Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PEM Stack Manufacturing: Industry Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

© 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of where we have been; 2. Where we are today; 3. Where we would like to transition to; 4. Gaps and proposals. AUGUST 2009 P A G E 3 PEM Stack Manufacturing: Cost Overview * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA.

2

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

3

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

4

QTR Webinar: Chapter 8- Industry and Manufacturing  

Broader source: Energy.gov [DOE]

The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

5

Faculty of Engineering Industrial and Manufacturing  

E-Print Network [OSTI]

Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

6

Federal and Industry Partners Issue Challenge to Manufacturers | Department  

Broader source: Energy.gov (indexed) [DOE]

and Industry Partners Issue Challenge to Manufacturers and Industry Partners Issue Challenge to Manufacturers Federal and Industry Partners Issue Challenge to Manufacturers June 6, 2013 - 10:09am Addthis News Media Contact (202) 586-4940 WASHINGTON -- A coalition that includes the U.S. federal government and over 200 major commercial building sector partners has issued a simple challenge to U.S. manufacturers: if you can build wireless sub-meters that cost less than $100 apiece and enable us to identify opportunities to save money by saving energy, we will buy them. A group of at least 18 manufacturers has already agreed to take up the challenge, pledging to produce devices that will meet the specifications outlined by the U.S. Department of Energy and its private sector partners that have signed letters of intent to purchase the wireless sub-meters.

7

Federal and Industry Partners Issue Challenge to Manufacturers | Department  

Broader source: Energy.gov (indexed) [DOE]

Federal and Industry Partners Issue Challenge to Manufacturers Federal and Industry Partners Issue Challenge to Manufacturers Federal and Industry Partners Issue Challenge to Manufacturers June 6, 2013 - 10:09am Addthis News Media Contact (202) 586-4940 WASHINGTON -- A coalition that includes the U.S. federal government and over 200 major commercial building sector partners has issued a simple challenge to U.S. manufacturers: if you can build wireless sub-meters that cost less than $100 apiece and enable us to identify opportunities to save money by saving energy, we will buy them. A group of at least 18 manufacturers has already agreed to take up the challenge, pledging to produce devices that will meet the specifications outlined by the U.S. Department of Energy and its private sector partners that have signed letters of intent to purchase the wireless sub-meters.

8

Industrial Activities at DOE: Efficiency, Manufacturing, Process...  

Energy Savers [EERE]

Process, and Materials R&D Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the...

9

Photovoltaic industry manufacturing technology. Final report  

SciTech Connect (OSTI)

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

10

AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA  

Broader source: Energy.gov [DOE]

AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.

11

Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future  

E-Print Network [OSTI]

Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

Brock, David

12

Graduate Programs in Industrial and Manufacturing Engineering The industrial and manufacturing (IME) department at WSU  

E-Print Network [OSTI]

systems, ergonomics/human factors, or manufacturing systems engineering. In order to be admitted to the Ph. Ergonomics/Human Factors. Emphases include industrial ergonomics; bio-mechanics; human-machine systems; occupational safety and other industrial hygiene issues; and ergonomics and human factors issues in aviation

13

Integrated Design and Manufacturing of Cost-Effective & Industrial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost-Effective & Industrial-Scalable TEG for Vehicle Applications Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable TEG for Vehicle Applications...

14

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering  

E-Print Network [OSTI]

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering University of Windsor F.A. Salustri, Department of Mechanical, Aerospace, and Industrial Engineering, Ryerson University To appear, Research in Engineering Design, Springer

Salustri, Filippo A.

15

Identifying Green Meetings in the Hospitality Industry.  

E-Print Network [OSTI]

??Purpose: The purpose of this paper is to identify what constitutes green meetings in the hospitality industries with special attentions on the applications of modern (more)

Chiou, Shin Yi (Felicity)

2011-01-01T23:59:59.000Z

16

Resource-based industrialization in Peninsular Malaysia. A case study of the rubber products manufacturing industry.  

E-Print Network [OSTI]

??This economic history and examination of the rubber products manufacturing industry in Peninsular Malaysia contributes to the subject of resource-based industrialization in the field of (more)

Goldthorpe, Christopher C.

2009-01-01T23:59:59.000Z

17

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Broader source: Energy.gov (indexed) [DOE]

application of customized sensor driven modeling, measurement simulation technologies, energy management dashboards and a variety of manufacturing metrics for individual...

18

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TX National Center for Manufacturing Sciences Ann Arbor, MI Nimbis Services McLean, VA Praxair Tonawanda, NY Rockwell Automation Milwaukee, WI For additional information, please...

19

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

20

Prospects for U.S.-Based Manufacturing in the SSL Industry |...  

Office of Environmental Management (EM)

Prospects for U.S.-Based Manufacturing in the SSL Industry Prospects for U.S.-Based Manufacturing in the SSL Industry Prospects for U.S.-Based Manufacturing in the SSL Industry...

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Manufacturers and Utilities to Accelerate Industry Uptake of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Uptake of Superior Energy Performance December 20, 2013 - 11:40am Addthis At a White House meeting of the Better Buildings Initiative on December 3rd, six manufacturers...

22

Applications of industrial ecology : manufacturing, recycling, and efficiency  

E-Print Network [OSTI]

This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

2007-01-01T23:59:59.000Z

23

Industrial/manufacturing resources | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial/manufacturing resources Industrial/manufacturing resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

24

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

ScienceCinema (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-12-03T23:59:59.000Z

25

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

SciTech Connect (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-09-23T23:59:59.000Z

26

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video  

Office of Energy Efficiency and Renewable Energy (EERE)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

27

Energy Analysis and Diagnostics Data Analysis From Industrial Energy Assessments for Manufacturing Industries  

E-Print Network [OSTI]

The Industrial Assessment Center (IAC) at West Virginia University has been functioning since 1992. During this time, the center has performed over 100 industrial assessments for small and medium sized manufacturing plants. Significant data has been...

Gopalakrishnan, B.; Plummer, R. W.; Srinath, S.; Meffe, C. M.; Ipe, J. J.; Veena, R.

28

Manufacturing-Industrial Energy Consumption Survey(MECS) Historical  

U.S. Energy Information Administration (EIA) Indexed Site

> Historical Publications > Historical Publications Manufacturing Establishments reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring energy consumption and related issues in the manufacturing sector. The MECS collects data on energy consumption, purchases and expenditures, and related issues and behaviors. Links to previously published documents are given below. Beginning in 1998, reports were only issued electronically. Additional electronic releases are available on the MECS Homepage. The basic unit of data collection for this survey is the manufacturing establishment. Industries are selected according to definitions found in the North American Industry Classification System (NAICS), which replace the earlier Standard Industrial Classification (SIC) system.

29

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

30

The impact of industrial clusters in greening manufacturing industry practices in small and medium scale enterprises: the case of the Old Ardbennie Industrial Cluster in Harare, Zimbabwe  

Science Journals Connector (OSTI)

Industrial clustering can be used to improve green manufacturing practices by reducing negative environmental impacts and facilitating participation in corporate social responsibility activities. This paper assesses the performance of the Old Ardbennie Industrial Cluster in Harare, Zimbabwe. Opportunities for better environmental performance were determined through questionnaires, interviews and observations. Results show that though effluent management by cluster members was poor, savings in water usage were realised. Potential for trading in waste were identified and reductions in solid waste and in energy consumption were observed. A positive co-relationship between participation in cluster activities and achievement of green manufacturing was identified.

Charles Mbohwa; Peter Rwakatiwana; Stanley Fore

2010-01-01T23:59:59.000Z

31

Energy resource management for energy-intensive manufacturing industries  

SciTech Connect (OSTI)

A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

Brenner, C.W.; Levangie, J.

1981-10-01T23:59:59.000Z

32

Reducing paint waste in a colour sample manufacturing industry  

Science Journals Connector (OSTI)

Colour sample manufacturing industry provides an important support for the paint manufacturers. It manufactures colour samples that help original paint manufacturers to sell paint by allowing potential customers to accurately visualise a specific colour. One of the burning issues in colour sampling manufacturing is accurately predicting the tally gallons. It involves an estimation of paint volume to cover a given surface area of paper. The as-is tally gallons estimation process is rudimentary and largely depends upon the human experience. Ideally, this quantity should be enough to cover the target surface area regardless of colour appearance. However, this is not the case with existing process. Currently, lighter colours run out in the middle of the production run while darker colour appearances have significant amount of left over paint. The amount of painting waste is as high as 15% (by volume) in some cases. The objective of this paper is to present a predictive model to better estimate the tally gallons by minimising painting waste. It presents a case study of a US colour sample manufacturing company. The results show that the proposed multiple linear regression approach reduces the leftover paint significantly.

Bimal Nepal; Bharatendra K. Rai

2010-01-01T23:59:59.000Z

33

The Ceramic Manufacturability Center: A new partnership with US industry  

SciTech Connect (OSTI)

The Ceramic Manufacturability Center (CMC) is a new facility at the Oak Ridge National Laboratory (ORNL) established as a direct response to current US industry needs. It was created as part of a highly integrated program jointly funded by the US Department of Energy Defense Programs, Energy Efficiency and Renewable Energy, and Energy Research divisions. The CMC is staffed by personnel from ORNL and the Y-12 Plant, both managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Its mission is to improve the technology needed to manufacture high-precision ceramic components inexpensively and reliably. This mission can be accomplished by strengthening the US machine tool industry and by joining with ceramic material suppliers and end users to provide a path to commercialization of these ceramic components.

Tennery, V.J. [Oak Ridge National Lab., TN (United States); Morris, T.O. [Oak Ridge Y-12 Plant, TN (United States)

1993-12-01T23:59:59.000Z

34

Employment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support Services Industries  

E-Print Network [OSTI]

that are outperforming the industry average. Additional research shows that the industry is reactive to manufacturingEmployment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support, the primary metals manufacturing industry (NAICS 331000) employment in Ohio is forecasted to decline by 21

Illinois at Chicago, University of

35

Execution of rapid prototyping technology - an Indian manufacturing industry's perspective  

Science Journals Connector (OSTI)

Since independence, India has endeavoured to bring economic and social change through science and technology. While India's economic growth in the recent years has been impressive, many challenges remain to be met to create a strong and vibrant innovation eco-system. This requires a culture and value system which supports both basic and applied research and technology development. One of those technologies, rapid prototyping (RP) technology, is the automatic construction of physical objects using additive manufacturing technology. It can be defined as an automated and patternless process which allows solid physical parts to be made directly from computer data in a short time. RP acts as the 'manufacturing middle' to link up the computer-aided design (CAD) process and manufacturing processes. It includes the making of prototypes for design verification and even the making of tooling for production. With the trend towards concurrent engineering and the widespread use of CAD, RP has quickly become a booming business in the past few years. This paper aims to provide a comprehensive overview of the execution of RP technology in India and the critical decision factors in executing RP for the Indian manufacturing industry.

Rajesh Kumar; Rupinder Singh; I.P.S. Ahuja

2013-01-01T23:59:59.000Z

36

Additive Manufacturing as Integral Part of the Digital Solution Process - An Industrial Short Note  

Science Journals Connector (OSTI)

Within the last years additive manufacturing established itself in the industrial environment as ... technological possibility to reduce time-to-market and manufacturing costs and to take in account even...

Klaus Mller-Lohmeier

2013-01-01T23:59:59.000Z

37

PEM Stack Manufacturing: Industry Status | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

American Energy and Manufacturing Competitiveness Summit Low Temperature PEM Fuel Cell Manufacturing Needs A Total Cost of Ownership Model for Low Temperature PEM Fuel...

38

Turmoil in Traditional Industry: Prospects for Nonmetropolitan Manufacturing  

E-Print Network [OSTI]

During the last three decades, nonmetropolitan America has been relatively successful in recruiting and nurturing manufacturing activity. Yet with this success, rural America has realized that a development strategy focused on manufacturing, especially manufacturing in branch plants, will likely disappoint. There are simply too few new or relocating manufacturing plants to satisfy all communities interested. In addition, nonmetro manufacturers have exhibited characteristics different from manufacturers in general, characteristics that have dampened potential positive influences on the local economy. Nonmetropolitan manufacturers have been disproportionately lowwage operations with few opportunities for professional

L. Barkley

39

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network [OSTI]

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

40

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries  

E-Print Network [OSTI]

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive Systems and Civil and Environmental Engineering #12;The Impact of Manufacturing Offshore on Technology of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks

de Weck, Olivier L.

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Manufacturing Industrial Development for the Alternative Energy Systems-Final Report  

SciTech Connect (OSTI)

NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

2013-01-30T23:59:59.000Z

42

New urban manufacturing neo-industrial design in Louisville, Kentucky  

E-Print Network [OSTI]

American manufacturing is experiencing a modest renaissance. U.S. firms are choosing to re-shore manufacturing jobs not out of their sense of patriotism, but because it makes good business sense. The costs of transportation ...

Rhie, Christopher

2014-01-01T23:59:59.000Z

43

Building a More Competitive American Manufacturing Industry with Advanced Composites  

Office of Energy Efficiency and Renewable Energy (EERE)

Our new Manufacturing Innovation Institute for Advanced Composites will help revolutionize clean energy technology one material at a time.

44

Quantifying potential industrial symbiosis : a case study of brick manufacturing  

E-Print Network [OSTI]

Humanity is currently on an unsustainable path of growth and development. One tool to address sustainability in industrial activities is Industrial Symbiosis, which is the study of cooperation across industry boundaries ...

Hodge, Matthew M

2007-01-01T23:59:59.000Z

45

Lean Manufacturing in the Oil and Gas Industry .  

E-Print Network [OSTI]

??This research aims to investigate the lean production tools and techniques in the oil and gas industry with a focus on the oilfield services industry. (more)

Sakhardande, Rohan

2011-01-01T23:59:59.000Z

46

Additive Manufacturing and Production of Metallic Parts in Automotive Industry.  

E-Print Network [OSTI]

?? Additive Manufacturing (AM) comprises a family of different technologies that build up parts by adding materials layer by layer at a time based on (more)

Beiker Kair, Alexandros

2014-01-01T23:59:59.000Z

47

Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D  

Broader source: Energy.gov [DOE]

Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

48

Manufacturers and Utilities to Accelerate Industry Uptake of Superior Energy Performance  

Broader source: Energy.gov [DOE]

At a White House meeting of the Better Buildings Initiative on December 3rd, six manufacturers and three utilities officially joined the Department of Energys Better Buildings Industrial Superior Energy Performance (SEP) Accelerator Program.

49

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries  

Broader source: Energy.gov [DOE]

This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from implementing steam system performance and efficiency improvements.

50

Department of Industrial and Manufacturing Engineering Fall 2012 Automation of Test Sample Burning  

E-Print Network [OSTI]

PENNSTATE Department of Industrial and Manufacturing Engineering Fall 2012 Automation of Test of redesign is $20,385 Operational costs of redesign are $1,080 per month Fully automated solution

Demirel, Melik C.

51

SPP sales flyer for manufacturing and industry | ENERGY STAR Buildings &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing and industry manufacturing and industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

52

AMO Industry Day Workshop, February 25th, Targets Smart Manufacturing FOA  

Broader source: Energy.gov [DOE]

AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing. The workshop will take place on Wednesday, February 25, 2015 at the Georgia Tech Global Learning Center, Atlanta, GA.

53

Award Recipient of ENERGY STAR Challenge for Industry JM Eagle Wharton Plastic Pipe Manufacturing Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wharton Plastic Pipe Manufacturing Plant JM Eagle 10807 U.S. 59 Road Wharton, TX 77488 The Wharton Plastic Pipe Manufacturing Plant, located on an old cattle field, opened in 1985 by first manufacturing PVC pipe. The manufacturing of injection molding was added in 1988, corrugated pipe was added in 2009, and corrugated fittings were added in 2011. There are expectations for the plant to expand into manufacturing PE pipe fittings in the future. The Wharton plant achieved the ENERGY STAR Challenge for Industry in June 2010. The plant achieved a 15.5% reduction in energy intensity in the first year following its baseline. The success of achieving the Challenge for Industry came principally from an energy conservation program that focused on not operating equipment other than that needed for current production,

54

PV Manufacturing R&D Project -- Trends in the U.S. PV Industry  

SciTech Connect (OSTI)

To foster continued growth in the U.S. photovoltaic (PV) industry, the U.S. Department of Energy initiated the PV Manufacturing R&D (PVMR&D) Project--a partnership with U.S. PV industry participants to perform cost-shared manufacturing research and development. Throughout FY 2004, PVMR&D managed fourteen subcontracts across the industry. The impact of PVMR&D is quantified by reductions in direct module manufacturing costs, scale-up of existing PV production capacity, and accrual of cost savings to the public and industry. An analysis of public and industry investment shows that both recaptured funds by mid-1998 based on estimated manufacturing cost savings from PVMR&D participation. Since project inception, total PV manufacturing capacity has increased from 14 MW to 201 MW at the close of 2003, while direct manufacturing costs declined from $5.55/W to $2.49/W. These results demonstrate continued progress toward the overriding goals of the PVMR&D project.

Brown, K. E.; Mitchell, R. L.; Bower, W. I.; King, R.

2005-01-01T23:59:59.000Z

55

Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors  

E-Print Network [OSTI]

1 Monitoring the resin infusion manufacturing process under industrial environment using the Liquid Resin Infusion process under industrial environment is proposed. To detect the resin front; Liquid Resin Infusion. #12;2 1. Introduction Recently, Liquid Composite Molding (LCM) processes have been

Boyer, Edmond

56

EIA Energy Efficiency-Manufacturing Industry Trend Data, 1998 and 2002  

Gasoline and Diesel Fuel Update (EIA)

Trends 1998, 2002, and 2006 Trends 1998, 2002, and 2006 Manufacturing Industry Trend Data 1998, 2002, and 2006 (NAICS) Page Last Modified: May 2010 Below are data from the 1998, 2002, and 2006 Manufacturing Energy Consumption Survey (MECS), and other sources by industry type. The tables provide estimates for energy consumed for all purposes, fuel consumption, offsite-produced fuel consumption, and nonfuel consumption for selected industries, as well as economic (nominal and real) and physical indicators. Site Energy Consumption 1998, 2002, and 2006 Table 1a. Consumption of Energy (Site Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 html Table 1 excel table 1a. pdf table 1a. Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006

57

CHAPTER 12 - Source Data for the Manufacturing, Processing, and Mining Industries  

Science Journals Connector (OSTI)

Publisher Summary This chapter provides an overview of the source data for the manufacturing, processing, and mining industries. The manufacturing sector is divided into a number of sectors for the purposes of input-output and may or may not include intermediate processing industries. In many developing countries, industries processing raw materials are the major part of this section of the economy, and final manufacturing industries may be few in number and type. Whatever method of classification is used, the general remarks on source data that follow is applied. Although both large and small businesses usually exist in manufacturing and processing, each industry is often dominated either by large or small businesses. One of the main sources of data is of tax returns for the larger businesses. No difficulty is experienced in obtaining grouped data processed in the taxation department which, when they reach the national income statistician, is in the form of a balancing account for the aggregate businesses covered. As with other sectors, it is important to obtain details of coverage in terms of the number of firms, physical output, or any other information that indicates what proportion of the industry is covered by these accounts.

CARLEEN O'LOUGHLIN

1971-01-01T23:59:59.000Z

58

Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)  

SciTech Connect (OSTI)

This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

James, T.; Goodrich, A.

2013-12-01T23:59:59.000Z

59

Department of Industrial & Manufacturing Engineering Spring 2011 Log Splitter Tank Quality Improvement  

E-Print Network [OSTI]

PENNSTATE Department of Industrial & Manufacturing Engineering Spring 2011 Log Splitter Tank around a central hydraulic tank which acts as the base of the log splitter. The tanks can leak due to poor weld integrity, further aggravated by stresses on the tank during towing. Also, internal rust

Demirel, Melik C.

60

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network [OSTI]

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.  

SciTech Connect (OSTI)

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G.; Decision and Information Sciences

2006-07-21T23:59:59.000Z

62

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

63

Department of Industrial and Manufacturing Engineering Fall 2011 The Center for Integrated Healthcare Delivery Systems (CIHDS) Academy  

E-Print Network [OSTI]

PENNSTATE Department of Industrial and Manufacturing Engineering Fall 2011 The Center is to educate young adults about the field of Industrial Engineering through learning modules and examples that focus on the healthcare industry. The learning modules shall utilize Industrial Engineering concepts

Demirel, Melik C.

64

(Development of industrial processes for manufacturing of silicon sampling hadron calorimeters)  

SciTech Connect (OSTI)

The travelers attended meetings in Dubna and in Zelenograd. Discussions in Dubna centered on (1) obtaining information on USSR capabilities in silicon detector manufacture and testing and on (2) strategy regarding the development of an industrial process and the manufacture of a large quantity of silicon detectors for the SSC L* collaboration. The ELMA plant in Zelenograd was inspected, and discussions were held on production process development and on a possible detector supply time line. In addition, J. Walter participated in technical and cost estimate forecast discussions with representatives of Wacker-Chemitronic Factory (Germany) about silicon crystals for possible use in the SSC.

Plasil, F.; Walter, J.

1991-01-04T23:59:59.000Z

65

Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants  

E-Print Network [OSTI]

and the Industrial Assessment Center (IAC) program. 4 Theconditioning Industrial Assessment Center Kilojoule KilowattAssistance Industrial Assessment Centers Description: Small-

Worrell, Ernst

2010-01-01T23:59:59.000Z

66

Managing Your Energy: An ENERGY STAR Guide for Identifying Energy Savngs in Manufacturing Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL-3714E LBNL-3714E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Managing Your Energy An ENERGY STAR ® Guide for Identifying Energy Savings in Manufacturing Plants Ernst Worrell Tana Angelini Eric Masanet Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency June 2010 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

67

Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

68

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

69

Assessing the business performance measurements for transfusion of TQM and TPM initiatives in the Indian manufacturing industry  

Science Journals Connector (OSTI)

Traditionally, quality and maintenance functions in industries were viewed as just a support function of a business. Improving quality of product being produced was not even cared and managing equipment performance was not a top priority. The inadequacies of the quality as well as maintenance practices in the past have adversely affected organisational competitiveness. The present research is aimed at developing an insight into the prevalent quality maintenance practices adopted in the contemporary Indian manufacturing industry. As the leading Indian manufacturing organisations have taken proactive initiatives to effectively improve the manufacturing by transfusing various lean manufacturing philosophies like TQM, TPM, 5S, Six Sigma, etc. for realising enhanced manufacturing performance. The study reveals that Indian entrepreneurs have been reasonably successful in improving the business performances in the organisations by implementing combination of TQM and TPM, as TQM support to TPM is much effective and this improvement initiative have significantly contributed towards enhancing the overall manufacturing performance.

Kanwarpreet Singh; I.P.S. Ahuja

2014-01-01T23:59:59.000Z

70

Specific biogas production and role of packing medium in the treatment of rubber thread manufacturing industry wastewater  

Science Journals Connector (OSTI)

Wastewater from three rubber thread manufacturing industries collected from three different...4.../g?COD added when the organic loading rate was altered from 2.0 to 14.0?g?COD/l/d respectively. The biogas production

P. Agamuthu

1999-08-01T23:59:59.000Z

71

Trade liberalisation and the impact of regional trade flows on the mark-ups in South African manufacturing industries.  

E-Print Network [OSTI]

??Since the mid-1990s South Africa has made considerable progress in opening up its trade regime.This study presents estimates of average mark-ups for the manufacturing industries (more)

Van de Winkel, Tijl

2005-01-01T23:59:59.000Z

72

Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries  

SciTech Connect (OSTI)

The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

Atreya, Arvind

2013-04-15T23:59:59.000Z

73

THE INSIDE-OUT APPROACH FOR IDENTIFYING INDUSTRIAL ENERGY AND WASTE REDUCTION OPPORTUNITIES  

E-Print Network [OSTI]

THE INSIDE-OUT APPROACH FOR IDENTIFYING INDUSTRIAL ENERGY AND WASTE REDUCTION OPPORTUNITIES Kelly Traditional approaches for reducing energy and waste in industrial processes typically focus on improving and more apparent to us. In our experience, this approach for reducing energy use and waste generation

Kissock, Kelly

74

Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,214 2,356 1,994 4,570 4,353 5.0 312 Beverage and Tobacco Product Mfg. 48 37 53 85 90 -5.6 313 Textile Mills 31 29 22 59 63 -6.1 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w w w w 322 Paper Manufacturing

75

Decision support method to apply Additive Manufacturing Technologies for plastic components in the aircraft industry.  

E-Print Network [OSTI]

??Additive Manufacturing Technologies (AMT) are a collection of manufacturing processes driven by CAD data to produce physical models and parts by means of additive techniques. (more)

Anderson Vicente Borille

2009-01-01T23:59:59.000Z

76

Computer integrated manufacturing/processing in the HPI. [Hydrocarbon Processing Industry  

SciTech Connect (OSTI)

Hydrocarbon Processing and Systemhouse Inc., developed a comprehensive survey on the status of computer integrated manufacturing/processing (CIM/CIP) targeted specifically to the unique requirements of the hydrocarbon processing industry. These types of surveys and other benchmarking techniques can be invaluable in assisting companies to maximize business benefits from technology investments. The survey was organized into 5 major areas: CIM/CIP planning, management perspective, functional applications, integration and technology infrastructure and trends. The CIM/CIP planning area dealt with the use and type of planning methods to plan, justify implement information technology projects. The management perspective section addressed management priorities, expenditure levels and implementation barriers. The functional application area covered virtually all functional areas of organization and focused on the specific solutions and benefits in each of the functional areas. The integration section addressed the needs and integration status of the organization's functional areas. Finally, the technology infrastructure and trends section dealt with specific technologies in use as well as trends over the next three years. In February 1993, summary areas from preliminary results were presented at the 2nd International Conference on Productivity and Quality in the Hydrocarbon Processing Industry.

Yoshimura, J.S. (Systemhouse Inc., Houston, TX (United States))

1993-05-01T23:59:59.000Z

77

Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment  

SciTech Connect (OSTI)

Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.

Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

2009-03-23T23:59:59.000Z

78

Department of Industrial and Manufacturing Engineering Fall 2012 Enabling CNC-RP in PSU's IE FAME Lab  

E-Print Network [OSTI]

PENNSTATE Department of Industrial and Manufacturing Engineering Fall 2012 Enabling CNC-RP in PSU's IE FAME Lab Overview In this project, CNC-RP capability has been installed and developed in the Penn be built with this particular method. After finding the limitations of this process, this CNC-RP capability

Demirel, Melik C.

79

Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains  

Broader source: Energy.gov [DOE]

The project objective is to develop a smart manufacturing (SM) Platform for two commercial test beds that can be scaled to manufacturing operations to catalyze low-cost commercialization of the...

80

Identifying Employment Structure and Training Needs In the Louisiana Value-Added Wood Products Industry  

E-Print Network [OSTI]

in Manufacturing Today ___________________________ 62 Most Pressing Issues in Manufacturing in 5 Years ................................................................................70 VI. References and Additional Literature..........................................................................71 References _____________________________________________________ 71 Additional Literature

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar PV Manufacturing Cost Analysis: Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry Stanford University: Precourt Institute for Energy Alan Goodrich † , Ted James † , and Michael Woodhouse October 10, 2011 † Corresponding authors: alan.goodrich@nrel.gov, ted.james@nrel.gov NREL/PR-6A20-53938 2 Analysis Disclaimer DISCLAIMER AGREEMENT These manufacturing cost model results ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

82

Integrated chain analysis of recycled vis-a-vis wood pulp paper industry: an Indian manufacturer viewpoint  

Science Journals Connector (OSTI)

Strict environmental regulations and the ever-increasing shortages in the availability of natural resources are making reverse logistics an area of growing importance. From the manufacturer's point of view, this paper proposes a linear programming optimisation model for the Indian paper industry with two different sources of raw materials (i.e., wood and wastepaper). The objective of the model is to minimise the paper supply chain cost, which includes costs of collection, transportation, segregation and disposal (for recycled paper), inventory, and manufacturing. The inclusions of environmental cost and cost of quality added a new dimension to the said model, which was not explored earlier in the supply chain context. To know the behaviour of the system under different scenarios, sensitivity analysis, shortage analysis and finally, indifference curve analysis have been performed on the model. The model will help the manufacturer make strategic decision under different shortage scenarios of the paper supply chain.

Rupesh Kumar Pati; Prem Vrat; Pradeep Kumar

2006-01-01T23:59:59.000Z

83

Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry  

Broader source: Energy.gov [DOE]

Download presentation slides from the DOE Fuel Cell Technologies Office webinar Additive Manufacturing for Fuel Cells held on February 11, 2014.

84

Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices  

Broader source: Energy.gov [DOE]

Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and systems constraints on the viability of a mass market thermoelectric product are discussed

85

Continual Energy Management Dynamics| Energy Efficiency in U.S. Automotive Manufacturing Industry.  

E-Print Network [OSTI]

?? Managers at automotive manufacturers are seeking ways to reduce energy consumption, costs, carbon emissions, and waste from production processes. Researchers and practitioners perceive energy (more)

Onus, Cem O.

2014-01-01T23:59:59.000Z

86

A Road Map for Success: How Northwest Manufactured Housing Conservation Efforts Revolutionized an Industry.  

SciTech Connect (OSTI)

The evolution of an ongoing Bonneville Power Administration effort to improve the energy efficiency of manufactured homes is chronicled in this informal history. Over the past nine years, Bonneville`s manufactured housing project has undertaken many activities, including technical studies, cooperative ventures, design studies, and information dissemination. These activities are covered.

Gilbertson, William L.

1993-04-01T23:59:59.000Z

87

Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector  

SciTech Connect (OSTI)

An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-11-01T23:59:59.000Z

88

The re-industrial city : what case studies from New York and San Francisco tell us about the urban manufacturing resurgence  

E-Print Network [OSTI]

After a century of economic and planning trends that sent industry overseas and to the suburbs, manufacturing is stabilizing, if not growing, in American cities. This is good news for many urbanists eager to attract the ...

Muessig, Anna Catherine

2013-01-01T23:59:59.000Z

89

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

90

Manufacturing Fuel Cell Manhattan Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

91

Manufacturing industry challenges and responses to EU, California, and other product-targeted environmental regulations  

E-Print Network [OSTI]

overnight. In both Electronics and Automotive (as well assuch as electronics, aerospace, automotive, etc. ), resultselectronics industry body consult with its counterparts in the automotive

Kirschner, Michael

2008-01-01T23:59:59.000Z

92

Department of Industrial Engineering Spring 2012 Equipment Jack Manufacturing Process Improvement at CIU -Global Project  

E-Print Network [OSTI]

it to the current system's capacity Perform FMEA to conclude the top events critical to quality for the assembly collection for both EWMA, FMEA, and manufacturing systems Outcomes New, standardized process increased forecast schedules, orders, and capabilities. FMEA illustrates assembly steps that are crucial to quality

Demirel, Melik C.

93

Photovoltaics industry profile  

SciTech Connect (OSTI)

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

94

A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry  

E-Print Network [OSTI]

Selecting and executing the optimal strategy for developing new products is a non trivial task, especially for low volume, high complexity products in a highly volatile global industry such as Fluid Management. At Fluid ...

Awwad, Ghassan Samir

2009-01-01T23:59:59.000Z

95

Shopfloor attitudes towards advanced manufacturing technology: the changing focus of industrial conflict?  

Science Journals Connector (OSTI)

......there has been a change in the perception...AMT. For these companies, AMT represents...has been a subtle change in the focus of...proposed. The case of company MD Company MD is...competitive position as leader in the industrial...the new shopfloor climate. The CNC operators......

Keith Davids; Robin Martin

1992-08-01T23:59:59.000Z

96

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

97

Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993  

E-Print Network [OSTI]

ENERGY CONSUMPTION CHARACTERISTICS OF LIGHT MANUFACTURING FACll..ITIES IN THE NORTHERN PLAINS: A study of detailed data from 10 industrial energy audits conducted in 1993. Michael Twedt Graduate Research Assistant IEOPIEADC South Dakota... profiles and common energy conservation opportunities. A statistical breakdown of energy consumption of 10 light manufacturing facilities by process, equipment type, and end use is provided. Common energy optimization procedures are also summarized...

Twedt, M.; Bassett, K.

98

Identifying Opportunities for Swedish Component and Service Suppliers within the US Wind Energy Industry.  

E-Print Network [OSTI]

??This master thesis provides an overview of the US wind energy industry through an innovation system analysis thus covering both policy development as well as (more)

Nachemson, Louise

2010-01-01T23:59:59.000Z

99

Manufacturing Energy and Carbon Footprints  

E-Print Network [OSTI]

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

100

Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 51.17 49.59 50.96 50.35 50.94 -1.2 312 Beverage and Tobacco Product Mfg. 111.56 115.95 113.47 113.49 117.55 -3.5 313 Textile Mills 115.95 118.96 127.41 117.40 128.07 -8.3 315 Apparel Manufacturing

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FACULTY POSITION ANNOUNCEMENT Manufacturing and/or Logistics The Industrial & Systems Engineering Department in the College of Engineering at the University of  

E-Print Network [OSTI]

must have a Ph.D. in Industrial Engineering, Systems Engineering and/or Operations Research Engineering Department has research and teaching areas in manufacturing systems, operations research. The annual research volume of our faculty is currently over $2 million. Our faculty conduct interdisciplinary

Kaminsky, Werner

102

The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and  

E-Print Network [OSTI]

a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter1 The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research

Liu, Y. A.

103

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Alliance of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers...

104

Industrial Assessment Centers (IACs)  

Broader source: Energy.gov [DOE]

Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. Each manufacturer typically identifies about $55,000 in potential annual savings on average. Over 15,000 IAC assessments have been conducted. IACs also train the next-generation of energy savvy engineers.

105

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

106

Industry  

E-Print Network [OSTI]

2004). US DOEs Industrial Assessment Centers (IACs) are anof Energys Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

107

Manufacturing Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers http:energy.goveeresuccess-storiesarticles...

108

Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

109

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

110

Impact of the Massachusetts Pharmaceutical and Medical Device Manufacturer Code of Conduct on medical device physician-industry collaboration  

E-Print Network [OSTI]

The Massachusetts Pharmaceutical and Medical Device Manufacturer Code of Conduct (PCOC) or 105 CMR 970.000 was enacted by the Massachusetts state legislature and adopted by the Department of Public Health (DPH) in July ...

Wolf, Daniel W. (Daniel William)

2010-01-01T23:59:59.000Z

111

Industrial Assessment Center  

SciTech Connect (OSTI)

The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

J. Kelly Kissock; Becky Blust

2007-04-17T23:59:59.000Z

112

Transformational Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

113

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

114

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

115

The Results (Lessons Learned) of More than 110 Energy Audits for Manufacturers by the Louisiana Industrial Assessment Center  

E-Print Network [OSTI]

This paper and discussion presents the summary and results of energy audits or assessments conducted by the University of Louisiana Lafayette Industrial Assessment Center, which is sponsored by the US Department of Energy, for the first four years...

Kozman, T.; Davies, T.; Reynolds, C.; O'Quin, R.; DaCosta, J.; Galti, T.; Pechon, C.; Stutes, K.

2005-01-01T23:59:59.000Z

116

Unlocking the Potential of Additive Manufacturing in the Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry PDF includes slides from...

117

A Quantitative Study of the Impact of Additive Manufacturing in the Aircraft Spare Parts Supply Chain.  

E-Print Network [OSTI]

??Additive manufacturing is a promising manufacturing technology which is finding its way into mainstream manufacturing industry. As compared to conventional manufacturing it has a number (more)

Mokasdar, Abhiram S., M.S.

2012-01-01T23:59:59.000Z

118

Advanced Manufacturing Office FY14 Budget At-a-Glance  

Broader source: Energy.gov (indexed) [DOE]

ADVANCED MANUFACTURING OFFICE FY14 BUDGET AT-A-GLANCE The Advanced Manufacturing Office (AMO) partners with industry, small business, regional entities, and other stakeholders to identify and invest in emerging advanced manufacturing and clean energy technologies, provide energy-related leadership in the national and interagency Advanced Manufacturing Partnership through targeted manufacturing Institutes, and encourage a culture of continuous improvement in corporate energy management to capture savings today. What We Do Manufacturing converts a wide range of raw materials, components, and parts into finished goods that meet market expectations. By reducing the life-cycle energy consumption of a range of manufactured goods by 50 percent within 10 years of the start of major reseach and

119

2009 Solid-State Lighting Vancouver Manufacturing Workshop Highlights  

Broader source: Energy.gov [DOE]

Well over 150 lighting industry leaders gathered in Vancouver, Washington, on June 24-25, 2009, for the second DOE Solid-State Lighting (SSL) Manufacturing Workshop. The primary purpose was to review and refine a "strawman" roadmap for SSL manufacturing, based on insights and recommendations from the first workshop, which was held in April in Fairfax, Virginia. These insights and recommendations focused on identifying and overcoming the key barriers to developing lower-cost, higher-quality SSL products. The outcome of both workshops will be a working roadmap to guide SSL manufacturing in general and to inform a new DOE manufacturing initiative.

120

Industry  

E-Print Network [OSTI]

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Industry  

E-Print Network [OSTI]

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal19712004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

122

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

123

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

124

Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

125

Industry  

E-Print Network [OSTI]

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

126

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

127

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

128

MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Broader source: Energy.gov (indexed) [DOE]

MANUFACTURING MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge) Manufacturing 332420 Other Metal Container Manufacturing 332439 Machine Shops 332710 Electroplating, Plating, Polishing, Anodizing, and Coloring 332813 Industrial valve Manufacturing 332911 Other Ordnance and Accessories Manufacturing 332995 All Other Miscellaneous Fabricated Metal Product Manufacturing

129

Catalyst Manufacturing Science and  

E-Print Network [OSTI]

Catalyst Manufacturing Science and Engineering Consortium (CMSEC) Rutgers University New Jersey, U, automotive, and energy industries makes and/or uses catalysts, there has been no academic program focusing on the operations required to make catalytic materials. Thus, catalyst manufacturing processes are often designed

130

Development of Advanced Manufacturing Technologies for Renewable Energy Applications, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

65 65 FY 2007 Annual Progress Report DOE Hydrogen Program Objectives This project will address selected key manufacturability issues needing solution in two hydrogen technology areas: storage and the production of components. NCMS will evaluate, identify, and develop manufacturing technologies vital to affordable hydrogen-powered systems. NCMS will leverage manufacturing technologies from other industrial sectors and work with its extensive industrial membership to do feasibility projects on those technologies identified as key to reducing production cost by rendering a system component or subcomponent of the targeted hydrogen-powered systems producible in volume. Technical Barriers This project addresses the following technical barriers from the Manufacturing R&D section of the

131

Green Manufacturing  

SciTech Connect (OSTI)

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31T23:59:59.000Z

132

Manufacturing Energy and Carbon Footprints Scope  

Broader source: Energy.gov [DOE]

List of manufacturing sectors selected for analysis along with North American Industry Classification System (NAICS) code descriptions

133

Industrial Partnerships, 20122013 The following list identifies those organizations that funded Faculty research in the 20122013 fiscal year  

E-Print Network [OSTI]

Living Innovations Inc. ­ Greencore Composites ­ Groupe Mequaltech Inc. ­ Hanwha Solar Canada ­ Hatch Ltd-Lucent Canada Inc. ­ Allanson International Inc. ­ Altera Corp. ­ American Institute of Steel Construction ­ Americas Styrenics LLC ­ Andec Manufacturing Ltd. ­ Andritz Group ­ Armacell ­ Atomic Energy of Canada Ltd

134

ESS 2012 Peer Review - Reducing the Costs of Manufacturing Flow Batteries - Dhruv Bhatnagar, SNL  

Broader source: Energy.gov (indexed) [DOE]

the Costs of Manufacturing Flow Batteries the Costs of Manufacturing Flow Batteries Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP Next Steps 1. Continued outreach with other with other manufacturers 2. Characterization of the flow battery manufacturing process and determination of process issues 3. Evaluation of the fuel cell, other battery and other industry manufacturing process to address issues identified 4. Coordination with PNNL flow battery component cost

135

Revolutionizing Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

136

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

137

Manufacturing News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

138

Implementing Green Chemistry in Chemical Manufacturing: A Survey Report  

Science Journals Connector (OSTI)

(2) While process integration and other forms of energy conservation have helped reduce distillation energy consumption in the chemical process industries (CPI), the promise of new low energy separation methods in chemical manufacturing has not been realized. ... The National Research Council(2) identified reducing the energy intensity of the CPI as a grand challenge for sustainability in the chemical industry. ... By articulating the requirements for industrial application of sustainable chem., this review also seeks to bridge any existing gap between academia and industry regarding the R&D and engineering challenges needed to ensure green chem. ...

Robert J. Giraud; Paul A. Williams; Amit Sehgal; Ettigounder Ponnusamy; Alan K. Phillips; Julie B. Manley

2014-09-02T23:59:59.000Z

139

Manufacturers Saving with Lost Foam Metal Casting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting December 18, 2009 - 2:43pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Metal casting was identified as one of the top 10 energy users in manufacturing. The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent fewer materials than traditional processes. One example of this technology is being used by General Motors to make lightweight engine blocks for the fuel-efficient vehicles they manufacture. A government-funded effort to support development of foam metal casting helped reduce an estimated 9.4 million tons of solid waste between 1994 and 2005, which saved industry an estimated 3 trillion Btu.

140

Energy Department to Work with National Association of Manufacturers...  

Office of Environmental Management (EM)

to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase...

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manufacturing Spotlight: Boosting American Competitiveness | Department of  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 - 1:06pm Addthis Libby Wayman Clean Energy Manufacturing Initiative Director Advancing the nation's clean energy manufacturing industry helps to capture the value of U.S. innovation in clean energy technologies, fosters further innovation right here in America, and makes U.S. manufacturers more competitive by reducing their energy costs - all while creating jobs and building a more sustainable planet for future generations. Industry and government are working together to expand American leadership in this sector by bringing new clean energy technologies to the marketplace and making manufacturing processes more energy efficient.

142

1 - Honeywell Bull in manufacturing automation  

Science Journals Connector (OSTI)

economy, the manufacturing industry has undergone great changes over the past 25 years. Now, with the expansion of computerised manufacturing control applications, computer manufacturers can meet the specialised needs of the manufacturing community. This paper also examines the CIM architecture at all levels, looks at current standards and at Honeywell Bull as a supplier.

R. Anderson

1988-01-01T23:59:59.000Z

143

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

144

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

Rohs, Remo

145

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

146

Benefits and Barriers of Smart Manufacturing  

E-Print Network [OSTI]

Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

Trombley, D.; Rogers, E.

2014-01-01T23:59:59.000Z

147

Improving Green Manufacturing Education in China Universities and Colleges  

Science Journals Connector (OSTI)

Green manufacturing is the irresistible development trend of manufacturing industries throughout the world, and green manufacturing education plays an extremely significant part in the process of going green for ...

Li Chen; Qing-chun Xiang

2014-01-01T23:59:59.000Z

148

Research and Applications of Cloud Manufacturing in China  

Science Journals Connector (OSTI)

In order to improve the produce efficiency of enterprises, scholars put forward many manufacturing modes, such as agile manufacturing, gridding manufacturing, and industry 4.0, IPS2, and so on. These manufacturin...

Bo Hu Li; Lin Zhang; Xudong Chai; Fei Tao

2014-01-01T23:59:59.000Z

149

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

150

Innovations in Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

151

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

152

Laser Additive Manufacturing in GE  

Science Journals Connector (OSTI)

There has been an increasing interest given to laser additive manufacturing (LAM) in recent years from across the global. GE has been one of the leading industries engaging in this...

Peng, Henry; Li, Yanmin; Guo, Rui; Wu, Zhiwei

153

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

154

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

155

Manufacturing Success Stories | Department of Energy  

Office of Environmental Management (EM)

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers Assessment center has helped Colorado companies save...

156

American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

157

Supporting Texas Manufacturing to Save Energy Now Program  

Broader source: Energy.gov [DOE]

Supporting Texas Manufacturing to Save Energy Now Program build upon previous successful regional and state industrial energy-efficiency efforts to support Texas industries in reducing energy intensity.

158

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

159

Characterization of industrial process waste heat and input heat streams  

SciTech Connect (OSTI)

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

160

Manufacturing News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Plant Assessments Plant Assessments Plant-Wide Assessments Plant-wide assessments are one way to work with the DOE Industrial Technologies Program—most companies realize a minimum of $1 million in annual energy savings after just one assessment. Plants are selected through a competitive solicitation process, and agree to a minimum 50% cost-share for implementing the assessment. An industry-defined team conducts an on-site analysis of total energy use and identifies opportunities to save energy in your overall operations and in motor, steam, compressed air, and process heating systems. The recommendations could include implementing emerging technologies that would be particularly effective in your operation. These emerging technologies, although on the forefront of industrial manufacturing, are successful and commercially

162

Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...  

Broader source: Energy.gov (indexed) [DOE]

SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify...

163

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

164

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov/manufacturing Advanced Manufacturing Next-Generation Manufacturing As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future.

165

Big Efficieny for Small Manufacturing  

E-Print Network [OSTI]

Big Efficiency for Small Manufacturing Daniel Trombley American Council for an Energy-Efficient Economy Presented to: Industrial Energy Technology Conference New Orleans, LA May 21, 2014 ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial...-Sized Manufacturers http://www.aceee.org/research-report/ie1401 Daniel Trombley dtrombley@aceee.org www.aceee.org ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 ...

Trombley, D.

2014-01-01T23:59:59.000Z

166

U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis  

SciTech Connect (OSTI)

The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOEs Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

Fullenkamp, Patrick H; Holody, Diane S

2014-06-15T23:59:59.000Z

167

Design for manufacturability with regular fabrics in digital integrated circuits  

E-Print Network [OSTI]

Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

Gazor, Mehdi (Seyed Mehdi)

2005-01-01T23:59:59.000Z

168

Explore Careers in Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

169

Additive Manufacturing: Implications on Research and Manufacturing  

E-Print Network [OSTI]

Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

Crawford, T. Daniel

170

Additive Manufacturing : Changing the Rules of Manufacturing  

Science Journals Connector (OSTI)

Aspects of 3D printing and additive or layer manufacturing can be treated as modular manufacturing or modular components of manufacturing in the contemporary sense. Such modular manufacturing involves specialized...

2014-06-01T23:59:59.000Z

171

Joint Stiffness Identification of Six-revolute Industrial Serial Robots Claire Dumas  

E-Print Network [OSTI]

Joint Stiffness Identification of Six-revolute Industrial Serial Robots Claire Dumas , St the stiffness of industrial robots from robot manufacturers. As a consequence, this paper introduces a robust and fast procedure that can be used to identify the joint stiffness values of any six-revolute serial robot

Paris-Sud XI, Université de

172

Plastic Magen Industry | Open Energy Information  

Open Energy Info (EERE)

Plastic Magen Industry Jump to: navigation, search Name: Plastic Magen Industry Place: Kibbutz Magen, Israel Zip: 85465 Sector: Solar Product: Manufactures plastic products with a...

173

The Future of Additive Manufacturing in Facade design: a strategic roadmap towards a preferable future:.  

E-Print Network [OSTI]

??Additive manufacturing (AM) is a relatively new discipline that offers great potential for designers in every industry. When further developed, this new method of manufacturing, (more)

Volkers, J.N.

2010-01-01T23:59:59.000Z

174

SymposiumandIndustrialAffiliatesProgramLightinAction Industrial Affiliates Program  

E-Print Network [OSTI]

SymposiumandIndustrialAffiliatesProgramLightinAction #12;Industrial Affiliates Program Friday, 8 Session I Abstract: Recently Additive Manufacturing (AM) has been hailed as the "third industrial revolution" by Economist magazine [April -2012]. Precision of the product manufactured by AM largely depends

Van Stryland, Eric

175

Fiber Reinforced Polymer Composite Manufacturing Workshop  

Office of Energy Efficiency and Renewable Energy (EERE)

A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss manufacturing of composites. The workshop explored emerging FRP composite market applications in clean energy and barriers to the development and widespread commercial use of these lightweight, high-strength and high-stiffness materials. Improving the manufacturing speed and quality-and reducing their manufacturing costs-could accelerate their use in automotive, wind, compressed gas storage and other clean energy and industrial applications.

176

Posted 3/2/13 Medline Industries Industrial Engineer  

E-Print Network [OSTI]

Posted 3/2/13 Medline Industries ­ Industrial Engineer Medline Industries, Inc. has an immediate opening for an Industrial Engineer for our SPT Division located in Waukegan, IL. We are seeking a hard-working, detail-oriented professional with experience in industrial engineering and lean manufacturing within

Heller, Barbara

177

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

178

Manufacturing Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

179

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network [OSTI]

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

180

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place: Monroe, Michigan Zip: 48161 Sector: Wind energy Product: Michigan-based wind turbine tower manufacturer. References: Ventower Industries1 This article is a stub. You...

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

Maharashtra, India Zip: 416 109 Sector: Wind energy Product: Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries....

182

Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Industrial Engineering  

E-Print Network [OSTI]

| Mechanical | Petroleum Careers in Industrial Engineering Manufacturing, service and retail industries hire a significant number of industrial engineers. Specific industries include automobile manufacturers, electronics to the US Bureau of Labor Statistics, the 2012 average annual wage for industrial engineers is $82

Glowinski, Roland

183

Logistics implications of electric car manufacturing  

Science Journals Connector (OSTI)

The increasingly important role of electric cars manufacturing needs to develop new logistics concepts in automotive industry. This article analyses critical issues in logistics operations of electric cars based on the in-house perspective of the car manufacturer. The purpose of this paper is two-fold. Firstly, to verify existing research about the impact of electric car manufacturing on logistics operations. Secondly, to investigate concrete logistics implications based on different electric car operations models. Therefore, we use manufacturing phenotypes, which can be applied to separate and classify configuration and coordination principles and helps to reach a better understanding of relationships with their logistics implications. The presented model is based on real case study data of global auto industry and supports the academic study of cross-site comparisons. A holistic and consistent understanding of different operations types in electric car manufacturing will be necessary, which will help in evaluating the actual and future supply chain forms in the car industry.

Florian Klug

2014-01-01T23:59:59.000Z

184

Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships  

E-Print Network [OSTI]

Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships Prices Affect Automobile Manufacturers and Dealerships Abstract Many consumers are keenly aware, by contrast, we investigate how gasoline prices affect the automobile industry: manufacturers and dealerships

Rothman, Daniel

185

A review of the Technologies Enabling Agile Manufacturing program  

SciTech Connect (OSTI)

Addressing a technical plan developed in consideration with major US manufacturers, software and hardware providers, and government representatives, the Technologies Enabling Agile Manufacturing (TEAM) program is leveraging the expertise and resources of industry, universities, and federal agencies to develop, integrate, and deploy leap-ahead manufacturing technologies. One of the TEAM program`s goals is to transition products from design to production faster, more efficiently, and at less cost. TEAM`s technology development strategy also provides all participants with early experience in establishing and working within an electronic enterprise that includes access to high-speed networks and high-performance computing and storage systems. The TEAM program uses the cross-cutting tools it collects, develops, and integrates to demonstrate and deploy agile manufacturing capabilities for three high-priority processes identified by industry: material removal, sheet metal forming, electro-mechanical assembly. This paper reviews the current status of the TEAM program with emphasis upon TEAM`s information infrastructure.

Gray, W.H.; Neal, R.E.; Cobb, C.K.

1996-10-01T23:59:59.000Z

186

Clean Energy Manufacturing Incentive Program (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Other Maximum Rebate Aggregate amount of grants awarded and outstanding at any time cannot exceed $36 million Program Info State Virginia Program Type Industry Recruitment/Support In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

187

The future steelmaking industry and its technologies  

SciTech Connect (OSTI)

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

188

Level schedule implementation in unstable manufacturing environments  

E-Print Network [OSTI]

American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

Lpez de Haro, Santiago

2008-01-01T23:59:59.000Z

189

Solid-State Lighting Manufacturing Workshop  

Broader source: Energy.gov [DOE]

Nearly 200 lighting industry leaders, chip makers, fixture and component manufacturers, and others gathered in Fairfax, Virginia, on April 21 and 22, 2009, for the first-ever DOE Solid-State...

190

Cost Effective Cooling Strategies for Manufacturing Facilities  

E-Print Network [OSTI]

Industrial plants are designed for a specific purpose of manufacturing products or a group of products in the most cost effective way. One factor which is often very poorly addressed is the environmental requirements for the workplace. Environmental...

Kumar, R.

191

U.S. Manufacturing Energy Use and Loss: The Big Picture  

E-Print Network [OSTI]

A first step in realizing industrial energy efficiency opportunities is to understand how industry is using, and losing, energy. The U.S. Manufacturing Energy and Carbon Footprints provide a reliable macro-scale reference for manufacturing energy...

Brueske, S.; Sabouni, R.

2014-01-01T23:59:59.000Z

192

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

193

The Use of Phosphorus in the Manufacture of Lucifer Matches  

Science Journals Connector (OSTI)

... never occurred, In Germany, Austria, and Switzerland, there is, how ever, the surreptitious manufacture of matches as r home industry to be contended with; this disastrou practice ...

1899-05-18T23:59:59.000Z

194

Synchronized scheduling of air transportation and assembly manufacturing in consumer electronics supply chain.  

E-Print Network [OSTI]

??The consumer electronics has been a booming industry in recent years. Motivated by the challenges confronted by a major PC manufacturer in consumer electronics industry, (more)

Li, Kunpeng.

2008-01-01T23:59:59.000Z

195

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

196

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

197

Steel Industry Profile  

Broader source: Energy.gov [DOE]

The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

198

Presentations for Industry  

Broader source: Energy.gov [DOE]

Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

199

Climate VISION: Private Sector Initiatives: Chemical Manufacturing - Plant  

Office of Scientific and Technical Information (OSTI)

Plant Assessments Plant Assessments Plant-Wide Assessments Plant-wide assessments are one way to work with the DOE Industrial Technologies Program—most companies realize a minimum of $1 million in annual energy savings after just one assessment. Plants are selected through a competitive solicitation process, and agree to a minimum 50% cost-share for implementing the assessment. An industry-defined team conducts an on-site analysis of total energy use and identifies opportunities to save energy in your overall operations and in motor, steam, compressed air, and process heating systems. The recommendations could include implementing emerging technologies that would be particularly effective in your operation. These emerging technologies, although on the forefront of industrial manufacturing, are successful and commercially

200

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Establishing a virtual manufacturing environment for military robots  

E-Print Network [OSTI]

Recent advances in the robotics industry have given the military an opportunity to capitalize on industry's innovation. Not only has core robotics technology improved but robotics manufacturing technology has also made ...

Andersen, Ryan J. (Ryan John)

2007-01-01T23:59:59.000Z

202

Climate VISION: Private Sector Initiatives: Automobile Manufacturers: GHG  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of energy helps to pinpoint areas of energy intensity and characterize the unique energy needs of individual industries. On the supply side, the footprints provide details on the energy purchased from utilities (electricity, fossil fuels), energy generated onsite, and excess energy transported to the local grid. On the demand side, the footprints illustrate where and how energy is used within a typical plant, from central boilers to motors. Most important, the footprints identify where energy is lost due to inefficiencies, both inside and outside the plant boundary. Considerable energy is lost, for example, in steam and

203

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: GHG  

Office of Scientific and Technical Information (OSTI)

Energy Footprints Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of energy helps to pinpoint areas of energy intensity and characterize the unique energy needs of individual industries. On the supply side, the footprints provide details on the energy purchased from utilities (electricity, fossil fuels), energy generated onsite, and excess energy transported to the local grid. On the demand side, the footprints illustrate where and how energy is used within a typical plant, from central boilers to motors. Most important, the footprints identify where energy is lost due to inefficiencies, both inside and outside the plant boundary. Considerable energy is lost, for example, in steam and

204

Low Temperature PEM Fuel Cell Manufacturing Needs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PEM Fuel Cell PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project  Cost drivers were identified for the following: * MEA * Plates * Balance of Plant (BOP) * Fuel Processing Manufacturing Fuel Cell Project - Phase 1 Note that this presentation will be MEA centric as this is the working group I represent...  MEA Cost Drivers Identified: Identifying MEA Cost Drivers * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA. Thus, focus cost reduction efforts on MEA manufacturing methods. Identify gaps in MEA manufacturing technology: How much better can we do? Note: Cost reductions realized from both material price reduction

205

Advanced Manufacturing Jobs and Innovation Accelerator Challenge |  

Broader source: Energy.gov (indexed) [DOE]

Technical Assistance » Advanced Manufacturing Jobs and Innovation Technical Assistance » Advanced Manufacturing Jobs and Innovation Accelerator Challenge Advanced Manufacturing Jobs and Innovation Accelerator Challenge October 10, 2013 - 12:01pm Addthis The Advanced Manufacturing Jobs and Innovation Accelerator Challenge (Accelerator) is a multi-agency sponsored competition established to enhance existing regional networks of firms and institutions that accelerate technology-related innovation, business formation, and job creation. Funding provided to these regional networks (also called clusters) help academia, utilities, local governments, and private industry and investors expand partnerships, share strategic information more efficiently, and reduce costs by leveraging existing assets and resources (like physical facilities and equipment).

206

Clean Energy Manufacturing Initiative Solid-State Lighting  

Office of Energy Efficiency and Renewable Energy (EERE)

Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

207

Energy Assessment Results: Most Commonly Identified Recommendations...  

Broader source: Energy.gov (indexed) [DOE]

Assessment Results: Most Commonly Identified Recommendations The Missouri Industrial Assessment Center shares its experience providing energy assessments to local industry. Energy...

208

Property Tax Abatement for Production and Manufacturing Facilities |  

Broader source: Energy.gov (indexed) [DOE]

Abatement for Production and Manufacturing Facilities Abatement for Production and Manufacturing Facilities Property Tax Abatement for Production and Manufacturing Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Program Info Start Date 5/25/2007 State Montana Program Type Industry Recruitment/Support Rebate Amount 50% tax abatement Provider Montana Department of Revenue In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable energy research and

209

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

210

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy Savers [EERE]

MANUFACTURING OFFICE Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water...

211

National Network for Manufacturing Innovation: A Preliminary Design  

Broader source: Energy.gov [DOE]

The Federal investment in the National Network for Manufacturing Innovation (NNMI) serves to create an effective manufacturing research infrastructure for U.S. industry and academia to solve industry-relevant problems. The NNMI will consist of linked Institutes for Manufacturing Innovation (IMIs) with common goals, but unique concentrations. In an IMI, industry, academia, and government partners leverage existing resources, collaborate, and co-invest to nurture manufacturing innovation and accelerate commercialization. As sustainable manufacturing innovation hubs, IMIs will create, showcase, and deploy new capabilities, new products, and new processes that can impact commercial production. They will build workforce skills at all levels and enhance manufacturing capabilities in companies large and small. Institutes will draw together the best talents and capabilities from all the partners to build the proving grounds where innovations flourish and to help advance American domestic manufacturing.

212

Advanced Manufacturing Office: MotorMaster+  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MotorMaster+ to MotorMaster+ to someone by E-mail Share Advanced Manufacturing Office: MotorMaster+ on Facebook Tweet about Advanced Manufacturing Office: MotorMaster+ on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ on Google Bookmark Advanced Manufacturing Office: MotorMaster+ on Delicious Rank Advanced Manufacturing Office: MotorMaster+ on Digg Find More places to share Advanced Manufacturing Office: MotorMaster+ on AddThis.com... MotorMaster+ This photo shows the inner workings of an industrial electric motor with gears. In the lower left hand corner are the words "MotorMaster+" and underneath are the words "Motor-Driven Systems." Download MotorMaster+ now! Version: 4.01.01 Release Date: September 21, 2010 Release Notes Metric Unit Measurements: No

213

Exploring the Wind Manufacturing Map | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Manufacturing Map Wind Manufacturing Map Exploring the Wind Manufacturing Map August 15, 2012 - 5:01pm Addthis America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? The domestic wind manufacturing industry has grown dramatically in the last 5 years, and now nearly 70 percent of the turbines installed in the United States are built here. The growth of the wind energy industry in the United States includes an expanding domestic manufacturing base, with 13 facilities that opened in 2010 and an additional 16 in 2011. These and older facilities are visualized by the map above using data collected by the National

214

Life Cycle Assessment Practices: Benchmarking Selected European Automobile Manufacturers  

E-Print Network [OSTI]

Life Cycle Assessment Practices: Benchmarking Selected European Automobile Manufacturers Jean in the automobile industry where vehicle manufacturers (OEMs) are launching several new or re- vamped models each year. The automobile industry is therefore a very emblematic sector for best practices of LCA

Boyer, Edmond

215

Ultratech Develops an Improved Lithography Tool for LED Wafer Manufacturing  

Broader source: Energy.gov [DOE]

Ultratech modified an existing lithography tool used for semiconductor manufacturing to better meet the cost and performance targets of the high-brightness LED manufacturing industry. The goal was to make the equipment compatible with the wide range of substrate diameters and thicknesses prevalent in the industry while reducing the capital cost and the overall cost of ownership (COO).

216

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Rapid Freeform Sheet Metal Forming Conversion of Waste CO2 and Shale Gas to High-Value Chemicals 2012 Smart Grid Peer Review Presentations - Day...

217

Industrial Activities at DOE: Efficiency, Manufacturing, Process...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

edges, engine pylon covers, and engine nacelle acoustic liners; replace aluminum Air Pollution Control Systems - Silica-titania composites used in air pollution control...

218

Improving Steam System Performance: A Sourcebook for Industry...  

Energy Savers [EERE]

in Industrial Steam Systems Insulate Steam Distribution and Condensate Return Lines Advanced Manufacturing Home Key Activities Research & Development Projects Facilities...

219

Japan's Rayon Industry  

Science Journals Connector (OSTI)

THE RAYON INDUSTRY of Japan has constantly expanded for the past eight years at a pace which has surpassed the development of all the other manufacturing industries of the Empire. At the end of 1926, the combined total output of rayon companies in this ...

KEHTI SISIDO

1934-08-10T23:59:59.000Z

220

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

222

The President's Manufacturing Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

223

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

224

Advanced Manufacturing Office Overview  

Broader source: Energy.gov [DOE]

Overview presentation by the Advanced Manufacturing Office for the Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

225

Additive Manufacturing Technology Assessment  

Office of Environmental Management (EM)

subtractive manufacturing 41 methods 1. Additive manufacturing is also called as 3D printing, 42 additive fabrication, or freeform fabrication. These new 43 techniques, while...

226

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

227

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

228

Industry - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

229

Additive Manufacturing Technologies  

Science Journals Connector (OSTI)

Rapid Prototyping is the construction of complex three-dimensional parts using additive manufacturing technology.

Jrgen Stampfl; Markus Hatzenbichler

2014-01-01T23:59:59.000Z

230

The Future of Manufacturing Takes Shape: 3D Printed Car on Display at Manufacturing Summit  

Office of Energy Efficiency and Renewable Energy (EERE)

This week in Washington, leaders in science, industry, and manufacturing gathered at the Energy Departments 2014 American Energy and Manufacturing Competitiveness Summit, jointly sponsored by the Council on Competitiveness. Also at the Summit was the world's first 3-D printed vehicle chassis, an innovation that resulted from a collaboration between Arizona-based Local Motors, Cincinnati Incorporated, and the Oak Ridge National Laboratorys Manufacturing Demonstration Facility (MDF) with the funding support of The Energy Departments Advanced Manufacturing Office.

231

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

232

Advanced Methods for Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methods for Manufacturing Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and construction processes (both technologies and methods) and show the most promise in shortening timelines and lowering overall deployment costs. The innovations selected for further development under the AMM program will collectively provide a major means of moving the U.S. nuclear industry from

233

Industrial Excimer Laser Surface Treatment: An Overview  

Science Journals Connector (OSTI)

This presentation shows industrial examples about excimer laser-based manufacturing in the field of medical devices, solar cells, electronics. Article not available.

Herbst, Ludolf; Spiecker, Gerd; Paetzel, Rainer

234

Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and a best practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing...

235

ITP Metal Casting: Metalcasting Industry Technology Roadmap  

Broader source: Energy.gov [DOE]

Castings are essential building blocks of U. S. industry. More than 90% of all mnaufactured, durable good and 100% of all manufacturing machinery contain castings.

236

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

237

A measurement infrastructure for sustainable manufacturing  

Science Journals Connector (OSTI)

Global resource degradation, climate change, and environmental pollution are worsening due to increasing globalised industrialisation. Manufacturing industries have thus been put under pressure to cope with these problems while maintaining competitiveness. Sustainable manufacturing has been proposed to meet these challenges. The measurement of sustainability in manufacturing enables the quantitative measure of sustainability performance in specific manufacturing processes that will support decision-making for more sustainable processes and products. This paper describes a proposed sustainable manufacturing measurement infrastructure. The centre piece of this infrastructure is a sustainability performance management component that will effectively manage a sustainable indicator repository, measurement process guidelines, and sustainability performance analysis, evaluation, and reporting. The sustainability measurement infrastructure provides a foundation for decision-making tools development and enables users to create a tight integration into business strategy development processes. Examples in this paper are on carbon emissions and energy consumption.

Shaw C. Feng; Che B. Joung

2011-01-01T23:59:59.000Z

238

Users from Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

239

American Manufacturing Gets a Boost | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

American Manufacturing Gets a Boost American Manufacturing Gets a Boost American Manufacturing Gets a Boost June 12, 2012 - 7:52pm Addthis DOE is investing in projects that will increase energy efficiency in the manufacturing industry. One project will develop a new process for producing titanium components that could reduce the materials needed by ten-fold in aircraft and vehicle manufacturing. | Courtesy of Flickr user markjhandel, Creative Commons license. DOE is investing in projects that will increase energy efficiency in the manufacturing industry. One project will develop a new process for producing titanium components that could reduce the materials needed by ten-fold in aircraft and vehicle manufacturing. | Courtesy of Flickr user

240

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: PPII - Commercial Demonstration of the Manufactured Aggregate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration Project Documents - Industrial Applications Demonstration Project Documents - Industrial Applications Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash - Project Brief [PDF-72KB] Universal Aggregates, LLC, King George County, VA PROJECT FACT SHEET Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash [PDF-412KB] (Feb 2008) PROGRAM PUBLICATIONS Final Report Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Absorber Ash [PDF-4.5MB] (Nov 2007) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash: A DOE Assessment [PDF-170KB] (Mar 2008)

242

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

243

The industrial ecology of the iron casting industry  

E-Print Network [OSTI]

Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

Jones, Alissa J. (Alissa Jean)

2007-01-01T23:59:59.000Z

244

Industrial Partnerships | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial Partnerships SHARE Industrial Partnerships ORNL takes great pride in its work with U.S. industry. Each year, the Industrial Partnerships team hosts more than 100 visits to ORNL by both large corporations and small companies to help our potential partners understand the capabilities and expertise that exist at the laboratory and the various mechanisms available to help facilitate collaboration. Mechanism for Partnering How do I get started exploring industrial partnerships at ORNL? As the nation's largest science and energy laboratory, it can sometimes be

245

EL Program: Systems Integration for Manufacturing and Construction Applications (SIMCA)  

E-Print Network [OSTI]

is the problem? The Third Industrial Revolution is underway and it is driven by digital information1 . This Third Industrial Revolution is fundamentally changing manufacturing by enabling a transformation to digitized, improve time to market, and reduce costs. 1 "The Third Industrial Revolution," The Economist, April 21

Bentz, Dale P.

246

Most Commonly Identified Recommendations  

Broader source: Energy.gov (indexed) [DOE]

Most Commonly Identified Recommendations Most Commonly Identified Recommendations DOE ITP In Depth ITP Energy Assessment Webcast Presented by: Dr. Bin Wu, Director, Professor of Industrial Engineering Dr. Sanjeev Khanna, Assistant Director, Associate Professor of Mechanical Engineering With Contribution From MO IAC Student Engineers: Chatchai Pinthuprapa Jason Fox Yunpeng Ren College of Engineering, University of Missouri. April 16, 2009 Missouri Industrial Assessment Center Missouri IAC is one of the 26 centers founded by the U.S. DOE in the nation. Since its establishment in 2005, we have been working closely with the MoDNR, the MU University Extension, utility providers in the state, etc, to provide education, development and services in industrial energy efficiency. Our services (audits, workshops, etc), have already covered many locations across the state of Missouri.

247

Implementation of VOC source reduction practices in a manufactured house and in school classrooms  

SciTech Connect (OSTI)

Detailed studies of a new manufactured house and four new industrialized relocatable school classrooms were conducted to determine the emission sources of formaldehyde and other VOCs and to identify and implement source reduction practices. Procedures were developed to generate VOC emission factors that allowed reasonably accurate predictions of indoor air VOC concentrations. Based on the identified sources of formaldehyde and other aldehydes, practices were developed to reduce the concentrations of these compounds in new house construction. An alternate ceiling panel reduced formaldehyde concentrations in the classrooms. Overall, the classrooms had relatively low VOC concentrations.

Hodgson, A.T.; Apte, M.G.; Shendell, D.G.; Beal, D.; McIlvaine, J.E.R.

2002-01-01T23:59:59.000Z

248

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

249

Laser Technology: Additive Manufacturing  

Science Journals Connector (OSTI)

Selective Laser Sintering, and in general Additive Manufacturing Processes are becoming mature technologies; in the ... systems that are even utilized for direct parts manufacturing. However, the parts final user...

Srichand Hinduja; Lin Li

2013-01-01T23:59:59.000Z

250

The Advanced Manufacturing Partnership  

E-Print Network [OSTI]

;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

Das, Suman

251

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

252

High Technology and Industrial Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

253

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

254

Design of multifunctional paired robots engaged across a thin plate for aircraft manufacturing and maintenance  

E-Print Network [OSTI]

The aircraft industry lacks an automated system for wing box manufacturing and maintenance. Currently workers assemble and inspect thousands of fasteners in the wing structure by hand. This manufacturing process consumes ...

Karasic, Geoffrey Ian

2011-01-01T23:59:59.000Z

255

Manufacturing Innovation Topics Workshop  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

256

Users from Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Users from Industry Print Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

257

Identifying Opportunities for Industrial Energy Conservation  

E-Print Network [OSTI]

. Cement Making 5. Vacuum Distillation 4. Cooking 6. Hydrocracking 5. Glass Melting 7. Hydrogen Production 6. Copper Smelting 8. Hydrorefining/Hydrotreating 7. Miscellaneous 9. Visbreaking 10. Petroleum Coking 11. Desulfurization C. Iron and Steel I...

Hoffman, A. R.

1981-01-01T23:59:59.000Z

258

Transformative CAD based industrial robot program generation  

Science Journals Connector (OSTI)

Industrial robots are widely used in various processes of surface manufacturing, such as spray painting, spray forming, rapid tooling, spray coating, and polishing. Robot programming for these applications is still time consuming and costly. Typical ... Keywords: CAD model, Industrial robot, Robot programming, Surface manufacturing

Heping Chen; Weihua Sheng

2011-10-01T23:59:59.000Z

259

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

260

A new DFM approach to combine machining and additive manufacturing  

E-Print Network [OSTI]

Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

Kerbrat, Olivier; Hascot, Jean-Yves; 10.1016/j.compind.2011.04.003

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Industrial energy use indices  

E-Print Network [OSTI]

and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energys national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

262

Tuesday Webcasts for Industry  

Broader source: Energy.gov [DOE]

Learn about AMO's software tools, technologies, partnership opportunities, and other resources by watching the Tuesday Webcasts for Industry. They are held on the first Tuesday of every month from 2:00 to 3:00 p.m. Eastern time and are presented by manufacturers, AMO staff, and industry experts. Register to participate in upcoming Tuesday webcasts by visiting the AMO Events Calendar or Training Calendar. Each entry includes the webcast's date, topic, and registration link, and a detailed description.

263

Wind Manufacturing Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Manufacturing Tax Credit Wind Manufacturing Tax Credit Wind Manufacturing Tax Credit < Back Eligibility Commercial Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate No specific per project limitation; 100 million limit for all offshore wind tax credits (may be exceeded if EDA deems appropriate) Program Info Start Date 08/19/2010 State New Jersey Program Type Industry Recruitment/Support Rebate Amount 100% of the qualified capital investment Provider New Jersey Economic Development Authority In August 2010 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2010/Bills/AL10/57_.PDF S.B. 2036]) creating an offshore wind resource requirement within the [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NJ05R&re... state renewables portfolio standard (RPS)] and tax incentives for certain

264

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

265

Success factors characterisation towards Six Sigma implementation in Indian industries  

Science Journals Connector (OSTI)

A common approach used in developing Six Sigma, Lean Six Sigma or other quality improvement framework is to identify the factors/elements that are believed to be critical to the successful implementation of these concepts. Several studies were conducted to identify critical success factors for Six Sigma implementation in a specific category of industries in a country. In this paper, literature review, industry experience and brainstorming are utilised to identify the possible critical success factors (CSF) responsible for successful implementation of Six Sigma. These success factors are identified for three types of industries: manufacturing, business process outsourced (BPO) organisations, information technology (IT) and information technology enabled services (ITeS) organisations. The survey data, based on questionnaire design, are analysed using suitable statistical techniques like cluster analysis, similarity matrix analysis and market basket analysis to identify the critical success factors both for overall industry and also segment wise. The findings from this work would be useful for industries to make Six Sigma implementation focused and also help them to utilise resources optimally.

Sanjit Ray; Prasun Das; Bidyut K. Bhattacharyay

2012-01-01T23:59:59.000Z

266

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Miraial formerly Kakizaki Manufacturing Miraial formerly Kakizaki Manufacturing Jump to: navigation, search Name Miraial (formerly Kakizaki Manufacturing) Place Tokyo, Japan Zip 171-0021 Product Manufacturer of wafer handling products and other components for the global semiconductor industry. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Manufacturing Plants Incorporate Energy Efficiency into Business Model |  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Plants Incorporate Energy Efficiency into Business Manufacturing Plants Incorporate Energy Efficiency into Business Model Manufacturing Plants Incorporate Energy Efficiency into Business Model April 27, 2011 - 12:15pm Addthis Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Four Texas-based manufacturing plants are adopting robust energy efficiency standards as part of an energy management certification program led by the Department of Energy's Industrial Technologies Program. The certification program, called Superior Energy Performance, provides a

268

Manufacturing Plants Incorporate Energy Efficiency into Business Model |  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Plants Incorporate Energy Efficiency into Business Manufacturing Plants Incorporate Energy Efficiency into Business Model Manufacturing Plants Incorporate Energy Efficiency into Business Model April 27, 2011 - 12:15pm Addthis Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Four Texas-based manufacturing plants are adopting robust energy efficiency standards as part of an energy management certification program led by the Department of Energy's Industrial Technologies Program. The certification program, called Superior Energy Performance, provides a

269

The design, manufacturing and use of economically friendly injection molds  

E-Print Network [OSTI]

Much of the polymer manufacturing done today involves the process of injection molding. It can be difficult to gain experience in the art of designing and building tooling for this process outside of industry. The goal of ...

Buchok, Aaron (Aaron J.)

2008-01-01T23:59:59.000Z

270

R&D, trade, and productivity growth in korean manufacturing  

Science Journals Connector (OSTI)

This paper investigates the effects of both R&D spillovers and trade patterns on productivity in Korean manufacturing, using industry-level data. The results show that domestic and foreign R&D capital stocks play...

Taegi Kim; Changsuh Park

2003-01-01T23:59:59.000Z

271

Automated Part Tracking and Metrology Applied to a Manufacturing Process  

E-Print Network [OSTI]

This paper presents a case study in the design of an automated part tracking and metrology systems for an industrial manufacturing system. A major productivity challenge of this facility is managing each batch of parts as it is formed, treated...

Morelli, F.; Halbert, T.; Hignight, M.; Kell, Z.; Lacy, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

272

Manufacturing Innovation Multi-Topic Workshop  

Broader source: Energy.gov [DOE]

DOEs Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently released AMO Request for Information (RFI) and a recently amended OSD ManTech RFI. AMO and OSD ManTech sought to know more about the challenges associated with advanced manufacturing technology that potentially could be overcome by pre-competitive collaboration as part of a Manufacturing Innovation Institute.

273

Industry Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

274

Industrial Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

275

Enabling Manufacturing Research through Interoperability  

E-Print Network [OSTI]

sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

2009-01-01T23:59:59.000Z

276

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network [OSTI]

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National fiber reinforced composites have enjoyed limited acceptance in the automotive industry due to high costs to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model

277

Solid-State Lighting R&D Manufacturing Roadmap  

Broader source: Energy.gov [DOE]

This document provides a description of activities the Department plans to undertake to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products, representing industry consensus on the expected evolution of SSL manufacturing, best practices, and opportunities for improvement and collaboration.

278

Capacity analysis, cycle time optimization, and supply chain strategy in multi-product biopharmaceutical manufacturing operations  

E-Print Network [OSTI]

Application of system optimization theory, supply chain principles, and capacity modeling are increasingly valuable tools for use in pharmaceutical manufacturing facilities. The dynamics of the pharmaceutical industry - ...

Fetcho-Phillips, Kacey L. (Kacey Lynn)

2011-01-01T23:59:59.000Z

279

International Comparison of Energy Efficiency Awards for Appliance Manufacturers and Retailers  

E-Print Network [OSTI]

Association of Home Appliance Manufacturers (AHAM),2012, AHAM Programs. http://www.aham.org/industry/ht/d/on market surveillance AHAM Association of Home Appliance

Zhou, Nan

2014-01-01T23:59:59.000Z

280

Industrial | OpenEI  

Open Energy Info (EERE)

Industrial Industrial Dataset Summary Description The Industrial Assessment Centers (IAC) Database is a collection of all the publicly available data from energy efficiency assessments conducted by IACs at small and medium-sized industrial facilities. Source Department of Energy Industrial Assessment Centers Date Released September 20th, 2012 (2 years ago) Date Updated September 20th, 2012 (2 years ago) Keywords assessment energy efficiency Industrial manufacturing small and medium-sized Data application/vnd.ms-excel icon copy_of_iac_database.xls (xls, 28.7 MiB) Quality Metrics Level of Review Standards Comment Temporal and Spatial Coverage Frequency Daily Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

System dynamics analysis of energy usage: case studies in automotive manufacturing  

Science Journals Connector (OSTI)

Our life is strongly linked with the usage of natural resources. With increase in world population and welfare there is an increasing global demand for raw material. Energy is a necessity in everyday life and is often generated using non-renewable natural resources which are finite. Manufacturing is one of the largest energy and material resource consumers. There is great concern about minimising consumption of energy in manufacturing industry to sustain the natural carrying capacity of the ecosystem. This is one of the challenges in today's industrial world. The paper presents the application of system dynamics theory for modelling and simulation of complex manufacturing processes. The simulations help to understand the intricate nature of the interrelation of process parameter and to make sound decision about minimising the energy losses. Two case studies are presented, one in cylinder head casting processes and the other in crankshaft machining. The developed models provide an insight into how to select critical operations and to identify the effect of various parameters on the energy consumption. Also, the models help to understand how changes of parameters over time affect the behaviour of energy changes. The outcome of this research enables the company to identify potential avenues to minimise energy usage and offers a decision support tool. [Received 3 June 2013; Revised 31 August 2013; Accepted 13 October 2013

Tigist Fetene Adane; Mihai Nicolescu

2014-01-01T23:59:59.000Z

282

Demand Activated Manufacturing Architecture  

SciTech Connect (OSTI)

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

283

CIMplementation: Evaluating Manufacturing Automation  

E-Print Network [OSTI]

in the manufacturing organization if CIMplementation~* is to succeed. 1.0 INTRODUCTION There is much discussion today about Com puter Integrated Manufacturing (CIM). Automation tools like Computer Aided Design (CAD) systems, robots, automated material handling...~ Pressing the frontier of technology in one's own manufactur ing facility will not be without its pitfalls. Second, while automation engineers may be able to piece together the technological pieces of a CIM system, they cannot and do not evaluate...

Krakauer, J.

284

Acoustics by additive manufacturing:.  

E-Print Network [OSTI]

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance (more)

Setaki, F.

2012-01-01T23:59:59.000Z

285

Contribution to Nanotechnology Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning...

286

Manufacturing Demonstration Facility  

Broader source: Energy.gov (indexed) [DOE]

is key to stroke recovery * Additive manufacturing allows custom fit glove device using brain machine interface to retrain movement * Gloves are light-weight, low cost and...

287

SSL Manufacturing Roadmap  

Broader source: Energy.gov [DOE]

Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

288

Clean Energy Manufacturing Initiative  

Broader source: Energy.gov [DOE]

Manufacturing technologies for cleaner energy generation, distribution, and use represents an important opportunity for U.S. economic growth, energy security, and accelerated innovation. Likewise,...

289

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Survey (MECS) Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections MECS Industry Analysis Briefs Steel Industry Analysis The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago. Chemical Industry Analysis The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals

290

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

291

Energy-Saving Opportunities for Manufacturing Companies, International Fact Sheet (Spanish)  

SciTech Connect (OSTI)

This English/Spanish fact sheet describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

Not Available

2010-08-01T23:59:59.000Z

292

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

293

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

294

Company Name Tax Credit* Manufacturing Facility's  

Broader source: Energy.gov (indexed) [DOE]

Company Company Name Tax Credit* Manufacturing Facility's City & State Project Description Carrier Corporation $5.1 million Indianapolis, IN Carrier, a part of UTC Building & Industrial Systems and a subsidiary of United Technologies Corporation, was selected for a $5.1 million dollar 48C Advanced Energy Manufacturing Tax Credit to expand production at its Indianapolis facility to meet increasing demand for its eco-friendly condensing gas furnace product line. The new line includes the most energy efficient gas furnaces on the market-all with at least 92% annual fuel utilization efficiency-and exemplifies Carrier's commitment to economical and environmentally sustainable solutions for achieving improved energy efficiency and performance.

295

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative Realizing Building End-Use Efficiency with Ermerging Technologies

296

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Realizing Building End-Use Efficiency with Ermerging Technologies Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

297

Astraeus Wind Modifies Manufacturing in Michigan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan May 14, 2010 - 3:35pm Addthis Lindsay Gsell When the assembly line was introduced to the automobile industry, everything changed. Cars were produced in less time with fewer errors, and each one was exactly the same as the last. As a result, the industry boomed. Astraeus Wind LLC hopes to bring this type of success to wind turbine manufacturing by standardizing the blade manufacturing process. The company wants to experiment with new materials to strengthen the blades while creating an automated process to assemble them, creating identical blades in a fast, efficient manner. CEO Jeff Metts says standardizing this process will help ensure each blade has the same measurements, lower the amount of time needed for production

298

Renewable Energy Manufacturing Tax Credit (South Carolina) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Tax Credit (South Carolina) Manufacturing Tax Credit (South Carolina) Renewable Energy Manufacturing Tax Credit (South Carolina) < Back Eligibility Industrial Savings Category Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate $500,000 for any year and $5 million total for all years Program Info Start Date 01/01/2010 Expiration Date 12/31/2015 State South Carolina Program Type Industry Recruitment/Support Rebate Amount 10% South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015. In order to qualify, a business must: *manufacture renewable energy systems and components in South Carolina for solar, wind, geothermal, or other renewable energy uses

299

Energy Department to Work with National Association of Manufacturers to  

Broader source: Energy.gov (indexed) [DOE]

to Work with National Association of to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency June 12, 2007 - 1:40pm Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today expanded DOE's work to maximize energy efficiency by increasing cooperation among U.S. industry and energy efficiency experts, through a Memorandum of Understanding (MOU) with the National Association of Manufacturers (NAM). Specifically, this MOU includes a variety of activities, which aim to assist manufacturing facilities in implementing an energy management program; adopt clean, efficient technologies; and achieve continual energy efficiency and intensity reduction improvements. Through

300

Energy Department to Work with National Association of Manufacturers to  

Broader source: Energy.gov (indexed) [DOE]

Energy Department to Work with National Association of Energy Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency June 12, 2007 - 1:40pm Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today expanded DOE's work to maximize energy efficiency by increasing cooperation among U.S. industry and energy efficiency experts, through a Memorandum of Understanding (MOU) with the National Association of Manufacturers (NAM). Specifically, this MOU includes a variety of activities, which aim to assist manufacturing facilities in implementing an energy management program; adopt clean, efficient technologies; and achieve continual energy efficiency and intensity reduction improvements. Through

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A National Assistance Extension Program for Metal Casting: a foundation industry. Final report for the period February 16, 1994 through May 15, 1997  

SciTech Connect (OSTI)

The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension-enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. Each of the task areas includes specific subtasks which are described.

NONE

1997-09-01T23:59:59.000Z

302

Digital Additive Manufacturing: From Rapid Prototyping to Rapid Manufacturing  

Science Journals Connector (OSTI)

The emergence of stereolithography in 1998 is a milestone for an entirely new class of layer-based manufacturing processes. This new manufacturing approach which allows direct digital manufacturing from CAD to a ...

K. K. B. Hon

2007-01-01T23:59:59.000Z

303

Vision Industries dba Vision Motor Corp | Open Energy Information  

Open Energy Info (EERE)

Vision Motor Corp) Place: Santa Monica, California Zip: 90405 Product: Santa Monica-based electric vehicle manufacturer. References: Vision Industries (dba Vision Motor Corp)1...

304

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL...  

Broader source: Energy.gov (indexed) [DOE]

up the Petitioner's company are major chemical manufacturing companies, and includes Air Products and Chemicals, Akzo Nobel, Battelle, DuPont, NL Industries, OxyChem, and...

305

Improving Pumping System Performance: A Sourcebook for Industry, Second Edition  

SciTech Connect (OSTI)

Prepared for the DOE Industrial Technologies Program, this sourcebook contains the practical guidelines and information manufacturers need to improve the efficiency of their pumping systems.

Not Available

2006-05-01T23:59:59.000Z

306

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

307

Ohio Center for Industrial Energy Efficiency | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and a best practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing...

308

Solar Manufacturing Technology 2  

Broader source: Energy.gov [DOE]

The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds ten photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost of manufacturing and implementing efficiency-increasing technology in manufacturing processes.

309

The International Journal of Flexible Manufacturing Systems, 16, 1144, 2004 c 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.  

E-Print Network [OSTI]

multistage assembly processes (MAP) such as the automotive, aerospace, appliance, and electronics industries a characteristic feature of modern manufacturing and new product development in automotive, aerospace, and other-based-competition--New paradigm and challenges The US automotive industry has dominated world auto markets for years. The mass

Zhou, Shiyu

310

Post-industrial-revolution HCI Colin Johnson  

E-Print Network [OSTI]

Post-industrial-revolution HCI Colin Johnson University of Kent Computing Laboratory Canterbury is akin to the state of manufacturing prior to the industrial revolution. It is suggested that eventually an industrial revolution will occur in programming through the use of automated program generation tools, which

Kent, University of

311

Opportunities and Barriers in the Implementation of Energy Efficiency Measures in Plastic Manufacturing  

E-Print Network [OSTI]

The plastic industry in the U.S. employs approximately 9% [1] of the manufacturing work force and consumes approximately 6% [1] of the total energy used by the U.S. industries. According to the Department of Energy (DOE), manufacturers of plastic...

Kanunho, A; Yong, J. C.

2012-01-01T23:59:59.000Z

312

Innovative Manufacturing Initiative Project Selections  

Office of Energy Efficiency and Renewable Energy (EERE)

The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

313

Laser Additive Manufacturing of Metals  

Science Journals Connector (OSTI)

Laser Additive Manufacturing (LAM) is based on a repeating layer wise manufacturing process which uses a laser beam to ... ) geometries into simpler two-dimensional (2D) manufacturing steps [1, 2...]. Thus LAM of...

Claus Emmelmann; Jannis Kranz; Dirk Herzog; Eric Wycisk

2013-01-01T23:59:59.000Z

314

Metal Additive Manufacturing: A Review  

Science Journals Connector (OSTI)

This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, o...

William E. Frazier

2014-06-01T23:59:59.000Z

315

Manufacturer Voluntarily Reports Noncompliance | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance June 28, 2012 - 9:05am Addthis Cooper Power Systems, LLC ("Cooper"), a wholly-owned subsidiary of Cooper Industries notified the U.S. Department of Energy's ("DOE") Office of Enforcement that it had distributed three noncompliant basic models (five total units) of liquid-immersed distribution transformers in U.S. commerce. Each of these models failed to meet the minimum level of efficiency required by DOE regulations. Cooper discovered that it had distributed the noncompliant basic models when preparing its first certification report under new DOE regulations. Cooper immediately notified DOE of the noncompliance and requested guidance on corrective

316

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

317

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect (OSTI)

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

318

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

319

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to

320

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs ENERGY STAR Focus for Automobile Manufacturing The U.S. automobile manufacturers and EPA have worked together to jointly develop a Focus on energy efficiency within the industry. Participating companies work with EPA to institute or improve their corporate energy management programs and the energy performance of their operations. Through ENERGY STAR, EPA provides tools to gauge plant and program energy performance, a forum for elevating energy management in the industry, and recognition for superior energy achievements. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations within your state, please refer to the DOE Office of Energy Efficiency and Renewable Energy State Specific Information website.

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Development of Additive Manufacturing Technology  

Science Journals Connector (OSTI)

Additive Manufacturing (AM) technology came about as a ... of different technology sectors. Like with many manufacturing technologies, improvements in computing power and reduction...

Dr. Ian Gibson; Dr. David W. Rosen

2010-01-01T23:59:59.000Z

322

Additive Manufacturing for Mass Customization  

Science Journals Connector (OSTI)

Additive manufacturing (AM) is a disruptive manufacturing technology that requires no tooling for production....additively build parts from numerous materials, including polymers, metals and ceramics. Within this...

Phil Reeves; Chris Tuck; Richard Hague

2011-01-01T23:59:59.000Z

323

Additive Manufacturing for Large Products.  

E-Print Network [OSTI]

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the (more)

Leirvg, Roar Nelissen

2013-01-01T23:59:59.000Z

324

Sandia National Laboratories: wind manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

325

Optical manufacturing requirements for an AVLIS plant  

SciTech Connect (OSTI)

A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

Primdahl, K.; Chow, R.; Taylor, J.R.

1997-07-14T23:59:59.000Z

326

Integrating Energy Management and Lean Manufacturing  

E-Print Network [OSTI]

manufacturing process. This paper will focus on industrial facilities that participated in a Power Smart 1 Lean initiative with Manitoba Hydro. The objective of this service is to leverage lean principles by capitalizing on the synergies between lean.... Nearly all the electricity generated is from water power from 14 hydroelectric generating stations. Additionally, Manitoba Hydro exports electricity to over 30 electric utilities through participation in four wholesale markets in North America. All...

Stocki, M.

327

A perspective on the development of manufacturing science present and future  

Science Journals Connector (OSTI)

In recent years, composites and advanced materials have been identified as critical technologies for the future on almost every list of key technologies. Primarily for this reason this industry has been fuelled by the defence sector, primarily through aerospace applications. In the changing global economy of today, however, mere enhancement of performance without concern for costs is unacceptable. It is the authors' contention that success in increasing the market for composites and other advanced technologies will be determined largely by advances in the understanding and development of manufacturing methods and strategies that will facilitate functionality through integrated materials-process design. The current discussion evolved from, and is based partly on, the results of a panel convened by the Japan Technology Evaluation Center (JTEC, a program funded through the National Science Foundation) aimed at assessing the relative strengths of polymer-matrix composite (PMC) manufacturing technologies in Japan vis-2-vis those in the United States. This paper discusses in broad terms the area of PMC manufacturing science with an emphasis on the differences in perspective and approaches followed. It does not purport to be a definitive study on the subject, but pinpoints certain intrinsic differences in the Japanese and American perspectives related to the development, establishment, and use of manufacturing/processing science base for polymeric composites.

V. M. Karbhari; D. S. Kukich

1994-01-01T23:59:59.000Z

328

Hybrid method for aerodynamic shape optimization in automotive industry  

E-Print Network [OSTI]

Hybrid method for aerodynamic shape optimization in automotive industry Freedeerique Muyl April 2003; accepted 4 June 2003 Abstract An aerodynamic shape optimization tool for complex industrial reasons, concerns car manufacturers. Consequently, the improvement of the aerodynamics of car shapes, more

Dumas, Laurent

329

Hubei Province CNC Machine Tool Industry Analysis and Countermeasures  

Science Journals Connector (OSTI)

Based on the analysis of the prophase research results, this paper focus on Hubei advanced manufacturing industry, analyzes the typical needs of CNC machine tools industry characteristics and trends, combining wi...

Haibin Wang

2012-01-01T23:59:59.000Z

330

Idaho Save Energy Now - Industries of the Future | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idaho Save Energy Now - Industries of the Future Idaho Save Energy Now - Industries of the Future Idaho In 2009, the U.S. Department of Energy's (DOE's) Advanced Manufacturing...

331

ASi Industries GmbH | Open Energy Information  

Open Energy Info (EERE)

Zip: D-99310 Product: Manufacturer of monocrystalline ingots and wafers for the photovoltaics industry. References: ASi Industries GmbH1 This article is a stub. You can help...

332

Industrial Distributed Energy: Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

333

EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries, 1998,  

Gasoline and Diesel Fuel Update (EIA)

e e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 417 444 526 312 Beverage and Tobacco Product Manufacturing 114 128 144 313 Textile Mills 57 45 38 314 Textile Product Mills 31 30 32 315 Apparel Manufacturing 63 40 26 316 Leather and Allied Product Manufacturing 10 6 6 321 Wood Product Manufacturing 91 88 111 322 Paper Manufacturing 153 151 167 323 Printing and Related Support Activities 99 95 99 324 Petroleum and Coal Products Manufacturing 135 212 530 325 Chemical Manufacturing 407 444 639 326 Plastics and Rubber Products Manufacturing 162 169 208 327 Nonmetallic Mineral Product Manufacturing 91 94 126 331 Primary Metal Manufacturing 166 139 230 332 Fabricated Metal Product Manufacturing

334

EIA Energy Efficiency-Table 3d. Value Added by Selected Industries, 1998,  

Gasoline and Diesel Fuel Update (EIA)

d d Page Last Modified: May 2010 Table 3d. Value Added1 by Selected Industries, 1998, 2002, and 2006 (Current Brillion Dollars) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 173 205 233 312 Beverage and Tobacco Product Manufacturing 62 67 79 313 Textile Mills 24 19 17 314 Textile Product Mills 13 13 15 315 Apparel Manufacturing 32 21 16 316 Leather and Allied Product Manufacturing 5 3 3 321 Wood Product Manufacturing 34 35 44 322 Paper Manufacturing 73 76 80 323 Printing and Related Support Activities 60 59 60 324 Petroleum and Coal Products Manufacturing 32 37 126 325 Chemical Manufacturing 230 254 340 326 Plastics and Rubber Products Manufacturing 86 92 99 327 Nonmetallic Mineral Product Manufacturing 53 55 72 331 Primary Metal Manufacturing 69 57 84 332 Fabricated Metal Product Manufacturing

335

Reporting Conservation Results in the Chemical Industry  

E-Print Network [OSTI]

In 1974, the Manufacturing Chemists Association (MCA) developed an energy rate method for reporting the energy conservation results of the chemical industry to the Federal Energy Administration. The MCA Energy Rate Method has served as a model...

Doerr, R. E.

1979-01-01T23:59:59.000Z

336

The State of the Industrial Compressor Market  

E-Print Network [OSTI]

pressures have pushed manufacturers to increase per-employee productivity and implement strict inventory and purchasing procedures to maintain profitability. Many major players that were in the rotary screw industry ten to fifteen years ago (Joy, Chicago...

Perry, W.

337

Staging disassembly : incubating post-industrial renewal  

E-Print Network [OSTI]

Over the past five decades, the American urban industrial landscape has become marginalized as the expanding global economy has sought international markets for manufacturing. At the agency of the user-as-investor, this ...

Stulen, Eliot Falk

2009-01-01T23:59:59.000Z

338

Southeastern Center for Industrial Energy Intensity Reduction  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys (DOEs) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to...

339

Electrolyzer Manufacturing Progress and Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

340

Tax Credit for Renewable Energy Equipment Manufacturers | Department of  

Broader source: Energy.gov (indexed) [DOE]

Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate $20 million Program Info Expiration Date 1/1/2014 State Oregon Program Type Industry Recruitment/Support Rebate Amount 50% of eligible costs (10% per year for 5 years) Provider Oregon Business Development Department The Tax Credit for Renewable Energy Resource Equipment Manufacturing Facilities was enacted as a part of Oregon's Business Energy Tax Credit (BETC) in July 2007, with the passage of [http://www.leg.state.or.us/07reg/measpdf/hb3200.dir/hb3201.en.pdf HB

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wind Energy Manufacturing Tax Incentive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Manufacturing Tax Incentive Wind Energy Manufacturing Tax Incentive Wind Energy Manufacturing Tax Incentive < Back Eligibility Commercial Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate Up to 100% income tax exemption Program Info Start Date 1/1/2008 Expiration Date 12/31/2033 State Arkansas Program Type Industry Recruitment/Support Rebate Amount Varies, depending on amount invested and other factors Provider Arkansas Economic Development Commission With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or components. A full income tax exemption is available for business that meet certain criteria, including locating in the state before December 31, 2007. Businesses that

342

Rapid manufacturing: impact on supply chain methodologies and practice  

Science Journals Connector (OSTI)

This paper demonstrates the use of Rapid Manufacturing (RM) as the enabling technology for flexible manufacturing in a number of industrial sectors. This paper discusses the evolution of Rapid Prototyping (RP) to RM and the current issues that require further research for the successful integration of this technology within manufacturing companies. The use of RM will have particular impact on supply chain management paradigms such as lean and agile and has particular strategic fit with mass customisation. The effect of RM will have on these paradigms is discussed and confirmed with example cases from automotive production, motor sport and medical devices industries. In conclusion, RM has already been shown in the three cases to offer benefits, particularly where fast reconfiguration of the manufacturing process is required and with the production of customised components.

Christopher Tuck; Richard Hague; Neil Burns

2007-01-01T23:59:59.000Z

343

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing |  

Broader source: Energy.gov (indexed) [DOE]

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Solar Wind Maximum Rebate $2,000,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 (ARRA) State Michigan Program Type Industry Recruitment/Support Provider Department of Energy, Labor and Economic Growth '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future solicitations.''''' In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Clean Energy Advanced Manufacturing portion of this program is

344

Ventilation and Energy Saving in Auto Manufacturing Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

345

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

346

DOE - Office of Legacy Management -- Titanium Alloys Manufacturing Co Div  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Titanium Alloys Manufacturing Co Titanium Alloys Manufacturing Co Div of National Lead of Ohio - NY 41 FUSRAP Considered Sites Site: TITANIUM ALLOYS MANUFACTURING CO., DIV. OF NATIONAL LEAD OF OHIO (NY.41) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Titanium Alloy Metals Titanium Alloy Manufacturing Division Titanium Alloy Manufacturing (TAM) Division of National Lead Company The Titanium Pigment Co. NL Industries ICD/Niagara NY.41-1 NY.41-2 NY.41-3 Location: Niagara Falls , New York NY.41-1 Evaluation Year: 1993 NY.41-4 Site Operations: Produced commercial grade zirconium tetrachloride; conducted research and development relating to solid metallic hydride moderators; and experimental work relative to the conversion of thorium scrap to anhydrous tetrachloride. NY.41-5

347

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient |  

Broader source: Energy.gov (indexed) [DOE]

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient November 14, 2011 - 12:22pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? With 50+ assessments and 500+ total recommendations made, this IAC's recommendations could save the average manufacturer evaluated an average $118,636 in electrical, natural gas, waste and productivity costs. This team has saved FUJIFILM Hunt Chemicals U.S.A facility nearly 1,240,976 kW hours of electricity -- an estimated $39,280 per year! Earlier this month, we brought you the story of Chrome Deposit Corporation, a manufacturer that with the help of the University of Delaware Industrial Assessment Center is saving millions of dollars with

348

Clean Energy Manufacturing Initiative Solid-State Lighting  

ScienceCinema (OSTI)

The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

2014-12-03T23:59:59.000Z

349

Fast methods for scheduling with applications to real-time systems and large-scale, robotic manufacturing of aerospace structures  

E-Print Network [OSTI]

Across the aerospace and automotive manufacturing industries, there is a push to remove the cage around large, industrial robots and integrate right-sized, safe versions into the human labor force. By integrating robots ...

Gombolay, Matthew C. (Matthew Craig)

2013-01-01T23:59:59.000Z

350

Advanced Drivetrain Manufacturing  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy.

351

Innovations in Manufacturing  

Science Journals Connector (OSTI)

...competition from steam engines and water...Century ofthe Steam Engine is a classic...of the American System of Manufactures...general-purpose machine tools, interchangeable...spe-cialized machine tools, and were con-fined...note that if the system was con-fined...Nel-son provides an assessment of working conditions...

THOMAS WEISS

1983-05-20T23:59:59.000Z

352

Exploration of disruptive technologies for low cost RFID manufacturing  

E-Print Network [OSTI]

Significant developments have taken place in defining technology standards and identifying avenues for technological innovations to reduce the cost of manufacturing RFID tags below the $0.05 price point. The Auto-ID center ...

Kommandur, Badarinath, 1968-

2004-01-01T23:59:59.000Z

353

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network [OSTI]

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

354

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

355

Industrial process surveillance system  

DOE Patents [OSTI]

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

356

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES LP FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

ZAX-5-33628-07 ENTITLED "MANUFACTURING IMPROVEMENTS IN Cz SILICON ZAX-5-33628-07 ENTITLED "MANUFACTURING IMPROVEMENTS IN Cz SILICON MODULE PRODUCTION;" UNDER DOE CONTRACT NO. DE-AC36-98GO10337; W(A)-05-060; CH-1346 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Shell Solar Industries LP (SSI) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified subcontract by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of SSI's waiver petition, the purpose of this subcontract encompasses the development of improved photovoltaic (PV) manufacturing techniques

357

Manage energy use in manufacturing | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improve building and plant performance Improve building and plant performance » Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing

358

Qualifying Advanced Energy Manufacturing Investment Tax Credit | Department  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Qualifying Advanced Energy Manufacturing Investment Tax Credit Qualifying Advanced Energy Manufacturing Investment Tax Credit < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Heating Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Wind Solar Maximum Rebate $30 million Program Info Funding Source The American Recovery and Reinvestment Act of 2009 Start Date 02/17/2009 Program Type Industry Recruitment/Support

359

Integrated Paper and Paperboard Manufacturing Plant EPI | ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Paper and Paperboard Manufacturing Plant EPI Integrated Paper and Paperboard Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

360

Flat Glass Manufacturing Plant EPI | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flat Glass Manufacturing Plant EPI Flat Glass Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

List of Processing and Manufacturing Equipment Incentives | Open Energy  

Open Energy Info (EERE)

Equipment Incentives Equipment Incentives Jump to: navigation, search The following contains the list of 130 Processing and Manufacturing Equipment Incentives. CSV (rows 1 - 130) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Custom Project Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers Central Air conditioners Chillers Custom/Others pending approval Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Processing and Manufacturing Equipment Refrigerators Yes AEP Ohio - Commercial Self Direct Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial

362

Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Construction Appliances & Electronics Commercial Lighting Lighting Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Maximum Rebate Total (grants and loans): $3.3 million Grants: $300,000 Loans: $3 million Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund) Start Date 05/23/2011 State New Jersey Program Type Industry Recruitment/Support Rebate Amount Varies Provider New Jersey Economic Development Authority

363

Infrared imaging: A versatile NDT method for manufacturing  

SciTech Connect (OSTI)

The non-contact, non-invasive, highly adaptable nature of infrared technology offers many advantages over traditional non-destructive testing methods such as x-ray and ultrasound. Recent performance improvements accompanied by cost reductions are enabling broader implementation across a wide variety of industries. Most promising for future growth are application specific configurations packaged as integrated modules. Among the many industries that benefit from infrared technology, manufacturing has experienced the greatest gain. Environments including both continuous and batch manufacturing involve many critical thermal processes. Through the use of infrared imaging equipment, these processes can be easily monitored and optimized to ensure product quality and process efficiency.

West, L.M. [FLIR Systems, Inc., Portland, OR (United States)

1995-12-31T23:59:59.000Z

364

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

365

Manufacturing Initiative | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

366

Manufacturing News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

367

ET Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

368

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

that convert hydrogen into electric energy, (2) hydrogen storage systems, and (3) large-scale hydrogen and prioritize topics for public-private R&D on manufacturing hydrogen storage system components. ScopeManufacturing for the Hydrogen Economy Manufacturing Research & Development of Onboard Hydrogen

369

Industry Profile | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

370

Poor show for aviation industry  

Science Journals Connector (OSTI)

... Soviet Union and China, there are only three practical suppliers of large civil aircraft (Boeing, McDonnell-Douglas and Airbus Industrie, the European consortium) and three manufacturers of large ... of its engines seems to have settled down at 1,000 million or thereabouts. (Boeing's past successes may owe something to its economical ways of working.) Even allowing ...

1984-09-06T23:59:59.000Z

371

working with industry Engineering and  

E-Print Network [OSTI]

of interests including: · laser physics · semiconductor optoelectronics · photonics in manufacturing · solar · micromechanics and condition monitoring · renewable energy modelling · carbon capture and storage Our institute to applied systems. We have a wide ranging programme of current work with many industrial companies in key

Painter, Kevin

372

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

373

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

374

Manufacturing and Testing of Accelerator Superconducting Magnets  

E-Print Network [OSTI]

Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

Rossi, L

2014-01-01T23:59:59.000Z

375

Industry 4.0: A Best Practice Project of the Automotive Industry  

Science Journals Connector (OSTI)

FORCAM provides the industry with innovative production software technology (Factory FrameworkTM) and consults on state-of-the-art shop floor management. World class companies from diverse manufacturing sectors l...

Franz E. Gruber

2013-01-01T23:59:59.000Z

376

Rapid response manufacturing (RRM). Final CRADA report  

SciTech Connect (OSTI)

US industry is fighting to maintain its competitive edge in the global market place. Markets fluctuate rapidly. Companies have to be able to respond quickly with improved, high quality, cost efficient products. Because companies and their suppliers are geographically distributed, rapid product realization is dependent on the development of a secure integrated concurrent engineering environment operating across multiple business entities. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies implemented in a secure environment. This documents the work done under this CRADA to develop capabilities, which permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process. Lockheed Martin Energy Systems (LMES), through a CRADA with the National Center for Manufacturing Sciences (NCMS), worked within a consortium of major industrial firms--Ford, General Motors, Texas Instruments, United Technologies, and Eastman Kodak--and several small suppliers of advanced manufacturing technology--MacNeal-Schwendler Corp., Teknowledge Corp., Cimplex Corp., Concentra, Spatial Technology, and Structural Dynamics Research Corp. (SDRC)--to create infrastructure to support the development and implementation of secure engineering environments for Rapid Response Manufacturing. The major accomplishment achieved under this CRADA was the demonstration of a prototypical implementation of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined parts in a secure NWC compliant environment. Specifically, methods needed to permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process were developed and demonstrated. An important aspect of this demonstration was the implementation of a Product Information Management System that supports secure concurrent engineering in an open environment.

Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

1998-02-10T23:59:59.000Z

377

Acoustics of modular constructionIndustry overview  

Science Journals Connector (OSTI)

This session will provide an overview of the issues and efforts impacting the commercial modular construction industry throughout North America with particular focus on acoustics in relocatable classrooms. The Modular Building Institute is the international nonprofit trade association representing manufacturers and dealers of commercial modular facilites both temporary and permanent serving educational health care retail industrial military and multi?family markets.

Thomas E. Hardiman

2007-01-01T23:59:59.000Z

378

ENERGY STAR Challenge for Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

379

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

2010): Sustainable Manufacturing Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as the creation of manufacturing products that use materials and processes

Dornfeld, David

2011-01-01T23:59:59.000Z

380

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sustainable Manufacturing Greening Processes, Systems and Products  

E-Print Network [OSTI]

mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

Dornfeld, David

2010-01-01T23:59:59.000Z

382

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing Greening Processes, Systemsorimpact low Most sustainable Increaseprocess efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

383

Precision and Energy Usage for Additive Manufacturing  

E-Print Network [OSTI]

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

384

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

385

Zoe Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

386

Manufacturing Science and Technology: Organizations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machining Operations Machining Operations Machining Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing & Systems Development Visiting Us AMTTP Center Organizational chart Organizations Our Business areas Manufacturing Science and Technology David Plummer, Director Manufacturing Enterprise Joe M. Harris, Senior Manager Machining Operations Mathew Donnelly, Manager Machining Services Daryl Reckaway, Acting Manager Electronic Fabrication Phillip L. Gallegos, Manager Manufacturing Process Science and Technology Mark F. Smith, Senior Manager Thin Film, Vacuum, and Packaging Mark F. Smith, Acting Manager Organic Materials Mike Kelly, Manager Ceramic and Glass Alex Roesler, Manager

387

Diagnosing spatial variation patterns in manufacturing processes  

E-Print Network [OSTI]

. Outline of the dissertation A class of signal processing methods, usually referred to as blind source separation methods (Cardoso, 1998; Haykin, 2000), appears to provide a more black- box approach to identifying un-modeled manufacturing variation... to describe a number of related signal processing problems in which there is an array of spatially distributed sensors, each of which picks up signals from a number of distinct, signal-emitting sources (Cardoso, 1998; Haykin, 2000). Applications include...

Lee, Ho Young

2004-09-30T23:59:59.000Z

388

Despatch Industries | Open Energy Information  

Open Energy Info (EERE)

Despatch Industries Despatch Industries Jump to: navigation, search Name Despatch Industries Place Minneapolis, Minnesota Zip 55044 Sector Solar Product Manufacturer of infrared drying and firing furnaces used in solar cell manufacture, and other thermal processing equipment. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Investing in a New Era of Manufacturing Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Investing in a New Era of Manufacturing Technology Investing in a New Era of Manufacturing Technology Investing in a New Era of Manufacturing Technology June 24, 2011 - 6:05pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for me? The Energy Department will be investing up to $120 million over three years in the development of transformational manufacturing technologies and innovative materials that could enable industrial facilities to dramatically increase their energy efficiency. By boosting investment in near-term technology development, the Department is supporting projects that might otherwise take far longer to contribute to U.S. industrial competitiveness. Earlier today, President Obama announced the Advanced Manufacturing Partnership, a national effort that brings together industry, universities

390

Investing in a New Era of Manufacturing Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Investing in a New Era of Manufacturing Technology Investing in a New Era of Manufacturing Technology Investing in a New Era of Manufacturing Technology June 24, 2011 - 6:05pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for me? The Energy Department will be investing up to $120 million over three years in the development of transformational manufacturing technologies and innovative materials that could enable industrial facilities to dramatically increase their energy efficiency. By boosting investment in near-term technology development, the Department is supporting projects that might otherwise take far longer to contribute to U.S. industrial competitiveness. Earlier today, President Obama announced the Advanced Manufacturing Partnership, a national effort that brings together industry, universities

391

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Iron and Steel Industry Iron and Steel Industry Carbon Emissions in the Iron and Steel Industry The Industry at a Glance, 1994 (SIC Code: 3312) Total Energy-Related Emissions: 39.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 10.7% -- Nonfuel Emissions: 22.2 MMTC Total First Use of Energy: 1,649 trillion Btu -- Pct. of All Manufacturers: 7.6% Nonfuel Use of Energy: 886 trillion Btu (53.7%) -- Coal: 858 trillion Btu (used to make coke) Carbon Intensity: 24.19 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 39.9 Coal 22.7

392

Advanced Manufacturing Office: Motor Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

393

Tax Credit for Manufacturers of Small Wind Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tax Credit for Manufacturers of Small Wind Turbines Tax Credit for Manufacturers of Small Wind Turbines Tax Credit for Manufacturers of Small Wind Turbines < Back Eligibility Industrial Savings Category Wind Buying & Making Electricity Program Info Start Date 01/01/03 State Oklahoma Program Type Industry Recruitment/Support Rebate Amount Based on square footage of rotor swept area: 25.00/ft^2 for 2005 through 2012 Provider Oklahoma Tax Commission '''''Note: After a 2 year moratorium on all state tax credits, this credit may be claimed for tax year 2012 and subsequent tax years, for small wind turbines manufactured on or after July 1, 2012.''''' Oklahoma offers an income tax credit to the manufacturers of small wind turbines for tax years 2003 through 2012. Oklahoma manufacturers of wind turbines with a rated capacity of between 1 kilowatt (kW) and 50 kW are

394

Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency  

Science Journals Connector (OSTI)

In many industrialized countries, manufacturing industries pay stratified electricity charges depending on the time of day ... may demand that industries pay real-time hourly electricity costs so as to use energy...

Joon-Yung Moon; Kitae Shin; Jinwoo Park

2013-09-01T23:59:59.000Z

395

Energy-Efficient Appliance Manufacturing Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Appliance Manufacturing Tax Credit Energy-Efficient Appliance Manufacturing Tax Credit Energy-Efficient Appliance Manufacturing Tax Credit < Back Eligibility Industrial Savings Category Appliances & Electronics Maximum Rebate The aggregate amount of credit allowed for 2011 is $25 million per taxpayer. Certain refrigerators and clothes washers will not add to the aggregate credit amount. See summary below for more details. Program Info Start Date 01/01/2007 Expiration Date 12/31/2013 Program Type Industry Recruitment/Support Rebate Amount Dishwashers: $25 - $75 per unit, varies by energy and water efficiency; Clothes washers: $175 - $225 per unit, varies by type, and energy and water efficiency; Refrigerators: $150 or $200, depending on energy-efficiency rating Provider U.S. Internal Revenue Service

396

Tax Abatement for Solar Manufacturers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Tax Abatement for Solar Manufacturers Tax Abatement for Solar Manufacturers < Back Eligibility Industrial Savings Category Solar Buying & Making Electricity Maximum Rebate None Program Info Start Date 7/1/2005 State District of Columbia Program Type Industry Recruitment/Support Rebate Amount 43% reduction of state's business and occupation (B&O) tax Provider Washington State Department of Revenue Senate Bill [http://www.leg.wa.gov/pub/billinfo/2005-06/Pdf/Bills/Session%20Law%20200... 5111], signed by Washington's governor in May 2005, created a reduced business and occupation (B&O) tax rate for Washington manufacturers of solar-electric (photovoltaic) modules or silicon components of those systems. In May 2009, Washington enacted

397

Alternative Energy Manufacturing Tax Credit (Utah) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Tax Credit (Utah) Manufacturing Tax Credit (Utah) Alternative Energy Manufacturing Tax Credit (Utah) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Maximum Rebate Up to 100% of new state tax revenues (including, state, corporate, sales and withholding taxes) over the life of the project or 20 years, whichever is less. Program Info Start Date 05/12/2009 State Utah Program Type Industry Recruitment/Support Rebate Amount Determined on a case-by-case basis by the Governor's Office of Economic Development based on statutory guidelines and evaluation criteria. Provider Utah Governor's Office of Economic Development The Alternative Energy Development Incentive (AEDI) is a post-performance non-refundable tax credit for up to 100% of new state tax revenues

398

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

399

Faculty Position in Mechanical Engineering Additive Manufacturing  

E-Print Network [OSTI]

Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

400

EIA Energy Efficiency-Table 4d. Value Added by Selected Industries, 1998  

Gasoline and Diesel Fuel Update (EIA)

d d Page Last Modified: May 2010 Table 4d. Value Added1 by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 193 182 214 312 Beverage and Tobacco Product Manufacturing 70 59 73 313 Textile Mills 23 18 17 314 Textile Product Mills 13 13 15 315 Apparel Manufacturing 32 22 17 316 Leather and Allied Product Manufacturing 5 3 3 321 Wood Product Manufacturing 35 35 37 322 Paper Manufacturing 84 77 85 323 Printing and Related Support Activities 62 56 59 324 Petroleum and Coal Products Manufacturing 38 46 53 325 Chemical Manufacturing 225 248 291 326 Plastics and Rubber Products Manufacturing 84 88 99 327 Nonmetallic Mineral Product Manufacturing 55 54 66

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institutes Enforcement Action against 4 Showerhead Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products January 28, 2010 - 1:49pm Addthis WASHINGTON DC - The Office of General Counsel has issued Notices of Proposed Civil Penalty to Zoe Industries, Altmans Products LLC, EZ-FLO International, and Watermark Designs, Ltd. for failing to certify to the Department of Energy that showerheads manufactured or distributed by these companies meet the applicable water conservation standard as required by the Energy Policy Conservation Act and DOE's regulations. These Notices of Proposed Civil Penalty collectively propose payments to the government of over $3 million. Unless the manufacturers settle these claims within

402

Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturers of Noncompliant Products Agree to Civil Penalties to Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions July 1, 2013 - 11:17am Addthis The Department of Energy has settled civil penalty actions it initiated against nine companies for the manufacture and sale in the United States of products that fail to meet federal energy conservation standards. The covered consumer products and commercial/industrial equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased all sales within the United States of the products that violated federal energy conservation standards.

403

Vermont Manufacturing Plant Opens with Support from the Recovery Act |  

Broader source: Energy.gov (indexed) [DOE]

Vermont Manufacturing Plant Opens with Support from the Recovery Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The facility was funded in part by a $8.5 million grant through the American Recovery and Reinvestment Act, also known as the stimulus bill "Today's ribbon cutting puts Barre at the forefront of green innovation in America's automotive industry," said Secretary Chu. "This is another

404

Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve  

Broader source: Energy.gov (indexed) [DOE]

Manufacturers of Noncompliant Products Agree to Civil Penalties to Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions July 1, 2013 - 11:17am Addthis The Department of Energy has settled civil penalty actions it initiated against nine companies for the manufacture and sale in the United States of products that fail to meet federal energy conservation standards. The covered consumer products and commercial/industrial equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased all sales within the United States of the products that violated federal energy conservation standards.

405

EPAct at One Event - Clipper Wind Manufacturing Facility | Department of  

Broader source: Energy.gov (indexed) [DOE]

EPAct at One Event - Clipper Wind Manufacturing Facility EPAct at One Event - Clipper Wind Manufacturing Facility EPAct at One Event - Clipper Wind Manufacturing Facility August 2, 2006 - 8:37am Addthis Remarks for Energy Secretary Samuel Bodman Thank you, Tom, for the introduction. I enjoyed my tour of your new manufacturing facility this morning, and am very excited about the tremendous strides being made here in the development of wind turbine technology, and its integration into our national economy. I'd also like to thank Senator Grassley for his ardent support for increasing the amount of windpower in the U.S. and especially his leadership on the production tax credit for renewable energy. Congressman Leach and Congressman Nussle have also provided unwavering support to this industry and to this region. Their staffs are represented here and I thank

406

Improved Manufacturing Processes Save Company One Billion Dollars |  

Broader source: Energy.gov (indexed) [DOE]

Improved Manufacturing Processes Save Company One Billion Dollars Improved Manufacturing Processes Save Company One Billion Dollars Improved Manufacturing Processes Save Company One Billion Dollars October 12, 2011 - 3:17pm Addthis This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library (CFDLib), which was also used by Procter and Gamble to simulate a manufacturing process. The computer code is now available to help American industries become more competitive. | Courtesy of Los Alamos National Laboratory This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library (CFDLib), which was also used by Procter and Gamble to simulate a

407

Vermont Manufacturing Plant Opens with Support from the Recovery Act |  

Broader source: Energy.gov (indexed) [DOE]

Vermont Manufacturing Plant Opens with Support from the Recovery Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The facility was funded in part by a $8.5 million grant through the American Recovery and Reinvestment Act, also known as the stimulus bill "Today's ribbon cutting puts Barre at the forefront of green innovation in America's automotive industry," said Secretary Chu. "This is another

408

Advanced Battery Manufacturing Making Strides in Oregon | Department of  

Broader source: Energy.gov (indexed) [DOE]

Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What are the key facts? Through the Recovery Act, the Department has invested $2.4 billion dollars to help the U.S. compete in the electric drive vehicle and component manufacturing industry. The company EnerG2 is expected to produce enough material to support 60,000 electric drive vehicles per year for American families across the

409

DOE Research Grant Leads to Gas Turbine Manufacturing Improvements |  

Broader source: Energy.gov (indexed) [DOE]

Research Grant Leads to Gas Turbine Manufacturing Improvements Research Grant Leads to Gas Turbine Manufacturing Improvements DOE Research Grant Leads to Gas Turbine Manufacturing Improvements August 16, 2011 - 1:00pm Addthis Washington, DC - Research sponsored by the U.S. Department of Energy's Office of Fossil Energy (FE) has led to a new licensing agreement that will improve the performance of state-of-the-art gas turbines, resulting in cleaner, more reliable and affordable energy. The collaborative technology license agreement, penned by Mikro Systems Inc. and Siemens Energy Inc., reflects growth in U.S.-based manufacturing know-how and leadership in cutting-edge technology development and rapid implementation. Gas turbines, which are used to produce electricity for industrial or central power generation applications, consist sequentially of compressor,

410

Suzhou Eagle Electric Vehicle Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name Suzhou Eagle Electric Vehicle Manufacturing Co Ltd Place Suzhou, China Sector Vehicles Product China-based manufacturer of golf carts, industrial and other 4-wheel electric vehicles. Coordinates 31.3092°, 120.613121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3092,"lon":120.613121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Cost-effectiveness of conservation upgrades in manufactured homes  

SciTech Connect (OSTI)

This study addresses the costs of upgrading the efficiency of electrically heated manufactured homes in the Bonneville Power Administration's (Bonneville's) service territory. It was prepared by the Battelle Pacific Northwest Laboratory (PNL) for Bonneville under a Related Services Agreement with the US Department of Energy, Contract AC06-76RLO1830. Manufactured homes (commonly called mobile homes) represent a significant lost conservation resource in the region. Manufactured homes are required to meet national energy standards that do not reflect the recent increases in energy prices, and the preemptive nature of the national standards prevents local jurisdictions from establishing stricter requirements. Bonneville has undertaken several programs to analyze the efficiency of manufactured homes and encourage the industry to produce more efficient homes and consumers to increase their demand for efficient units. This study constitutes one portion of Bonneville's overall strategy. 45 refs.

Lee, A.D.; Conner, C.C.; Englin, J.E.; Hadley, D.L.; Lucas, R.G.; Miller, N.E.; Monroe, W.H.

1988-09-01T23:59:59.000Z

412

Sales Tax Exemption for Manufacturing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sales Tax Exemption for Manufacturing Facilities Sales Tax Exemption for Manufacturing Facilities Sales Tax Exemption for Manufacturing Facilities < Back Eligibility Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate 50% of capital investment in the eligible project Program Info Start Date 7/1/2008 State Kentucky Program Type Sales Tax Incentive Rebate Amount 100% sales and use tax refund Provider Kentucky Cabinet for Economic Development In August 2007 Kentucky established the ''Incentives for Energy Independence Act'' to promote the development of renewable energy and alternative fuel facilities, energy efficient buildings, alternative fuel vehicles, research and development activities and other energy initiatives. This includes a sales tax exemption which allows manufacturers to apply for

413

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative  

Energy Savers [EERE]

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact...

414

Standardization in additive manufacturing: activities carried out by international organizations and projects  

Science Journals Connector (OSTI)

Standards have to satisfy the needs of the different groups represented, such as industrial, trade, and consumer groups of all of the countries involved. Most experts agree that the lack of additive manufacturing

M. D. Monzn; Z. Ortega; A. Martnez

2014-09-01T23:59:59.000Z

415

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor Manufacturing  

E-Print Network [OSTI]

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor of treating wastewater streams in the semiconductor manufacturing industry. Electrocoagulation involves wastewater is increasing greatly. The objective is that by using EC to treat wastewater streams, this water

Fay, Noah

416

The Sixth Annual DOE Solid-State Lighting Manufacturing R&D Workshop  

Broader source: Energy.gov [DOE]

About 140 industry leaders from across the country, representing every link in the supply chainfrom chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to...

417

Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components  

E-Print Network [OSTI]

Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

Wisconsin at Madison, University of

418

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT  

E-Print Network [OSTI]

-4614 (print) ISSN 1526-5498 (online) http://dx.doi.org/10.1287/msom.1120.0399 © 2013 INFORMS Inventory Pooling.paul@warrington.ufl.edu Nikhil Jain Servigistics India, Gurgaon, Haryana 122001, India, nikhil.jain@servigistics.com Inventory services industry, we propose a model of inventory pooling to meet differentiated service levels

Banerjee, Arunava

419

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

420

Plumbing Manufacturer's Institute Ex Parte Communication Regarding...  

Broader source: Energy.gov (indexed) [DOE]

Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department...

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

422

ME 4171 Environmentally Conscious Design & Manufacturing (Bras) Assignment Aircraft Fuel Tank Production Pollution Prevention  

E-Print Network [OSTI]

ME 4171 ­ Environmentally Conscious Design & Manufacturing (Bras) Assignment ­ Aircraft Fuel Tank Production Pollution Prevention A local company manufactures a wide variety of fabric fuel tanks for use mainly in the aircraft industry. The main reasons for using fabric in the construction of these tanks

423

Secretary Chu Announces Over $110 Million in SunShot Projects to Advance Solar Photovoltaic Manufacturing in the U.S.  

Broader source: Energy.gov [DOE]

Solar Manufacturing Partnerships will boost American competitiveness in the global solar energy industry and lower the cost of clean, renewable energy

424

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

425

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

426

E-Print Network 3.0 - american industry classification Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... Source: Knuth, Kevin H. - Department of Physics, State University of New York at Albany Collection: Physics 22 City Zip 98104 Industry description (e.g., Manufacture of motor...

427

Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition  

SciTech Connect (OSTI)

This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

Not Available

2008-02-01T23:59:59.000Z

428

A flexible control system for flexible manufacturing systems  

E-Print Network [OSTI]

in developing nations. The current efforts in automation are identified as flexible manufacturing systems (FMSs) if they are limited to the shop floor or computer integrated manufacturing (CIM) if they include front office functions including computer aided... Unfortunately, CIM systems are ?virtually out of reach of most of the small companies that could most benefit from CIM,? because no commercial software is available to perform integrated control over the individual shop floor components (Smith and Joshi, 1995...

Scott, Wesley Dane

2004-09-30T23:59:59.000Z

429

Building a More Competitive American Manufacturing Industry with...  

Energy Savers [EERE]

35 percent less gasoline, saving American families money when they fill up their gas tanks. A great example is the 3D-printed Shelby Cobra that the President will see during his...

430

Green manufacturing in the medical device industry : a case study  

E-Print Network [OSTI]

Introduction: Med Dev (name changed to protect confidentiality), is a medical device start-up using tissue engineering and drug delivery techniques to help combat the negative effects associated with secondary injury. Med ...

Gautreau, Leigh (Leigh Ann)

2009-01-01T23:59:59.000Z

431

Review: Manufacturing National Park Nature  

E-Print Network [OSTI]

the Wilderness Industry of Jasper By J. Keri Cronin Reviewedthe Wilderness Industry of Jasper. Vancouver, BC: UBC Press,how photographic images of Jasper National Park in Alberta,

Mason, Fred

2012-01-01T23:59:59.000Z

432

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machining Machining PDF format (236 kb) MS&T's machining group consists of two departments: Manufacturing Processing, and Manufacturing Processes and Services. The two departments team to build, procure, and assemble unique prototype and production hardware with diverse quality requirements. The in-house capability can manufacture hardware ranging from microscopic to proportions measured in feet and tons. The group's outside contacts and resources are almost boundless. This team's expertise includes: precision machining, welding, fabrication and assembly, aircraft quality sheet metal construction, and explosives machining and assembly. The department can manage a variety of activities: design modifications, in-house fabrication, outside shop selection and surveillance and manufacturing records management.

433

High Pressure Hydrogen Tank Manufacturing  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

434

ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

435

Electrolyzer Manufacturing Progress and Challenges  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

436

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

437

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

438

Analysis of energy use in building services of the industrial sector in California: A literature review and a preliminary characterization  

SciTech Connect (OSTI)

Energy use patterns in many of California's fastest-growing industries are not typical of those in the mix of industries elsewhere in the US. Many California firms operate small and medium-sized facilities, often in buildings used simultaneously or interchangeably for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services'' to provide occupant comfort and necessities (lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. In this report, published or unpublished information on energy use for building services in the industrial sector have been compiled and analyzed. Seven different sources of information and data relevant to California have been identified. Most of these are studies and/or projects sponsored by the Department of Energy, the California Energy Commission, and local utilities. The objectives of these studies were diverse: most focused on industrial energy use in general, and, in one case, the objective was to analyze energy use in commercial buildings. Only one of these studies focused directly on non-process energy use in industrial buildings. Our analysis of Northern California data for five selected industries shows that the contribution of total electricity consumption for lighting ranges from 9.5% in frozen fruits to 29.1% in instruments; for air-conditioning, it ranges from nonexistent in frozen fruits to 35% in instrument manufacturing. None of the five industries selected had significant electrical space heating. Gas space heating ranges from 5% in motor vehicles facilities to more than 58% in the instrument manufacturing industry. 15 refs., 15 figs., 9 tabs.

Akbari, H.; Borgers, T.; Gadgil, A.; Sezgen, O.

1991-04-01T23:59:59.000Z

439

Manufacturing Energy Bandwidth Studies: Chemical, Peroleum Refining, Pulp and Paer, and Iron and Steel Sectors  

E-Print Network [OSTI]

identify energy intensity and consumption for key manufacturing processes and the sector as a whole. Potential energy savings opportunities are identified by quantifying four measures of energy consumption for each process area: current average (year 2010...

Brueske, S.; Cresko, J.; Capenter, A.

2014-01-01T23:59:59.000Z

440

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

Manufacturing for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Industrial Energy Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

442

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

443

Petrick Technology Trends Of Manufacturing  

E-Print Network [OSTI]

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: � that firms sophisticated modeling and simulation of both new products and production processes; � that additive

444

Design for manufacturability Design verification  

E-Print Network [OSTI]

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

445

Rethinking the industrial landscape : the future of the Ford Rouge complex  

E-Print Network [OSTI]

The growth and decline of manufacturing industries in the past century and the industrial landscape that this activity has produced has had profound physical, environmental, social and economic impact on the communities ...

Bodurow Rea, Constance Corinne

1991-01-01T23:59:59.000Z

446

EIA Energy Efficiency-Table 3a. Value of Shipments by Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

a a Page Last Modified: May 2010 Table 3a. Value of Shipments 1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 428 457 538 312 Beverage and Tobacco Product Manufacturing 102 104 125 313 Textile Mills 57 45 39 314 Textile Product Mills 31 32 33 315 Apparel Manufacturing 65 45 30 316 Leather and Allied Product Manufacturing 10 7 6 321 Wood Product Manufacturing 91 88 112 322 Paper Manufacturing 155 153 170 323 Printing and Related Support Activities 100 96 100 324 Petroleum and Coal Products Manufacturing 138 216 549 325 Chemical Manufacturing 417 454 658 326 Plastics and Rubber Products Manufacturing 164 173 211

447

EIA Energy Efficiency-Table 4a. Value of Shipments by Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

Table 4a Table 4a Page Last Modified: May 2010 Table 4a. Value of Shipments1 by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars ) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 430 448 472 312 Beverage and Tobacco Product Manufacturing 121 96 109 313 Textile Mills 56 47 37 314 Textile Product Mills 31 32 30 315 Apparel Manufacturing 65 45 30 316 Leather and Allied Product Manufacturing 10 6 6 321 Wood Product Manufacturing 92 89 100 322 Paper Manufacturing 168 156 153 323 Printing and Related Support Activities 103 93 92 324 Petroleum and Coal Products Manufacturing 227 242 265 325 Chemical Manufacturing 440 452 509 326 Plastics and Rubber Products Manufacturing 168 171 175

448

Materials/manufacturing element of the Advanced Turbine System Program  

SciTech Connect (OSTI)

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

1994-08-01T23:59:59.000Z

449

Realised levels of geometric complexity in additive manufacturing  

Science Journals Connector (OSTI)

The emergence of Additive Manufacturing (AM) is seen by many as a promising addition to the existing spectrum of manufacturing technology. Assessing a sample of 43 AM produced components, this paper investigates features of complex part geometry. It is found that the measured levels of geometric complexity approximate the normal distribution. Results indicate several factors promoting complexity: membership of the medical industry, organisational stability and the utilisation of powder bed or polymer vat AM technology. The current paper provides some empirical evidence that AM adoption may lead to advances in product performance for a wide range of applications.

Martin Baumers; Chris Tuck; Richard Hague

2011-01-01T23:59:59.000Z

450

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

451

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

452

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Industry users are invited to contact Steve Wender, phone:505-667-1344 or...

453

Manufacturing Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

454

Advanced Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

455

Manufacturing Data | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Data Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Manufacturing Data These Federal datasets contain a wealth of information for manufacturing - either from information in a single dataset or by combining data from more than one place. This site will be enhanced with the addition of new datasets, and new apps using these datasets, as they are developed. Search Terms Category -Any- Geospatial Items per page 25 50 100 Apply Name Downloads Rating TradeStats Express TradeStats Express provides statistics on U.S. merchandise trade at the national and state levels. Data can also be displayed in maps, graphs, tables, or as exports, imports, and trade balances.... Data Extraction

456

Industrial Assessment Centers Train Future Energy-Savvy Engineers |  

Broader source: Energy.gov (indexed) [DOE]

Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced Manufacturing Office What does this project do? The Industrial Assessment Centers provide students with real-world experience performing energy audits for small- and medium-sized

457

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network [OSTI]

, address emerging needs, and identify best practices in the administration of today's industrial efficiency programs. The paper will serve as an update on industrial energy efficiency program activities and discuss the ways in which today's programs...

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

458

Stumbling Toward Capitalism: The State, Global Production Networks, and the Unexpected Emergence of China's Independent Auto Industry  

E-Print Network [OSTI]

Chang-An Automobile Group, Dongfang Electric Corporation,Automobile Manufacturers, the organization behind the Union of ElectricAutomobile Manufacturers, the main industry association. The second, the Electric

Chang, Crystal Whai-ku

2011-01-01T23:59:59.000Z

459

First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors |  

Broader source: Energy.gov (indexed) [DOE]

First Step to Spur U.S. Manufacturing of Small Modular Nuclear First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 25, 2012 - 5:06pm Addthis Brenda DeGraffenreid The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. The release of a draft Funding Opportunity Announcement (FOA) last week presents supply-chain procurement opportunities for our nation's small businesses down the line, as industry provides input in advance of a full FOA on engineering, design certification, and licensing through a

460

Energy Department Takes First Step to Spur U.S. Manufacturing of Small  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Takes First Step to Spur U.S. Manufacturing of Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 20, 2012 - 2:06pm Addthis The U.S. Department of Energy today announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. Through the draft Funding Opportunity Announcement announced today, the Department will establish cost-shared agreements with private industry to support the design and licensing of SMRs. "America's choice is clear - we can either develop the next generation

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Department Takes First Step to Spur U.S. Manufacturing of Small  

Broader source: Energy.gov (indexed) [DOE]

Takes First Step to Spur U.S. Manufacturing of Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 20, 2012 - 10:48am Addthis Washington, D.C. - The U.S. Department of Energy today announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. Through the draft Funding Opportunity Announcement announced today, the Department will establish cost-shared agreements with private industry to support the design and licensing of SMRs. "America's choice is clear - we can either develop the next generation

462

Tax-Exempt Industrial Revenue Bonds (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Revenue Bonds (Kansas) Industrial Revenue Bonds (Kansas) Tax-Exempt Industrial Revenue Bonds (Kansas) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Bond Program Provider Revenue Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial, natural resources, recreational development or manufacturing purposes. The board of county commissioners of any county or the governing body of any city may approve an exemption of property funded by industrial revenue bonds (IRB's). Some

463

Lincoln Electric System (Commercial and Industrial) - Sustainable Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial and Industrial) - Sustainable Commercial and Industrial) - Sustainable Energy Program Lincoln Electric System (Commercial and Industrial) - Sustainable Energy Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate '''General Incentive Limits''' Commercial Industrial Lighting Retrofit: $100,000 per program year Commercial and Industrial Energy Efficiency: $100,000 per program year Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Commercial Industrial Lighting Retrofit Lighting Retrofit: $500/kW of peak-demand reduction

464

Facts controllers and HVDC enhance power transmission (A manufacturer`s perspective)  

SciTech Connect (OSTI)

Various types of FACTS as well as HVDC have been available for some time. New ones have been developed recently. Their respective benefits are well proven and have been made known. System studies have to be done to make full use of FACTS and HVDC problem solving capabilities. Siemens is offering digital models for correct representation of several FACTS devices and HVDC in widely used time-based simulation study programs. The manufacturers are doing their homework. It is up to the utility industry to make use of it now!

Juette, G. [Siemens Energy & Automation, Atlanta, GA (United States); Renz, K. [Siemens AG, Erlangen (Germany)

1995-12-31T23:59:59.000Z

465

Solar Manufacturing: To Compete or Not To Compete | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing: To Compete or Not To Compete Manufacturing: To Compete or Not To Compete Solar Manufacturing: To Compete or Not To Compete June 28, 2012 - 11:30am Addthis Damien LaVera Damien LaVera Deputy Director, Office of Public Affairs One Thing is Clear: America must continue playing to win in the clean energy race. Last year, the global market for clean, renewable energies reached a record $260 billion - and is expected to grow into the trillions over the next 20 years. Solar manufacturing in particular is growing dramatically in the United States and around the world. In fact, according to the Solar Energy Industry Association, America's solar industry now employs 100,000 workers - doubling since 2009. The question is no longer whether America will be a major customer for the solar industry - we will. The real question is whether the U.S. will also

466

NSLS Industrial User Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

467

Industrial Heating with Creosote Pitch  

Science Journals Connector (OSTI)

Industrial Heating with Creosote Pitch ... TO REDUCE the demand for imported petroleum fuel oil, some British plants are using a mixture of creosote and pitch, obtained during the manufacture of city gas. ... Thus these tar oils, the most commonly used being creosote pitch, must be maintained at a temperature of not less than 90 F. at all times and delivered warm into suitably heated tanks. ...

C. H. S. TUPHOLME

1942-05-10T23:59:59.000Z

468

Industrial Carbon Capture Project Selections  

Broader source: Energy.gov (indexed) [DOE]

(Partner Organizations) Funding Lead Organization Location (City, State) Project Title - Project Description 1) Large Scale Testing of Advanced Gasification Technologies Air Products & Chemicals, Inc. $71,700,000 Allentown, PA Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems Air Products will accelerate commercial manufacture of ion transport membranes modules and initiate the development a 2,000 TPD pre- commercial scale facility ahead of schedule, enabling this technology

469

Technical Report #98T-010, Department of Industrial & Mfg. Systems Egnieering, Lehigh Univerisity COORDINATION PRODUCTION AND TRANSPORTATION  

E-Print Network [OSTI]

. In manufacturing-centric industries such as automotive and electronics, costs constitute the secondtransportation and transportation planning in manufacturing supply chains typical in automotive and electronic industries. Main cost.g., in the automotive industry, a ten- to fourteen-day inventory buffer is a common practice for the very purpose

Wu, David

470

Vintage-level energy and environmental performance of manufacturing establishments  

SciTech Connect (OSTI)

This report examines the relationship between an industrial plant`s vintage and its energy and environmental performance. Basic questions related to defining vintage and measuring the effects of the manufacturing industry`s vintage distribution of plant-level capacity and energy intensity are explored in general for six energy-intensive sectors (paper, chlorine, nitrogenous fertilizer, aluminum, steel, and cement) at the four-digit standard industrial classification (SIC) level and in detail for two sectors (steel and cement). Results show that greenfield (i.e., newly opened) plants in the paper, steel, and cement industries exhibit low fossil fuel intensities. These results are consistent with expectations. New plants in the paper and steel industries, where processes are undergoing electrification, exhibit high electricity intensities. An analysis of a subsector of the steel industry -- minimills that use scrap-based, electric arc furnaces -- reveals a decline in electricity intensity of 6.2 kilowatt-hours per ton for each newer year of installed vintage. This estimate is consistent with those of engineering studies and raises confidence that analyses of vintage effects in other industries could be conducted. When a vintage measure is assigned on the basis of investment data rather than trade association data, the vintage/performance relationship results for the cement industry are reasonably robust; thus, the analysis of vintage and performance could be extended to sectors for which only US Bureau of the Census data are available.

Boyd, G.A.; Bock, M.J.; Neifer, M.J. [Argonne National Lab., IL (United States); Karlson, S.H. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Economics; Ross, M.H. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics

1994-05-01T23:59:59.000Z

471

Out of Bounds Additive Manufacturing Christopher  

E-Print Network [OSTI]

#12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

Pennycook, Steve

472

Barron Electric Cooperative - Commercial, Industrial, and Agricultural  

Broader source: Energy.gov (indexed) [DOE]

Barron Electric Cooperative - Commercial, Industrial, and Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $10,000 per account, not to exceed 20% of cost Scroll Refrigeration Compressors: $500 Variable Speed/Frequency Drive Motor: $500 Variable Speed Compressed Air Motor: $500 Energy Audit: One in Five Years Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Energy Audit: Free General Lighting: $1 - $15/unit LED Lamps: $2/bulb

473

Massachusetts Municipal Commercial Industrial Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Varies depending on utility Program Info Start Date Varies Expiration Date Varies State Massachusetts Program Type Utility Rebate Program Rebate Amount Varies depending on utility Provider Massachusetts Municipal Wholesale Electric Company Certain municipal utilities in Massachusetts, in cooperation with

474

Industrial microbiology  

Science Journals Connector (OSTI)

...include the fruit, wine, baking, milling, dairy, and distill-ing industries...fructose known as high fruc-tose corn syrup. Between 500,000 and 1...glucose isomerase has permitted the corn wet milling industry to capture 30 percent of...

AL Demain

1981-11-27T23:59:59.000Z

475

A Low Cost Energy Management Program at Engelhard Industries Division  

E-Print Network [OSTI]

in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

Brown, T. S.; Michalek, R.; Reiter, S.

1982-01-01T23:59:59.000Z

476

Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities  

E-Print Network [OSTI]

As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management...

Kelly, R. L.

1980-01-01T23:59:59.000Z

477

Designing Optimal Heat and Power Systems for Industrial Processes  

E-Print Network [OSTI]

Industrial heat and power systems are complex and not fully understood as integrated systems. Within the context of the overall manufacturing process, they represent enormous capital investments and substantially contribute to the total operating...

Rutkowski, M. A.; Witherell, W. D.

478

Beryllium Manufacturing Processes  

SciTech Connect (OSTI)

This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

Goldberg, A

2006-06-30T23:59:59.000Z

479

Advanced Manufacture of Reflectors  

SciTech Connect (OSTI)

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square a unique capability. The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

480

Solar Power Industries SPI | Open Energy Information  

Open Energy Info (EERE)

Solar Power Industries SPI Solar Power Industries SPI Jump to: navigation, search Name Solar Power Industries (SPI) Place Belle Vernon, Pennsylvania Zip 15012 Product US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References Solar Power Industries (SPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Power Industries (SPI) is a company located in Belle Vernon, Pennsylvania . References ↑ "Solar Power Industries (SPI)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Power_Industries_SPI&oldid=351318" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

Note: This page contains sample records for the topic "manufacturing industries identifying" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Outlook for Industrial Energy Benchmarking  

E-Print Network [OSTI]

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

Hartley, Z.

482

DOE Warns Manufacturers Who Submitted Incomplete Certification Reports |  

Broader source: Energy.gov (indexed) [DOE]

Warns Manufacturers Who Submitted Incomplete Certification Warns Manufacturers Who Submitted Incomplete Certification Reports DOE Warns Manufacturers Who Submitted Incomplete Certification Reports February 2, 2010 - 1:53pm Addthis Washington, DC - The Department of Energy's Office of General Counsel has sent warning letters to 9 manufacturers or trade associations that submitted incomplete energy-efficiency test data to comply with DOE's energy-efficiency standards. This data was submitted during the 30-day grace period that ran from December 9, 2009, to January 8, 2010. Data for about 600,000 products was submitted. In this case, however, the data was incomplete. In light of the apparent attempt to comply with Department's regulations, the warning letters simply identify various substantive deficiencies in the data submitted, demand their expeditious

483

PPG Industries Develops a Low-Cost Integrated OLED Substrate  

Broader source: Energy.gov [DOE]

With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or double-side-polished display glass that's currently being used as substrates by OLED device manufacturers.

484

Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Report #: DOE/EIA-0573(2005) Released Date: November 2006 Next Release Date: Not applicable Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing Mark Schipper 1 , Energy Information Administration (EIA) Abstract Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

485

Energy Used in Manufacturing Sales and Use Tax Exemption | Department of  

Broader source: Energy.gov (indexed) [DOE]

Used in Manufacturing Sales and Use Tax Exemption Used in Manufacturing Sales and Use Tax Exemption Energy Used in Manufacturing Sales and Use Tax Exemption < Back Eligibility Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State Georgia Program Type Sales Tax Incentive Georgia enacted legislation in April 2012 (HB 386) creating an exemption for energy used in the manufacturing of a product from the state's sales and use taxes. The sale, use, storage, or consumption of energy which is necessary and integral to the manufacture of tangible personal property at a manufacturing plant in the state of Georgia shall be exempt from all sales and use taxation except for the sales and use tax for educational

486

Advanced Manufacturing Policies and Paradigms for Innovation  

Science Journals Connector (OSTI)

...2013 ). 4 About the Advanced Manufacturing Partnership 2.0; www.manufacturing.gov/amp.html. 5 For example , www1.eere.energy.gov/manufacturing/; www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__%28AVM...

William B. Bonvillian

2013-12-06T23:59:59.000Z

487

Nevada manufacturer installing geothermal power plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

488

Green Energy Manufacturing Tax Credit (Manitoba, Canada) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) < Back Eligibility Commercial Industrial Savings Category Buying & Making Electricity Solar Wind Program Info Funding Source Government of Manitoba State Manitoba Program Type Corporate Tax Incentive Provider Manitoba Finance This refundable income tax credit will be equal to 10% of the value of qualifying property produced in Manitoba and sold before 2019 for residential or commercial use in Manitoba. Qualifying property includes equipment for wind power, solar energy, geothermal energy, hydrogen fuel cells, geothermal ground source heating systems and solar thermal heating equipment. In the 2011 Budget, the total Green Energy Equipment Tax Credit on

489

MST: Organizations: Precision Meso Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

490

Prototype Design, Manufacturing, and Testing  

Science Journals Connector (OSTI)

Prototyping describes the practical realization of the theoretical concept of the nonimaging Fresnel lens. The steps that are to be taken in order to get a working prototype of the lens manufactured are as fol...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

491

Photovoltaics Manufacturing in Developing Countries  

Science Journals Connector (OSTI)

The need for energy sources in the developing countries might be partially satisfied by using photovoltaic power systems in addition to conventional means. A review of photovoltaic manufacturing in developing ...

G. Darkazalli; S. Hogan

1991-01-01T23:59:59.000Z

492

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

493

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

494

Fenner acquires PTFE seal manufacturer  

Science Journals Connector (OSTI)

Fenner Plc has announced the acquisition of substantially all of the operating assets and liabilities of EGC, a Houston-based manufacturer of fluoroplastic seals and other related fluoroplastic precision components.

2006-01-01T23:59:59.000Z

495

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to better understand (a) the cost of all energy sources supplied to the plant, (b) how much energy each individual utility service or energy-consuming equipment consumes, and, (c) where opportunities to realize savings exist.

496

Wind power manufacturing and supply chain summit USA.  

SciTech Connect (OSTI)

The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

Hill, Roger Ray

2010-12-01T23:59:59.000Z

497

Funding Opportunity Announcement for Water Power Manufacturing...  

Energy Savers [EERE]

Funding Opportunity Announcement for Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014,...

498

Additive manufacturing: technology, applications and research needs  

Science Journals Connector (OSTI)

Additive manufacturing (AM) technology has been researched and ... complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past...

Nannan Guo; Ming C. Leu

2013-09-01T23:59:59.000Z

499

A Management Strategy for Additive Manufacturing:.  

E-Print Network [OSTI]

??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology. (more)

Zahn, N.Z.

2014-01-01T23:59:59.000Z

500

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...