Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Manufacturing Office: Western Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Advanced Manufacturing Office: Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting to someone by E-mail Share Advanced...

2

Advanced Manufacturing Office: Industrial Distributed Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Classification System (NAICS) code, system size, technologyprime mover, fuel, thermal energy use, and year installed. Access the CHP Project Profiles database....

3

Industrial/manufacturing resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial/manufacturing resources Industrial/manufacturing resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

4

Manufacturing-Industrial Energy Consumption Survey(MECS) Historical  

U.S. Energy Information Administration (EIA) Indexed Site

> Historical Publications > Historical Publications Manufacturing Establishments reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring energy consumption and related issues in the manufacturing sector. The MECS collects data on energy consumption, purchases and expenditures, and related issues and behaviors. Links to previously published documents are given below. Beginning in 1998, reports were only issued electronically. Additional electronic releases are available on the MECS Homepage. The basic unit of data collection for this survey is the manufacturing establishment. Industries are selected according to definitions found in the North American Industry Classification System (NAICS), which replace the earlier Standard Industrial Classification (SIC) system.

5

Glass manufacturing is an energy-intensive industry mainly ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... There is substantial potential for energy efficiency improvements in glass manufacturing. Estimates range from ...

6

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, EIAs analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8 percent of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9 percent of annual operating cost, previously have received somewhat less attention, however. In AEO2006, energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50 percent of the projected increase in industrial natural gas consumption from 2004 to 2030.

Information Center

2007-03-11T23:59:59.000Z

7

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network (OSTI)

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

8

SPP sales flyer for manufacturing and industry | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing and industry manufacturing and industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

9

EIA Energy Efficiency-Manufacturing Industry Trend Data, 1998 and 2002  

Gasoline and Diesel Fuel Update (EIA)

Trends 1998, 2002, and 2006 Trends 1998, 2002, and 2006 Manufacturing Industry Trend Data 1998, 2002, and 2006 (NAICS) Page Last Modified: May 2010 Below are data from the 1998, 2002, and 2006 Manufacturing Energy Consumption Survey (MECS), and other sources by industry type. The tables provide estimates for energy consumed for all purposes, fuel consumption, offsite-produced fuel consumption, and nonfuel consumption for selected industries, as well as economic (nominal and real) and physical indicators. Site Energy Consumption 1998, 2002, and 2006 Table 1a. Consumption of Energy (Site Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 html Table 1 excel table 1a. pdf table 1a. Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006

10

Award Recipient of ENERGY STAR Challenge for Industry JM Eagle Wharton Plastic Pipe Manufacturing Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Wharton Plastic Pipe Manufacturing Plant JM Eagle 10807 U.S. 59 Road Wharton, TX 77488 The Wharton Plastic Pipe Manufacturing Plant, located on an old cattle field, opened in 1985 by first manufacturing PVC pipe. The manufacturing of injection molding was added in 1988, corrugated pipe was added in 2009, and corrugated fittings were added in 2011. There are expectations for the plant to expand into manufacturing PE pipe fittings in the future. The Wharton plant achieved the ENERGY STAR Challenge for Industry in June 2010. The plant achieved a 15.5% reduction in energy intensity in the first year following its baseline. The success of achieving the Challenge for Industry came principally from an energy conservation program that focused on not operating equipment other than that needed for current production,

11

Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.  

SciTech Connect

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G.; Decision and Information Sciences

2006-07-21T23:59:59.000Z

12

Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.  

SciTech Connect

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G.; Decision and Information Sciences

2006-07-21T23:59:59.000Z

13

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

14

Glass manufacturing is an energy-intensive industry mainly fueled ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

15

Manufacturing Energy Portal  

Science Conference Proceedings (OSTI)

NIST Home > Manufacturing Energy Portal. Manufacturing Energy Portal. ... see all Manufacturing Energy programs and projects ... ...

2013-11-07T23:59:59.000Z

16

Highlights of Industrial Energy Audits with Application in Paper Product Manufacturing  

E-Print Network (OSTI)

Experience in executing comprehensive energy audits in varied industrial plants has resulted in a basic audit methodology and has revealed several interesting energy conservation opportunities applicable to paper products manufacturing. The most difficult and important part of an energy audit is the data collection that is necessary to fully understand the energy flows in the facility. Although many common opportunities exist that can be found in check lists, many opportunities are discovered only by a thorough understanding of the distribution of energy consumption that comes from detailed measurements and data analysis.

Hart, M. N.; Bond, S. K.

1979-01-01T23:59:59.000Z

17

Manufacturing Industrial Development for the Alternative Energy Systems-Final Report  

SciTech Connect

NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

2013-01-30T23:59:59.000Z

18

Renewable Energy Equipment Manufacturer Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturer Tax Credit Renewable Energy Equipment Manufacturer Tax Credit Eligibility Commercial Industrial Savings For Bioenergy Biofuels Alternative Fuel Vehicles Commercial...

19

Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries  

E-Print Network (OSTI)

Minimization of damage from the rising trend of global warming would warrant two kinds of action for a country like India: a) abatement of greenhouse gas emissions and b) adaptation to climate change so as to reduce climate change related vulnerability of the people. The target of low carbon economic growth of India in terms of declining energy and carbon intensity of GDP assumes, therefore, a special significance in such context. Of the different options for lowering carbon intensity of GDP, the option of energy conservation through reduced energy intensity of output happens to be cheaper in most cases than the carbon free energy supply technology options. As the industrial sector has the largest sectoral share of final energy consumption in India this paper focuses on the assessment of energy savings potential in seven highly energy consuming industries. The paper estimates the energy savings potential for each of these industries using unit level Annual Survey of Industries data for 2007-08. The paper further develops an econometric model admitting substitutability among energy and other non-energy inputs as well as that among fuels using translog cost function for the selected industries and

Manish Gupta; Ramprasad Sengupta; Manish Gupta; Ramprasad Sengupta

2012-01-01T23:59:59.000Z

20

Water and Energy Use in Telecommunications Manufacturing: A Scoping Study of the Telecommunications Industry Infrastructure and Reso urce Use  

Science Conference Proceedings (OSTI)

The telecommunication equipment industry has seen tremendous change and growth over the past decade. New technologies, liberalized communication services, and skyrocketing demand for personal telecommunication services have fueled double-digit growth rates. This report describes industry trends in telecommunications equipment manufacturing and services with an emphasis on energy use and water consumption.

2001-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

includes descriptions of the 30 groups that comprise the strata of the Manufacturing Energy Consumption Survey. These are the 20 major industrial groups (two-digit SIC) and...

22

Economic impact of energy shortages on commercial air transportation and aviation manufacture. Volume 2. Aviation industries profiles and energy usage characteristics  

SciTech Connect

The purpose of this study was to determine the economic impact of energy scarcity on the air transportation industry. Volume II provides a data base on the characteristics and operating performances of the air transportation industry and the aircraft, engines, and parts manufacturing industries, including energy usage characteristics and efficiency. (BYB)

Gorham, J.E.; Gross, D.; Snipes, J.C.

1975-06-01T23:59:59.000Z

23

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

24

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

1994-12-01T23:59:59.000Z

25

China's Industrial Carbon Dioxide Emissions in Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces Title China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and...

26

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

27

Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis: Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry Stanford University: Precourt Institute for Energy Alan Goodrich † , Ted James † , and Michael Woodhouse October 10, 2011 † Corresponding authors: alan.goodrich@nrel.gov, ted.james@nrel.gov NREL/PR-6A20-53938 2 Analysis Disclaimer DISCLAIMER AGREEMENT These manufacturing cost model results ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

28

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

29

Manufacturing Energy and Carbon Footprints  

E-Print Network (OSTI)

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much is lost? Answering these questions is the focus of this paper and the analysis described herein. Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions, for the fifteen most energy intensive manufacturing sectors, and for the entire U.S. manufacturing sector. Analysts and decision-makers utilize the footprints to better understand the distribution of energy use in energy-intensive industries and the accompanying energy losses. The footprints provide a benchmark from which to calculate the benefits of improving energy efficiency and for prioritizing opportunity analysis. A breakdown of energy consumption by energy type and end use allows for comparison both within and across sectors.

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

30

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

31

Photovoltaic industry manufacturing technology. Final report  

DOE Green Energy (OSTI)

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

32

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

33

Energy Use in Manufacturing  

Reports and Publications (EIA)

This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

William Gifford

2006-08-14T23:59:59.000Z

34

PEM Stack Manufacturing: Industry Status  

NLE Websites -- All DOE Office Websites (Extended Search)

© 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of where we have been; 2. Where we are today; 3. Where we would like to transition to; 4. Gaps and proposals. AUGUST 2009 P A G E 3 PEM Stack Manufacturing: Cost Overview * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA.

35

Clean Energy Manufacturing Initiative Midwest Regional Summit...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy (EERE)'s Advanced Manufacturing Office works with industry, small business, universities, and other stakeholders to identify and invest in...

36

Exploring the Wind Manufacturing Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring the Wind Manufacturing Map Exploring the Wind Manufacturing Map August 15, 2012 - 5:01pm Addthis America's wind energy industry supports a growing domestic industrial...

37

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

38

Energy-efficient manufactured housing in Chicago: Part 1, Industry assessment and business concept paper  

Science Conference Proceedings (OSTI)

The Center for Neighborhood Technology (CNT) is exploring the feasibility of manufactured housing in the City of Chicago. This preliminary analysis focusses on the potential for establishing a manufactured housing plant in Chicago from two perspectives: as an economic development and job creation venture, as well as a possible element in meeting the Chicago area's needs for affordable housing.

Not Available

1986-01-01T23:59:59.000Z

39

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

40

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

42

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

43

Implications for the Manufacturing Industry  

Science Conference Proceedings (OSTI)

Plus, Quality and Response Time are Competitive. In Summary, China has ... Significant offshore demand and manufacturing base established by American and...

44

Applications of industrial ecology : manufacturing, recycling, and efficiency  

E-Print Network (OSTI)

This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

2007-01-01T23:59:59.000Z

45

Materials Manufacturing Industries--A Taxonomy and Analysis  

Science Conference Proceedings (OSTI)

Manufacturing industries have provided high-paying jobs for workers across the .... is the sum of significant annual job creation and destruction that is not captured by ... the Office of Economic Competitiveness at the U.S. Department of Energy.

46

Advanced Manufacturing Office (Formerly Industrial Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy intensity and efficiently direct energy to forming the product. Examples include additive manufacturing, selective heating, and out-of-the-autoclave composite...

47

Solar energy systems for manufactured housing  

DOE Green Energy (OSTI)

The opportunities for solar energy utilization in manufactured housing such as mobile homes and modular homes are discussed. The general characteristics of the manufactured housing industry are described including market and prices. Special problems of the utilization of liquid heating collectors, air heating collectors, or passive types of solar heating systems in manufactured housing are considered. The market situation for solar energy in manufactured housing is discussed. The design of the Los Alamos Scientific Laboratory mobile/modular home is described.

Balcomb, J.D.

1976-01-01T23:59:59.000Z

48

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

India Zip 416 109 Sector Wind energy Product Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries. References...

49

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place Monroe, Michigan Zip 48161 Sector Wind energy Product Michigan-based wind turbine tower manufacturer. References Ventower Industries1 LinkedIn Connections CrunchBase...

50

Explore Careers in Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

51

Federal and Industry Partners Issue Challenge to Manufacturers | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal and Industry Partners Issue Challenge to Manufacturers Federal and Industry Partners Issue Challenge to Manufacturers Federal and Industry Partners Issue Challenge to Manufacturers June 6, 2013 - 10:09am Addthis News Media Contact (202) 586-4940 WASHINGTON -- A coalition that includes the U.S. federal government and over 200 major commercial building sector partners has issued a simple challenge to U.S. manufacturers: if you can build wireless sub-meters that cost less than $100 apiece and enable us to identify opportunities to save money by saving energy, we will buy them. A group of at least 18 manufacturers has already agreed to take up the challenge, pledging to produce devices that will meet the specifications outlined by the U.S. Department of Energy and its private sector partners that have signed letters of intent to purchase the wireless sub-meters.

52

Federal and Industry Partners Issue Challenge to Manufacturers | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industry Partners Issue Challenge to Manufacturers and Industry Partners Issue Challenge to Manufacturers Federal and Industry Partners Issue Challenge to Manufacturers June 6, 2013 - 10:09am Addthis News Media Contact (202) 586-4940 WASHINGTON -- A coalition that includes the U.S. federal government and over 200 major commercial building sector partners has issued a simple challenge to U.S. manufacturers: if you can build wireless sub-meters that cost less than $100 apiece and enable us to identify opportunities to save money by saving energy, we will buy them. A group of at least 18 manufacturers has already agreed to take up the challenge, pledging to produce devices that will meet the specifications outlined by the U.S. Department of Energy and its private sector partners that have signed letters of intent to purchase the wireless sub-meters.

53

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

54

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

55

Ohio Advanced Energy Manufacturing Center  

Science Conference Proceedings (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

56

Ohio Advanced Energy Manufacturing Center  

SciTech Connect

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

57

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

U.S. Energy-Related Carbon Dioxide Emissions, 2010. AugustChinas Industrial Carbon Dioxide Emissions in ManufacturingChinas Industrial Carbon Dioxide Emissions in Manufacturing

Lu, Hongyou

2013-01-01T23:59:59.000Z

58

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

59

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

60

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

J Related EIA Publications on Energy Consumption Energy Information AdministrationManufacturing Consumption of Energy 1991 526 Appendix J Related EIA Publications on Energy...

62

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

emissions. In this paper, energy use and CO 2 emissions ofinformation, this paper estimates industrial energy-relatedenergy-intensive products. Emissions from manufacturing of textiles, and paper

Lu, Hongyou

2013-01-01T23:59:59.000Z

63

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

64

Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report  

Science Conference Proceedings (OSTI)

Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

Azimi, S.A.; Conrad, J.L.; Reed, J.E.

1985-03-01T23:59:59.000Z

65

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

66

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

67

Integrating Energy Management and Lean Manufacturing  

E-Print Network (OSTI)

There is a close relationship between energy efficiency and lean manufacturing. Lean focuses on the continuous elimination of non-value added activities and waste in a manufacturing process. Energy management focuses on the continuous elimination of wasted energy in a manufacturing process. This paper will focus on industrial facilities that participated in a Power Smart Lean initiative with Manitoba Hydro. The objective of this service is to leverage lean principles by capitalizing on the synergies between lean manufacturing and energy management to increase the incorporation of energy efficiency into a manufacturing plant. Case studies are presented showing the resulting electric and gas saving opportunities from identifying and reducing wasted energy. Examples are presented to show the incidental energy savings realized by facilities that have used lean to improve productivity. Finally, case studies are discussed which demonstrate the utilization of lean approaches and tools with parallels to energy management.

Stocki, M.

2009-05-01T23:59:59.000Z

68

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

69

Clean Energy Manufacturing Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

70

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the countrys greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

71

Advanced Manufacturing Office: Tuesday Webcasts for Industry  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Most Value from ISO 50001 January 10, 2012 - Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities Webcast Questions and Answers December 13, 2011...

72

EERE: Clean Energy Manufacturing Initiative Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Manufacturing Initiative Search Search Help Clean Energy Manufacturing Initiative EERE Clean Energy Manufacturing Initiative Printable Version Share this resource Send a...

73

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

74

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

B Survey Design, Implementation, and Estimates Introduction The 1991 Manufacturing Energy Consumption Survey (MECS) has been designed by the Energy Information Administration...

75

Clean Energy Manufacturing Incentive Program (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Other Maximum Rebate Aggregate amount of grants awarded and outstanding at any time cannot exceed $36 million Program Info State Virginia Program Type Industry Recruitment/Support In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

76

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

77

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

78

Project Announced for Clean Energy Manufacturing of Auto Steel  

Science Conference Proceedings (OSTI)

Aug 30, 2013 ... Project Announced for Clean Energy Manufacturing of Auto Steel ... to develop a new class of advanced steel for the automotive industry.

79

Industrial Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

80

Energy Efficiency Standards for Manufactured Housing | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards for Manufactured Housing Section 413 of the Energy...

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

82

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

83

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Solar Wind Maximum Rebate $2,000,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 (ARRA) State Michigan Program Type Industry Recruitment/Support Provider Department of Energy, Labor and Economic Growth '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future solicitations.''''' In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Clean Energy Advanced Manufacturing portion of this program is

84

Manage energy use in manufacturing | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve building and plant performance Improve building and plant performance » Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing

85

VPI Corporation: Industrial Energy Assessment Helps Manufacturer Start Saving $7,000 in Less Than a Year  

SciTech Connect

Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at VPI Coporation by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

2005-09-01T23:59:59.000Z

86

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

at the extent to which manufacturers exercised their ability to choose the mix of energy sources at their discretion. Nonswitchable Minimum Requirements Generally, a...

87

Achieving Superior Energy Performance in US Manufacturing  

E-Print Network (OSTI)

U.S. industry has the capacity to significantly improve its overall energy performance and help meet both private-sector and national goals for energy and the environment. TheUS Department of Energys Industrial Technologies Program (ITP) is partnering with industry to drive a 25% reduction in industrial energy intensity by 2017and also contribute to an 18% reduction in carbon intensity economy-wide by 2012. To expedite progress in achieving these targets, ITP and industry are collaborating with the American National Standards Institute (ANSI), non-profits, USEPA and NIST to facilitate the development of energy management standards and certification for manufacturing plants. The paper will describe the program criteria and opportunities for participation in the future.

Scheihing, P.

2009-05-01T23:59:59.000Z

88

Industrial Energy Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

89

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

90

Manufacturing Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

91

Jinlong Industrial Group | Open Energy Information  

Open Energy Info (EERE)

Solar Product Solar energy company based in Hebei province, engaged in manufacturing photovoltaic cell, crystal silicon and other key products. References Jinlong Industrial...

92

Assumptions to the Annual Energy Outlook 1999 - Industrial Demand...  

Gasoline and Diesel Fuel Update (EIA)

industrial.gif (5205 bytes) The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing...

93

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

94

Outlook for Industrial Energy Benchmarking  

E-Print Network (OSTI)

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common understanding of opportunities for energy efficiency improvements and provide additional information to improve the competitiveness of U.S. industry. The EPA's initial benchmarking efforts will focus on industrial power facilities. The key industries of interest include the most energy intensive industries, such as chemical, pulp and paper, and iron and steel manufacturing.

Hartley, Z.

2000-04-01T23:59:59.000Z

95

Development of a Performance-based Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

the work of EPA and the pharmaceutical manufacturing industry to develop an Energy Performance Indicator (EPI) for facilities that develop and manufacture pharmaceutical products...

96

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

97

Manufacturing Plants Incorporate Energy Efficiency into Business Model |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Plants Incorporate Energy Efficiency into Business Manufacturing Plants Incorporate Energy Efficiency into Business Model Manufacturing Plants Incorporate Energy Efficiency into Business Model April 27, 2011 - 12:15pm Addthis Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Four Texas-based manufacturing plants are adopting robust energy efficiency standards as part of an energy management certification program led by the Department of Energy's Industrial Technologies Program. The certification program, called Superior Energy Performance, provides a

98

Manufacturing Plants Incorporate Energy Efficiency into Business Model |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Plants Incorporate Energy Efficiency into Business Manufacturing Plants Incorporate Energy Efficiency into Business Model Manufacturing Plants Incorporate Energy Efficiency into Business Model April 27, 2011 - 12:15pm Addthis Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Four Texas-based manufacturing plants are adopting robust energy efficiency standards as part of an energy management certification program led by the Department of Energy's Industrial Technologies Program. The certification program, called Superior Energy Performance, provides a

99

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

100

High Collapse Tubulars for the Oil and Gas Industry, Manufacturing ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Collapse Tubulars for the Oil and Gas Industry, Manufacturing and Characterization. Author(s), Federico Daguerre, Gustavo Lopez...

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Growth Trends in the South African Manufactured Export Industry.  

E-Print Network (OSTI)

??Through empirical research the researcher gained an in-depth knowledge regarding the growth trends in the South African manufactured export industry as well as the factors (more)

Moloto, Phineas Rameshovo

2005-01-01T23:59:59.000Z

102

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing |  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Motor Vehicle Manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

103

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

104

Comparison of National Programs for Industrial Energy Efficiency: Industry Brief  

Science Conference Proceedings (OSTI)

This report looks at the Better Buildings, Better Plants program from the Department of Energy; E3, an initiative of five U.S. federal agencies; ENERGY STAR for Industry from the Environmental Protection Agency; and Superior Energy Performance, a product of the U.S. Council for Energy-Efficient Manufacturing. By comparing the goals of several energy-efficiency programs that have been established to support industry, this report hopes to help industrial facilities find the right fit for their own ...

2013-02-25T23:59:59.000Z

105

Manage energy use in manufacturing | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

106

Energy Department to Work with National Association of Manufacturers to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department to Work with National Association of Energy Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency June 12, 2007 - 1:40pm Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today expanded DOE's work to maximize energy efficiency by increasing cooperation among U.S. industry and energy efficiency experts, through a Memorandum of Understanding (MOU) with the National Association of Manufacturers (NAM). Specifically, this MOU includes a variety of activities, which aim to assist manufacturing facilities in implementing an energy management program; adopt clean, efficient technologies; and achieve continual energy efficiency and intensity reduction improvements. Through

107

Industrial Energy Use Indices  

E-Print Network (OSTI)

Energy use indices and associated coefficients of variation are computed for major industry categories for electricity and natural gas use in small and medium-sized plants in the U.S. Standard deviations often exceed the average EUI for an energy type, with coefficients of variation averaging 290% for 8,200 plants from all areas of the continental U.S. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energys national Industrial Assessment Center database.

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

108

Exploring the Wind Manufacturing Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Map Wind Manufacturing Map Exploring the Wind Manufacturing Map August 15, 2012 - 5:01pm Addthis America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? The domestic wind manufacturing industry has grown dramatically in the last 5 years, and now nearly 70 percent of the turbines installed in the United States are built here. The growth of the wind energy industry in the United States includes an expanding domestic manufacturing base, with 13 facilities that opened in 2010 and an additional 16 in 2011. These and older facilities are visualized by the map above using data collected by the National

109

Wind Energy Manufacturing Tax Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Manufacturing Tax Incentive Wind Energy Manufacturing Tax Incentive Wind Energy Manufacturing Tax Incentive < Back Eligibility Commercial Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate Up to 100% income tax exemption Program Info Start Date 1/1/2008 Expiration Date 12/31/2033 State Arkansas Program Type Industry Recruitment/Support Rebate Amount Varies, depending on amount invested and other factors Provider Arkansas Economic Development Commission With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or components. A full income tax exemption is available for business that meet certain criteria, including locating in the state before December 31, 2007. Businesses that

110

Energy-Efficient Appliance Manufacturing Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Appliance Manufacturing Tax Credit Energy-Efficient Appliance Manufacturing Tax Credit Energy-Efficient Appliance Manufacturing Tax Credit < Back Eligibility Industrial Savings Category Appliances & Electronics Maximum Rebate The aggregate amount of credit allowed for 2011 is $25 million per taxpayer. Certain refrigerators and clothes washers will not add to the aggregate credit amount. See summary below for more details. Program Info Start Date 01/01/2007 Expiration Date 12/31/2013 Program Type Industry Recruitment/Support Rebate Amount Dishwashers: $25 - $75 per unit, varies by energy and water efficiency; Clothes washers: $175 - $225 per unit, varies by type, and energy and water efficiency; Refrigerators: $150 or $200, depending on energy-efficiency rating Provider U.S. Internal Revenue Service

111

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

112

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

113

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

114

Industrial Chocolate Manufacture and Use, 4th Edition  

Science Conference Proceedings (OSTI)

The fourth edition of Industrial Chocolate Manufacture and Use provides up-to-date coverage of all major aspects of chocolate manufacture and use, from the growing of cocoa beans to the packaging and marketing of the end product. Industrial Chocolate Manuf

115

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

116

Energy Department to Work with National Association of Manufacturers to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Work with National Association of to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency June 12, 2007 - 1:40pm Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today expanded DOE's work to maximize energy efficiency by increasing cooperation among U.S. industry and energy efficiency experts, through a Memorandum of Understanding (MOU) with the National Association of Manufacturers (NAM). Specifically, this MOU includes a variety of activities, which aim to assist manufacturing facilities in implementing an energy management program; adopt clean, efficient technologies; and achieve continual energy efficiency and intensity reduction improvements. Through

117

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

118

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... Manufacturing energy consumption data show large reductions in both manufacturing energy use and the energy intensity ...

119

Bio Solutions Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

search Name Bio Solutions Manufacturing Inc Place Las Vegas, Nevada Zip 89103 Product Waste-to-energy bioremediation developer. References Bio Solutions Manufacturing Inc1...

120

American Manufacturing Gets a Boost | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Manufacturing Gets a Boost American Manufacturing Gets a Boost American Manufacturing Gets a Boost June 12, 2012 - 7:52pm Addthis DOE is investing in projects that will increase energy efficiency in the manufacturing industry. One project will develop a new process for producing titanium components that could reduce the materials needed by ten-fold in aircraft and vehicle manufacturing. | Courtesy of Flickr user markjhandel, Creative Commons license. DOE is investing in projects that will increase energy efficiency in the manufacturing industry. One project will develop a new process for producing titanium components that could reduce the materials needed by ten-fold in aircraft and vehicle manufacturing. | Courtesy of Flickr user

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

122

Manufacturer Voluntarily Reports Noncompliance | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance June 28, 2012 - 9:05am Addthis Cooper Power Systems, LLC ("Cooper"), a wholly-owned subsidiary of Cooper Industries notified the U.S. Department of Energy's ("DOE") Office of Enforcement that it had distributed three noncompliant basic models (five total units) of liquid-immersed distribution transformers in U.S. commerce. Each of these models failed to meet the minimum level of efficiency required by DOE regulations. Cooper discovered that it had distributed the noncompliant basic models when preparing its first certification report under new DOE regulations. Cooper immediately notified DOE of the noncompliance and requested guidance on corrective

123

Lean, Energy, and Savings: Energy Impacts of Lean Manufacturing  

E-Print Network (OSTI)

Most utility energy efficiency programs for industry focus on equipment replacement. A key result is confidence in the amount of resulting energy savings. Utility programs focusing on behavior - that is, using a piece of equipment more optimally - often suffer from a perceived inability to accurately quantify resulting savings. The last few decades have seen a proliferation of Lean Manufacturing practices across industry, where organizations focus on eliminating waste. Energy is often a component of these wastes, but challenges in quantifying results have slowed the inclusion of Lean in utility energy efficiency programs. In 2011 the Northwest Energy Efficiency Alliance completed an effort that applied energy concepts within the Manufacturing Extension Partnership organizations of the Northwest. A critical project component was quantifying the energy savings from a Lean implementation at a food processing facility. This paper provides details on that project's approach, results, and next steps.

Milward, R.; Gilless, C.; Brown, K.

2013-01-01T23:59:59.000Z

124

Advanced Manufacturing Office: Industrial Assessment Centers...  

NLE Websites -- All DOE Office Websites (Extended Search)

contacting the nearest IAC Center. Hire an IAC alumnus with real-world problem-solving skills. Locate additional incentives and resources. Small- and medium-sized manufacturers may...

125

Optimizing Manufactured Housing Energy Use  

E-Print Network (OSTI)

In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built to the basic HUD code standard and the other was constructed with features expected to produce a home that was 50% more energy efficient. FSEC and NCATSU began monitoring energy performance in both homes. In addition, the performance of each unit was evaluated using a DOE2 based computer energy analysis program developed by FSEC. A comparison of the performance of the units shows a measured energy savings in the more energy efficient unit of 52% for the Heating, cooling, and DHW energy use. This compares well with the energy savings predicted by the FSEC Energy Gauge program of 57%, even when accounting for the warmer than usual winter experienced during the testing period.

McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

2004-01-01T23:59:59.000Z

126

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... Manufacturing Energy Consumption Survey (MECS ... transportation, manufacturing, and a variety of consumer products. It is the ...

127

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

128

Energy Department Launches Bold New Clean Energy Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Launches Bold New Clean Energy Manufacturing Initiative Energy Department Launches Bold New Clean Energy Manufacturing Initiative March 26, 2013 - 11:00am Addthis As...

129

Centers for manufacturing technology: Industrial Advisory Committee Review  

Science Conference Proceedings (OSTI)

An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

NONE

1995-10-01T23:59:59.000Z

130

Source category survey: mineral wool manufacturing industry. Final report  

SciTech Connect

This report contains background information which was used for determining the need for new source performance standards (NSPS) for the mineral wool manufacturing industry in accordance with Section 111 of the Clean Air Act. Air pollution emissions and growth trends of the mineral wool industry are examined. Manufacturing processes, control strategies, and state and local air pollution regulations are discussed. The impact of a potential NSPS on particulate and carbon monoxide emissions is calculated.

Not Available

1980-06-01T23:59:59.000Z

131

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

132

Alternative Energy Manufacturing Tax Credit (Utah) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Tax Credit (Utah) Manufacturing Tax Credit (Utah) Alternative Energy Manufacturing Tax Credit (Utah) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Maximum Rebate Up to 100% of new state tax revenues (including, state, corporate, sales and withholding taxes) over the life of the project or 20 years, whichever is less. Program Info Start Date 05/12/2009 State Utah Program Type Industry Recruitment/Support Rebate Amount Determined on a case-by-case basis by the Governor's Office of Economic Development based on statutory guidelines and evaluation criteria. Provider Utah Governor's Office of Economic Development The Alternative Energy Development Incentive (AEDI) is a post-performance non-refundable tax credit for up to 100% of new state tax revenues

133

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

134

Renewable Energy Manufacturing Tax Credit (South Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Tax Credit (South Carolina) Manufacturing Tax Credit (South Carolina) Renewable Energy Manufacturing Tax Credit (South Carolina) < Back Eligibility Industrial Savings Category Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate $500,000 for any year and $5 million total for all years Program Info Start Date 01/01/2010 Expiration Date 12/31/2015 State South Carolina Program Type Industry Recruitment/Support Rebate Amount 10% South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015. In order to qualify, a business must: *manufacture renewable energy systems and components in South Carolina for solar, wind, geothermal, or other renewable energy uses

135

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

136

Energy-Related Carbon Emissions in Manufacturing  

Reports and Publications (EIA)

Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

Information Center

2000-05-31T23:59:59.000Z

137

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

138

Policy modeling for industrial energy use  

E-Print Network (OSTI)

simple energy intensity is not a good indicator for energyEnergy Intensity in the Iron & Steel industry: A Comparison of Physical and Economic Indicators",energy efficiency in the Korean manufacturing sector, studies using economic energy efficiency indicators (energy intensity

2003-01-01T23:59:59.000Z

139

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

140

Energy Department Launches New Clean Energy Manufacturing Initiative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Clean Energy Manufacturing New Clean Energy Manufacturing Initiative Energy Department Launches New Clean Energy Manufacturing Initiative March 26, 2013 - 10:56am Addthis News Media Contact (202) 586-4940 OAK RIDGE - As part of the Obama Administration's commitment to revitalizing America's manufacturing sector, today the Energy Department launched the Clean Energy Manufacturing Initiative (CEMI), a new Department initiative focused on growing American manufacturing of clean energy products and boosting U.S. competitiveness through major improvements in manufacturing energy productivity. The initiative includes private sector partnerships, new funding from the Department, and enhanced analysis of the clean energy manufacturing supply chain that will guide the Department's future funding decisions.

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Basics: Industrial Energy Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or...

142

Certifying U.S. Manufacturing Plants for Energy Efficiency  

E-Print Network (OSTI)

U.S. industry has the capacity to significantly improve its overall energy performance and help meet both private-sector and national goals for energy and the environment. The U.S. Department of Energys (DOE) Industrial Technologies Program (ITP) is partnering with industry to drive a 25% reduction in industrial energy intensity over a 10 year periodand also contribute to an 18% reduction in carbon intensity economy-wide by 2012. To expedite progress in achieving these targets, the Superior Energy Performance partnership1 , a collaboration involving ITP, many industrial companies, the American National Standards Institute (ANSI), non-profits, the U.S. Environmental Protection Agency (EPA), and the U.S. Department of Commerces National Institute of Standards and Technology (NIST), is facilitating the development of energy management and certification standards for manufacturing plants. To become certified, a plant would need to adopt energy management practices meeting the ANSI standards and demonstrate continual improvement in energy intensity. Certification of plants would provide strong incentive and recognition for effective plant energy management and would lay the groundwork for energy efficiency and carbon reduction that would favorably position the plant in achieving greater market value. The paper will describe the overall strategy of certifying manufacturing plants and how plant certification fits into the DOE Industrial Technologies Program overall strategy to partner with industrial companies and entire manufacturing supply chains to improve energy intensity by 25% in 10 years.

Scheihing, P.; Schultz, S.; Almaguer, J.

2008-01-01T23:59:59.000Z

143

Wind Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Alternative Fuel Vehicles --Batteries --Biofuels --Clean Cities -Building Design --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind...

144

Training ultra precision engineers for UK manufacturing industry  

Science Conference Proceedings (OSTI)

Ultra Precision Engineers are in demand in both UK and European manufacturing industries. Engineering Companies can address this skills shortage by training existing staff or recruiting new staff with the appropriate skills. Since companies are understandably ... Keywords: Higher education, Industry, Knowledge transfer, Postgraduate, Precision engineering

Christopher Sansom; Paul Shore

2013-06-01T23:59:59.000Z

145

Energy Matters: Industrial Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Matters: Industrial Energy Efficiency Matters: Industrial Energy Efficiency Energy Matters: Industrial Energy Efficiency November 18, 2011 - 2:33pm Addthis On November 16, 2011, Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan joined us for a live chat on Energy.gov to discuss the role of industrial energy efficiency in strengthening the American economy. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs On Wednesday, November 16th, Dr. Kathleen Hogan, Deputy Assistant Secretary for Energy Efficiency, discussed industrial energy efficiency on an Energy Matters video livechat. Dr. Hogan answered questions, submitted by industry professionals and the interested public via email, Facebook and Twitter, on how commercial building efficiency, advanced manufacturing, and corporate partnerships can

146

Energy Manufacturing Matthew Realff and Steven Danyluk  

E-Print Network (OSTI)

Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

Das, Suman

147

Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure  

DOE Green Energy (OSTI)

In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs.

Torvanger, A. (Senter for Anvendt Forskning, Oslo (Norway) Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

148

Tax Credit for Renewable Energy Equipment Manufacturers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate $20 million Program Info Expiration Date 1/1/2014 State Oregon Program Type Industry Recruitment/Support Rebate Amount 50% of eligible costs (10% per year for 5 years) Provider Oregon Business Development Department The Tax Credit for Renewable Energy Resource Equipment Manufacturing Facilities was enacted as a part of Oregon's Business Energy Tax Credit (BETC) in July 2007, with the passage of [http://www.leg.state.or.us/07reg/measpdf/hb3200.dir/hb3201.en.pdf HB

149

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Survey (MECS) Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections MECS Industry Analysis Briefs Steel Industry Analysis The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago. Chemical Industry Analysis The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals

150

Energy-Saving Homes, Buildings, and Manufacturing | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Saving Homes, Buildings, and Manufacturing Energy-Saving Homes, Buildings, and Manufacturing Buildings Homes Advanced Manufacturing Government Energy Management Buildings...

151

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA)

How Did Manufacturers Use Natural Gas? Manufacturers used natural gas in processes, in boilers, for nonprocess uses, and as feedstock. In 1991 and 1994, ...

152

Integrated Paper and Paperboard Manufacturing Plant EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Paper and Paperboard Manufacturing Plant EPI Integrated Paper and Paperboard Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

153

Flat Glass Manufacturing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Flat Glass Manufacturing Plant EPI Flat Glass Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

154

ENERGY STAR Resources for Small & Medium Manufactures  

NLE Websites -- All DOE Office Websites (Extended Search)

Small & Medium Manufacturers Guide to Energy Management June 2013 ENERGY STAR is a U.S. Environmental Protection Agency Program helping organizations and individuals fight climate...

155

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

156

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

157

Advanced Manufacturing Office: Industries and Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Combustion Compressed Air Distributed EnergyCombined Heat and Power (CHP) Fuel and Feedstock Flexibility Information & Communications Technology Data Centers...

158

Energy Programs of the Texas Industrial Commission  

E-Print Network (OSTI)

The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least 283.81 trillion BTU's of industrial energy in 1980. As the primary consumer of Texas' energy (54% of total, industry is a major focal point of the state's energy conservation effort. Although industry's overall record of energy conservation is good, such a large consumer must receive serious attention in any plan aimed at improving the overall efficiency of energy use in the state. The Texas Industrial Commission has been designated lead agency of the industrial conservation effort, and as such, created the Energy Utilization Department in the Fall of 1977. The multi-faceted department has established programs to accomplish its mission including: The Energy Search Center, an information access point for Texas manufacturers; a series of technical workshops and seminars; an annual Industrial Energy Technology Conference; the coordination of a university program for the training of industrial energy auditors; and organizational assistance in the establishment of regional energy conservation groups. Although manufacturers are encouraged to utilize the programs, they are designed primarily for small or medium-sized industries and low-technology operations where the employment of an energy specialist is economically impractical.

Heare, J.; dePlante, L. E.

1979-01-01T23:59:59.000Z

159

Clean Energy Manufacturing Incentive Program (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

160

Industrial | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends Despite a 54-percent increase in industrial shipments, industrial energy...

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy-Saving Opportunities for Manufacturing Companies, International Fact Sheet (Spanish)  

Science Conference Proceedings (OSTI)

This English/Spanish fact sheet describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

Not Available

2010-08-01T23:59:59.000Z

162

Energy-Saving Opportunities for Manufacturing Companies (English/Portuguese Brochure)  

Science Conference Proceedings (OSTI)

This English/Portuguese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

Not Available

2011-07-01T23:59:59.000Z

163

Energy-Saving Opportunities for Manufacturing Enterprises in China (International Brochure)  

Science Conference Proceedings (OSTI)

This English/Chinese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help Chinese manufacturing facilities reduce industrial energy intensity.

Not Available

2010-10-01T23:59:59.000Z

164

Energy-Saving Opportunities for Manufacturing Companies, (English/Russian Fact Sheet) (Revised)  

SciTech Connect

This English/Russian brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

2011-07-01T23:59:59.000Z

165

Manufacturers Saving with Lost Foam Metal Casting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting December 18, 2009 - 2:43pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Metal casting was identified as one of the top 10 energy users in manufacturing. The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent fewer materials than traditional processes. One example of this technology is being used by General Motors to make lightweight engine blocks for the fuel-efficient vehicles they manufacture. A government-funded effort to support development of foam metal casting helped reduce an estimated 9.4 million tons of solid waste between 1994 and 2005, which saved industry an estimated 3 trillion Btu.

166

The cement industry is the most energy intensive of all ...  

U.S. Energy Information Administration (EIA)

Today in Energy July 1, 2013.. ... tags: consumption industrial manufacturing. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

167

Development of a Performance-based Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

the work of EPA and the automobile manufacturing industry to develop an Energy Performance Indicator (EPI) for assembly plants. These types of plants are defined as those that...

168

Figure 63. Industrial delivered energy consumption by application ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 63. Industrial delivered energy consumption by application, 2011-2040 (quadrillion Btu) Manufacturing heat and power Nonmanufacturing heat ...

169

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

170

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

171

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

172

Industrial Geospatial Analysis Tool for Energy Evaluation  

E-Print Network (OSTI)

IGATE-E is an industrial energy analysis tool. The tool is intended to be a decision support and planning tool to a wide spectrum of energy analysts, engineers, researchers, government organizations, private consultants, industry partners, and alike. The tool applies statistical modeling to multiple datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using information from DOE's Industrial Assessment Center database (IAC-DB) and DOE's Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool utilizes the DOE EIA-MECS energy survey data to validate bottom-up estimates and permits several statistical examinations.

Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

2013-01-01T23:59:59.000Z

173

Energy Report: U.S. Wind Energy Production and Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing...

174

Energy Department Launches Bold New Clean Energy Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

for manufacturers. Another key element of the initiative is creating new public-private partnerships that focus on improving U.S. clean energy manufacturing...

175

EERE News: Energy Department Launches New Clean Energy Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

manufacturing of cost-competitive clean energy technologies, from wind, solar, and geothermal to batteries and biofuels. As a part of this increased focus on manufacturing...

176

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Cost of Natural Gas Used in Manufacturing Sector ... Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased ...

177

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

The Potential for Energy Efficiency. Prepared for The EnergyIndustrial Sector Energy Efficiency Potential Study - DraftIndustrial Energy Efficiency Market Characterization Study.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

178

PV Manufacturing R&D Project -- Trends in the U.S. PV Industry  

DOE Green Energy (OSTI)

To foster continued growth in the U.S. photovoltaic (PV) industry, the U.S. Department of Energy initiated the PV Manufacturing R&D (PVMR&D) Project--a partnership with U.S. PV industry participants to perform cost-shared manufacturing research and development. Throughout FY 2004, PVMR&D managed fourteen subcontracts across the industry. The impact of PVMR&D is quantified by reductions in direct module manufacturing costs, scale-up of existing PV production capacity, and accrual of cost savings to the public and industry. An analysis of public and industry investment shows that both recaptured funds by mid-1998 based on estimated manufacturing cost savings from PVMR&D participation. Since project inception, total PV manufacturing capacity has increased from 14 MW to 201 MW at the close of 2003, while direct manufacturing costs declined from $5.55/W to $2.49/W. These results demonstrate continued progress toward the overriding goals of the PVMR&D project.

Brown, K. E.; Mitchell, R. L.; Bower, W. I.; King, R.

2005-01-01T23:59:59.000Z

179

Manufacturing Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propylene (C 3 H 6): A normally gaseous olefinic hydrocarbon recovered from refinery processes or petrochemical processes. In the manufacturing ...

180

Ontario's Industrial Energy Services Program  

E-Print Network (OSTI)

The Ontario Ministry of Energy began offering its new Industrial Energy Services Program (IESP) in early 1987. This 3-year, $5-million program, while not new in concept, is thought to be unique for its depth of service and method of delivery. It provides Ontario's manufacturers with advice and funding assistance for the identification and definition of industrial energy efficiency opportunities. The first phase provides for a free comprehensive site energy audit/analysis, conducted over one to five days, by teams of private sector consultants, selected to match expertise with manufacturer's needs. The emphasis is on process and equipment improvements, but site services and buildings are also examined. The final report includes detailed descriptions of major opportunities, along with estimated costs, savings, and paybacks. The next phases provide for sharing the detailed feasibility study costs and project engineering costs for those energy projects that move to implementation. In this paper, the author briefly describes the novel administrative structure of the program, presents the results of the activities to date, and describes, in some detail, several case studies from different industrial sectors.

Ploeger, L. K.

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient November 14, 2011 - 12:22pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? With 50+ assessments and 500+ total recommendations made, this IAC's recommendations could save the average manufacturer evaluated an average $118,636 in electrical, natural gas, waste and productivity costs. This team has saved FUJIFILM Hunt Chemicals U.S.A facility nearly 1,240,976 kW hours of electricity -- an estimated $39,280 per year! Earlier this month, we brought you the story of Chrome Deposit Corporation, a manufacturer that with the help of the University of Delaware Industrial Assessment Center is saving millions of dollars with

182

Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

183

Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

184

DMI Industries | Open Energy Information  

Open Energy Info (EERE)

OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References DMI Industries1 LinkedIn Connections CrunchBase Profile No...

185

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

The gross output for the petroleum and coal products subsector grew by about 3 percent, ... Manufacturing Energy Consumption Survey, MECS Definition of Fuel Use, ...

186

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIRSTTR...

187

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff...

188

Department of Energy Joins with Manufacturers, Environmentalists...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by law, is based on the consensus agreement reached by stakeholders which balances energy savings, consumer choice and manufacturer impact. We applaud DOE for its work and...

189

Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Construction Appliances & Electronics Commercial Lighting Lighting Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Maximum Rebate Total (grants and loans): $3.3 million Grants: $300,000 Loans: $3 million Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund) Start Date 05/23/2011 State New Jersey Program Type Industry Recruitment/Support Rebate Amount Varies Provider New Jersey Economic Development Authority

190

Qualifying Advanced Energy Manufacturing Investment Tax Credit | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Qualifying Advanced Energy Manufacturing Investment Tax Credit Qualifying Advanced Energy Manufacturing Investment Tax Credit < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Heating Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Wind Solar Maximum Rebate $30 million Program Info Funding Source The American Recovery and Reinvestment Act of 2009 Start Date 02/17/2009 Program Type Industry Recruitment/Support

191

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

192

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

193

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

A-Z Index A B C D E F G H I J K L M ... Manufacturing energy consumption data show large reductions in both manufacturing energy use and the energy intensity of ...

194

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $200,000 Customer: $750,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $0.08/kWh first year energy savings Lighting: Varies ECM Motors/Controls: Varies

195

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Insulation Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $100,000 Customer: $200,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $4/MCF of first year energy savings Whole Building Design Incentive: 50% of cost up to $3,000 Steam Trap Repair/Replacement: $100

196

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy Consumption Survey (MECS) Data Released › Graph showing total U.S. manufacturing energy consumption for all purposes has declined 17 percent from 2002 to 2010. Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010, March 19, 2013. First Estimates from 2010 Manufacturing Energy Consumption Survey (MECS) Released ›

197

Energy Star Helps Manufacturers To Achieve High Energy Performance  

E-Print Network (OSTI)

From personal electronic devices to homes and office buildings, ENERGY STAR is a recognized symbol of high quality energy performance which enables consumers, home buyers, and businesses to make informed energy decisions. Now, the U.S. Environmental Protection Agency, within the construct of ENERGY STAR, is extending the benefits to manufacturers in new and meaningful ways. Through the development of tools and technical resources specifically targeting manufacturing companies, ENERGY STAR seeks to provide a means for these businesses to understand and achieve excellence in energy performance by reinforcing the link between energy, financial, and environmental performance. Discussed are the enhanced programmatic offerings as well as two new tools under development that will illustrate the impact of energy consumption on financial performance. The first tool will permit an assessment of energy performance, or benchmark it, at a plant level normalizing for such variables as product type, annual plant hours, plant capacity, annual product value, number of employees, and location. Use of this tool and the information it provides as a means to assess, track and provide targets for plant energy performance is examined. The second tool seeks to elevate the consideration of energy use to an executive level within an organization by calculating financial energy indices specific to individual companies and industrial sectors. These indices relate a business' energy use to such factors as net operating income, value of sales, net income, and so forth. Corporate executives, Wall Street analysts, and energy managers are intended to be the primary users of these ratios. Programmatic improvements to ENERGY STAR include greater networking among participants in the partnership and more opportunities for recognition of their achievements. With the new tools, resources, and program enhancements, it is believed that manufacturers will be equipped with valuable and credible information from which more informed and progressive energy performance decisions can be made. Further, these businesses will be doing their part to demonstrate that protection of the environment is good for business.

Dutrow, E.; Hicks, T.

2001-05-01T23:59:59.000Z

198

Revitalizing American Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing American Manufacturing Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | Secretary Chu Secretary Chu Former Secretary of Energy "The Department of Energy has long been charged with accelerating energy

199

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, ...

200

Energy Department Partners with Industry to Train Federal Energy Managers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Partners with Industry to Train Federal Energy Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs November 10, 2005 - 2:21pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a partnership with the Energy Solutions Center Inc. (ESC), a technology commercialization and market development organization representing energy utilities, municipal energy authorities, and equipment manufacturers and vendors, to train federal energy managers, natural gas utilities and manufacturers on energy-efficient gas fueled technologies. "This innovative public-private partnership will help federal agencies as well as private companies improve the efficiency of their operations,

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Department Partners with Industry to Train Federal Energy Managers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Partners with Industry to Train Federal Energy Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs November 10, 2005 - 2:21pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a partnership with the Energy Solutions Center Inc. (ESC), a technology commercialization and market development organization representing energy utilities, municipal energy authorities, and equipment manufacturers and vendors, to train federal energy managers, natural gas utilities and manufacturers on energy-efficient gas fueled technologies. "This innovative public-private partnership will help federal agencies as well as private companies improve the efficiency of their operations,

202

Sales Tax Exemption for Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales Tax Exemption for Manufacturing Facilities Sales Tax Exemption for Manufacturing Facilities Sales Tax Exemption for Manufacturing Facilities < Back Eligibility Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate 50% of capital investment in the eligible project Program Info Start Date 7/1/2008 State Kentucky Program Type Sales Tax Incentive Rebate Amount 100% sales and use tax refund Provider Kentucky Cabinet for Economic Development In August 2007 Kentucky established the ''Incentives for Energy Independence Act'' to promote the development of renewable energy and alternative fuel facilities, energy efficient buildings, alternative fuel vehicles, research and development activities and other energy initiatives. This includes a sales tax exemption which allows manufacturers to apply for

203

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Distributes Energy-Saving Tools to Help Manufacturers Save DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

204

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributes Energy-Saving Tools to Help Manufacturers Save Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

205

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

206

Manufacturing News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing News and Blog Manufacturing News and Blog Manufacturing News and Blog Blog Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 3:53 PM From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. Read The Full Story Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 1:06 PM Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. Read The Full Story Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory

207

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

208

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

209

Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

Not Available

2012-03-01T23:59:59.000Z

210

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Multi-Family Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Appliances & Electronics Maximum Rebate Contact EEF Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Incentives Vary Widely Provider Connecticut Light and Power All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy

211

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial and Industrial Energy Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: $50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Custom Incentives: 50% of incremental cost

212

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Incentives for Prescriptive measures may not exceed 50% of the total project cost, or the individual utilities customer cap (varies per each utility). Incentives for Custom measure may not exceed 40% of the total project cost, or the individual utilities customer cap (varies per each utility). Program Info Expiration Date 12/31/2013 State Michigan

213

California Industrial Energy Efficiency Potential  

SciTech Connect

This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

2005-06-01T23:59:59.000Z

214

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Realizing Building End-Use Efficiency with Ermerging Technologies Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

215

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative Realizing Building End-Use Efficiency with Ermerging Technologies

216

Energy efficient industrialized housing research program  

SciTech Connect

This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-01-01T23:59:59.000Z

217

Statement by Energy Secretary Steven Chu on New Clean Energy Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement by Energy Secretary Steven Chu on New Clean Energy Statement by Energy Secretary Steven Chu on New Clean Energy Manufacturing Facility in Upstate New York Statement by Energy Secretary Steven Chu on New Clean Energy Manufacturing Facility in Upstate New York October 14, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu issued the following statement on today's announcement by Universal Display Corporation (UDC) that the company has selected Canandaigua, New York for the site of a new clean energy facility to manufacture next generation lighting technologies. "This is another example of how Recovery Act investments are creating jobs and building new industries here in the U.S. Today's announcement puts Upstate New York at the forefront of clean energy manufacturing. This region will be on the cutting edge of a growing industry producing the next

218

Understanding Manufacturing Energy Use Through Statistical Analysis  

E-Print Network (OSTI)

Energy in manufacturing facilities is used for direct production of goods, space conditioning, and general facility support such as lighting. This paper presents a methodology for statistically analyzing plant energy use in terms of these major end uses.

Kissock, J. K.; Seryak, J.

2004-01-01T23:59:59.000Z

219

Advanced Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Fort Collins, Colorado Zip 80525 Sector Solar Product US-based manufacturer of power conversion and control systems for the semiconductor and solar industries. The company also...

220

Alternative Fuels Data Center: Clean Energy Manufacturing Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Energy Clean Energy Manufacturing Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Google Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Delicious Rank Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Energy Manufacturing Grants The Clean Energy Manufacturing Incentive Grant Program provides financial

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Green Energy Manufacturing Tax Credit (Manitoba, Canada) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) < Back Eligibility Commercial Industrial Savings Category Buying & Making Electricity Solar Wind Program Info Funding Source Government of Manitoba State Manitoba Program Type Corporate Tax Incentive Provider Manitoba Finance This refundable income tax credit will be equal to 10% of the value of qualifying property produced in Manitoba and sold before 2019 for residential or commercial use in Manitoba. Qualifying property includes equipment for wind power, solar energy, geothermal energy, hydrogen fuel cells, geothermal ground source heating systems and solar thermal heating equipment. In the 2011 Budget, the total Green Energy Equipment Tax Credit on

222

Sustainability in Additive Manufacturing and Energy Consumption in ...  

Science Conference Proceedings (OSTI)

Symposium, Green Technologies for Materials Manufacturing and Processing IV. Presentation Title, Sustainability in Additive Manufacturing and Energy...

223

MANUFACTURING  

Science Conference Proceedings (OSTI)

... Energy Efficiency in Buildings: Solid State Climate Control ... TE materials is green job creation, as Table ... can provide 21,454 US jobs in manufacturing ...

2011-08-01T23:59:59.000Z

224

US Solar Energy Industries Association SEIA | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association SEIA Energy Industries Association SEIA Jump to: navigation, search Name US Solar Energy Industries Association (SEIA) Place Washington, Washington, DC Zip 20005 Sector Solar Product US national trade association of solar energy manufacturers, dealers, distributors, consultants, and marketers. References US Solar Energy Industries Association (SEIA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Solar Energy Industries Association (SEIA) is a company located in Washington, Washington, DC . References ↑ "US Solar Energy Industries Association (SEIA)" Retrieved from "http://en.openei.org/w/index.php?title=US_Solar_Energy_Industries_Association_SEIA&oldid=352621

225

Advanced Methods for Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methods for Manufacturing Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and construction processes (both technologies and methods) and show the most promise in shortening timelines and lowering overall deployment costs. The innovations selected for further development under the AMM program will collectively provide a major means of moving the U.S. nuclear industry from

226

Pharmaceutical Manufacturing EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal agency resources Grocery & convenience stores resources Healthcare resources Higher education resources Home-based business resources Hospitality resources Industrial...

227

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, ... Manufacturing Energy and Carbon Footprints Associated Analysis.

228

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

DOE Uses MECS Data. Manufacturing Energy and Carbon Footprints Associated Analysis. Thank You. We welcome your comments or suggestions (optional).

229

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, biomass and ethanol.

230

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers.

231

Industrial-market opportunities for geothermal energy in Colorado. Special Publication 20  

DOE Green Energy (OSTI)

Geothermal sites in Colorado are listed. The potential industrial market for geothermal energy in Colorado is described for agriculture, manufacturing, and the tourism and travel industry.

Coe, B.A.

1982-04-01T23:59:59.000Z

232

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Million Weatherized American Homes David Arakawa (ORNL) Secretarial Achievement Awards Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing...

233

Energy-Efficient Manufactured Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufactured Homes Manufactured Homes Energy-Efficient Manufactured Homes June 24, 2013 - 10:20am Addthis There are many opportunities to improve the energy efficiency of manufactured homes. | Photo courtesy of ©iStockphoto.com/Marje There are many opportunities to improve the energy efficiency of manufactured homes. | Photo courtesy of ©iStockphoto.com/Marje What does this mean for me? Manufactured homes (formerly called mobile homes) mean affordable housing for many Americans. Newer manufactured homes offer amenities found in site-built homes, and can be retrofitted to improve energy efficiency and incorporate renewable energy technologies. Like site-built homes, new manufactured homes (formerly known as mobile homes) can be designed for energy efficiency and renewable energy. You can

234

Energy-Efficient Manufactured Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufactured Homes Manufactured Homes Energy-Efficient Manufactured Homes June 24, 2013 - 10:20am Addthis There are many opportunities to improve the energy efficiency of manufactured homes. | Photo courtesy of ©iStockphoto.com/Marje There are many opportunities to improve the energy efficiency of manufactured homes. | Photo courtesy of ©iStockphoto.com/Marje What does this mean for me? Manufactured homes (formerly called mobile homes) mean affordable housing for many Americans. Newer manufactured homes offer amenities found in site-built homes, and can be retrofitted to improve energy efficiency and incorporate renewable energy technologies. Like site-built homes, new manufactured homes (formerly known as mobile homes) can be designed for energy efficiency and renewable energy. You can

235

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security & Safety Energy Economy Funding Opportunities State & Local Government Science & Innovation Science & Technology Science Education Innovation Energy Sources Energy Usage...

236

Energy efficient industrialized housing research program  

Science Conference Proceedings (OSTI)

This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-12-01T23:59:59.000Z

237

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

2002 Manufacturing Energy Consumption Survey, Washington,impacts on industrial energy consumption. The cumulativeemerging technologies on energy consumption in the U.S. food

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

238

Statement by Energy Secretary Steven Chu on New Clean Energy Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Clean Energy New Clean Energy Manufacturing Facility in Upstate New York Statement by Energy Secretary Steven Chu on New Clean Energy Manufacturing Facility in Upstate New York October 14, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu issued the following statement on today's announcement by Universal Display Corporation (UDC) that the company has selected Canandaigua, New York for the site of a new clean energy facility to manufacture next generation lighting technologies. "This is another example of how Recovery Act investments are creating jobs and building new industries here in the U.S. Today's announcement puts Upstate New York at the forefront of clean energy manufacturing. This region will be on the cutting edge of a growing industry producing the next

239

Energy Efficiency Fund (Electric) - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

240

Industrial Distributed Energy: Combined Heat & Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Distributed Energy: Combined Heat & Power Industrial Distributed Energy: Combined Heat & Power Information about the Department of Energy's Industrial Technologies...

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report  

E-Print Network (OSTI)

At the end of 1997, The Energy Information Administration (EIA) published a report titled What Took Place in the Economic Environment Between 1991 and 1994 That Affected the Energy Manufacturers Used? This report contains information gathered from Manufacturing Energy Consumption Surveys (MECS), representing a sampling of over 250,000 manufacturing establishments in 52 industries and nine geographical Census divisions. Although the report covers natural gas, distillate fuel oil, residual fuel oil, liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify electric motor systems. The report also introduces the US Department of Energy's Motor Challenge Program and the US Environmental Protection Agency's Green Lights and Energy Star Programs. Topics such as changes in the electricity market, technology improvements, price disparities, and lessons learned from the natural gas restructuring as related to the electric utility deregulation relate the changes that are impacting the industrial environment. Although the report details information from many industries, the four major energy consumers in the manufacturing sector are: * Petroleum and Coal Products (SIC 29) * Chemicals and Allied Products (SIC 28) * Paper and Allied Partners (SIC 26) * Primary Metal Industries (SIC 33) These industries are also very proactive in their attempts to promote energy efficiency in all areas, including electrical. For example, the IEEE-841 Standard motor is a result of the work of some of these industries. The impact on the industrial Maintenance, Repair, and Operations (MRO) suppliers and Original Equipment Manufacturers (OEM) markets show the need for increasing awareness in all aspects of electrical energy, especially in light of the implementation of the Energy Policy Act and the deregulation of the utility industry.

Lockhead, S.

1999-05-01T23:59:59.000Z

242

How ENERGY STAR Helps Manufacturers Improve the Energy Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Helps Manufacturers Improve the Energy Performance of their Operations Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and...

243

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Cost of Natural Gas Used in Manufacturing Sector Has Fallen.

244

Energy Report: U.S. Wind Energy Production and Manufacturing Surges,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: U.S. Wind Energy Production and Manufacturing Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy August 14, 2012 - 9:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released a new report today highlighting strong growth in the U.S. wind energy market in 2011, increasing the U.S. share of clean energy and supporting tens of thousands of jobs, and underscoring the importance of continued policy support and clean energy tax credits to ensure that the manufacturing and jobs associated with this booming global industry remain in America According to the 2011 Wind Technologies Market Report, the United States remained one

245

Wind Manufacturing Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Tax Credit Wind Manufacturing Tax Credit Wind Manufacturing Tax Credit < Back Eligibility Commercial Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate No specific per project limitation; 100 million limit for all offshore wind tax credits (may be exceeded if EDA deems appropriate) Program Info Start Date 08/19/2010 State New Jersey Program Type Industry Recruitment/Support Rebate Amount 100% of the qualified capital investment Provider New Jersey Economic Development Authority In August 2010 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2010/Bills/AL10/57_.PDF S.B. 2036]) creating an offshore wind resource requirement within the [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NJ05R&re... state renewables portfolio standard (RPS)] and tax incentives for certain

246

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Miraial formerly Kakizaki Manufacturing Miraial formerly Kakizaki Manufacturing Jump to: navigation, search Name Miraial (formerly Kakizaki Manufacturing) Place Tokyo, Japan Zip 171-0021 Product Manufacturer of wafer handling products and other components for the global semiconductor industry. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Manufacturin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving...

248

Industrial Energy Procurement Contracts  

E-Print Network (OSTI)

Rates are going down and services are improving! Or are they? As opportunities to directly contract for energy expand from the larger industrials to include mid-market companies, existing energy supply and service contracts will be renegotiated and new ones developed. Many of these mid-level industrial customers typically lack in-house expertise on energy procurement, yet their operations use significant amounts of energy. This paper looks at some of the issues involved in the main terms of a procurement contract, as well as issues in contract formation and termination. Finally the paper reviews some of the recent energy aggregation and outsourcing deals to highlight some that worked and some that didn't.

Thompson, P.; Cooney, K.

2000-04-01T23:59:59.000Z

249

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

250

Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industrial and Industrial Energy-Efficiency Program Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency Program < Back Eligibility Commercial Construction Industrial Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom Projects: 75% of the incremental measure costs Technical Efficiency Studies: 50% of cost up to $10,000-$20,000 Design Incentive (New Construction): $50,000 Program Info Expiration Date 1/1/2013 State North Carolina Program Type Utility Rebate Program Rebate Amount Custom: $0.08 per kW hour saved annually

251

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive...

252

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Inc Jump to: navigation, search Name Green Energy Industries Inc Sector Marine and Hydrokinetic Website http:http:www.gecorpusa.co Region United States...

253

Millennium Energy Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name Millennium Energy Industries Place Jordan Zip 1182 Sector Solar Product Jordan-based solar energy firm focused in MENA region....

254

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Name California Solar Energy Industries Association Place Rio Vista, California Zip 94571 Sector Solar Product California Solar Energy Industries Association is a trade group...

255

Energy Management Pathfinding: Understanding Manufacturers' Ability and Desire to Implement Energy Efficiency  

E-Print Network (OSTI)

Manufacturers are scrambling for relief from today's energy expenses and price volatility. Most industry decision-makers believe the solution is to seek the lowest available energy prices. Too often, managers fail to grasp the opportunities offered by energy management, which focuses on both consumption and prices. Industry can be resistant to energy management for a variety of reasons. Simply put, energy management has no traditional place in the typical manufacturer's chart of organization, job descriptions, and performance accountabilities. While technology is fundamental to energy efficiency, it is people who make it work in an organizational context. DuPont, Frito-Lay, Unilever, and Kimberly-Clark are a few of the forward-thinking companies that have found ways to build energy management into their daily operations to positive effect. The Alliance to Save Energy is documenting these companies' experiences in a series of case studies that reflect the organizational and behavioral aspects of corporate-wide energy management. Case studies show that energy management motives and approaches are somewhat varied-there is no one size fits all solution. The Alliance offers a typology of industrial energy management strategies to illustrate the range of opportunities available to industry. Ultimately, it is a manufacturer's organizational character that determines its ability to manage energy consumption. A checklist included in this paper allows the reader to diagnose a manufacturer's aptitude for undertaking various energy management strategies.

Russell, C.

2005-01-01T23:59:59.000Z

256

Innovations in the Use of Nuclear Energy for Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

J. Stephen Herring

2010-10-01T23:59:59.000Z

257

Industrial Assessment Centers Train Future Energy-Savvy Engineers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced Manufacturing Office What does this project do? The Industrial Assessment Centers provide students with real-world experience performing energy audits for small- and medium-sized

258

Sustainable and Energy-Efficient Manufacturing, Materials ...  

Science Conference Proceedings (OSTI)

... EL research advances progress toward greater sustainability and energy efficiency in major industry sectors and across the built environment.Our ...

2011-11-23T23:59:59.000Z

259

21st Century Customers: Volume 1: Industry and Manufacturing  

Science Conference Proceedings (OSTI)

Understanding and meeting the evolving needs of industrial customers could be critical to the future prosperity of energy enterprises. This report examines five significant industries that are undergoing dramatic changes in their markets and relationships to buyers of their products -- steel and aluminum, paper and pulp, chemicals, plastics, and food processing. The report provides a companion to Volume 2, 21st Century Customers: Volume 2: Business and Commerce, covering the evolving needs of five commer...

1999-02-10T23:59:59.000Z

260

Current and future industrial energy service characterizations  

DOE Green Energy (OSTI)

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Industrial Technologies - Energy Innovation Portal  

Industrial Technologies Marketing Summaries Here youll find marketing summaries of industrial technologies available for licensing from U.S. Department of Energy ...

262

Vintage-level energy and environmental performance of manufacturing establishments  

SciTech Connect

This report examines the relationship between an industrial plant`s vintage and its energy and environmental performance. Basic questions related to defining vintage and measuring the effects of the manufacturing industry`s vintage distribution of plant-level capacity and energy intensity are explored in general for six energy-intensive sectors (paper, chlorine, nitrogenous fertilizer, aluminum, steel, and cement) at the four-digit standard industrial classification (SIC) level and in detail for two sectors (steel and cement). Results show that greenfield (i.e., newly opened) plants in the paper, steel, and cement industries exhibit low fossil fuel intensities. These results are consistent with expectations. New plants in the paper and steel industries, where processes are undergoing electrification, exhibit high electricity intensities. An analysis of a subsector of the steel industry -- minimills that use scrap-based, electric arc furnaces -- reveals a decline in electricity intensity of 6.2 kilowatt-hours per ton for each newer year of installed vintage. This estimate is consistent with those of engineering studies and raises confidence that analyses of vintage effects in other industries could be conducted. When a vintage measure is assigned on the basis of investment data rather than trade association data, the vintage/performance relationship results for the cement industry are reasonably robust; thus, the analysis of vintage and performance could be extended to sectors for which only US Bureau of the Census data are available.

Boyd, G.A.; Bock, M.J.; Neifer, M.J. [Argonne National Lab., IL (United States); Karlson, S.H. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Economics; Ross, M.H. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics

1994-05-01T23:59:59.000Z

263

ENERGY STAR Focus on Energy Efficiency in Ready Mix Concrete Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Ready Mix Concrete Ready Mix Concrete Manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

264

New Investment in Energy-Efficient Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in Energy-Efficient Manufacturing Investment in Energy-Efficient Manufacturing New Investment in Energy-Efficient Manufacturing March 26, 2013 - 11:30am Addthis The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility. The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs

265

New Investment in Energy-Efficient Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Investment in Energy-Efficient Manufacturing New Investment in Energy-Efficient Manufacturing New Investment in Energy-Efficient Manufacturing March 26, 2013 - 11:30am Addthis The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility. The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs

266

Solar Power Industries SPI | Open Energy Information  

Open Energy Info (EERE)

Solar Power Industries SPI Solar Power Industries SPI Jump to: navigation, search Name Solar Power Industries (SPI) Place Belle Vernon, Pennsylvania Zip 15012 Product US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References Solar Power Industries (SPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Power Industries (SPI) is a company located in Belle Vernon, Pennsylvania . References ↑ "Solar Power Industries (SPI)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Power_Industries_SPI&oldid=351318" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

267

AMO Industrial Distributed Energy: Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficiency by 2020. The Industrial Energy EfficiencyCombined Heat & Power Working Group is developing a number of resources. News Energy Department Invests in...

268

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

sponsored avoided cost studies, energy efficiency programat various costs is with energy efficiency supply curves.Energy Efficiency in Industry Table 4 summarizes the benefit-cost

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

269

Energy Information Administration (EIA)- Manufacturing ...  

U.S. Energy Information Administration (EIA)

Facility HVAC : 19: 19: 0: Facility Lighting: 17: 19-2: Equipment Installation or Retrofit for the Primary Purpose of Using a Different Energy Source: ...

270

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

establishments within a stratum would also be homogeneous with respect to the quantities, types, and shares of energy consumed as fuels and for nonfuel purposes. Also, the weight...

271

Energy Information Administration (EIA)- Manufacturing ...  

U.S. Energy Information Administration (EIA)

... regardless of where the energy was produced. Not included in fuel are electricity inputs from onsite cogeneration, nor generation from combustible ...

272

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

with Other Series Appendix D Comparability of MECS Estimates with Other Series The Energy Information Administration (EIA) collects data from two distinct sources that, in...

273

Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Report #: DOE/EIA-0573(2005) Released Date: November 2006 Next Release Date: Not applicable Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing Mark Schipper 1 , Energy Information Administration (EIA) Abstract Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

274

EIA - The National Energy Modeling System: An Overview 2003-Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The National Energy Modeling System: An Overview 2003 Industrial Demand Module Figure 7. Industrial Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Economic Subsectors Within the IDM Table. Need help, contact the National Energy Information Center at 202-586-8800. Industrial Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Fuel Consuming Activities for the Energy-Intensive Manufacturing Subsectors Table. Need help, contact the National Energy Information Center at 202-586-8800. The industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing

275

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Residential - RECS. Transportation. DOE Uses MECS Data. Manufacturing Energy and Carbon Footprints Associated Analysis. Thank You. We welcome your comments or ...

276

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

This decline continues the downward trend in manufacturing energy use since the 1998 MECS report. About the MECS. Survey forms. Maps. MECS Terminology. Archives ...

277

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: March 28, 2012.

278

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: ...

279

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, &...

280

Energy Department Launches Bold New Clean Energy Manufacturing Initiative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bold New Clean Energy Manufacturing Bold New Clean Energy Manufacturing Initiative Energy Department Launches Bold New Clean Energy Manufacturing Initiative March 26, 2013 - 11:00am Addthis As part of the Energy Department's launch of the Clean Energy Manufacturing Initiative, Assistant Secretary David Danielson toured the new Carbon Fiber Facility at Oak Ridge National Laboratory. Carbon fiber has the potential to improve the fuel efficiency of vehicles. | Photo courtesy of Jason Richards, Oak Ridge National Laboratory. As part of the Energy Department's launch of the Clean Energy Manufacturing Initiative, Assistant Secretary David Danielson toured the new Carbon Fiber Facility at Oak Ridge National Laboratory. Carbon fiber has the potential to improve the fuel efficiency of vehicles. | Photo courtesy of Jason

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Leitner Shriram Manufacturing Ltd | Open Energy Information  

Open Energy Info (EERE)

Leitner Shriram Manufacturing Ltd Leitner Shriram Manufacturing Ltd Jump to: navigation, search Name Leitner Shriram Manufacturing Ltd Place Chennai, Tamil Nadu, India Zip 600095 Sector Wind energy Product Chennai-based JV between Leitwind and Shriram EPC with the purpose of manufacturing MW-class wind turbines. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Wind Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

283

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers' Pictorial Superpowers How the Smart Grid Helps Homeowners Reduce Their Energy Use EcoCAR Challenge Finish Line Event 1 of 8 Students Earn Street Cred With the...

284

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Commercial Weatherization Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate 50% of cost in many cases Commercial and Industrial: $50,000/facility per year Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Custom Incentives: 50% T8/T5 Fluorescent Fixtures: $3-$20 T5/T8 Fluorescent High Bay Fixtures: $55-$175 CFL High Bay Fixtures: $75

285

Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing > Derived Annual Estimates - Executive Summary Manufacturing > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This report presents a complete series of annual estimates of purchased energy used by the manufacturing sector of the U.S. economy, for the years 1974 to 1988. These estimates interpolate over gaps in the actual data collections, by deriving estimates for the missing years 1982-84 and 1986-87. For the purposes of this report, "purchased" energy is energy brought from offsite for use at manufacturing establishments, whether the energy is purchased from an energy vendor or procured from some other source. The actual data on purchased energy comes from two sources, the U.S. Department of Commerce Bureau of the Census's Annual Survey of Manufactures (ASM) and EIA's Manufacturing Energy Consumption Survey (MECS). The ASM provides annual estimates for the years 1974 to 1981. However, in 1982 (and subsequent years) the scope of the ASM energy data was reduced to collect only electricity consumption and expenditures and total expenditures for other purchased energy. In 1985, EIA initiated the triennial MECS collecting complete energy data. The series equivalent to the ASM is referred to in the MECS as "offsite-produced fuels." The completed annual series for 1974 to 1988 developed in this report links the ASM and MECS "offsite" series, estimating for the missing years. Estimates are provided for the manufacturing sector as a whole and at the two-digit Standard Industrial Classification (SIC) level for total energy consumption and for the consumption of individual fuels. There are no direct sources of data for the missing years (1982-1984 and 1986-1987). To derive consumption estimates, a comparison was made between the ASM, MECS, and other economic series to see whether there were any good predictors for the missing data. Various estimation schemes were analyzed to fill in the gaps in data after 1981 by trying to match known data for the 1974 to 1981 period.

286

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

287

Industrial Energy Management and Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management and Standards Industrial Energy Management and Standards Industrial Energy Management and Standards Industrial Energy Management and Standards More Documents &...

288

Lincoln Electric System (Commercial and Industrial) - Sustainable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial) - Sustainable Commercial and Industrial) - Sustainable Energy Program Lincoln Electric System (Commercial and Industrial) - Sustainable Energy Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate '''General Incentive Limits''' Commercial Industrial Lighting Retrofit: $100,000 per program year Commercial and Industrial Energy Efficiency: $100,000 per program year Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Commercial Industrial Lighting Retrofit Lighting Retrofit: $500/kW of peak-demand reduction

289

DOE Selects 26 Universities to Assess Industrial Energy Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26 Universities to Assess Industrial Energy Efficiency 26 Universities to Assess Industrial Energy Efficiency DOE Selects 26 Universities to Assess Industrial Energy Efficiency July 24, 2006 - 4:32pm Addthis Smart use of energy key to America's industrial and manufacturing competitiveness WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of 26 universities across the country for negotiation of award to set up and operate regional Industrial Assessment Centers (IAC). The centers will employ faculty and students to assist small-to-medium sized American manufacturing plants to use energy more efficiently. Based on DOE's Office of Energy Efficiency and Renewable Energy Industrial Technologies Program requirement, anticipated funding could be up to $6 million over the next two years (FY'07 and FY'08).

290

Industrial energy-efficiency-improvement program  

SciTech Connect

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

1980-12-01T23:59:59.000Z

291

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Industry, California: Energy Resources (Redirected from Industry, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0197335, -117.9586754 Loading map......

292

Advanced Manufacturing Office: Closed Solicitations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production EE-2E 08112008 09192008 Manufacturing- Industrial Distributed Energy FuelFeedstock Flexibility and Combined Heat and Power U.S. Department of Energy- Industrial...

293

DOE Launches New Website Aimed at Improving Industrial Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Website Aimed at Improving Industrial Energy New Website Aimed at Improving Industrial Energy Savings DOE Launches New Website Aimed at Improving Industrial Energy Savings November 8, 2005 - 2:19pm Addthis Washington, D.C. - Energy Secretary Samuel W. Bodman today announced the launch of a new website providing U.S. manufacturing plants a quick and easy way to sign up for the Department of Energy's Industrial Energy Saving Teams program. The program, launched on October 3, 2005 as part of a national energy saving effort, seeks to improve the energy efficiency of America's most energy-intensive manufacturing facilities through comprehensive energy assessments. "President Bush has called on all Americans to improve efficiency in light of expected higher energy prices this fall. Because they are so energy

294

ENERGY STAR Challenge for Industry | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR plant certification ENERGY STAR Challenge for Industry See who has taken the Challenge See who has achieved the Challenge See who is promoting the Challenge ENERGY...

295

Success stories: Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

stories Production Strategy Saves Money & Energy: Eastman Chemical Company Related resources Guidelines for Energy Management Energy guides Industrial service and product providers...

296

Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report.

297

Industries in focus | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

298

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

299

Energy Efficiency in BP's PTA Manufacturing Plants  

E-Print Network (OSTI)

BP is a leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA manufacturing process has significantly improved over the past several years, which has translated into substantial decreases in greenhouse gas emissions across our global sites. The talk will provide a general overview of the PTA business and manufacturing process, as well as selected examples of enabling technology evolutions leading to this improved performance.

Clark, F.

2010-01-01T23:59:59.000Z

300

New energy usage patterns in manufacturing  

SciTech Connect

Long term energy demands of industrial societies will exceed energy production capabilities if present usage patterns remain unchanged. Thus the central core of the current energy dilemma involves the change from reliance on petroleum sources to the utilization of more plentiful energy resources. The two energy resources which are plentiful and the technology already exists for their development are coal and uranium. Several concepts of substituting electricity for oil and natural gas are presented.

Hauser, L.G.

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,214 2,356 1,994 4,570 4,353 5.0 312 Beverage and Tobacco Product Mfg. 48 37 53 85 90 -5.6 313 Textile Mills 31 29 22 59 63 -6.1 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w w w w 322 Paper Manufacturing

302

Duke Energy - Small Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy - Small Commercial and Industrial Energy Efficiency Duke Energy - Small Commercial and Industrial Energy Efficiency Rebate Program Duke Energy - Small Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Combined maximum of $50,000/facility/year Program Info State Indiana Program Type Utility Rebate Program Rebate Amount CFL Screw-In: $2 Hardwired, Pin Based CFL Fixtures (Replacing Incandescent): $22 T8 Fluorescent Fixtures (Replacing T8/T12): $3-$30 T5 Fluorescent Fixtures (Replacing T12): $5-$13 T8 High Bay Fixtures (Replacing HID): $30-$60 T5 High Bay Fixtures (Replacing HID): $30-$75

303

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network (OSTI)

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

304

Energy Conservation Opportunities in Hydrocarbon Resin Manufacturing Facilities  

E-Print Network (OSTI)

"The results of a plant-wide assessment of the manufacturing facilities of Neville Chemical Company, a manufacturer of hydrocarbon resins will be presented in this paper. The project was co-funded by US Department of Energy under its Plant-Wide Opportunity Assessment Program. Resin manufacturing is a highly energy intensive process. The process needs extensive heating accomplished through steam boilers and thermal oil heaters, and cooling which is accomplished through refrigeration as well as process cooling water systems. Detailed energy assessment of Neville Chemical plants has shown significant energy conservation opportunities. For the less capital-intensive measures, energy cost savings of 20% to 30% with paybacks of less than two years were identified. The identified measures can be easily replicated in similar facilities. In this paper, details of the processes in hydrocarbon resin production from an energy consumption viewpoint will be discussed, current prevalent practices in the industry will be elaborated, and potential measures for energy use and cost savings will be outlined."

Ganji, A. R.

2003-05-01T23:59:59.000Z

305

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... The major users are residential and commercial buildings, industry, transportation, and electric power generators.

306

Energy Department Takes First Step to Spur U.S. Manufacturing of Small  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Takes First Step to Spur U.S. Manufacturing of Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 20, 2012 - 2:06pm Addthis The U.S. Department of Energy today announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. Through the draft Funding Opportunity Announcement announced today, the Department will establish cost-shared agreements with private industry to support the design and licensing of SMRs. "America's choice is clear - we can either develop the next generation

307

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Name Industrial Energy Audit Guidebook: Guidelines...

308

How ENERGY STAR Helps Manufacturers Improve the Energy Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

against the industry nationally Energy Tracking Tool - Helps establish production-based energy intensity metrics, set goals, and track performance Portfolio Manager - Scores the...

309

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

innovation and lets industry pick winning technologies. TheTransforming the Oil Industry intothe Energy Industry BY DANIEL SPERLING AND SONIA YEH A C C E

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

310

Industry Recruitment/Support | Open Energy Information  

Open Energy Info (EERE)

Recruitment/Support Recruitment/Support Jump to: navigation, search To promote economic development and the creation of jobs, some states offer financial incentives to recruit or cultivate the manufacturing and development of renewable energy systems and equipment. These incentives commonly take the form of tax credits, tax exemptions and grants. In some cases, the amount of the incentive depends on the amount of eligible equipment that a company manufactures. Most of these incentives apply to several renewable energy technologies, but a few states target specific technologies, such as wind or solar. These incentives are usually designed as temporary measures to support industries in their early years, and they commonly include a sunset provision to encourage the industries to become

311

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

312

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

313

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

314

Design for Location? The Impact of Manufacturing Offshore on Technology Competitiveness in the Optoelectronics Industry  

Science Conference Proceedings (OSTI)

This paper presents a case study of the impact of manufacturing offshore on technology competitiveness in the optoelectronics industry. It examines a critical design/facility location decision being faced by optoelectronic component manufacturers. This ... Keywords: design for manufacturing, international, product development, technology choice

Erica Fuchs; Randolph Kirchain

2010-12-01T23:59:59.000Z

315

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - Release date: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17 percent from 2002 to 2010 (Figure 1), according to data from the U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS). line chart:air conditioning in U.S. Manufacturing gross output decreased by only 3 percent over the same period. Taken together, these data indicate a significant decline in the amount of energy used per unit of gross manufacturing output. The significant decline in energy intensity reflects both improvements in energy efficiency and changes in

316

Market analysis of the solar energy industry  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-01T23:59:59.000Z

317

Otter Tail Power Company - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Otter Tail Power Company - Commercial and Industrial Energy Otter Tail Power Company - Commercial and Industrial Energy Efficiency Grant Program Otter Tail Power Company - Commercial and Industrial Energy Efficiency Grant Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Heat Pumps Manufacturing Appliances & Electronics Program Info State Minnesota Program Type Utility Grant Program Rebate Amount Varies Provider Customer Service Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects. Possibilities include but are not limited to:

318

Industrial Technologies Success Stories - Energy Innovation Portal  

Bookmark Industrial Technologies Success Stories - Energy Innovation Portal on Google; Bookmark Industrial Technologies Success Stories ...

319

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often they simply do not understand the savings possible or the techniques available. Recognizing this, a program was developed to acquaint Oklahoma industry with the potential savings allowable through energy management techniques. The program is entitled 'Oklahoma Industrial Energy; Management Program' and is located at Oklahoma State University. This paper describes past, on-going, and proposed activities of this Program and assesses their impact. Included are industrial energy management conferences, closed circuit television short courses on selected energy management topics, energy auditing, industrial energy audits (through the Oklahoma Energy Analysis and Diagnostic Center) , energy and water management research, and two courses currently being offered.

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

320

Characterization and explanation of the sustainability of the European wood manufacturing industries: A quantitative approach  

Science Conference Proceedings (OSTI)

This paper has a twofold purpose. First, to characterize the sustainability of the European wood manufacturing industry. In this way, a ranking of the European countries analyzed in terms of sustainability is established. To undertake this task the sustainability ... Keywords: Econometric models, Goal programming, Indicators, Sustainability, Wood manufacturing industry

Roberto Voces; Luis Diaz-Balteiro; Carlos Romero

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Investing in a New Era of Manufacturing Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investing in a New Era of Manufacturing Technology Investing in a New Era of Manufacturing Technology Investing in a New Era of Manufacturing Technology June 24, 2011 - 6:05pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for me? The Energy Department will be investing up to $120 million over three years in the development of transformational manufacturing technologies and innovative materials that could enable industrial facilities to dramatically increase their energy efficiency. By boosting investment in near-term technology development, the Department is supporting projects that might otherwise take far longer to contribute to U.S. industrial competitiveness. Earlier today, President Obama announced the Advanced Manufacturing Partnership, a national effort that brings together industry, universities

322

Investing in a New Era of Manufacturing Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investing in a New Era of Manufacturing Technology Investing in a New Era of Manufacturing Technology Investing in a New Era of Manufacturing Technology June 24, 2011 - 6:05pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for me? The Energy Department will be investing up to $120 million over three years in the development of transformational manufacturing technologies and innovative materials that could enable industrial facilities to dramatically increase their energy efficiency. By boosting investment in near-term technology development, the Department is supporting projects that might otherwise take far longer to contribute to U.S. industrial competitiveness. Earlier today, President Obama announced the Advanced Manufacturing Partnership, a national effort that brings together industry, universities

323

Wind Energy In America: Supporting Our Manufacturers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In America: Supporting Our Manufacturers In America: Supporting Our Manufacturers Wind Energy In America: Supporting Our Manufacturers August 16, 2012 - 10:01am Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11

324

Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)  

Science Conference Proceedings (OSTI)

IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL; Ma, Ookie [DOE EERE; Nimbalkar, Sachin U [ORNL; Cox, Daryl [ORNL

2013-01-01T23:59:59.000Z

325

DOE Announces First Companies to Receive Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Companies to Receive Industrial Energy First Companies to Receive Industrial Energy Efficiency Certification DOE Announces First Companies to Receive Industrial Energy Efficiency Certification December 9, 2010 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy today announced the first industrial plants in the country to be certified under the Superior Energy Performance program -- a new, market-based industrial energy efficiency program. The energy management certification program is accredited by the American National Standards Institute (ANSI) and will serve as a roadmap for industrial facilities to help continually improve their efficiency and maintain market competitiveness. The industrial and manufacturing sectors, which account for roughly one-third of energy use in the United

326

Midstate Electric Cooperative - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial...

327

Industrial Energy Efficiency:Policy, Initiatives, & Opportunities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency:Policy, Initiatives, & Opportunities Industrial Energy Efficiency:Policy, Initiatives, & Opportunities presentation Industrial Energy Efficiency:Policy, Initiatives, &...

328

Opportunities and Barriers in the Implementation of Energy Efficiency Measures in Plastic Manufacturing  

E-Print Network (OSTI)

The plastic industry in the U.S. employs approximately 9% [1] of the manufacturing work force and consumes approximately 6% [1] of the total energy used by the U.S. industries. According to the Department of Energy (DOE), manufacturers of plastic and other resins are consuming nearly 1,070 trillion Btu [1] of energy in their operations every year, valued at $6.0[1] billion. As escalating energy prices continue to be a concern for industry, many plastic manufacturers are striving to reduce their energy consumption to stay competitive. An alternative to reduced energy consumption is to put in place an energy efficiency strategy. However, while most plastic manufactures are aware of the energy efficiency opportunities in their facilities, the implementation of these opportunities face certain market barriers. These barriers are identified as customers lack the information about energy efficiency technologies, and have limited capital funding to implement the energy efficiency measures. Additionally, it is hard to identify the energy savings opportunities and difficult to quantify their impacts. The purpose of this paper is to discuss the various energy efficiency opportunities in plastic manufacturing and address the market barriers in implementing them. We will identify the energy savings opportunities in plastic manufacturing that can be introduced to reduce energy consumption and decrease production costs, thus giving the customers more competitive edge in both the regional and global markets. We will also discuss various popular energy efficiency measures, the energy savings associated with each measure and their projected simple payback. In terms of policy implication, this paper will discuss various strategies of mitigating potential market barriers in implementing energy efficiency measures on plastic manufacturing industries.

Kanunho, A; Yong, J. C.

2012-01-01T23:59:59.000Z

329

Despatch Industries | Open Energy Information  

Open Energy Info (EERE)

Despatch Industries Despatch Industries Jump to: navigation, search Name Despatch Industries Place Minneapolis, Minnesota Zip 55044 Sector Solar Product Manufacturer of infrared drying and firing furnaces used in solar cell manufacture, and other thermal processing equipment. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Quantifying potential industrial symbiosis : a case study of brick manufacturing  

E-Print Network (OSTI)

Humanity is currently on an unsustainable path of growth and development. One tool to address sustainability in industrial activities is Industrial Symbiosis, which is the study of cooperation across industry boundaries ...

Hodge, Matthew M

2007-01-01T23:59:59.000Z

331

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, ...

332

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary ...

333

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Units & Calculators ... 2012. Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, ...

334

Energy use in manufacturing: Early structural and technological adjustment to the 1973-74 energy price shock  

Science Conference Proceedings (OSTI)

The U.S. input-output tables for 1972 and 1977 are used to examine the early adjustment of the manufacturing sector to the first energy price shock of 1973-1974. Input-output analysis is particularly useful in examining this adjustment because indirect as well as direct energy use may be calculated. Important trends during the 1972-77 period were a decrease in energy used per dollar of output in both primary (coal and petroleum/gas extraction) and the secondary use of refined petroleum and natural gas, and little overall change in electricity intensity with almost half the manufacturing industries showing an increase in electricity input-output coefficients. Also of interest is the fact that a small number of industries dominate the pattern of energy use in manufacturing. The chemical industry, primary metals, and motor vehicles account for one-third of total manufacturing energy use.

Gowdy, J.M.; Miller, J.L.

1987-01-01T23:59:59.000Z

335

Energy Department Takes First Step to Spur U.S. Manufacturing of Small  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes First Step to Spur U.S. Manufacturing of Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors Energy Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 20, 2012 - 10:48am Addthis Washington, D.C. - The U.S. Department of Energy today announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. Through the draft Funding Opportunity Announcement announced today, the Department will establish cost-shared agreements with private industry to support the design and licensing of SMRs. "America's choice is clear - we can either develop the next generation

336

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Saving Energy and Resources Revolutionizing Manufacturing INFOGRAPHIC: Wind Energy in America National Wind Technology Center - Colorado America's Wind Testing...

337

Oklahoma Municipal Power Authority - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Municipal Power Authority - Commercial and Industrial Oklahoma Municipal Power Authority - Commercial and Industrial Energy Efficiency Program Oklahoma Municipal Power Authority - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $100,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount Matching Funds up to $100,000 Provider Oklahoma Municipal Power Authority The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal

338

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013...

339

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Eolica Industrial Place Sao Paulo, Sao Paulo, Brazil Zip 01020-901 Sector Wind energy Product Brazil based wind turbine steel towers and...

340

Federal Energy Management Program: Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Facilities to someone by E-mail Share Federal Energy Management Program: Industrial Facilities on Facebook Tweet about Federal Energy Management Program: Industrial...

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solar Manufacturing: To Compete or Not To Compete | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing: To Compete or Not To Compete Manufacturing: To Compete or Not To Compete Solar Manufacturing: To Compete or Not To Compete June 28, 2012 - 11:30am Addthis Damien LaVera Damien LaVera Deputy Director, Office of Public Affairs One Thing is Clear: America must continue playing to win in the clean energy race. Last year, the global market for clean, renewable energies reached a record $260 billion - and is expected to grow into the trillions over the next 20 years. Solar manufacturing in particular is growing dramatically in the United States and around the world. In fact, according to the Solar Energy Industry Association, America's solar industry now employs 100,000 workers - doubling since 2009. The question is no longer whether America will be a major customer for the solar industry - we will. The real question is whether the U.S. will also

342

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

Economic Profile of the California Energy Industry Analysisand R.L. Cooper, "California Energy Outlook," LawrenceDivision Analysis of the California Energy Industry Energy

Authors, Various

2010-01-01T23:59:59.000Z

343

AMO Industrial Distributed Energy: Information Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Industrial Distributed Energy Search Search Help Industrial Distributed Energy EERE...

344

Industrial Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central...

345

Energy Analysis in the Industrial Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

dioxide emissions in heavy manufacturing. This talk will focus on the U.S. iron and steel industry, illustrating how it compares internationally and describing the...

346

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility...

347

American Energy and Manufacturing Competitiveness Summit | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy and shorten the time needed to bring a product to market. On display at the

348

Development of a Performance-based Industrial Energy Efficiency Indicator  

NLE Websites -- All DOE Office Websites (Extended Search)

Pharmaceutical Manufacturing Plants Pharmaceutical Manufacturing Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

349

Development of a Performance-based Industrial Energy Efficiency Indicator  

NLE Websites -- All DOE Office Websites (Extended Search)

Cement Manufacturing Plants Cement Manufacturing Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

350

Energy Used in Manufacturing Sales and Use Tax Exemption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used in Manufacturing Sales and Use Tax Exemption Used in Manufacturing Sales and Use Tax Exemption Energy Used in Manufacturing Sales and Use Tax Exemption < Back Eligibility Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State Georgia Program Type Sales Tax Incentive Georgia enacted legislation in April 2012 (HB 386) creating an exemption for energy used in the manufacturing of a product from the state's sales and use taxes. The sale, use, storage, or consumption of energy which is necessary and integral to the manufacture of tangible personal property at a manufacturing plant in the state of Georgia shall be exempt from all sales and use taxation except for the sales and use tax for educational

351

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global...

352

Spring Valley Public Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Valley Public Utilities - Commercial and Industrial Energy Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Other Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use Lodging Guestroom Energy Management Systems: $75 - $85

353

Advanced Manufacturing Office: Advanced Manufacturing Partnership  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national...

354

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural ...

355

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... The steel industry is critical to the U ... That increase in supply has in turn lowered the price of natural gas to ...

356

Virginia Manufacturer Keeps Jobs Local By Embracing Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Now LEADER initiative, which calls on manufacturers to reduce their facilities' energy intensity by 25% over a 10-year timeframe. Since becoming a LEADER Company, Volvo's...

357

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Government...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Government Energy Management Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective...

358

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving...

359

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Homes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions...

360

DOE/EIA-0515(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S,...

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go ManufacturingAvailable formats Cost of Natural Gas Used in Manufacturing Sector Has Fallen Released: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17

362

Energy Impacts of Productivity Improvements in Manufacturing  

E-Print Network (OSTI)

The complexity of industrial processes and the need to consider the interaction of various systems has led in many cases to the maturing of the energy audit in to a more sophisticated industrial assessment. The assessment team typically looks for potential improvements in energy use in concert with examination of waste streams and potential productivity improvements. The benefits of this new approach are substantial in particular with respect to productivity improvements. Such projects are much easier to interest management in than waste or pure energy ones. In many cases they may also require smaller capital investments as many of the projects involve changes in practices and procedures. In a large number of cases, the impact of productivity projects on energy use in the plant are ignored or underestimated. This is unfortunate as the appropriate tracking of energy impacts would lower implementation payback times and potentially lead to greenhouse gas reduction credits. This paper examines how energy impacts are currently tracked in productivity projects and suggests two techniques for dramatically improving the accuracy of these estimates. Experiences from the DOE Industrial Assessment Center program are used as well as data from the programs publicly available database. It is shown that in many of the recommended productivity improvements there is an associated absolute reduction in energy use. For example, it is common to recommend the elimination of steps in a process by improving quality control etc. Savings are tracked in terms of time and manpower, but the elimination of parts of the process normally results in a reduction in energy consumption. Often, this reduction is underreported. Also very common, however, is that case where a productivity recommendation leads to an increase of total energy use. For example better management of process equipment will lead to greater load factors. Handled incorrectly this can lead to a negative energy impact which could result in increased paybacks and misleading indications about energy efficiency. Analysis shows that even when there is an increase in energy use, the amount of energy per product unit goes down, making a process demonstrably more energy efficient. Arguments are presented why using an Energy Intensity Metric is critical in properly accounting for energy impact of productivity on plant energy use. We present a concept called Virtual Reduction in Operating Time and show how it can be used to improve accounting for energy impacts.

Mitrovic, B.; Muller, M. R.

2002-04-01T23:59:59.000Z

363

Great River Energy (28 Member Cooperatives) - Commercial and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Great River Energy (28 Member Cooperatives) - Commercial and Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Program Info Funding Source Great River Energy State Minnesota Program Type Utility Rebate Program Rebate Amount Varies by measure and member cooperative offering. Provider Great River Energy Great River Energy, a generation and transmission cooperative which serves

364

Energy productivity in the industrial sector: an econometric analysis  

SciTech Connect

Energy productivity and energy intensity within the industrial sector of the economy are examined. Results suggest that relative prices and other economic factors can explain much of the variation in both energy productivity and energy intensity for manufacturing and mining and for the industrial sector as a whole. Cyclical factors, seasonal factors and trend variables are also useful in explaining variation in these data, both for annual and monthly time series. Of the variables examined, it appears that the relative price of energy is a highly significant factor in accounting for the difference between actual industrial energy intensity and that which might have been expected had pre-1973 trends continued.

Roop, J.M.

1983-01-01T23:59:59.000Z

365

Decade of PV Industry R and D Advances in Silicon Module Manufacturing  

DOE Green Energy (OSTI)

The US Photovoltaic (PV) industry has made significant technical advances in crystalline silicon (Si) module manufacturing through the PV Manufacturing R and D Project during the past decade. Funded Si technologies in this project have been Czochralski, cast polycrystalline, edge-defined film-fed growth (EFG) ribbon, string ribbon, and Si-film. Specific R and D Si module-manufacturing categories that have shown technical growth and will be discussed are in crystal growth and processing, wafering, cell fabrication, and module manufacturing. These R and D advancements since 1992 have contributed to a 30% decrease in PV manufacturing costs and stimulated a sevenfold increase in PV production capacity.

Symko-Davis, M.; Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Laboratory; King, R. [U.S. Department of Energy; Ruby, D.S. [Sandia National Laboratories

2001-01-18T23:59:59.000Z

366

Corporate growth and industrial dynamics: evidence from French manufacturing  

E-Print Network (OSTI)

.1080/00036840802400454 #12;applied to UK manufacturing (Hart and Prais, 1956; Clarke, 1979) and also to US (Simon and Bonini' benchmark can be taken as a rough first approximation of firm growth. However, a closer inspection reveals

Paris-Sud XI, Université de

367

Emerging Industrial Innovations for New Energy Efficient Technologies  

E-Print Network (OSTI)

The discussion surrounding industrial efficiency gains typically focuses on industrys own use of energy and the set of technologies that might cost-effectively reduce that consumption. Often overlooked is industrys role as a primary developer of the materials and technologies that can generate large efficiency gains within all other sectors of the economy. For example, its role in developing a new generation of fuel cell vehicles, on demand manufacturing capabilities, or new plastics that double as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand the role of innovation. It highlights a number of emerging technologies that may foster an even greater energy savings than might be apparent from looking at industrys own energy use patterns alone.

Laitner, J. A.

2007-01-01T23:59:59.000Z

368

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout the country. The average small to medium sized company has yet to undertake a dedicated program. The reasons are numerous, but often it is simply because of a lack of knowledge of techniques or the amount of savings possible. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future. The program offerings basically include: 1. A series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy Audit booklets including instructions and forms. 4. Technical aid on a limited basis. 5. A series of laboratory type experiments involving power factor, solar energy, boiler combustion improvement and other energy related projects. 6. Fact sheet publication as the need develops. Plans for the future include expansion of the program to small businesses in general through the Energy Extension Service and more technical aid to participating industries, The basic plan involving the services above shall remain intact. The program has been very successful to date. The results are directly transferable to other states and the program directors are willing to share information.

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

369

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Full-Scale Production Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Design Production and Manufacturing Process Advanced Research Projects Agency: Tech-to-Market Resources - general tech-to-market (T2M) resources. DOE Advanced Manufacturing Office: Manufacturing Demonstration Facility - a collaborative manufacturing community that works to provide real data to

370

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates in Trillion Btu) XLS Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel Oil for Selected Purposes by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Barrels per Day) XLS Total Primary Consumption of Energy for All Purposes by Census Region and Economic Characteristics of the Establishment, 1991 (Estimates in Btu or Physical Units) XLS

371

Energy Flow Models for the Steel Industry  

E-Print Network (OSTI)

Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated against both our energy end use and material flow models. These models can serve as the base case for simulating changes in energy utilization and waste streams for steelmaking spurred by economic or regulatory conditions or technology innovations.

Hyman, B.; Andersen, J. P.

1998-04-01T23:59:59.000Z

372

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Industries Jump to: navigation, search Name Guardian Industries Place Auburn Hills, MI Website http://www.guardian.com/ References Results of NREL Testing (Glass Magazine)[1] Guardian News Archive[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Guardian Industries is a company located in Auburn Hills, MI. References ↑ "Results of NREL Testing (Glass Magazine)" ↑ "Guardian News Archive" Retrieved from "http://en.openei.org/w/index.php?title=Guardian_Industries&oldid=381719" Categories: Clean Energy Organizations

373

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. Emerging Energy-Efficient Industrial Technologies,

2005-01-01T23:59:59.000Z

374

Starr Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Starr Manufacturing Inc Address 4175 Warren Sharon Rd Place Vienna, Ohio Zip 44473 Sector Biofuels, Biomass, Buildings, Carbon, Efficiency, Hydrogen, Renewable Energy, Services, Wind energy Product Engineering/architectural/design; Manufacturing; Research and development;Retail product sales and distribution;Trainining and education Phone number 330-394-9891 Website http://www.starrmfg.com Coordinates 41.2378232°, -80.6685983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2378232,"lon":-80.6685983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Industry, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0197335, -117.9586754 Loading map... "minzoom":false,"mappingservice":...

376

Industrial Energy Efficiency Assessments | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

about the Industrial Energy Efficiency Assessments program and its implementation in China. session2industrytrackpriceen.pdf session2industrytrackpricecn.pdf More...

377

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

378

Unitil - Commercial and Industrial Energy Efficiency Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unitil - Commercial and Industrial Energy Efficiency Programs Unitil - Commercial and Industrial Energy Efficiency Programs Unitil - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Construction Industrial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Appliances & Electronics Commercial Lighting Lighting Maximum Rebate New Construction: 75% of incremental cost Retro-fit: 35% of installed cost Custom: 1 year payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Small Business and Multifamily: free technical assessment and % of installed cost for recommended measures Custom: 35% of cost Fluorescent Fixtures: $25 Lighting Sensors: $25-$50 LED Traffic Light: $60-$80 Motor Retrofits: $75-$3295

379

PEPCO - Commercial and Industrial Energy Efficiency Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PEPCO - Commercial and Industrial Energy Efficiency Incentives PEPCO - Commercial and Industrial Energy Efficiency Incentives Program PEPCO - Commercial and Industrial Energy Efficiency Incentives Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate All Incentives: 50% of the total installed project cost Custom Incentive Program: 50% and $250,000/electric account (including all incentive applications in a program year) Program Info Start Date 3/1/2011 State Maryland Program Type Utility Rebate Program Rebate Amount Custom Incentives: $0.16/annual kWh saved

380

Duquesne Light Company - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Commercial and Industrial Energy Duquesne Light Company - Commercial and Industrial Energy Efficiency Program Duquesne Light Company - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Commercial Weatherization Manufacturing Appliances & Electronics Commercial Lighting Lighting Program Info State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom: Varies Lighting: Varies widely by type Controls and Sensors: $10-$75 VFD for Chilled Water Loop $150/hp VFD for HVAC Fans: $80/hp Packaged Terminal AC: $45-$75/ton Food Service Equipment: Varies widely by type Refrigeration Equipment: Varies widely by type

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mason County PUD 3 - Commercial and Industrial Energy Rebates | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Rebates Commercial and Industrial Energy Rebates Mason County PUD 3 - Commercial and Industrial Energy Rebates < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Local Government Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting Rebates: Up to 70% of project cost Prescriptive Rebates: Varies widely, contact Mason County PUD 3 Custom Rebates: Varies widely, contact Mason County PUD 3 Provider Mason County PUD 3 Mason County PUD 3 offers rebates to its non-residential customers for

382

Loveland Water and Power - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Commercial and Industrial Energy Efficiency Rebate Program Loveland Water and Power - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate $50,000 per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website Cooling Efficiency Room AC: $50 - $110/ton, plus $3.50 - $5.00 for each 0.1 above minimum SEER, IEER, or EER Economizer: $250 Motion Sensor Controls: $75 Building Envelope Window Replacement: $1.50/sq. ft.

383

Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit Retail Supplier Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Retrofit: 70% of project cost Compressed Air: 70% of project cost Lighting: 70% of the project cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Custom Retrofit: $0.23/annual kWh saved

384

Rochester Public Utilities - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rochester Public Utilities - Commercial and Industrial Energy Rochester Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Rochester Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Construction Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Varies by technology Provider Rochester Public Utilities Rochester Public Utilities (RPU) offers incentives to commercial and

385

Extracting performance rules of suppliers in the manufacturing industry: an empirical study  

Science Conference Proceedings (OSTI)

Performance evaluation of suppliers is increasingly recognized as a critical indicator in supply chain cooperation. Traditional performance evaluation methods have the problems of a simple buy/sell relation and in one's subjective views between manufacturers ... Keywords: Data mining techniques, KPI (Key Performance Indicators), Manufacturing industry, Performance evaluation, SCM (Supply Chain Management)

You-Shyang Chen; Ching-Hsue Cheng; Chien-Jung Lai

2012-10-01T23:59:59.000Z

386

Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness  

E-Print Network (OSTI)

This paper describes the Department of Energy's industrial energy auditing program, its achievements to date, and future plans. The Energy Analysis and Diagnostic Center (EADC) Program provides no-cost energy audits to small and medium size manufacturers, and recommends ways to cut plant energy use. The program is conducted by universities for the DOE, and has performed over 3600 audits since 1976. Approximately 55 percent of the recommendations made through the EADC program are implemented by industry. Since program inception, audit recommendations have produced a cumulative national energy savings of about 67 trillion Btus, valued at $365 million. The National Energy Strategy (NES) has identified industrial energy audits as a cost-effective means to reduce energy consumption in industry. In support of the NES, the EADC program is expanding, and plans to have 40 operational EADCs by the year 2000. Through outreach activities, EADCs will also encourage similar private-sector programs, e.g. utility-conducted industrial audits performed for demand-side management programs.

Glaser, C.

1992-04-01T23:59:59.000Z

387

Wool fiberglass insulation manufacturing industry - background information for proposed standards  

SciTech Connect

A Standard of Performance for the control of emissions from wool fiberglass insulation manufacturing facilities is being proposed under authority of Section 111 of the Clean Air Act. This standard would apply to new, modified, or reconstructed wool fiberglass insulation manufacturing lines that utilize the rotary spin forming process and that commence construction on or after the date of proposal of the regulation. This document contains background information and environmental and economic impact assessments of the regulatory alternatives considered in developing the proposed standard. 79 references, 280 tables.

Not Available

1983-12-01T23:59:59.000Z

388

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013 Revised ii Introduction The U.S. Environmental Protection Agency's (U.S. EPA) ENERGY STAR program provides guidance, tools, and recognition to help companies improve their energy performance. ENERGY STAR is a voluntary partnership program that companies choose to join. Through ENERGY STAR, U.S. EPA offers a number of forms of recognition for achievements in energy efficiency. The ENERGY STAR Challenge for Industry recognizes individual industrial sites for achieving a 10 percent reduction in energy intensity within 5 years from the conclusion of an established baseline. To be

389

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

Each and every citizen has been affected by the energy crisis by now. Business and industry have especially been hurt as the rising cost of energy and its dwindling supplies are the twin jaws of a vise rapidly closing in on profits. Much work is being done in large companies; but most small to medium companies have yet to undertake a substantial energy management program. The reasons are many but often they simply I do not understand the savings possible or the techniques available. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is, entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future.

Estes, C. B.; Turner, W. C.

1980-01-01T23:59:59.000Z

390

Slideshow: Innovation in the Manufacturing Sector | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy

391

Ensuring American Leadership in Clean Energy Manufacturing | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing December 11, 2013 - 1:40pm Addthis Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. David Danielson David Danielson

392

Advanced Manufacturing Office: State and Regional Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

on State Policies that Impact Industrial Energy Efficiency In order to reduce industrial energy intensity and use, the Advanced Manufacturing Office (AMO) is forming partnerships...

393

Revitalizing Innovation in Michigan for Clean Energy Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing April 25, 2011 - 4:33pm Addthis Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Kerry Duggan What does this mean for me? Michigan has expanded its manufacturing focus beyond automobiles. Companies across Michigan are producing advanced batteries, motors, controllers, lighting devices, wind machines, photovoltaic modules, and other clean energy products. To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Last week, I got

394

Carbon Emissions: Food Industry - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The wet corn milling industry emits almost a sixth of the energy-related carbon in the food industry. ...

395

Stronger Manufacturers' Energy Efficiency Standards for Residential Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stronger Manufacturers' Energy Efficiency Standards for Residential Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today January 23, 2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing standards that go into effect today, January 23, 2006, for products manufactured in, or imported into, the United States. "Homeowners who choose to buy more energy-efficient air conditioning systems after today will realize significant savings in their energy bills and greatly reduce their energy use," said Secretary of Energy Samuel W. Bodman. "These new energy efficiency standards are the first of several

396

Fuel Cell Technologies Office American Energy and Manufacturing Competitiveness Parternship: Fuel Cell Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

12/19/2013 eere.energy.gov 12/19/2013 eere.energy.gov Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership http://www.aemcsummit.compete.org/ Fuel Cell Manufacturing Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Dr. Nancy Garland Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office 2 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov The Future of Fuel Cell Manufacturing Panel Session * Federal program: DOE Fuel Cell Technologies Office * National trade association: Fuel Cell & Hydrogen Energy Association * State Coalition Example: Ohio Fuel Cell Coalition 3 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov * Clean Energy Patent Growth Index

397

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 2.3 By Value of Shipments & Employment Size Category XLS PDF Energy Consumption as a Fuel Table 3.1 By Mfg. Industry & Region (physical units) XLS PDF

398

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

399

Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities  

E-Print Network (OSTI)

As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management's control of energy through accurate measurement of energy usage and costs by plant burden centers. The concept of responsibility accounting involves the continuous flow of information through, out an organization for the purposes of planning and cost control. In the past, responsibility accounting has been used primarily to control labor costs, to reduce material waste, and to contain the cost of supplies. ERA extends factory responsibility accounting systems to include energy. With ERA, management will know who is making an effort to conserve energy, how a new process affects energy usage, where additional emphasis on conservation may be needed and how much energy is being saved.

Kelly, R. L.

1980-01-01T23:59:59.000Z

400

Iskra Wind Turbine Manufacturers Ltd | Open Energy Information  

Open Energy Info (EERE)

Iskra Wind Turbine Manufacturers Ltd Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name Iskra Wind Turbine Manufacturers Ltd Place Nottingham, United Kingdom Sector Wind energy Product Iskra manufactures and markets the AT5-1 home-sized wind turbine rated at 5.3 kW, suitable for low wind speeds. References Iskra Wind Turbine Manufacturers Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iskra Wind Turbine Manufacturers Ltd is a company located in Nottingham, United Kingdom . References ↑ "Iskra Wind Turbine Manufacturers Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Iskra_Wind_Turbine_Manufacturers_Ltd&oldid=347129" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EPUD - Commercial and Industrial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPUD - Commercial and Industrial Energy Efficiency Rebate Program EPUD - Commercial and Industrial Energy Efficiency Rebate Program EPUD - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom Industrial Project: 70% of incremental project cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Commercial Clothes Washer: $75 - $180 Lighting: Varies, see program worksheet on web site Custom Industrial Projects: $0.25/kWh of verified energy savings Energy Smart Grocer Program Auto-Closers: $25 - $170 Gaskets: $35 - $70 Cases: $30 - $173.25 +Case Lighting: $12.75 - $22.50/lamp or $5 - $25/ln ft Motion Sensors: $2/ln ft Refrigerators/Freezers: $100 - $700

402

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy types

2000-01-01T23:59:59.000Z

403

Manufacturing Research & Reports  

Science Conference Proceedings (OSTI)

... Regulatory and Policy Recommendations. The impact of regulations and policies on the manufacturing industry in areas such as tax, energy, trade ...

2013-08-27T23:59:59.000Z

404

The Department of Energy`s Solar Industrial Program: 1994 review  

DOE Green Energy (OSTI)

This is a report on DOE`s Solar Industrial Program. The topics of the report include an overview of the program, it`s participants and it`s objectives; solar detoxification--using solar energy to destroy environmental contaminants in air, water, and soil; solar process heat--generating industrial quantities of hot water, steam, and hot air from solar energy; and advanced processes--using concentrated solar energy to manufacture high-technology materials and develop new industrial processes.

NONE

1995-03-01T23:59:59.000Z

405

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Wind Manufacturing American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11 6 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas.

406

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

energy savings are related to energy price changes through1997 dollars. All energy prices and savings were evaluatedthe relationship of energy prices to industry-wide energy

Worrell, Ernst

2011-01-01T23:59:59.000Z

407

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

Scheme for Industry: The Energy Audit, Proceedings of thefacilities conduct energy audits, employ an energy manager,1994), and the mandatory energy audits and energy management

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

408

Industrial Technologies Available for Licensing - Energy ...  

Building Energy Efficiency; Electricity Transmission; Energy Analysis; ... This panel former is used in the manufacturing process of solar pool heating collectors.

409

Trends in Materials and Manufacturing Technologies for Energy ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... 8th Global Innovations Symposium: Trends in Materials and Manufacturing Technologies for Energy Production by Joy A. Hines, David F. Barh,...

410

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

2002 Manufacturing Energy Consumption Survey Methodology and ... where Op,MECS is the MECS estimate of the amount of petroleum product p produced offsite and ...

411

Advanced Manufacturing Office: Saving Energy in Data Centers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

opportunities, and adopt energy efficient practices. The R&D Portfolio includes projects funded by DOE's Advanced Manufacturing Office (AMO) that can dramatically improve the...

412

Manufacturing Energy Consumption Survey (MECS) - U.S ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: ...

413

CHANGES IN ENERGY INTENSITY IN THE MANUFACTURING SECTOR  

U.S. Energy Information Administration (EIA)

DOE/EIA-0552(85-91) Changes in Energy Intensity in the Manufacturing Sector 1985-1991 September 1995 ... All telephone orders should be directed to:

414

AMO Industrial Distributed Energy: Clean Energy Application Centers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Industrial Distributed Energy Search Search Help Industrial Distributed Energy EERE...

415

Blooming Prairie Public Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blooming Prairie Public Utilities - Commercial and Industrial Blooming Prairie Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Blooming Prairie Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate Maximum of 100,000 per customer location, per year, per technology Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use

416

Energy Conservation and Waste Reduction in the Metal Fabrication Industry  

E-Print Network (OSTI)

Reductions of energy use and waste generation can help manufacturers to be more profitable and more environmentally acceptable. Industrial Assessment Centers located at universities throughout the United States, funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency, are conducting combined energy and waste assessments for small and medium-size manufacturers. The Industrial Technology and Energy Management (ITEM) division of University City Science Center is field manager for the western region of the Industrial Assessment Center program. These case studies present results from three assessments of manufacturing plants in the metal fabrication industry. Primary processing operations include machining, painting, plating, and assembly. Energy conservation opportunities chiefly involved motor systems, compressed air systems, and heating, ventilating, and air-conditioning systems. Typically, pollution prevention opportunities involved the painting lines. For each of the three plants studied, processes are described; the specific energy conserving and waste-reducing measures are identified; the energy savings and waste reductions are quantified; and financial analyses are presented, including cost savings and paybacks. In addition, actual implementation results reported by the manufacturers are provided.

Kirk, M. C. Jr.; Looby, G. P.

1996-04-01T23:59:59.000Z

417

Industry Leaders Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Leaders Saving Energy Industry Leaders Saving Energy Industry Leaders Saving Energy May 6, 2010 - 11:35am Addthis Joshua DeLung Companies such as 3M, Intel, PepsiCo and Whirlpool are participating in the Energy Department's Save Energy Now LEADER initiative, committing to reducing their energy use by 25 percent or more in 10 years. Another established company participating in the program, AT&T, is also making that commitment to saving energy while producing more renewable power at many of its locations across the country."We're taking meaningful steps to run a more-efficient network and explore alternative and renewable energy use," John Schinter, director of energy for AT&T Services, Inc., says. The company utilizes wind and solar power at some of its buildings. In

418

Changing the Advanced Energy Manufacturing Game in America's Heartland |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing the Advanced Energy Manufacturing Game in America's Changing the Advanced Energy Manufacturing Game in America's Heartland Changing the Advanced Energy Manufacturing Game in America's Heartland December 16, 2010 - 9:32am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Clean energy manufacturing is expanding across the Midwest. This was spurred in large part by the Advanced Energy Manufacturing Tax Credit, also known as 48C, which was part of the Recovery Act. The $2.3 billion in tax credits received by 183 projects is being matched by nearly $5.4 billion in private capital. One of the big reasons we became a global economic leader is because we built things - cars, steel, furniture - you name it, we could build it faster and better than anyone else. In many ways, manufacturing provided

419

Changing the Advanced Energy Manufacturing Game in America's Heartland |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Energy Manufacturing Game in America's Advanced Energy Manufacturing Game in America's Heartland Changing the Advanced Energy Manufacturing Game in America's Heartland December 16, 2010 - 9:32am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Clean energy manufacturing is expanding across the Midwest. This was spurred in large part by the Advanced Energy Manufacturing Tax Credit, also known as 48C, which was part of the Recovery Act. The $2.3 billion in tax credits received by 183 projects is being matched by nearly $5.4 billion in private capital. One of the big reasons we became a global economic leader is because we built things - cars, steel, furniture - you name it, we could build it faster and better than anyone else. In many ways, manufacturing provided

420

Industrial Technology Program - Energy  

energy and eliminating oxide byproducts ... such as copper-indium- ... Goal is to approach solar cell performance observed at lab-scale

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

C. KIMBLE & V. B. PRABHU -CIM and Manufacturing Industry in the North East of England: a Survey of some Current Issues in Ergonomics of Advanced Manufacturing  

E-Print Network (OSTI)

C. KIMBLE & V. B. PRABHU - CIM and Manufacturing Industry in the North East of England: a Survey. Pub Elsevier publications, 1988, pp 133 - 140. ISBN 0 444 70486 8 CIM AND MANUFACTURING INDUSTRY and the computer technologies it uses. One label often applied to this approach is CIM (Computer Integrated

Kimble, Chris

422

Sponsors of CIEEDAC: Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Petroleum Products Institute, Canadian Portland Cement Association, Canadian Pulp  

E-Print Network (OSTI)

2. Industrial Consumption of Energy, and the Quarterly Report of Energy Supply and Demand 3. Annual Canada (NRCan): 1. Annual Survey of Manufacturers (ASM, from STC) 2. Industrial Consumption of Energy consistent source of historical data related to energy consumption in all Canadian industry by region

423

Manufactured Home Energy Audit user`s manual  

SciTech Connect

The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

NONE

1997-09-01T23:59:59.000Z

424

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLSPDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Values RSE Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 2.3 By Value of Shipments & Employment Size Category XLS PDF

425

Weaving New York's Solar Industry Web | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web June 29, 2010 - 11:00am Addthis Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Stephen Graff Former Writer & editor for Energy Empowers, EERE These days in New York, it seems whatever The Solar Energy Consortium (TSEC) touches turns to green. The nonprofit has been building up a supply chain across the state for the last three years by helping companies bring on new, solar-related manufacturing processes and jobs.

426

Weaving New York's Solar Industry Web | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web June 29, 2010 - 11:00am Addthis Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Stephen Graff Former Writer & editor for Energy Empowers, EERE These days in New York, it seems whatever The Solar Energy Consortium (TSEC) touches turns to green. The nonprofit has been building up a supply chain across the state for the last three years by helping companies bring on new, solar-related manufacturing processes and jobs.

427

Federal Energy and Manufacturing Workforce Training Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Energy and Manufacturing Workforce Training Programs Federal Energy and Manufacturing Workforce Training Programs Federal Energy and Manufacturing Workforce Training Programs Four panel image showing various energy jobs. Energy & Manufacturing Workforce Training Topics List Version 1.2 (11.02.13) The National Science Foundation, the Department of Labor and the Department of Energy have programs that support training for jobs in energy and manufacturing related workforce training programs. The link above provides a searchable list of the training programs in these areas showing the subjects being taught, grantee, project title, and state. In some cases the list also shows the certificates provided by the courses. The list is still a work in progress and will be updated as more information is obtained. It may contain incomplete information,

428

Dal-Tile: Optimized Compressed Air System Improves Performance and Saves Energy at a Tile Manufacturing Plant  

SciTech Connect

This DOE Industrial Technologies Program case study describes the significant energy and costs savings resulting from compressed air system improvements at Dal-Tile, a Texas tile manufacturing plant.

2005-08-01T23:59:59.000Z

429

Astraeus Wind Modifies Manufacturing in Michigan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan May 14, 2010 - 3:35pm Addthis Lindsay Gsell When the assembly line was introduced to the automobile industry, everything changed. Cars were produced in less time with fewer errors, and each one was exactly the same as the last. As a result, the industry boomed. Astraeus Wind LLC hopes to bring this type of success to wind turbine manufacturing by standardizing the blade manufacturing process. The company wants to experiment with new materials to strengthen the blades while creating an automated process to assemble them, creating identical blades in a fast, efficient manner. CEO Jeff Metts says standardizing this process will help ensure each blade has the same measurements, lower the amount of time needed for production

430

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)  

SciTech Connect

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

Not Available

2012-09-01T23:59:59.000Z

431

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)  

SciTech Connect

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

2012-09-01T23:59:59.000Z

432

Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - Commercial and Industrial Energy Efficiency Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate Feasibility Study: 25% of cost Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Small Business Energy Solutions (under 100kW): $0.21 - $0.50/kwh first year savings Large Commercial/Industrial (Prescriptive): $0.09/kwh first year savings Large Commercial/Industrial (Custom): $0.07 - $0.15/kwh first year savings

433

Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Yeelong Wind Power Equipment Manufacturing Co Ltd Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place Hebei Province, China Sector Wind energy Product China-based wind turbine equipment manufacturer. References Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd is a company located in Hebei Province, China . References ↑ "[ Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hebei_Yeelong_Wind_Power_Equipment_Manufacturing_Co_Ltd&oldid=346424

434

Energy Efficient Manufactured Homes Incentive Tax Credit | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Manufactured Homes Incentive Tax Credit Efficient Manufactured Homes Incentive Tax Credit Energy Efficient Manufactured Homes Incentive Tax Credit < Back Eligibility Residential Savings Category Other Program Info Start Date 7/1/2009 State South Carolina Program Type Personal Tax Credit Rebate Amount 750 Provider South Carolina Energy Office During the 2008 legislative session, South Carolina legislators passed [http://www.scstatehouse.gov/sess117_2007-2008/bills/1141.htm SB 1141], creating the ''Energy Efficient Manufactured Homes Incentive Program'', effective July 1, 2009. This bill created an income tax credit, with the goal of encouraging consumers to purchase energy efficient manufactured homes. To qualify for the nonrefundable $750 tax credit, an individual must purchase either: 1) a manufactured home that meets or exceeds the U.S.

435

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

Table 2: Natural gas prices incurred by manufacturers, 2010, by region and establishment employment size (dollars per thousand cubic feet) Employment Size

436

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: Mon,...

437

Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research  

Science Conference Proceedings (OSTI)

For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oak Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.

Hemrick, James Gordon [ORNL

2013-01-01T23:59:59.000Z

438

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative on-demand industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical static design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

439

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

440

Greening Industrial Facilities: A Sustainable Approach to Addressing Energy Concerns  

E-Print Network (OSTI)

The prices for natural gas and oil-based products have risen significantly in recent years, making it more costly for U.S.-based manufacturers to be profitable and compete globally. A poll taken at a recent meeting of the National Association of Manufacturers (NAM) board of directors revealed that 93 percent of directors from small and medium manufacturing companies believe that higher energy prices are having a negative impact on their bottom line. Furthermore, according to a 2006 report from the National Association of Manufacturers (NAM), the domestic environment for manufacturers is dominated by concerns about rising external costs that make manufacturing from a U.S. base difficult. With the cost of oil at or near historic all-time highs, energy efficiency has quickly moved to top priority when analyzing potential savings in manufacturing facilities. The industrial sector currently accounts for about one-third of all U.S. energy consumption at an annual cost of more than $120 billion. NAM says that external outlays related to energy prices (in addition to taxes, litigation, health care, and regulation) have added 22.4 percent to production costs. In addition, according to one analysis, deregulation, security concerns, and a fragile transmission infrastructure are increasing energy price volatility, with negative financial impact on some companies. Those that more tightly control and aggressively reduce energy consumption can minimize exposure to such volatility.

Love, D.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steel Manufacturer Proves Its "Mittal" by Doing More with Less Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy November 2, 2010 - 12:15pm Addthis ArcelorMittal, Department of Energy and elected officials gather for the groundbreaking in front of North America’s largest blast furnace. ArcelorMittal, Department of Energy and elected officials gather for the groundbreaking in front of North America's largest blast furnace. Isaac Chan The industrial sector consumes about a third of all energy used in the United States. A large portion of this energy is lost through inefficiencies. The Department of Energy under the American Recovery and Reinvestment Act is investing millions of dollars to help the United States

442

1991 Manufacturing Consumption of Energy 1991 Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

1991 Executive Summary 1991 Executive Summary 1991 Figure showing the Largest Energy Consumers in the Manufacturing Sector Executive Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy Consumption Survey (MECS). The MECS is the only comprehensive source of national-level data on U.S. manufacturing energy use. The 1991 MECS is the third in an ongoing series of surveys conducted at 3-year intervals beginning in 1985. Pursuant to a provision of the Energy Policy Act of 1992, the MECS will be conducted biennially beginning in 1994. The MECS surveys a nationally representative sample of manufacturing establishments by means of mailed questionnaires. The 1991 sample represented 98 percent of the U.S. manufacturing sector universe, which consists of all manufacturing establishments in the 50 States and the District of Columbia. Compared with the 1988 MECS, the designed sample size for 1991 was increased from 12,065 manufacturing establishments to 16,054 establishments.

443

Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial EnergySense Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Insulation Appliances & Electronics Water Heating Maximum Rebate $75,000 Program Info Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Varies Widely Philadelphia Gas Works' (PGW) Commercial and Industrial Retrofit Incentive Program is part of EnergySense, PGW's portfolio of energy efficiency

444

Environmental considerations of selected energy-conserving manufacturing process options. Volume XVII. Nitrogen oxides summary report. Final report  

SciTech Connect

Arthur D. Little, Inc. undertook a study of the 'Environmental Consideration of Selected Energy-Conserving Manufacturing Process Options.' Some 80 industrial process options were examined in 13 industrial sectors. Results were published in 15 volumes, including a summary, industry prioritization report, and 13 industry oriented reports. The present report summarizes the information regarding nitrogen oxide pollutants in the 13 industry reports. Topics considered include the following: Processes and potential nitrogen oxide emissions--(Bases of calculations, NOx control methods, petroleum refining industry, cement industry, olefins industry, alumina and aluminum industry, glass industry, copper industry, fertilizer industry, ammonia, iron and steel, phosphorus/phosphoric acid, textile industry, pulp and paper industry, and chlor-alkali industry).

1979-07-01T23:59:59.000Z

445

Comparison of National Programs for Industrial Energy Efficiency  

Science Conference Proceedings (OSTI)

This report looks at the Better Buildings, Better Plants program from the Department of Energy; E3, an initiative of five U.S. federal agencies; ENERGY STAR for Industry from the Environmental Protection Agency; and Superior Energy Performance, a product of the U.S. Council for Energy-Efficient Manufacturing. (See table on next page for a summary comparison of these programs.) By comparing the goals of several energy-efficiency programs that have been established to support industry, this report hopes to...

2012-04-10T23:59:59.000Z

446

Industrial Energy Efficiency Achieving Success in a Difficult Environment  

E-Print Network (OSTI)

Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a key area both from the standpoint of the amount of energy consumed and the magnitude of the energy options that exist there. However, history has shown that success in the industrial energy sector requires careful planning and consideration of the unique challenges of the manufacturing environment.

Castellow, C.

2011-01-01T23:59:59.000Z

447

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

building solar panels and wind turbines; constructing fuel-that the fortunes of wind turbine manufacturers are relatedThe wind industry value chain Wind turbine manufacturing and

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

448

Buildings Energy Data Book: 2.7 Industrialized Housing (IH)  

Buildings Energy Data Book (EERE)

5 2004 Number of Industrialized Housing Manufacturers Versus Production (Stick-Builders) Companies Type Panelized Modular (1) HUD-Code Production Builders Component Manufacturers...

449

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

450

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an existing Market Information: Industries End-use(s) EnergyGas Boiler Market Information: Industries End-use(s) Energyelectricity Market Information: Industries End-use(s) Energy

2000-01-01T23:59:59.000Z

451

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

trends in the iron and steel industry. Energy Policy 30:initiatives of Japans steel industry against globalenergy use in the steel industry, but can reduce both energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

452

Department of Energy Announces New Partnerships to Support Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships to Support Partnerships to Support Manufacturing Job Training Department of Energy Announces New Partnerships to Support Manufacturing Job Training June 29, 2011 - 12:00am Addthis Washington, D.C. - To complement the Obama Administration's launch last week of the Advanced Manufacturing Partnership, U.S. Secretary of Energy Steven Chu today announced a series of new manufacturing job training partnerships using the Department of Energy's National Training and Education Resource (NTER). DOE will be partnering with the Manufacturing Institute, an affiliate of the National Association of Manufacturers (NAM), the Ford Partnership for Advanced Studies, and Macomb Community College to explore opportunities to provide students with highly interactive and engaging materials in a variety of science, technology, engineering and

453

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

to Improve Energy Efficiency and Reduce Greenhouse Gasand Industrial Energy Efficiency. Energy Policy, 33: 949-Galitsky (2005) Energy efficiency improvement opportunities

Worrell, Ernst

2009-01-01T23:59:59.000Z

454

The Role of the Canadian Government in Industrial Energy Conservation  

E-Print Network (OSTI)

Canada has undertaken to become self sufficient in energy by 1990. To buy the necessary time to develop domestic supplies, energy transport systems and to extend the time life of energy reserves, we have embarked on an energy conservation program which aims at a 2% growth rate in energy use by the year 1990. The primary objective of the Industry Energy Conservation Program is to achieve a high degree of energy efficiency in manufacturing and process industries. Reduced energy costs in industry achieved through intelligent investment and operating practice is central to the program strategy. The industry program has been developed in consultation with Canadian industry and is completely voluntary on their part. The program has five main elements: 1. Industry Energy Conservation Task Forces 2. Information and awareness packages 3. Fiscal and Financial incentives 4. Industry Data Base Development and 5. Industry policy studies. By selecting the voluntary approach to deal with energy conservation we have maintained the traditional cooperative relationship between government and industry in Canada and have been able to manage a successful energy conservation program with a minimum of government intervention and bureaucracy. Industry sets the energy conservation goals, identifies the opportunities to conserve energy, and finally reports on the improvements in energy efficiency. Government for its part supports industry with a number of program elements designed to overcome the many barriers to energy efficiency which exist in Canada. These programs are deliberately biased to deal with the liquid fuel supply situation in eastern Canada and to encourage the use of wood waste as a fuel. As new barriers to the efficient use of energy are identified these programs are modified accordingly.

Godin, M. A.

1980-01-01T23:59:59.000Z

455

Lewis County PUD - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lewis County PUD - Commercial and Industrial Energy Efficiency Lewis County PUD - Commercial and Industrial Energy Efficiency Rebate Program Lewis County PUD - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Manufacturing Other Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting: Up to 70% of project cost HVAC Upgrades: UP to 70% of project cost Pre-Rinse Spray Valves: $150 Grocer Smart: Varies Custom: Varies Agricultural: Varies Provider PUD No.1 of Lewis County [http://www.lcpud.org/index.html Lewis County PUD] offers rebates for commercial and industrial lighting, as well as industrial process upgrades,

456

Overview of Industrial Energy Training and Software  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management ... A Suggestion for Establishing Energy Management Policy in Primary Aluminum Industry...

457

PNNL: Available Technologies: Energy & Utilities Industry  

Industry: Energy & Utilities. Click on the portfolios below to view the technologies that may have potential applications in the Energy & ...

458

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Department of Energys Industrial Technologies Program and its Combined Heat and Power program.

459

Nanotechnology for Energy, Healthcare and Industry  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Nanotechnology for Energy, Healthcare and Industry. Sponsorship.

460

ENERGY STAR Challenge for Industry: Statement of Energy Improvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry: Statement of Energy Improvement Use this form to document the energy intensity reduction of an industrial site that is participating in the ENERGY STAR...

Note: This page contains sample records for the topic "manufacturing industries energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Management in a Multi-Industry Organization  

E-Print Network (OSTI)

Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification of manufacturing operations and products, coupled with decentralization of management decision making present special challenges to the planning and coordination of an effective corporate level energy program. These challenges include accommodating different management styles and attitudes, different manufacturing operations, different energy intensities, different businesses, and different degrees of government regulation. Tenneco's energy program has steadily expanded to include all segments of the companies' various operations, even the least energy intensive, and has provided a steady stream of economic benefits in the form of avoided energy costs.

Lawrence, J.

1981-01-01T23:59:59.000Z

462

Energy Department Turns Up the Heat and Power on Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Turns Up the Heat and Power on Industrial Energy Department Turns Up the Heat and Power on Industrial Energy Efficiency Energy Department Turns Up the Heat and Power on Industrial Energy Efficiency March 13, 2013 - 12:19pm Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic courtesy of Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic courtesy of Sarah Gerrity, Energy Department. Katrina Pielli Senior Policy Advisor, Office of Energy Efficiency and Renewable Energy What is Combined Heat and Power? Often called cogeneration or CHP, a combined heat and power system

463

Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants  

Science Conference Proceedings (OSTI)

In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Worrell, Ernst; Angelini, Tana; Masanet, Eric

2010-07-27T23:59:59.000Z

464

Senior U.S. Energy Department Official to Tour Daikin McQuay Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Senior U.S. Energy Department Official to Tour Daikin McQuay Senior U.S. Energy Department Official to Tour Daikin McQuay Manufacturing Facility in Plymouth, Minn., Visit Rochester IBEW Wind Turbine Training Facility Senior U.S. Energy Department Official to Tour Daikin McQuay Manufacturing Facility in Plymouth, Minn., Visit Rochester IBEW Wind Turbine Training Facility July 13, 2012 - 2:53pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - On Monday, July 16, 2012, U.S. Deputy Secretary of Energy Daniel B. Poneman will travel to Plymouth, Minn. to tour Daikin McQuay's engineering and testing labs, where he will highlight the need to extend clean energy manufacturing tax credits and support the continued growth of clean energy industries in Minnesota and nationwide. He will also visit International Brotherhood of Electrical Workers (IBEW) Local 343 Union in

465

A Not-So-Cheesy Approach to Clean Energy Manufacturing | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing May 30, 2012 - 6:24pm Addthis Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What does this project do? Betin Incorporated recently installed an "anaerobic digester" that transforms industrial waste into electricity. In support of the Obama Administration's goals for quality, American-made clean energy products, the Energy Department's State Energy Program

466

A Not-So-Cheesy Approach to Clean Energy Manufacturing | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing A Not-So-Cheesy Approach to Clean Energy Manufacturing May 30, 2012 - 6:24pm Addthis Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Betin Incorporated's generator converts gas from the plant's anaerobic digester into electricity. | Courtesy of Montchevré. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What does this project do? Betin Incorporated recently installed an "anaerobic digester" that transforms industrial waste into electricity. In support of the Obama Administration's goals for quality, American-made clean energy