should receive copies of SUBWOG correspondence and meeting minutes was reviewed and updated. Documents exchanged related to the meeting include: Minutes of the sixth SUBOG 39F meeting; transactions of the fifth topical meeting on robotics and remote handling; data on manipulators was forwarded to LLNL from the robotics group at AEA Harwell; and the specifications of the duct remediation robot from the Rocky Flats Plant.

  5. JOINT DEGREE PROGRAMS DEFINITION AND POLICY

    E-Print Network [OSTI]

    Omiecinski, Curtis

    1 JOINT DEGREE PROGRAMS DEFINITION AND POLICY: Within the fields of medicine and law, dual training for such complementary training can be demonstrated, the creation of a formal "Joint" degree program in which students or MD) offered at Penn State may be warranted. Such Joint degree programs enhance the educational

  6. The Joint Essential Numerical Range of operators

    E-Print Network [OSTI]

    Li, Chi-Kwong

    The Joint Essential Numerical Range of operators: Convexity and Related Results Chi-Kwong Li Classification 47A12, 47A13, 47A55. Keywords Joint essential numerical range, self-adjoint operator, Hilbert the joint behavior of several operators A1, . . . , Am. One may see [1, 5, 12, 14, 15, 16, 19, 23, 28, 31

  7. MIGRATION DES JOINTS DE GRAINS LA MIGRATION DES JOINTS INTERGRANULAIRES

    E-Print Network [OSTI]

    Boyer, Edmond

    (influence de la force motrice, de la température, de l'orientation, de la présence d'éléments étrangers produise sponta- nément, il faut qu'il existe une force motrice, c'est-à-dire que le déplacement du joint accessibles. Très schématiquement, on pourra poser entre la vitesse de migration v et la force motrice F une

  8. JOINTLY HYPONORMAL PAIRS OF COMMUTING SUBNORMAL OPERATORS NEED NOT BE JOINTLY SUBNORMAL

    E-Print Network [OSTI]

    Curto, Raúl

    JOINTLY HYPONORMAL PAIRS OF COMMUTING SUBNORMAL OPERATORS NEED NOT BE JOINTLY SUBNORMAL RA´UL E operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used] := ST - TS. We say that an n-tuple T = (T1, · · · , Tn) of operators on H is (jointly) hyponormal

  9. READY FOR TODAY. PREPARING FOR TOMORROW. The Joint Operating Environment is intended to inform joint concept

    E-Print Network [OSTI]

    Sainudiin, Raazesh

    READY FOR TODAY. PREPARING FOR TOMORROW. #12;The Joint Operating Environment is intended to inform. Inquiries about the Joint Operating Environment should be directed to USJFCOM Public Affairs, 1562 Mitscher R O N M E N T ( J O E ) #12;While U.S. Joint Forces Command's Joint Operating Environment (JOE

  10. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01T23:59:59.000Z

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  11. Joint strength in RCS frames

    E-Print Network [OSTI]

    Kirby, Cynthia Dawn

    1998-01-01T23:59:59.000Z

    SETUP 3. 4. 1 Loading System. 3. 4. 2 Deformation Measurements . . . . Vt X111 . 1 . I . 1 . 2 . 3 . . . . 3 . 3 . 4 . 5 . . . 6 . 6 . 6 . 7 . 9 . 11 . 13 . 13 . 13 . 13 . 15 . 15 . 15 . 16 . 17 . 19 . 19 . 20 Page 3. 4... Vertical Bearing. 4. 6. 4 Beam Failure Mechanism. Page 4. 6. 5 Column Failure Mechanism 4. 6. 6 Predicted Failure Mechanisms 4. 7 JOINT STRENGTH PREDICTIONS (DISCONTINUOUS BEAM DIRECTION). 5. RESPONSE 5. 1 INTRODUCTION . . 5. 2. GENERAL BEHAVIOR 5...

  12. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TX National Center for Manufacturing Sciences Ann Arbor, MI Nimbis Services McLean, VA Praxair Tonawanda, NY Rockwell Automation Milwaukee, WI For additional information, please...

  13. Manufacturing Ecosystems and Keystone Technologies (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    Culver, Special Assistant to Program Manager, Advanced Manufacturing Office (AMO) Kelly Visconti, AAAS Science & Technology Policy Fellow, AMO DR. LEO CHRISTODOULOU: I would...

  14. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Blue Team B (Washington II & III) - Manufacturing Process Technology Facilitators - Kelly Visconti and Steve Sikirica; Note taker - Theresa Miller Red Team (Madison Room) -...

  15. Manufacturing Demonstration Facility Workshop Videos | Department...

    Broader source: Energy.gov (indexed) [DOE]

    on March 12, 2012. Lauren Culver, Special Assistant to Program Manager, AMO, and Kelly Visconti, AAAS Science & Technology Policy Fellow, AMO, speaking at the Manufacturing...

  16. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and...

  17. Energy & Manufacturing Workforce Training Topics List - Version...

    Broader source: Energy.gov (indexed) [DOE]

    View this searchable list of the training programs in the areas of energy andor manufacturing. Information provided in this list includes: the subjects being taught, grantee,...

  18. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Definitions and Assumptions 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions This 13-page document defines key terms and details assumptions and...

  19. Oak Ridge National Laboratory Manufacturing Demonstration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

  20. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01T23:59:59.000Z

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  1. Supplemental Comments of the Plumbing Manufacturers Instititute...

    Broader source: Energy.gov (indexed) [DOE]

    Supplemental Comments of the Plumbing Manufacturers Instititute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016...

  2. Renewable Energy Manufacturing Tax Credit (South Carolina)

    Broader source: Energy.gov [DOE]

    South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015.

  3. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    KEYWORDS: Life Cycle Assessment, LCA, Green manufacturing,cycle phases, Life Cycle Assessment (LCA). The followingimpact. 2.2 Life Cycle Assessment (LCA) and Related Metrics

  4. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  5. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  6. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Environmental Management (EM)

    Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Characterization of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHSS)...

  7. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    infrastructure Education and training Policy EEREAMO Focus * Manufacturing in the US * GDP and employment enhancement * Energy efficiency and clean energy industry * Energy...

  8. Manufacturing Barriers to High Temperature PEM Commercialization...

    Broader source: Energy.gov (indexed) [DOE]

    Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011....

  9. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  10. Green Manufacturing Initiative Annual Report 2010

    E-Print Network [OSTI]

    de Doncker, Elise

    Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

  11. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  12. 2014 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

  13. Project Profile: Improved Large Aperture Collector Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasibility demonstrations focused in three main areas: an aggressive manufacturing optimization of the collector sub-structures for lower input material costs & mechanized...

  14. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American...

  15. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12T23:59:59.000Z

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  16. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  17. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26T23:59:59.000Z

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  18. A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

  19. MANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED MANUFACTURING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and an additive process. Manufacturability indexes are calculated at the tool design stage, these indexes provide an accurate view of which areas of the tool will advantageously be machined or manufactured by an additiveMANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED

  20. Composite Tube Trailer Design/Manufacturing Needs

    E-Print Network [OSTI]

    composite tube trailers and can, therefore, address issues with: ­ Design ­ Materials ­ Manufacturing in the system ­ Lower cost of carbon fiber ($/strength) ­ Identify material with lower net cost ($/strength) ­ Identify lower cost resin system (raw material & manufacture) ­ Reduce carbon fiber safety factor

  1. Biologically inspired mutual synchronization of manufacturing machines

    E-Print Network [OSTI]

    Armbruster, Dieter

    Biologically inspired mutual synchronization of manufacturing machines Erjen Lefeber,a,1 , Herman machine is developed. This control system is based on a synchronization mechanism of enzymes replacing of a single turnover cycle. In manufacturing, batch machines serve several jobs simultaneously, e.g., heat

  2. A Global Assessment of Manufacturing: Economic

    E-Print Network [OSTI]

    Gutowski, Timothy

    A Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions Keywords production, materials, closed loop, China, emerging economies Abstract We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon

  3. CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING

    E-Print Network [OSTI]

    Provancher, William

    CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers manufacturing, etc. Now that students have a background on Chemical Engineers, it is time for the activity. Blue frosting e. Green frosting f. Pink frosting g. Purple frosting h. Sprinkle sorting i. Sprinkle

  4. Manufacturing Thomas W. Eagar, Guest Editor

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Materials Manufacturing Thomas W. Eagar, Guest Editor The bt·h.n-ior of succl'ssful manufac- tunn;imos., t·m·ironment for mate- nab manufacturing changes, so too does our ml·a~un· ol matt·rials performance~·(·vt·r. as shown by Figure 1, there are sen·ral additional dimensions to perfor- mann·. In particular, successful

  5. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  6. Evaluating Energy Efficiency Improvements in Manufacturing Processes

    E-Print Network [OSTI]

    Boyer, Edmond

    and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

  7. Watfactory Virtual Manufacturing Process Varying Inputs

    E-Print Network [OSTI]

    Zhu, Mu

    with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

  8. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    : Manufacturing Energy and Carbon Footprint, derived from 2006 MECS #12;Management Structure and Project Execution, aqueous-based processes). Develop broadly applicable, manufacturing processes that reduce energy intensity-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  9. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  10. Simulation Model Driven Engineering for Manufacturing Cell

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation Model Driven Engineering for Manufacturing Cell Hironori Hibino1 , Toshihiro Inukai2 Abstract. In our research, the simulation model driven engineering for manufacturing cell (SMDE on the simulation model and to extend the range of control applications and simulation applications using the PC

  11. Joint Announcement | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentatJeffRoundtables | Department ofJoint

  12. Joint Center for Artificial Photosynthesis

    ScienceCinema (OSTI)

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

    2013-12-19T23:59:59.000Z

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  13. Joint DOE-Rosatom Statement

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7January 2015Jim Stock AboutSummit |theJoint

  14. Entropic uncertainties for joint quantum measurements

    SciTech Connect (OSTI)

    Brougham, Thomas [Department of Physics, FJFI, CVUT, Brehova 7, 115 19 Praha 1 (Czech Republic); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom); Andersson, Erika [SUPA, Department of Physics, School of EPS, Heriot-Watt University, Edinburgh EH14 4As (United Kingdom); Barnett, Stephen M. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom)

    2009-10-15T23:59:59.000Z

    We investigate the uncertainty associated with a joint quantum measurement of two spin components of a spin-(1/2) particle and quantify this in terms of entropy. We consider two entropic quantities, the joint entropy and the sum of the marginal entropies, and obtain lower bounds for each of these quantities. For the case of joint measurements where we measure each spin observable equally well, these lower bounds are tight.

  15. Range of joint motion in college males

    E-Print Network [OSTI]

    Houy, David Richard

    1982-01-01T23:59:59.000Z

    . These include the fact that there is little agreement as to the definition and limits of normal f1exibility. It was also found that the range of joint motion is highly specific and that measurement of one body joint cannot be used to predict the range... many of the problems outlined by Holland. There have been several techniques developed for measuring range of' joint motion. Adrian (1968), The American Academy of Orthopedic Surgeons (1968), Ayoub (1972), Clarke (1975), Dempster (1955), Garrett...

  16. Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future

    E-Print Network [OSTI]

    Brock, David

    Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

  17. JIBS | Joint Institute for Biological Sciences | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joint institute is located close to ORNL's Laboratory for Comparative and Functional Genomics, other biomolecular sciences research laboratories, and the Environmental Sciences...

  18. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

  19. MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION

    E-Print Network [OSTI]

    Schumacher, Russ

    MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

  20. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    application of additive manufacturing in China’s aviationAnalysis May 2013 Additive Manufacturing in China: Threats,an overview of China’s additive manufacturing industry is

  1. Faculty Position in Ultra High Precision Robotics & Manufacturing

    E-Print Network [OSTI]

    Candea, George

    , manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

  2. A Quantitative Study of the Impact of Additive Manufacturing in the Aircraft Spare Parts Supply Chain.

    E-Print Network [OSTI]

    Mokasdar, Abhiram S., M.S.

    2012-01-01T23:59:59.000Z

    ??Additive manufacturing is a promising manufacturing technology which is finding its way into mainstream manufacturing industry. As compared to conventional manufacturing it has a number… (more)

  3. E-Print Network 3.0 - automated manufacturing systems Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by delighting the customers. IIMC Manufacturing Systems & Technology Manufacturing... in manufacturing, Awareness of green production and Big R in manufacturing IIT Automation &...

  4. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Energy Savers [EERE]

    Manufacturing in the Fuel Cells Industry Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Additive Manufacturing for Fuel Cells" held on...

  5. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    4: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn,...

  6. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  7. Manufacturing Metrology for c-Si Module Reliability/Durabiltiy...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Metrology for c-Si Module ReliabilityDurabiltiy Manufacturing Metrology for c-Si Module ReliabilityDurabiltiy Presented at the PV Module Reliability Workshop,...

  8. Join Us for the Clean Energy Manufacturing Initiative's Western...

    Energy Savers [EERE]

    resources, as well as best practices and cutting-edge technologies, to boost energy productivity across the entire U.S. manufacturing supply chain will make our manufacturing...

  9. Manufacturing R&D of PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell Systems for Transportation Applications Background Material for the Manufacturing R&D Workshop to be...

  10. Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalys...

  11. DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

    Energy Savers [EERE]

    Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

  12. Letter from Plumbing Manufacturers Institute to Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Letter from Plumbing Manufacturers Institute to Department of Energy re: Ex Parte Communication More Documents & Publications Supplemental Comments of the Plumbing Manufacturers...

  13. allergenic extract manufacturers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  14. Wind Program Manufacturing Research Advances Processes and Reduces...

    Energy Savers [EERE]

    Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

  15. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

  16. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

  17. Energy Department to Work with National Association of Manufacturers...

    Office of Environmental Management (EM)

    to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase...

  18. An exploration of materials and methods in manufacturing : shoreline membranes

    E-Print Network [OSTI]

    Chin, Ryan C. C., 1974-

    2000-01-01T23:59:59.000Z

    This thesis is an investigation into the design methodologies and ideologies of manufacturing processes specifically related to automotive design. The conceptualization, prototyping, testing, and manufacturing of cars is ...

  19. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

  20. Proceedings from the Wind Manufacturing Workshop: Achieving 20...

    Office of Environmental Management (EM)

    Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind...

  1. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

  2. Upcoming Webinar February 11: Additive Manufacturing for Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    February 11: Additive Manufacturing for Fuel Cells Upcoming Webinar February 11: Additive Manufacturing for Fuel Cells February 6, 2014 - 12:00am Addthis On Tuesday, February 11,...

  3. Webinar: Additive Manufacturing for Fuel Cells | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Additive Manufacturing for Fuel Cells Webinar: Additive Manufacturing for Fuel Cells February 11, 2014 5:00PM to 6:00PM EST Online...

  4. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    focused on sustainable processes and systems. Despite recentto make their processes more sustainable, evaluating theirManufacturing Process Design for Sustainable Manufacturing,”

  5. AMO Issues Request for Information on Clean Energy Manufacturing...

    Energy Savers [EERE]

    Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications AMO Issues Request for Information on Clean Energy Manufacturing Topics,...

  6. Purdue, GE Collaborate On Advanced Manufacturing | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the production side. For manufacturing operations the size of GE's, just a 1 percent improvement in manufacturing productivity would save 500 million." GE and Purdue have been...

  7. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

  8. Cycle to Cycle Manufacturing Process Control

    E-Print Network [OSTI]

    Hardt, David E.

    Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

  9. Sandia National Laboratories: Numerical Manufacturing And Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NuMAD (Numerical Manufacturing And Design) is an open-source software tool written in Matlab which simplifies the process of creating a three-dimensional model of a wind turbine...

  10. Steam System Improvements at a Manufacturing Plant

    E-Print Network [OSTI]

    Compher, J.; Morcom, B.

    BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

  11. Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards.

  12. Requirements & Status for Volume Fuel Cell Manufacturing

    E-Print Network [OSTI]

    Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July ­Eliminate components, parts and process steps ­Standardize core components across products ­Standardize non-core

  13. 4D printing : towards biomimetic additive manufacturing

    E-Print Network [OSTI]

    Tsai, Elizabeth Yinling

    2013-01-01T23:59:59.000Z

    Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

  14. Cost Effective Cooling Strategies for Manufacturing Facilities

    E-Print Network [OSTI]

    Kumar, R.

    there are many similarities. In addition to the above environmental conditions for the process/machines and workers, cost effective design of manufacturing facilities must also address maintainability, sanitation, durability, energy conservation and budgetary...

  15. Lane Electric Cooperative- Manufactured Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative offers customers an incentive for buying a new EnergyStar manufactured home. These properties must be within the eligible service area and must be a permanent residence....

  16. Energy-Efficient Appliance Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    '''''Note: This tax credit expired at the end of 2011. The American Taxpayer Relief Act of 2012 retroactively renewed this tax credit for certain appliances manufactured in 2012 and 2013. '''''

  17. Photographic lens manufacturing and production technologies

    E-Print Network [OSTI]

    Kubaczyk, Daniel Mark

    2011-01-01T23:59:59.000Z

    An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

  18. Analyzing sampling methodologies in semiconductor manufacturing

    E-Print Network [OSTI]

    Anthony, Richard M. (Richard Morgan), 1971-

    2004-01-01T23:59:59.000Z

    This thesis describes work completed during an internship assignment at Intel Corporation's process development and wafer fabrication manufacturing facility in Santa Clara, California. At the highest level, this work relates ...

  19. Advanced Manufacturing Partnership | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the...

  20. Clean Energy Technology Device Manufacturers' Credits (Delaware)

    Broader source: Energy.gov [DOE]

    Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

  1. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  2. Utilizing Daylighting Controls in a Manufacturing Facility

    E-Print Network [OSTI]

    Shrestha, S. S.; Maxwell, G. M.

    Utilizing Daylighting Controls in a Manufacturing Facility Som S. Shrestha Dr. Gregory M. Maxwell PhD Candidate Associate Professor som@iastate.edu gmaxwell@iastate.edu Iowa State University Ames, IA ABSTRACT Opportunities exist... to reduce artificial lighting in manufacturing facilities which have skylights and/or fenestration that provide sufficient quantities of daylight to the work space. Using photometric sensors to measure the illuminance in the space, artificial lights can...

  3. Energetic additive manufacturing process with feed wire

    DOE Patents [OSTI]

    Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

    2000-11-07T23:59:59.000Z

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  4. Manufacturing Demonstration Facilities Workshop, March 12, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09ManufacturingManufacturing

  5. EFFECT OF JOINT AUDITOR PAIR ON CONSERVATISM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 EFFECT OF JOINT AUDITOR PAIR ON CONSERVATISM: EVIDENCE FROM IMPAIRMENT TESTS Gerald Lobo's (1997) measure of conservatism, are more likely to book impairments when operating performance is low requiring joint audit to improve audit quality. Mots clés : Co-commissariat ­ Reconnaissance adéquate des

  6. MCM-C Multichip Module Manufacturing Guide

    SciTech Connect (OSTI)

    Blazek, R.J.; Kautz, D.R.; Galichia, J.V.

    2000-11-20T23:59:59.000Z

    Honeywell Federal Manufacturing & Technologies (FM&T) provides complete microcircuit capabilities from design layout through manufacturing and final electrical testing. Manufacturing and testing capabilities include design layout, electrical and mechanical computer simulation and modeling, circuit analysis, component analysis, network fabrication, microelectronic assembly, electrical tester design, electrical testing, materials analysis, and environmental evaluation. This document provides manufacturing guidelines for multichip module-ceramic (MCM-C) microcircuits. Figure 1 illustrates an example MCM-C configuration with the parts and processes that are available. The MCM-C technology is used to manufacture microcircuits for electronic systems that require increased performance, reduced volume, and higher density that cannot be achieved by the standard hybrid microcircuit or printed wiring board technologies. The guidelines focus on the manufacturability issues that must be considered for low-temperature cofired ceramic (LTCC) network fabrication and MCM assembly and the impact that process capabilities have on the overall MCM design layout and product yield. Prerequisites that are necessary to initiate the MCM design layout include electrical, mechanical, and environmental requirements. Customer design data can be accepted in many standard electronic file formats. Other requirements include schedule, quantity, cost, classification, and quality level. Design considerations include electrical, network, packaging, and producibility; and deliverables include finished product, drawings, documentation, and electronic files.

  7. Sporting Good Manufacturing Company: Optimal Manufacturing and Shipping Cost Through Linear Programming Models

    E-Print Network [OSTI]

    Malik, Ejaz

    2009-05-15T23:59:59.000Z

    Figure 15: Example Transshipment Model.............................................................................. 18 vi List of Principal Symbols and Nomenclature SGMC Sporting Good Manufacturing Company LP Linear Programming CEO Chief... Executive Officer COO Chief Operation Officer PKR Pakistani Rupees EMGT Engineering Management O.F. Objective Function A i No. of bats manufactured in factory i; where i = k, l BB i No. of Stumps manufactured in factory i; where i = k, l C i No...

  8. Small Manufacturer Strategic Decision Making Assistance Tool (SMSDM): a Case Study of a Small Oklahoma Manufacturer.

    E-Print Network [OSTI]

    Robertson, William D.

    2011-01-01T23:59:59.000Z

    ??The propose was to design an informative analytical tool for small Oklahoma manufacturing firms that would assist in their strategic planning and decision making processes.… (more)

  9. The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development

    E-Print Network [OSTI]

    Crabtree, George

    2014-01-01T23:59:59.000Z

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  10. Sensitivity of Solder Joint Fatigue to Sources of Variation in Advanced Vehicular Power Electronics Cooling

    SciTech Connect (OSTI)

    Vlahinos, A.; O'Keefe, M.

    2010-06-01T23:59:59.000Z

    This paper demonstrates a methodology for taking variation into account in thermal and fatigue analyses of the die attach for an inverter of an electric traction drive vehicle. This method can be used to understand how variation and mission profile affect parameters of interest in a design. Three parameters are varied to represent manufacturing, material, and loading variation: solder joint voiding, aluminum nitride substrate thermal conductivity, and heat generation at the integrated gate bipolar transistor. The influence of these parameters on temperature and solder fatigue life is presented. The heat generation loading variation shows the largest influence on the results for the assumptions used in this problem setup.

  11. Sandia National Laboratories: New Report Describes Joint Opportunities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and Hydrogen...

  12. New Report Describes Joint Opportunities for Natural Gas and...

    Energy Savers [EERE]

    New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell Vehicle Markets New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel Cell...

  13. Fifth National Report for the Joint Convention on the Safety...

    Energy Savers [EERE]

    Fifth National Report for the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management Fifth National Report for the Joint Convention...

  14. National Report Joint Convention on the Safety of Spent Fuel...

    Office of Environmental Management (EM)

    National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent...

  15. Joint inversion of electrical and seismic data for Fracture char...

    Broader source: Energy.gov (indexed) [DOE]

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

  16. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

  17. Joint Institute for Neutron Sciences | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Institute for Neutron Sciences SHARE Joint Institute for Neutron Sciences JINS is located on Chestnut Ridge within the 80-acre SNS site, part of Oak Ridge National...

  18. Joint Technical Operations Team | National Nuclear Security Administra...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blog Home About Us Our Programs Emergency Response Responding to Emergencies Render Safe Joint Technical Operations Team Joint Technical Operations Team JTOT Logo...

  19. Phosphine oxide derivatives as hosts for blue phosphors: A joint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide derivatives as hosts for blue phosphors: A joint theoretical and experimental study of their electronic Phosphine oxide derivatives as hosts for blue phosphors: A joint...

  20. application driven joint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This applica- tion is particularly challenging due to its demand for multiple concurrent media Smith, Jonathan M. 60 JOINT SEMINAR FINAL REPORT Mathematics Websites Summary: JOINT...

  1. Sealed joint structure for electrochemical device

    DOE Patents [OSTI]

    Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J

    2013-05-21T23:59:59.000Z

    Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.

  2. Faculty Position in Multi-scale Manufacturing Technologies

    E-Print Network [OSTI]

    Psaltis, Demetri

    -precision additive manufacturing technologies; · multi-scale micro-precision manufacturing; · high throughput. Christian Enz Search Committee Chair E-mail: manufacturing-search@epfl.ch For additional information on EPFLFaculty Position in Multi-scale Manufacturing Technologies at the Ecole polytechnique fédérale de

  3. Accepted Manuscript Sustainable manufacturing: Evaluation and Modeling of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in additive manufacturing Florent Le Bourhisa · Olivier Kerbrata Jean-Yves Hascoeta · Pascal Mognola Accepted of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologies such as Direct Additive Laser Manufac- turing allow us to manufacture functional

  4. Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing!

    E-Print Network [OSTI]

    Das, Suman

    Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing! Prof. Shreyes Melkote, Manufacturing Research Center, Georgia Institute of Technology Photovoltaics (PV) will be part of the energy mix volume PV manufacturing, therefore to reduce manufacturing cost and accelerate PV use. ! q Silicon wafer

  5. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  6. Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering

    E-Print Network [OSTI]

    Salustri, Filippo A.

    to component dimension i CT total cost of manufacturing and quality Cpi capability index of last process, and quality, for the sake of achieving a minimal total cost and reducing lead-time. However, in existing workSimultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial

  7. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01T23:59:59.000Z

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  8. Safety Monitor Joint Working Group (JWG) Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring Program) Meeting...

  9. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  10. OXFORD UNIVERSITY JOINT COMMITTEE FOR MATHEMATICS AND

    E-Print Network [OSTI]

    OXFORD UNIVERSITY JOINT COMMITTEE FOR MATHEMATICS AND PHILOSOPHY October 2014 Programme: for Mathematics, Statistics and Operational Research, and for Philosophy. http · to provide, within the supportive and stimulating environment of the collegiate university, a course

  11. Joint Actinide Shock Physics Experimental Research - JASPER

    SciTech Connect (OSTI)

    None

    2014-10-31T23:59:59.000Z

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  12. Dynamic Ball & Socket Joint Force Simulator

    E-Print Network [OSTI]

    Farmer, Ryan Neal

    2011-07-26T23:59:59.000Z

    The stability of an implant in the bone, one factor in joint replacement survival, is usually tested using biaxial fatigue loading. These loading protocols do not replicate physiological loading conditions. The Dynamic ...

  13. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect (OSTI)

    Easoz, J.R.; Herlocher, R.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States))

    1991-12-01T23:59:59.000Z

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  14. Independent Technical Investigation of the Puna Geothermal Venture Unplanned Steam Release, June 12 and 13, 1991, Puna, Hawaii

    SciTech Connect (OSTI)

    Thomas, Richard; Whiting, Dick; Moore, James; Milner, Duey

    1991-07-01T23:59:59.000Z

    On June 24, 1991, a third-party investigation team consisting of Richard P. Thomas, Duey E. Milner, James L. Moore, and Dick Whiting began an investigation into the blowout of well KS-8, which occurred at the Puna Geothermal Venture (PGV) site on June 12, 1991, and caused the unabated release of steam for a period of 31 hours before PGV succeeded in closing in the well. The scope of the investigation was to: (a) determine the cause(s) of the incident; (b) evaluate the adequacy of PGVs drilling and blowout prevention equipment and procedures; and (c) make recommendations for any appropriate changes in equipment and/or procedures. This report finds that the blowout occurred because of inadequacies in PGVs drilling plan and procedures and not as a result of unusual or unmanageable subsurface geologic or hydrologic conditions. While the geothermal resource in the area being drilled is relatively hot, the temperatures are not excessive for modem technology and methods to control. Fluid pressures encountered are also manageable if proper procedures are followed and the appropriate equipment is utilized. A previous blowout of short duration occurred on February 21, 1991, at the KS-7 injection well being drilled by PGV at a depth of approximately 1600'. This unexpected incident alerted PGV to the possibility of encountering a high temperature, fractured zone at a relatively shallow depth. The experience at KS-7 prompted PGV to refine its hydrological model; however, the drilling plan utilized for KS-8 was not changed. Not only did PGV fail to modify its drilling program following the KS-7 blowout, but they also failed to heed numerous ''red flags'' (warning signals) in the five days preceding the KS-8 blowout, which included a continuous 1-inch flow of drilling mud out of the wellbore, gains in mud volume while pulling stands, and gas entries while circulating muds bottoms up, in addition to lost circulation that had occurred earlier below the shoe of the 13-3/8-hch casing.

  15. CHARACTERIZATION OF DAMPING IN BOLTED LAP JOINTS

    SciTech Connect (OSTI)

    C. MALONEY; D. PEAIRS; ET AL

    2000-08-01T23:59:59.000Z

    The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.

  16. Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1998-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

  17. JointResearchCentre THE WATER FRAMEWORK DIRECTIVE

    E-Print Network [OSTI]

    Commission *Directorate General Environment **Joint Research Centre #12;Evolvement of the EU Water.for operational methods and other supporting tools. ll Joint efforts and activities by all involved partiesJointJointResearchCentre THE WATER FRAMEWORK DIRECTIVE: THE CHALLENGES OF TESTING AND VALIDATION

  18. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    greenhouse gas emissions associated with current solar thermal energy heating and cooling methods. According to ThermaSun President Larry Mapes, about 50 prototype units are...

  19. Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri MechanicalofVehicles -

  20. Venture Acceleration Fund wins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri MechanicalofVehicles -wins entrepreneurship

  1. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering | Jefferson Labactive

  2. New Energy Ventures (Kentucky)

    Broader source: Energy.gov [DOE]

    This fund provides capital for companies exploring alternative and renewable energy technologies. Companies may apply for a $30,000 grant, an initial investment up to $250,000, or Follow-On funding...

  3. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere! AmericaSHARE

  4. Native American Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of Energy2015 | JeffersonNations Work

  5. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04T23:59:59.000Z

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  6. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28T23:59:59.000Z

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  7. REMEDIAT1NG AT MANUFACTURED GAS

    E-Print Network [OSTI]

    Peters, Catherine A.

    , comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas, and metals. Tar resid- uals were produced from the vola- tiIe component of bituminous coals in coal

  8. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01T23:59:59.000Z

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  9. Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing

    E-Print Network [OSTI]

    Marcus, Steven I.

    1 Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing Xiaodong Yao, Emmanuel on Control Applications in 2001. #12;2 Abstract Preventive Maintenance (PM) scheduling is a very challenging schedule with that of a baseline reference schedule are also presented. Index Terms preventive maintenance

  10. Pollution Prevention and Lean Manufacturing Paper # 360

    E-Print Network [OSTI]

    Pollution Prevention and Lean Manufacturing Paper # 360 Harry W. Edwards and Jason M. Jonkman, the CSU IAC promotes energy conservation, pollution prevention, and productivity improvement. During that generated a total of 467 assessment recommendations (ARs) with pollution prevention benefits. Such benefits

  11. Faculty of Engineering Industrial and Manufacturing

    E-Print Network [OSTI]

    Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

  12. Automatically Generating Plans for Manufacturing* Billy Harris

    E-Print Network [OSTI]

    Cook, Diane J.

    Automatically Generating Plans for Manufacturing* Billy Harris Diane J. Cook Frank Lewis§ January of action. ORGANIZATION LEVEL COORDINATION LEVEL EXECUTION LEVEL A B S T R A C T I O N P R E C I S I O N

  13. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01T23:59:59.000Z

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  14. Advanced Manufacturing: Using Composites for Clean Energy

    Broader source: Energy.gov [DOE]

    Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

  15. Manufacturing Fuel Pellets from Biomass Introduction

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Manufacturing Fuel Pellets from Biomass Introduction Wood pellets have increased tremendously pellet stoves or boilers over traditional wood-fired equipment due to their relative ease of use. As a result, the demand for fuel pellets has also grown quickly. However, wood is not the only suitable

  16. Manufacturability-Aware Physical Layout Optimizations

    E-Print Network [OSTI]

    Pan, David Z.

    design. To really bridge the gap between design and manufacturing, it is important to model and feed As VLSI technology continues to scale down to nanometer dimensions, the semiconductor industry is greatly reason is due to extensive usage of RET. The semiconductor industry is adopting the immersion lithography

  17. Montana Manufacturing Center www.mtmanufacturingcenter.com

    E-Print Network [OSTI]

    Dyer, Bill

    on. A Six Sigma project guided by a Field Engi- neer from the Montana Manufacturing Extension Center with Worrest serving as project lead and Six Sigma Coach. Reid considers Worrest a business coach and has used is much better, the company is carrying less inventory, and it is benefiting in other ways. Six Sigma

  18. Summit Manufacturing: Noncompliance Determination (2010-SE-0303)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards.

  19. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  20. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  1. Qualification of the Joints for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, N; Berryhill, A; Kenney, S

    2011-09-01T23:59:59.000Z

    The ITER Central Solenoid has 36 interpancake joints, 12 bus joints, and 12 feeder joints in the magnet. The joints are required to have resistance below 4 nOhm at 45 kA at 4.5 K. The US ITER Project Office developed two different types of interpancake joints with some variations in details in order to find a better design, qualify the joints, and establish a fabrication process. We built and tested four samples of the sintered joints and two samples with butt-bonded joints (a total of eight joints). Both designs met the specifications. Results of the joint development, test results, and selection of the baseline design are presented and discussed in the paper. The ITER Central Solenoid (CS) consists of six modules. Each module is composed of six wound hexapancakes and one quadrapancake. The multipancakes are connected electrically and hydraulically by in-line interpancake joints. The joints are located at the outside diameter (OD) of the module. Cable in conduit conductor (CICC) high-current joints are critical elements in the CICC magnets. In addition to low resistivity, the CS joints must fit a space envelope equivalent to the regular conductor cross section and must have low hydraulic impedance and enough structural strength to withstand the hoop and compressive forces during operation, including cycling. This paper is the continuation of the work reported on the intermodule joints.

  2. Germ-killing bush medicine P3 Emotional intelligence in the classroom P10

    E-Print Network [OSTI]

    Liley, David

    venture puts wind beneath industry wings A new r&D centre will give AustrAliA's AircrAft component mAnufActuring inDustry Access to improveD mAnufActuring techniques AnD ADvAnceD mAteriAls david horwood m joints AnD jet BlADes cop A hot sprAy The uses for thermal spray coatings, which, at their thickest

  3. Handbook on dynamics of jointed structures.

    SciTech Connect (OSTI)

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01T23:59:59.000Z

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  4. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

    Broader source: Energy.gov (indexed) [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

  5. Estimating the expected latency to failure due to manufacturing defects

    E-Print Network [OSTI]

    Dorsey, David Michael

    2004-09-30T23:59:59.000Z

    Manufacturers of digital circuits test their products to find defective parts so they are not sold to customers. Despite extensive testing, some of their products that are defective pass the testing process. To combat this problem, manufacturers...

  6. New urban manufacturing neo-industrial design in Louisville, Kentucky

    E-Print Network [OSTI]

    Rhie, Christopher

    2014-01-01T23:59:59.000Z

    American manufacturing is experiencing a modest renaissance. U.S. firms are choosing to re-shore manufacturing jobs not out of their sense of patriotism, but because it makes good business sense. The costs of transportation ...

  7. Flexibility in Aerospace and Automotive Component Manufacturing Systems

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Flexibility in Aerospace and Automotive Component Manufacturing Systems: Practice, Strategy Supervisor #12;2 #12;Flexibility in Aerospace and Automotive Component Manufacturing Systems: Practice Traditionally, parts fabrication in the aerospace and automotive industries has been associated with a number

  8. Springfield Utility Board- Super Good Cents Manufactured Homes Rebate Program

    Broader source: Energy.gov [DOE]

    The Springfield Utility Board offers a $600 incentive for the purchase of a Super Good Cents Manufactured Home. Super Good Cents Manufactured Homes offer improve comfort and efficiency. The...

  9. EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles April 18, 2013 - 12:00am Addthis The...

  10. Inbound freight consolidation for US manufacturers at China

    E-Print Network [OSTI]

    Fang, Yi, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

  11. Register Now for AMO's Workshop on Composite Manufacturing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  12. 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group...

    Broader source: Energy.gov (indexed) [DOE]

    7-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership This document is a...

  13. An Energy Conservation Program at a Large Cable Manufacturing Plant

    E-Print Network [OSTI]

    Reale, P. J.

    1983-01-01T23:59:59.000Z

    The Atlanta Works is the largest telephone cable manufacturing plant in the world plus the manufacturing center for fiber optic cable for the Western Electric Company and exemplifies how an effective energy conservation program can work...

  14. Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT

  15. Event Registration Form International Good Manufacturing Practices Conference -#71683

    E-Print Network [OSTI]

    Arnold, Jonathan

    Event Registration Form International Good Manufacturing Practices Conference - #71683 03 No Total $______ Please specify any additional dietary restrictions or allergies-884-1419 -- Credit Card Only Mail: International Good Manufacturing Practices Conference ­ #71683 The Georgia Center

  16. Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM) Mission Statement: The Center for Advanced Design and Manufacturing of Integrated Microfluidics will develop design tools microfluidics targeting costeffective, quick, and easy diagnosis of the environment, agriculture, and human

  17. DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps June 24, 2010 - 2:40pm...

  18. Manufacturing buildings in Massachusetts : the legacy and the future

    E-Print Network [OSTI]

    Traynor, Callie

    1983-01-01T23:59:59.000Z

    Manufacturing buildings are found in most towns and cities in Massachusetts. Standing in dominant isolation, or as part of an urban district, their presence is the built testimony to the role manufacturing played in so ...

  19. Fiber Reinforced Polymer Composite Manufacturing Workshop “Save the Date”

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Advanced Manufacturing Office plans to host a Fiber Reinforced Polymer Composite Manufacturing Workshop in the Washington D.C. area on Monday January 13, 2014.

  20. Lessons Learned During the Manufacture of the NCSX Modular Coils

    SciTech Connect (OSTI)

    James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

    2009-09-15T23:59:59.000Z

    The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

  1. Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices

    E-Print Network [OSTI]

    Hum, Philip W. (Philip Wing-Jung)

    2006-01-01T23:59:59.000Z

    Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for ...

  2. Commercial assessment of roll to roll manufacturing of electronic displays

    E-Print Network [OSTI]

    Randolph, Michael Aaron

    2006-01-01T23:59:59.000Z

    The cost of manufacturing electronic displays currently limits the range of applications and markets into which it is currently economically feasible to adopt displays. Roll-to-roll manufacturing has been identified by the ...

  3. New Request for Information (RFI) on Clean Energy Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    (RFI) on Clean Energy Manufacturing Topic Areas New Request for Information (RFI) on Clean Energy Manufacturing Topic Areas September 3, 2014 - 10:07am Addthis Save the Date -...

  4. Posted 5/10/12 Manufacturing /Process Engineer

    E-Print Network [OSTI]

    Heller, Barbara

    . Plymouth Tube Company is committed to providing products and services that meet or exceed customers to improve safety, quality, and manufacturing efficiency throughout the manufacturing area. Utilization, reduce cycle times, improve productivity, create and find capacity, improve process reliability

  5. Wellbore manufacturing processes for in situ heat treatment processes

    DOE Patents [OSTI]

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11T23:59:59.000Z

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  6. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells

    SciTech Connect (OSTI)

    Wheeler, D.; Sverdrup, G.

    2008-03-01T23:59:59.000Z

    In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

  7. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18T23:59:59.000Z

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  8. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Broader source: Energy.gov (indexed) [DOE]

    Definitions and Assumptions, October 2012 Manufacturing Energy and Carbon Footprint Definitions and Assumptions, October 2012 footprintsassumptionsdefinitions2012.pdf More...

  9. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie

    2008-12-31T23:59:59.000Z

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  10. Joint measurability, steering and entropic uncertainty

    E-Print Network [OSTI]

    H. S. Karthik; A. R. Usha Devi; A. K. Rajagopal

    2014-10-05T23:59:59.000Z

    The notion of incompatibility of measurements in quantum theory is in stark contrast with the corresponding classical perspective, where all physical observables are jointly measurable. It is of interest to examine if the results of two or more measurements in the quantum scenario can be perceived from a classical point of view or they still exhibit non-classical features. Clearly, commuting observables can be measured jointly using projective measurements and their statistical outcomes can be discerned classically. However, such simple minded association of compatibility of measurements with commutativity turns out to be limited in an extended framework, where the usual notion of sharp projective valued measurements of self adjoint observables gets broadened to include unsharp measurements of generalized observables constituting positive operator valued measures (POVM). There is a surge of research activity recently towards gaining new physical insights on the emergence of classical behavior via joint measurability of unsharp observables. Here, we explore the entropic uncertainty relation for a pair of discrete observables (of Alice's system) when an entangled quantum memory of Bob is restricted to record outcomes of jointly measurable POVMs only. Within the joint measurability regime, the sum of entropies associated with Alice's measurement outcomes - conditioned by the results registered at Bob's end - are constrained to obey an entropic steering inequality. In this case, Bob's non-steerability reflects itself as his inability in predicting the outcomes of Alice's pair of non-commuting observables with better precision, even when they share an entangled state. As a further consequence, the quantum advantage envisaged for the construction of security proofs in key distribution is lost, when Bob's measurements are restricted to the joint measurability regime.

  11. Berkeley India Joint Leadership on Energy and Environment | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio JumpVentures Jump

  12. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect (OSTI)

    Duoss, Eric

    2014-05-28T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  13. Manufacturing development of low activation vanadium alloys

    SciTech Connect (OSTI)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01T23:59:59.000Z

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  14. Summary of decontamination cover manufacturing experience

    SciTech Connect (OSTI)

    Ulrich, G.B.; Berry, H.W.

    1995-02-01T23:59:59.000Z

    Decontamination cover forming cracks and vent cup assembly leaks through the decontamination covers were early manufacturing problems. The decontamination cover total manufacturing process yield was as low as 55%. Applicable tooling and procedures were examined. All manufacturing steps from foil fabrication to final assembly leak testing were considered as possible causes or contributing factors to these problems. The following principal changes were made to correct these problems: (1) the foil annealing temperature was reduced from 1375{degrees} to 1250{degrees}C, (2) the decontamination cover fabrication procedure (including visual inspection for surface imperfections and elimination of superfluous operations) was improved, (3) the postforming dye penetrant inspection procedure was revised for increased sensitivity, (4) a postforming (prewelding) 1250{degrees}C/1 h vacuum stress-relief operation was added, (5) a poststress relief (prewelding) decontamination cover piece-part leak test was implemented, (6) the hold-down fixture used during the decontamination cover-to-cup weld was modified, and concomitantly, and (7) the foil fabrication process was changed from the extruding and rolling of 63-mm-diam vacuum arc-remelted ingots (extrusion process) to the rolling of 19-mm-square arc-melted drop castings (drop cast process). Since these changes were incorporated, the decontamination cover total manufacturing process yield has been 91 %. Most importantly, more than 99% of the decontamination covers welded onto vent cup assemblies were acceptable. The drastic yield improvement is attributed primarily to the change in the foil annealing temperature from 1375{degrees} to 1250{degrees}C and secondarily to the improvements in the decontamination cover fabrication procedure.

  15. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema (OSTI)

    Duoss, Eric

    2014-05-30T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  16. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & Solutions HomeTeksun PV Manufacturing

  17. Advanced Manufacturing Office | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing Office

  18. Manufacturing Success Stories | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturing Research and

  19. A Markovian analysis of semiconductor manufacturing processes

    E-Print Network [OSTI]

    Schultz, Kent Eugene

    2012-06-07T23:59:59.000Z

    ) Karan L. Watson (Member) Martin A. Wortman (Member) ep Sastri (Member) o W. Howze (Head of Department) December 1991 ABSTRACT A Markovian Analysis of Semiconductor Manufacturing Processes. (December 1991) Kent Eugene Schultz, B. S. , Iowa... grateful to Dr. Martin Wortman, for his pa- tience and endless stream of examples to help me understand stochastic processes. I would also like to thank Dr. Tep Sastri for his patience and for always having a refer- ence available when I needed it...

  20. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09Manufacturing Demonstration

  1. Manufacturing Demonstration Facilities Workshop Agenda, March 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09Manufacturing

  2. Manufacturing Innovation Topics Workshop: Engineered Nanomaterials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE

  3. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWater ConservationDepartmentEnergy Manufacturing

  4. Manufacturing means jobs „ Mike Arms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing

  5. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    the environment and green manufacturing was so commonly ofmap directly onto green manufacturing practice. For example,48] Dornfeld D (2012) Green Manufacturing: Fundamentals and

  6. Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments

    E-Print Network [OSTI]

    Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

    2013-01-01T23:59:59.000Z

    of implementing lean and green manufacturing strategies on5,6]. Research in green manufacturing spans a variety ofof lean and/or green strategies in manufacturing systems.

  7. The role of lean manufacturing principles and strategic alternatives in achieving business goals

    E-Print Network [OSTI]

    Ramaswamy, Dhananjay

    2006-01-01T23:59:59.000Z

    Lean Manufacturing is widely accepted as a proven method to achieve operational excellence. Many manufacturers undertake lean manufacturing implementations as a strategy to improve competitiveness and realize business ...

  8. Comparing Environmental Impacts of Additive Manufacturing vs. Traditional Machining via Life-Cycle Assessment

    E-Print Network [OSTI]

    Faludi, Jeremy; Bayley, Cindy; Bhogal, Suraj; Iribarne, Myles

    2014-01-01T23:59:59.000Z

    Social Impacts of Additive Manufacturing vs CNC MachiningImpacts of Additive Manufacturing vs. Traditional Machiningcutting! Impacts of Additive Manufacturing in Literature

  9. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    different types of additive manufacturing technologies, suchbe used to model the additive manufacturing process as well.composite manufacturing and 3D printing, are additive. They

  10. Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling

    E-Print Network [OSTI]

    to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able associated with both the manufacture of carbon fibers themselves as well as their composites. Traditional

  11. Copyright 2009 200916 Sustainable Design and Manufacturing of Precast Infrastructure

    E-Print Network [OSTI]

    Lepech, Michael D.

    ­ Sustainable Design and Manufacturing of Precast Infrastructure CIFE TAC 2009 Research Tasks · Green ECC 200916 ­ Sustainable Design and Manufacturing of Precast Infrastructure CIFE TAC 2009 Green ECC MaterialsCopyright © 2009 200916 ­ Sustainable Design and Manufacturing of Precast Infrastructure CIFE TAC

  12. Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro-

    E-Print Network [OSTI]

    Lin, Xi

    and storage and green manufacturing. Professor of Mechanical Engineering and Material Science BostonUday Pal Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro- chemical for the commercialization of solid oxide fuel cells (SOFCs) are its high manufacturing and material costs expressed in terms

  13. MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES Authors: Olivier Kerbrat of the tool may advantageously be machined or manufactured by an additive process. Originality/value: Nowadays is proposed to combine additive and subtractive processes, for tooling design and manufacturing

  14. Journal of Mechanisms and Robotics Hybrid Deposition Manufacturing: Design

    E-Print Network [OSTI]

    Dollar, Aaron M.

    combines additive manufacturing (AM) processes such as FDM with material deposition and embedded components applications. Additive manufacturing techniques are used to print both permanent components and sacrificial, leveraging the benefits of additive manufacturing and expanding the range of design options for robotic

  15. Advanced Manufacturing Use Cases and Early Results in GENI Infrastructure

    E-Print Network [OSTI]

    Calyam, Prasad

    for controlling remote processes in manufacturing facilities. In addition, there is a need to suitably configureAdvanced Manufacturing Use Cases and Early Results in GENI Infrastructure Alex Berryman, Prasad to advanced manufacturing communities are exciting prospects due to the growth of the global marketplace

  16. Nano-Manufacturing While nanotechnology promises to revolutionize everything from

    E-Print Network [OSTI]

    Hill, Wendell T.

    Nano-Manufacturing While nanotechnology promises to revolutionize everything from energy production futuristic systems will remain science fiction without practical and scalable nano-manufacturing capabilities. Researchers at the University of Maryland's NanoCenter have the manufacturing capabilities needed for turning

  17. At CSIRO we shape the future. We do this by using science to solve real issues. Our research makes a

    E-Print Network [OSTI]

    Cai, Long

    groundbreaking scientific research. We're creating an operating environment where we can work with you exchanges and visits, joint ventures, collaboration agreements, joint publications, joint forums

  18. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    E-Print Network [OSTI]

    Blanch, Harvey

    2010-01-01T23:59:59.000Z

    Fuels: The Joint BioEnergy Institute Harvey W. Blanch †,‡,§,¶, * † Joint BioEnergy Institute, ‡ Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

  19. Joint Inverted Indexing Kaiming He2

    E-Print Network [OSTI]

    Bernstein, Phil

    Joint Inverted Indexing Yan Xia1 Kaiming He2 Fang Wen2 Jian Sun2 1 University of Science and Technology of China 2 Microsoft Research Asia Abstract Inverted indexing is a popular non-exhaustive solution to large scale search. An inverted file is built by a quantizer such as k-means or a tree structure. It has

  20. Wave Propagation in Jointed Geologic Media

    SciTech Connect (OSTI)

    Antoun, T

    2009-12-17T23:59:59.000Z

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.