Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

2

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

3

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith, Russ Tarver,Switching <1 Energy

4

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0

5

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0 S ˆ Y M n

6

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0 S ˆ Y M

7

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0 S ˆ Y ME

8

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0 S ˆ Y

9

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0 S ˆ

10

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0 S ˆ3

11

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0 S

12

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0 SDetailed

13

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.0

14

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.00. Number

15

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0 0.0 0.00.

16

2014 Manufacturing Energy Consumption Survey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next ReleaseEFRC NEESShockOpticsNIFU S C E N

17

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase480 530 525: PercentageThousandThousandSurvey S ˆE1

18

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7, 199930,ConsumptionSurvey (MECS)

19

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7, 199930,ConsumptionSurvey

20

Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System  

E-Print Network [OSTI]

Selection for Energy Consumption Reduction in Machining,Dornfeld, D. (2011): Energy Consumption Characterization and2011): Unit Process Energy Consumption Models for Material

Diaz, Nancy; Dornfeld, David

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report  

E-Print Network [OSTI]

, liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify...

Lockhead, S.

22

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,

23

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98U.S.

24

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98U.S.Information

25

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81

26

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81Information

27

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81InformationInformation

28

Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,Information Administration (EIA) Early-release

29

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,Information Administration (EIA)

30

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,Information Administration (EIA)Administration

31

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shownshortHouseholdsValues

32

2002 Manufacturing Energy Consumption Survey - User Needs Survey  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use Equipment 2002 Manufacturing

33

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98U.S. Energy

34

Retrofits: A Means for Reducing Energy Consumption in Ammonia Manufacture  

E-Print Network [OSTI]

, be fore we proceed to that discussion, it would be help ful to make a purely theoretical analysis of what the potential energy savings might be. The reaction of methane with steam and air to form ammonia is shown below. CH4 + 1.3974H20'+ 0.301302 + 1... on an ammonia production rate of 1000 STPD using natural gas feed. The process is divided into the following three sections with utilities included as an additional section: Reforming and shift C02 removal and methanation Compression and ammonia synthesis...

LeBlanc, J. R.; Moore, D. O.; Schneider, R. V., III

1982-01-01T23:59:59.000Z

35

1991 Manufacturing Consumption of Energy 1991 Executive Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare Feet 50,001.6.A.0.East Coast61991

36

Selected Survey Attributes of the Manufacturing Energy Consumption Survey  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7, 2013 MEMORANDUM

37

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98 3.241MTBE,MUU.S.

38

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98

39

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith, Russ Tarver,Switching <1U.S.

40

Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0 00/03)%Year

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE/EIA-0515(85) Energy Information Administration Manufacturing Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar 20144Pur4(85

42

DOE/EIA-0516(85) Energy Information Administration Manufacturing Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar

43

Energy Consumption of Transponders  

E-Print Network [OSTI]

Energy Consumption of Transponders Lei Shi Apr. 26, 2011 #12;Contents · Energy Efficient Ethernet · Energy Efficient EPON · Core Network ­ MLR: Reach and Energy Cost #12;Ethernet Energy Consumption is usually over 5 W · Energy Efficient Ethernet (EEE), uses a Low Power Idle mode to reduce energy

California at Davis, University of

44

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

45

Advanced Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings, Better Plants Clean Energy Manufacturing Initiative Combined Heat and Power Innovative Manufacturing Initiative National Network for Manufacturing Innovation...

46

Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing  

E-Print Network [OSTI]

Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing.taisch}@polimi.it Abstract. Energy consumption is one of the main economic, environmental and societal issues. As stated by recent researches, manufacturing plays a major role in energy consumption. To react to this situation

Boyer, Edmond

47

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network [OSTI]

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTION

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

48

Manufacturing | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

49

Energy Consumption Profile for Energy  

E-Print Network [OSTI]

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

50

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

51

Energy-consumption modelling  

SciTech Connect (OSTI)

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

52

DOE/EIA-0515(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S,...

53

Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use  

E-Print Network [OSTI]

Strategies for Green Manufacturing, in: Proceedings of theGreen Machine Tools; Energy Consumption Reduction; Specific Energy Characterization INTRODUCTION A product undergoes three life-cycle stages: manufacturing,

Diaz, Nancy; E. Redelsheimer; Dornfeld, David

2011-01-01T23:59:59.000Z

54

Resource Consumption of Additive Manufacturing Technology.  

E-Print Network [OSTI]

??The degradation of natural resources as a result of consumption to support the economic growth of humans society represents one of the greatest sustainability challenges. (more)

Nopparat, Nanond

2012-01-01T23:59:59.000Z

55

Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993  

E-Print Network [OSTI]

was $0.46/ccf of natural gas and $O.053IkWh of electricity. Natural Gas Consumption Of the total natural gas consumption, steam processes used the largest quantity with 48 percent, followed closely by space heating with 45 percent. The remaining 7... natural gas consumption. The large space heating loads warranted extensive evaluation of the building's thermal envelope for improved heat loss resistance. Electrical Consumption The electricity consumption for the plants (Table 3) was divided...

Twedt, M.; Bassett, K.

56

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial WorkingYear Jan Feb(MECS) >

57

Transportation Energy Consumption Surveys  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1Energy Consumption (RTECS)

58

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

59

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

60

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

62

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

63

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

64

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

65

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

66

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

67

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

68

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

69

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

70

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

71

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

72

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

73

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

74

World energy consumption  

SciTech Connect (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

75

Manufacturing Tech Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Tech Team Manufacturing Tech Team Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy...

76

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

77

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

were used to calculate the energy mix in manufacturing,of Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption mix. However, accurately

Fridley, David G.

2008-01-01T23:59:59.000Z

78

Exceeding Energy Consumption Design Expectations  

E-Print Network [OSTI]

) the building consumed 208.7 kWh m-2 yr-1, 83% of the expected energy consumption (250 kWh m-2 yr-1). This dropped further to 176.1 kWh m-2 yr-1 in 2012 (70% below expected). Factors affecting building energy consumption have been discussed and appraised...

Castleton, H. F.; Beck, S. B. M.; Hathwat, E. A.; Murphy, E.

2013-01-01T23:59:59.000Z

79

Energy consumption of building 39  

E-Print Network [OSTI]

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

80

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

and Low Power Mode Energy Consumption, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

82

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand)...

83

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

84

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

85

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

86

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

87

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

88

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace...

89

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

90

Energy Consumption of Minimum Energy Coding in  

E-Print Network [OSTI]

Energy Consumption of Minimum Energy Coding in CDMA Wireless Sensor Networks Benigno Zurita Ares://www.ee.kth.se/control Abstract. A theoretical framework is proposed for accurate perfor- mance analysis of minimum energy coding energy consumption is analyzed for two coding schemes proposed in the literature: Minimum Energy coding

Johansson, Karl Henrik

91

Improving energy efficiency in a pharmaceutical manufacturing environment -- office building  

E-Print Network [OSTI]

Reducing energy consumption without compromising the quality of products in a pharmaceutical manufacturing environment and maintaining the comfort of employees is of critical important in maintaining the financial viability ...

Li, Wu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

92

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

a forecast for total energy consumption in network standbyconsiderable impact on total energy consumption from TVs.factors affecting total energy consumption. Although further

Park, Won Young

2011-01-01T23:59:59.000Z

93

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

or fewer than 20 buildings were sampled. NNo responding cases in sample. Notes: Statistics for the "Energy End Uses" category represent total consumption in buildings that...

94

Manufactured Home Energy Audit user`s manual  

SciTech Connect (OSTI)

The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

NONE

1997-09-01T23:59:59.000Z

95

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

96

Bio-Manufacturing: A Strategic clean energy manufacturing opportunity  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

97

Understanding energy consumption: Beyond technology and economics  

SciTech Connect (OSTI)

This paper summarizes two years of efforts among a cross-disciplinary group of senior researchers to bring social and cultural perspectives to modeling of household energy consumption. The work has been organized by the Center for Energy Studies of the University of Geneva. The researchers represent both the physical and social sciences, several institutions and a number of countries. The initiative was based on an acknowledgement of the failure of technical and economic models to explain consumption or more importantly, how consumption patterns change. Technical and economic models most often either ignore social and cultural issues or reduce them to parameters of other variables. An important objective for the Geneva Group has been to engage modelers and social scientists in a dialogue which brings social and cultural context to the fore. The process reveals interesting insights into the frictions of cross-disciplinary interaction and the emergence of new perspectives. Various classical modeling approaches have been discussed and rejected. Gradually, a framework has emerged which says something about the appropriate institutions and actors which contribute to consumption patterns; about how they are related; and finally about how the interinstitutional relationships and the consumption patterns themselves change. A key point of convergence is that a complete understanding of energy end-use will not be possible from an analysis directed at the point of end use alone. The analysis must incorporate what happens inside institutions like manufacturers, retailers, and public policy organizations as well as how those organizations interact with consumers, including media and advertising. Progress towards a better understanding of energy consumption requires a greater engagement of social scientists with these heretofore little explored actors an relationships.

Wilhite, H.; Shove, E.

1998-07-01T23:59:59.000Z

98

Continuous Improvement Energy Projects Reduce Energy Consumption  

E-Print Network [OSTI]

Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity...

Niemeyer, E.

2014-01-01T23:59:59.000Z

99

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0Year Jan Feb Mar AprEnergy

100

Residential Energy Consumption Survey:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. Energy InformationU.S.

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ENERGY CONSUMPTION SURVEY  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelectedandForest(NAICSGlobal5

102

Understanding Manufacturing Energy and Carbon Footprints, October...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

103

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

104

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

and Low Power Mode Energy Consumption, Energy Efficiency inTV Shipments on Energy Consumption.. 22 Figure 3-1.Estimates of Annual Energy Consumption in 3D mode of 3D TVs

Park, Won Young

2011-01-01T23:59:59.000Z

105

DOE/EIA-0516(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

6(85) Energy Information Administration Manufacturing Energy Consumption Survey: Changes in Energy Efficienc y 1980-198 5 0 6 6 T ' L I A n s n u e r b i r p u T J d J T O J u o i...

106

Manufacturing Energy and Carbon Footprints  

E-Print Network [OSTI]

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

107

Monitoring Energy Consumption In Wireless Sensor Networks  

E-Print Network [OSTI]

Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

Turau, Volker

108

Energy consumption in thermomechanical pulping  

SciTech Connect (OSTI)

Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

Marton, R.; Tsujimoto, N.; Eskelinen, E.

1981-08-01T23:59:59.000Z

109

Clean Energy Manufacturing Initiative: Increasing American Competitive...  

Broader source: Energy.gov (indexed) [DOE]

for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

110

Manufacturing Energy and Carbon Footprints (2006 MECS)  

Broader source: Energy.gov [DOE]

Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lostand where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

111

State energy data report 1992: Consumption estimates  

SciTech Connect (OSTI)

This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

Not Available

1994-05-01T23:59:59.000Z

112

Energy Consumption of Personal Computing Including Portable  

E-Print Network [OSTI]

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

113

Manufacturing | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-time informationScience & Innovation »

114

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

2012-01-01T23:59:59.000Z

115

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network [OSTI]

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

116

Manufacturing Perspective | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctobertoPerspective

117

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents [OSTI]

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2008-09-02T23:59:59.000Z

118

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents [OSTI]

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2006-03-07T23:59:59.000Z

119

Resource Consumption in Additive Manufacturing with a PSS Approach.  

E-Print Network [OSTI]

??Since the 1980s, additive manufacturing (AM) has gradually advanced from rapid prototyping applications towards fabricating end consumer products. Many small companies may prefer accessing AM (more)

Nopparat, Nanond; Kianian, Babak; Thompson, Anthony

2012-01-01T23:59:59.000Z

120

Household energy consumption and expenditures 1993  

SciTech Connect (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ohio Advanced Energy Manufacturing Center  

SciTech Connect (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

122

Energy-Related Carbon Emissions in Manufacturing  

Reports and Publications (EIA)

Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

2000-01-01T23:59:59.000Z

123

clean energy manufacturing | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American...

124

Advanced Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing

125

Energy Manufacturing Matthew Realff and Steven Danyluk  

E-Print Network [OSTI]

Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

Das, Suman

126

Home, Habits, and Energy: Examining Domestic Interactions and Energy Consumption  

E-Print Network [OSTI]

, habitual, and irrational. Implications for the design of energy-conserving interactions with technology investigate the relationships among "normal" domestic interactions with technology, energy consumptionHome, Habits, and Energy: Examining Domestic Interactions and Energy Consumption James Pierce1

Paulos, Eric

127

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network [OSTI]

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

128

Manufacturing Initiative | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail5,722,326ManhattanEnergyManufacturing

129

Energy consumption metrics of MIT buildings  

E-Print Network [OSTI]

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

130

State energy data report 1993: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1995-07-01T23:59:59.000Z

131

State Energy Data Report, 1991: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

Not Available

1993-05-01T23:59:59.000Z

132

2014 Manufacturing Energy and Carbon Footprints: Definitions...  

Broader source: Energy.gov (indexed) [DOE]

and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

133

Manufactured Home Energy Audit (MHEA)Users Manual (Version 7)  

SciTech Connect (OSTI)

The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the U.S. Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA uses a relatively standard Windows graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment appliances, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. Weatherization retrofit measures are evaluated based on the predicted energy savings after installation of the measure, the measure cost, and the measure life. Finally, MHEA recommends retrofit measures that are energy and cost effective for the particular home being evaluated. MHEA evaluates each manufactured home individually and takes into account local weather conditions, retrofit measure costs, and fuel costs. The recommended package of weatherization retrofit measures is tailored to the home being evaluated. More traditional techniques apply the same package of retrofit measures to all manufactured homes, often the same set of measures that are installed into site-built homes. Effective manufactured home weatherization can be achieved only by installing measures developed specifically for manufactured homes. The unique manufactured home construction characteristics require that each of these measures is evaluated separately in order to devise a package of measures that will result in high energy and dollar savings. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes. The National Renewable Energy Laboratory originally developed MHEA for the U.S. Department of Energy Weatherization Assistance Program. Conversion to a Windows-based program with additional modifications has been performed by the Oak Ridge National Laboratory. Many energy consumption and economic calculations resemble those found in the Computerized Instrumented Residential Audit written by Lawrence Berkeley National Laboratory and the National Energy Audit written by Oak Ridge National Laboratory. The calculations are similar in structure but have been altered to more accurately represent a manufactured home's unique energy use characteristics. Most importantly, MHEA helps meet the DOE Weatherization Assistance Program goals to increase client comfort and use federal dollars wisely.

Gettings, M.B.

2003-01-27T23:59:59.000Z

134

State energy data report 1994: Consumption estimates  

SciTech Connect (OSTI)

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

135

State energy data report 1996: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

136

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

137

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

138

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

139

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial WorkingYear Jan Feb

140

Monitoring and Management of Refinery Energy Consumption  

E-Print Network [OSTI]

MONITORING AND MANAGEMENT OF REFINERY ENERGY CONSUMPTION Roger O. Pelham Richard D. Moriarty Patrie D. Hudgens Profimatics, Inc. Thousand Oaks, California ABSTRACT Since 1972, the u.s. refining industry has made much progress in reduci... ng energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and man age the daily use...

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Changing patterns of world energy consumption  

SciTech Connect (OSTI)

The substantial increases in oil prices since 1973 have had tremendous impacts on world energy, and particularly on oil consumption. These impacts have varied across regions and energy types. As shown in a table, from 1960 through 1973 the real price of internationally traded crude oil, as measured in constant US dollars, changed very little. In this stable oil price environment, Free World energy consumption grew at 5.3% per year and oil use rose at 7.5% per year, increasing its share of Free World energy consumption from 43 to 56%. 6 tables.

Todd, S.H.

1983-08-01T23:59:59.000Z

142

Energy & Manufacturing Workforce Training Topics List - Version...  

Broader source: Energy.gov (indexed) [DOE]

View this searchable list of the training programs in the areas of energy andor manufacturing. Information provided in this list includes: the subjects being taught, grantee,...

143

2010 Manufacturing Energy and Carbon Footprints: Definitions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Definitions and Assumptions 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions This 13-page document defines key terms and details assumptions and...

144

Renewable Energy Manufacturing Tax Credit (South Carolina)  

Broader source: Energy.gov [DOE]

South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015.

145

American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

146

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

147

Estimates of US biomass energy consumption 1992  

SciTech Connect (OSTI)

This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

Not Available

1994-05-06T23:59:59.000Z

148

Evaluating Energy Efficiency Improvements in Manufacturing Processes  

E-Print Network [OSTI]

and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

Boyer, Edmond

149

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

end-use Residential primary energy consumption was 6.6 EJ inof primary energy. Primary energy consumption includes final14 Residential Primary Energy Consumption by Fuel (with

Zhou, Nan

2010-01-01T23:59:59.000Z

150

State energy data report 1995 - consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1997-12-01T23:59:59.000Z

151

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, Reference

152

Research on Building Energy Consumption Situation in Shanghai  

E-Print Network [OSTI]

This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between...

Yang, X.; Tan, H.

2006-01-01T23:59:59.000Z

153

Uncertainties in Energy Consumption Introduced by Building Operations and  

E-Print Network [OSTI]

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

154

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

Meter allows us to study the energy consumption patterns onThis allows us to study the energy consumption of individualgives us a good framework to study the energy consumption

Balaji, Bharathan

2011-01-01T23:59:59.000Z

155

Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption  

E-Print Network [OSTI]

: Autonomous Underwater Vehicle, Minimum Energy Consumption, Optimal Control, Experiments. 1 IntroductionIncreasing Underwater Vehicle Autonomy by Reducing Energy Consumption M. Chybaa , T. Haberkornd , S, we concern ourselves with finding a control strategy that minimizes energy consumption along

Chyba, Monique

156

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, Reference case,A5.On-HighwayDAD

157

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, Reference case,A5.On-HighwayDADE

158

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, ReferenceG (2005) - Household

159

Comparison of Real World Energy Consumption to Models and DOE...  

Broader source: Energy.gov (indexed) [DOE]

Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates...

160

Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Preliminary measured drying time of fabric sample using ultrasonic...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Power to the Plug: An Introduction to Energy, Electricity, Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

162

New Water Booster Pump System Reduces Energy Consumption by 80...  

Broader source: Energy.gov (indexed) [DOE]

Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

163

Stronger Manufacturers' Energy Efficiency Standards for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

164

Energy Information Administration - Energy Efficiency, energy consumption  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998Information Administration &1995 End-Usesavings

165

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andcan be measured using energy consumption per capita values.

Zhou, Nan

2010-01-01T23:59:59.000Z

166

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

167

Wind Energy Manufacturing Tax Incentive  

Broader source: Energy.gov [DOE]

With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

168

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

2007-01-01T23:59:59.000Z

169

Public perceptions of energy consumption and savings  

E-Print Network [OSTI]

on Environmental Decisions, Columbia University, New York, NY 10027; b Department of Psychology, Ohio StatePublic perceptions of energy consumption and savings Shahzeen Z. Attaria,1 , Michael L. De February 12, 2010) In a national online survey, 505 participants reported their percep- tions of energy

Kammen, Daniel M.

170

Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables  

Broader source: Energy.gov [DOE]

Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

171

Advanced Manufacturing Partnership | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the...

172

Development of Statistical Energy Analysis Tools for Toyota Motor Engineering & Manufacturing  

E-Print Network [OSTI]

Development of Statistical Energy Analysis Tools for Toyota Motor Engineering & Manufacturing Duke University | Bass Connections in Energy IETC | May 21, 2014 Jason Chen, Robert Collins, Gary Gao, Daniel Schaffer, Jill Wu ESL-IE-14...-05-06 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Presentation Agenda ? Project introduction and goals ? Duke teams energy consumption models ? Analysis of Toyotas current consumption model ? Duke vs...

Chen, J; Collins, Ro.; Gao, G.; Schaffer, D.; Wu, J.

2014-01-01T23:59:59.000Z

173

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

consumption. Total energy consumption (in thousand BTUs) waselectricity and total energy consumption. Because all homesin gas, electric, and total energy consumption. Removing

Kelsven, Phillip

2013-01-01T23:59:59.000Z

174

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalys...

175

Energy Department to Work with National Association of Manufacturers...  

Office of Environmental Management (EM)

to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase...

176

AMO Issues Request for Information on Clean Energy Manufacturing...  

Energy Savers [EERE]

Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications AMO Issues Request for Information on Clean Energy Manufacturing Topics,...

178

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A How the

179

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A How

180

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A How.

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A

182

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A. Vehicle

183

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A. Vehicle

184

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A. Vehicle

185

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A.

186

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A.Detailed

187

Household Vehicles Energy Consumption 1994  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A.DetailedW

188

Characterizing System Level Energy Consumption in Mobile Computing Platforms  

E-Print Network [OSTI]

1 Characterizing System Level Energy Consumption in Mobile Computing Platforms Cintia B. Margi 1156 High Street Santa Cruz, CA 95064 Abstract--- This paper approaches energy consumption charac terization in mobile computing platforms by assessing energy con sumption of ''basic'' application

Obraczka, Katia

189

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network [OSTI]

real-world thermostat settings and heat energy consumptionto real-world behaviours. The actual energy consumption goesworld data indicates that the houses heated during the night had higher annual heat energy consumption.

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

190

Evaluating Texas State University Energy Consumption According to Productivity  

E-Print Network [OSTI]

The Energy Utilization Index, energy consumption per square foot of floor area, is the most commonly used index of building energy consumption. However, a building or facility exists solely to support the activities of its occupants. Floor area...

Carnes, D.; Hunn, B. D.; Jones, J. W.

1998-01-01T23:59:59.000Z

191

Energy Consumption Characteriation of Heterogeneous Servers School of Computer Science  

E-Print Network [OSTI]

Energy Consumption Characteriation of Heterogeneous Servers Xiao Zhang School of Computer Science Machine between servers to save energy. An accurate energy consumption model is the basic of energy management. Most past studies show that energy consumption has linear relation with resource utilization. We

Qin, Xiao

192

Electrical energy consumption control apparatuses and electrical energy consumption control methods  

DOE Patents [OSTI]

Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

Hammerstrom, Donald J.

2012-09-04T23:59:59.000Z

193

Join Us for the Clean Energy Manufacturing Initiative's Western...  

Energy Savers [EERE]

resources, as well as best practices and cutting-edge technologies, to boost energy productivity across the entire U.S. manufacturing supply chain will make our manufacturing...

194

20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

195

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

196

2008 Erik Hinterbichler DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR  

E-Print Network [OSTI]

in which HCI can contribute to energy conservation is in interfaces for residential energy consumption on the effects of energy consumption feedback in the home. From this analysis, we created a theoretical framework© 2008 Erik Hinterbichler #12;DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR INTERFACE

Karahalios, Karrie G.

197

On the Interplay of Parallelization, Program Performance, and Energy Consumption  

E-Print Network [OSTI]

to either minimize the total energy consumption or minimize the energy-delay product. The impact of staticOn the Interplay of Parallelization, Program Performance, and Energy Consumption Sangyeun Cho through parallel execution of applications, suppressing the power and energy consumption remains an even

Marchal, Loris

198

Modeling energy consumption in cellular networks L. Decreusefond  

E-Print Network [OSTI]

Modeling energy consumption in cellular networks L. Decreusefond Telecom Paristech, LTCI Paris Abstract--In this paper we present a new analysis of energy consumption in cellular networks. We focus on the distribution of energy consumed by a base station for one isolated cell. We first define the energy consumption

Boyer, Edmond

199

Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems  

E-Print Network [OSTI]

Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD1 , Ren to BEH). Keywords: Energy consumption reduction, Genetic algorithms, hybrid heuristics, memory allocation energy consumption of embedded systems is of great importance. To do so, numerous options to save energy

Schott, René - Institut de Mathématiques ?lie Cartan, Université Henri Poincaré

200

On the Energy Consumption and Performance of Systems Software  

E-Print Network [OSTI]

On the Energy Consumption and Performance of Systems Software Zhichao Li, Radu Grosu, Priya Sehgal {zhicli,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption that can balance out performance and energy use. This paper considers the energy consumption

Stoller, Scott

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Study of Air Infiltration Energy Consumption  

E-Print Network [OSTI]

SYSTEMATIC ERROR DUE TO THE STEADY-STATE COMBINED MODELS 127 SIMULATION AND NUMERICAL RESULTS 141 APPLICATION 150 SUMMARy 157 METHODOLOGy 158 DIFFERENTIAL EQUATION 159 DISCRETIZATION OF THE DIFFERENTIAL EQUATION 161 EXTERNAL NODE EQUATIONS 164... temperature. Clearly, the room heater does not need to heat the air from the outside temperature to the room temperature because it has already captured part of the conduction heat flowing through the wall. To properly estimate house energy consumption...

Liu, Mingsheng

202

Marketing energy conservation options to Northwest manufactured home buyers. Revision 1  

SciTech Connect (OSTI)

Manufactured, or HUD-Code, homes comprise a growing share of the housing stock in the Northwest, as well as nationally. Their relatively low cost has made them especially attractive to lower income families, first-time home-buyers, and retired persons. The characteristics of manufactured home (MH) buyers, the unique energy consumption characteristics of the homes, and their increasing market share make this market an especially critical one for energy consumption and conservation planning in the Northwest. This study relies on extensive, existing survey data and new analyses to develop information that can potentially assist the design of a marketing plan to achieve energy conservation in new manufactured homes. This study has the objective of assisting BPA in the development of a regional approach in which numerous organizations and parties would participate to achieve conservation in new manufactured homes. A previous survey and information collected for this study from regional dealers and manufacturers provide an indication of the energy conservation options being sold to manufactured home buyers in the PNW. Manufacturers in the Northwest appear to sell homes that usually exceed the HUD thermal requirements. Manufacturers typically offer efficiency improvements in packages that include fixed improvements in insulation levels, glazing, and infiltration control. Wholesale costs of these packages range from about $100 to $1500. Typical packages include significant upgrades in floor insulation values with modest upgrades in ceilings and walls. This study identifies trends and impacts that a marketing plan should consider to adequately address the financial concerns of manufactured home buyers.

Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

1985-10-01T23:59:59.000Z

203

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

204

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

SciTech Connect (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-09-23T23:59:59.000Z

205

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

ScienceCinema (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-12-03T23:59:59.000Z

206

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

global and country-specific estimates of total energyglobal and country-specific estimates of total energytotal global electricity consumption is about 5,000 TWh 68 , the energy

Park, Won Young

2011-01-01T23:59:59.000Z

207

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

208

Baseline projections of transportation energy consumption by mode: 1981 update  

SciTech Connect (OSTI)

A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

1982-04-01T23:59:59.000Z

209

Advanced Manufacturing: Using Composites for Clean Energy  

Broader source: Energy.gov [DOE]

Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

210

INCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS,  

E-Print Network [OSTI]

respectively. Fish accounted for 66.4% of food biomass (69.4% of total energy consumption); squidINCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS, CALWRHINUS URSINUS MICHAEL A on ter- restrial mammals have specifically shown increased energy consumption by lactating females

211

Energino: a Hardware and Software Solution for Energy Consumption Monitoring  

E-Print Network [OSTI]

Energino: a Hardware and Software Solution for Energy Consumption Monitoring Karina Gomez, Roberto.granelli@disi.unitn.it Abstract--Accurate measurement of energy consumption of practical wireless deployments is vital in the availability of affordable and scalable energy consumption monitoring tools for the research community

Paris-Sud XI, Université de

212

On the Energy Consumption and Performance of Systems Software  

E-Print Network [OSTI]

On the Energy Consumption and Performance of Systems Software Appears in the proceedings of the 4th,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption and performance are necessary to understand and identify system. This paper considers the energy consumption and performance of servers running a relatively simple file

Zadok, Erez

213

Reducing the Energy Consumption of Mobile Applications Behind the Scenes  

E-Print Network [OSTI]

Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

Tilevich, Eli

214

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS  

E-Print Network [OSTI]

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

Schott, René - Institut de Mathématiques ?lie Cartan, Université Henri Poincaré

215

Energy Consumption in Coded Queues for Wireless Information Exchange  

E-Print Network [OSTI]

Energy Consumption in Coded Queues for Wireless Information Exchange Jasper Goseling, Richard J customers. We use this relation to ob- tain bounds on the energy consumption in a wireless information, for example, from the observations in [3] that using network coding can reduce the energy consumption

Boucherie, Richard J.

216

The Impact of Distributed Programming Abstractions on Application Energy Consumption  

E-Print Network [OSTI]

The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon of their energy consumption patterns. By varying the abstractions with the rest of the functionality fixed, we measure and analyze the impact of distributed programming abstractions on application energy consumption

Tilevich, Eli

217

Optimization of Energy and Water Consumption in Cornbased Ethanol Plants  

E-Print Network [OSTI]

1 Optimization of Energy and Water Consumption in Corn­based Ethanol Plants Elvis Ahmetovi). First, we review the major alternatives in the optimization of energy consumption and its impact for the water streams. We show that minimizing energy consumption leads to process water networks with minimum

Grossmann, Ignacio E.

218

Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks  

E-Print Network [OSTI]

Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks Shahram}@cs.odu.edu Abstract--This paper investigates the effect of various param- eters of energy consumption. Finding the optimum combination of parameters to minimize energy consumption while satisfying the Qo

Weigle, Michele

219

Automated Analysis of Performance and Energy Consumption for Cloud Applications  

E-Print Network [OSTI]

Automated Analysis of Performance and Energy Consumption for Cloud Applications Feifei Chen, John providers is thus to develop resource provisioning and management solutions at minimum energy consumption system performance and energy consumption patterns in complex cloud systems is imperative to achieve

Schneider, Jean-Guy

220

Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization  

E-Print Network [OSTI]

Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization Sidharth Nabar energy consumption while limiting the latency in data transfer. In this paper, we focus on polling energy consumption and latency. We show that this problem can be posed as a geometric program, which

Poovendran, Radha

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Revolutionizing Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReplyofRetiringIndependentRevitalizingofRevolutionizing

222

Precision and Energy Usage for Additive Manufacturing  

E-Print Network [OSTI]

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

223

Manufacturing Innovation Topics Workshop | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007Naval Reactors' Cyber SecurityManufacturing

224

Managing Energy Efficiency in Manufacturing Processes Implementing Energy Performance in  

E-Print Network [OSTI]

Managing Energy Efficiency in Manufacturing Processes ­ Implementing Energy Performance and unsecured energy supply are topics that become increasingly important in today's society. Although renewable energy technologies may be a long-term solution, more efficient energy use potentially makes a high

Boyer, Edmond

225

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

226

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of Chinas total energy consumption mix. However,about 19% of Chinas total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

227

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

228

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

the fraction of total energy consumption attributable toFraction of Total Energy Consumption Background Although thewindow fraction of total energy consumption. We believe that

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

229

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network [OSTI]

about half of the total energy consumption from Wii consolescan estimate total national energy consumption due to videoof on mode energy consumption to the total AEC. For most

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

230

ResPoNSe: modeling the wide variability of residential energy consumption.  

E-Print Network [OSTI]

affect appliance energy consumption. For example, differentStates, 2005 Residential Energy Consumption Survey: HousingModeling of End-Use Energy Consumption in the Residential

Peffer, Therese; Burke, William; Auslander, David

2010-01-01T23:59:59.000Z

231

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

232

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

233

Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach  

E-Print Network [OSTI]

on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

234

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network [OSTI]

Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

235

Energy Consumption Scheduling in Smart Grid:A Non-Cooperative Game Approach  

E-Print Network [OSTI]

on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

Kai, Ma; Guoqiang, Hu; Spanos, Costas

2013-01-01T23:59:59.000Z

236

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

Kelsven, Phillip

2013-01-01T23:59:59.000Z

237

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

2006-01-01T23:59:59.000Z

238

Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach  

E-Print Network [OSTI]

on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

Kai, Ma; Guoqiang, Hu; Spanos, Costas

2013-01-01T23:59:59.000Z

239

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

240

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

liters Figure 7 Primary Energy Consumption (EJ) Refrigeratorby Efficiency Class Primary Energy Consumption (EJ) Figure 8by Fuel Figure 1 Primary Energy Consumption by End-use)

Zhou, Nan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

242

Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables  

Reports and Publications (EIA)

The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

2008-01-01T23:59:59.000Z

243

Today in Energy - commercial consumption & efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends.

2028-01-01T23:59:59.000Z

244

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 |

245

Residential Energy Consumption Survey (RECS) - Energy Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch AreasResearch Gene OdumToAdministration

246

Energy Information Administration - Transportation Energy Consumption by  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,

247

Energy Preview: Residential Transportation Energy Consumption Survey,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Coal Flow,65 15 15t

248

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional Wholesaleand19952003

249

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional Wholesaleand199520032003

250

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional

251

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003 Detailed Tables A.

252

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003 Detailed Tables

253

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003 Detailed

254

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003 Detailed2003 Detailed

255

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003 Detailed2003

256

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003 Detailed20032003

257

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003 Detailed200320032003

258

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003

259

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional20032003 Detailed

260

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional20032003 Detailed2003

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional20032003 Detailed20032003

262

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional20032003

263

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional200320032003 Detailed

264

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional200320032003 Detailed2003

265

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional200320032003

266

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003200320032003 Detailed

267

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional2003200320032003

268

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional20032003200320032003

269

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional200320032003200320032003

270

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237

271

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables 2A. Electricity

272

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables 2A.

273

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables 2A.2003 Detailed

274

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables 2A.2003

275

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables 2A.20032003

276

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables 2A.200320032003

277

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables

278

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables2003 Detailed

279

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables2003 Detailed2003

280

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables2003

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables20032003 Detailed

282

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables20032003

283

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables200320032003

284

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed Tables2003200320032003

285

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed

286

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed2003 Detailed Tables 7A.

287

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed2003 Detailed Tables

288

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed2003 Detailed Tables2003

289

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed2003 Detailed

290

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed2003 Detailed2003 Detailed

291

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed2003 Detailed2003

292

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed2003 Detailed20032003

293

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed2003 Detailed200320032003

294

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed2003

295

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed20032003 Detailed Tables

296

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed20032003 Detailed

297

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed20032003 Detailed2003

298

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed20032003 Detailed20032003

299

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed20032003

300

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed200320032003 Detailed

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Analysis and Assessment on Heating Energy Consumption of SAT  

E-Print Network [OSTI]

The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

Zhang, J.

2006-01-01T23:59:59.000Z

302

New Request for Information (RFI) on Clean Energy Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

(RFI) on Clean Energy Manufacturing Topic Areas New Request for Information (RFI) on Clean Energy Manufacturing Topic Areas September 3, 2014 - 10:07am Addthis Save the Date -...

303

Design and Manufacture of Energy Absorbing Materials  

SciTech Connect (OSTI)

Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-05-28T23:59:59.000Z

304

Design and Manufacture of Energy Absorbing Materials  

ScienceCinema (OSTI)

Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-05-30T23:59:59.000Z

305

Advanced Manufacturing Office | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing Office

306

Manufacturing Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWater ConservationDepartmentEnergy Manufacturing

307

Manufacturing Energy and Carbon Footprint Definitions and Assumptions...  

Broader source: Energy.gov (indexed) [DOE]

Definitions and Assumptions, October 2012 Manufacturing Energy and Carbon Footprint Definitions and Assumptions, October 2012 footprintsassumptionsdefinitions2012.pdf More...

308

Validation of the Manufactured Home Energy Audit (MHEA)  

SciTech Connect (OSTI)

The Manufactured Home Energy Audit (MHEA) is an energy audit tool designed specifically to identify recommended weatherization measures for mobile homes as part of the U.S. Department of Energy's (DOE's) Weatherization Assistance Program. A field validation of MHEA was performed using billing/delivery data collected on 86 mobile homes heated primarily by electricity, natural gas, or propane to assess the audit's accuracy and the validity of its recommendations. The validation found that MHEA overpredicts the annual space-heating energy savings of weatherization measures to be installed in mobile homes, which leads to low realization rates, primarily because of its large overprediction of annual pre-weatherization space-heating energy consumption. However, MHEA's annual space-heating energy savings estimates and realization rates can be improved considerably using MHEA's built-in billing adjustment feature. In order to improve the accuracy of MHEA's annual space-heating energy savings estimates and realization rate, the cause of MHEA's overprediction of annual pre-weatherization space-heating energy consumption needs to be further investigated and corrected. Although MHEA's billing adjustment feature improved MHEA's annual space-heating energy savings estimates, alternative methods of making the correction that may provide improved performance should be investigated. In the interim period before permanent improvements to MHEA can be made, the following recommendations should be followed: (a) do not enter into MHEA insulation thicknesses of 1 in. or less and especially zero (0 in.) unless such low levels have been verified through visual inspection of several parts of the envelope area in question; (b) use MHEA's billing adjustment feature to develop a list of recommended measures based on adjusted energy savings if possible, especially in mobile homes that have several major energy deficiencies; and (c) do not use MHEA's "evaluate duct sealing" option at this time (although certainly seal all duct leaks and use diagnostics as appropriate to find leakage sites and quantify improvements).

Ternes, Mark P [ORNL

2007-12-01T23:59:59.000Z

309

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

solar systems and energy efficiency and conservationEnergy Tax Act encouraged homeowners to invest in energy conservation and solarenergy consumption patterns: that some adopters of solar will thereafter become adopters of energy conservation

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

310

Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector  

SciTech Connect (OSTI)

An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-11-01T23:59:59.000Z

311

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

Monitoring of Direct Energy Consumption in Long-Term2007. Constraining Energy Consumption of Chinas LargestProgram: Reducing Energy Consumption of the 1000 Largest

Price, Lynn

2008-01-01T23:59:59.000Z

312

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

the total primary energy consumption in 2000. Furthermore,The Commercial Primary Energy Consumption by Sector GDP

Zhou, Nan

2008-01-01T23:59:59.000Z

313

Classification of Energy Consumption in Buildings with Outlier Detection  

E-Print Network [OSTI]

. Then a canonical variate analysis is employed to describe latent variables of daily electricity consumption is used to predict the daily electricity consumption profiles. A case study, based on a mixed use consumption data within a buildings energy management system. Electrical peak load forecasting plays

Yao, Xin

314

Clean Energy Manufacturing Initiative: Increasing American Competitiveness Through Innovation  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department's Clean Energy Manufacturing Initiative is helping to boost American competitiveness, grow the economy and protect the environment.

315

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Energy Fiscal Year 2014 Budget Rollout - Energy Saving Homes, Buildings, and Manufacturing From Tragedy to Triumph - Resources for Rebuilding Green after Disaster,...

316

Energy-Saving Homes, Buildings, and Manufacturing Success Stories...  

Broader source: Energy.gov (indexed) [DOE]

solutions for our nation's buildings and manufacturing supply lines mean large-scale energy and cost savings. Learn how EERE's investments in energy solutions for homes,...

317

DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCosts ofMarch2Q)4(82) Residential/HRIf

318

DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCosts ofMarch2Q)4(82)6)k DOETEIAO32l/2

319

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network [OSTI]

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

320

On Minimizing the Energy Consumption of an Electrical Vehicle  

E-Print Network [OSTI]

Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

Abdelkader Merakeb

2011-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pantex installs new meters to help to reduce energy consumption...  

National Nuclear Security Administration (NNSA)

installs new meters to help to reduce energy consumption | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

322

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network [OSTI]

come from space heating within homes (Boardman, 2007). If weassociated with heating the home must be an imperative. Theheating and hot water energy consumption of the homes (Zack

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

323

Long-term energy consumptions of urban transportation: A prospective...  

Open Energy Info (EERE)

Bangalore can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of...

324

Bounds on the Energy Consumption of Computational Andrew Gearhart  

E-Print Network [OSTI]

Bounds on the Energy Consumption of Computational Kernels Andrew Gearhart Electrical Engineering Fall 2014 #12;Bounds on the Energy Consumption of Computational Kernels Copyright 2014 by Andrew Scott, little consideration was given to the potential energy efficiency of algorithms them- selves. A dominant

California at Berkeley, University of

325

Balancing Image Quality and Energy Consumption in Visual Sensor Networks  

E-Print Network [OSTI]

Balancing Image Quality and Energy Consumption in Visual Sensor Networks Kit-Yee Chow, King by hop through the sensor network. To reduce the energy used in transmission, the size of the images studies the tradeoff between image quality and energy consumption. We study the scenario that a number

Tam, Vincent W. L.

326

Characterizing System Level Energy Consumption in Mobile Computing Platforms  

E-Print Network [OSTI]

1 Characterizing System Level Energy Consumption in Mobile Computing Platforms Cintia B. Margi 1156 High Street Santa Cruz, CA 95064 Abstract-- This paper approaches energy consumption charac- terization in mobile computing platforms by assessing energy con- sumption of "basic" application-level tasks

Obraczka, Katia

327

Statistical Mechanics of Money, Income, Debt, and Energy Consumption  

E-Print Network [OSTI]

Statistical Mechanics of Money, Income, Debt, and Energy Consumption Physics Colloquium Presented in financial markets. Globally, data analysis of energy consumption per capita around the world shows@american.edu Similarly to the probability distribution of energy in physics, the probability distribution of money among

Hill, Wendell T.

328

Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings  

E-Print Network [OSTI]

- tems 1 Introduction In EU countries, primary energy consumption in build- ings represents about 40Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings R. Alcal´a DECSAI 18071 ­ Granada, Spain e-mail: A.Gonzalez@decsai.ugr.es Abstract In EU countries, primary energy consump

Casillas Barranquero, Jorge

329

GreenSlot: Scheduling Energy Consumption in Green Datacenters  

E-Print Network [OSTI]

GreenSlot: Scheduling Energy Consumption in Green Datacenters Íñigo Goiri UPC/BSC and Rutgers Univ grid (as a backup). GreenSlot predicts the amount of solar energy that will be available in the near future, and schedules the workload to maximize the green energy consumption while meet- ing the jobs

330

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation  

E-Print Network [OSTI]

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation Sergiu Nedevschi Lucian Popa of two forms of power management schemes that reduce the energy consumption of networks. The first the energy consumed when actively processing packets. For real-world traffic workloads and topologies and us

California at Irvine, University of

331

Manufacturing Energy Bandwidth Studies: Chemical, Peroleum Refining, Pulp and Paer, and Iron and Steel Sectors  

E-Print Network [OSTI]

products) can theoretically result in net energy gain through exothermic processes. In the case of a net energy gain, a zero baseline would result in negative savings opportunity, a physical impossibility. Accounting for this, TM was chosen.... Thermodynamic minimum energy consumption completes the bar chart on the left. For chemicals, the TM is a negative value due to the exothermic nature of many high volume chemicals; under ideal conditions, manufacturing of some chemicals would generate a net...

Brueske, S.; Cresko, J.; Capenter, A.

2014-01-01T23:59:59.000Z

332

Advanced Methods for Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced ManufacturingMethods

333

Aurora Photovoltaics Manufacturing | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspenAudubon,983477°, -98.5721016°Manufacturing

334

An Energy Conservation Program at a Large Cable Manufacturing Plant  

E-Print Network [OSTI]

The Atlanta Works is the largest telephone cable manufacturing plant in the world plus the manufacturing center for fiber optic cable for the Western Electric Company and exemplifies how an effective energy conservation program can work...

Reale, P. J.

1983-01-01T23:59:59.000Z

335

Clean Energy Manufacturing Initiative | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibraryClaytonClean Energy

336

End use energy consumption data base: transportation sector  

SciTech Connect (OSTI)

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

337

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...  

Broader source: Energy.gov (indexed) [DOE]

2: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 Fact 792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 In the...

338

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

material intensity, energy intensity of materials, buildingtypes manufacturing energy intensity (how much energy itthe manufacturing energy intensity of each type of building

Fridley, David G.

2008-01-01T23:59:59.000Z

339

Clean Energy Manufacturing Initiative | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouthFundingInitiative

340

Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption. Industrial Technologies Program (ITP) Chemicals BestPractices Plant-Wide Assessment Case Study (Brochure).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4Solid-State Technologies Program

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Energy and Power Consumption Analysis of FPGA Routing Architectures  

E-Print Network [OSTI]

An Energy and Power Consumption Analysis of FPGA Routing Architectures Peter Jamieson, Elec of energy and power consumption using an updated power estimation framework compatible with VPR 5.0. The goal of this research is to help FPGA vendors find the best FPGA architectures. Initially, we make some

Wilton, Steve

342

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance  

E-Print Network [OSTI]

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance Lin Zhong lzhong of their complexity, parallelism and latency. Insights are found for tradeoff between energy consumption of a tree structure. For example, Figure 1.3 shows to add 5 k-bit integers together in a tree sequence. It

Zhong, Lin

343

Exposing Datapath Elements to Reduce Microprocessor Energy Consumption  

E-Print Network [OSTI]

to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton Submitted to the Department of ElectricalExposing Datapath Elements to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton B Submitted to the Department of Electrical Engineering and Computer Science in partial ful llment

344

Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid  

E-Print Network [OSTI]

for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

Li, Xiang-Yang

345

Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants  

SciTech Connect (OSTI)

In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Worrell, Ernst; Angelini, Tana; Masanet, Eric

2010-07-27T23:59:59.000Z

346

Input Substitution and Business Energy Consumption: Evidence from ABS Energy Survey Data  

E-Print Network [OSTI]

1 Input Substitution and Business Energy Consumption: Evidence from ABS Energy Survey Data Kay Cao applies the system of equations approach to energy consumption modelling using the ABS 2008-09 Energy of equations, energy consumption modelling, elasticity of substitution JEL codes: C51, D24 * Please do

347

Energy Consumption Reduction with Low Computational Needs in Multicore Systems with Energy-Performance Tradeoff  

E-Print Network [OSTI]

Energy Consumption Reduction with Low Computational Needs in Multicore Systems with Energy rules) in order to decrease the energy consumption. We proposed in a previous paper a robust control of the energy consumption. I. INTRODUCTION An energy-performance tradeoff is required in many em- bedded

Paris-Sud XI, Université de

348

Energy-Saving Homes, Buildings, and Manufacturing Success Stories...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon Read more homes success stories Manufacturing February 4, 2015 Just Plain...

349

DOE and Federal Energy and Manufacturing Workforce Programs and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assistance Community College and Career Training Grant Program (TAACCCT) Energy and Manufacturing Awards and Topics List CX-100070: Categorical Exclusion Determination...

350

Manufacturing Energy and Carbon Footprint - Sector: Iron and...  

Broader source: Energy.gov (indexed) [DOE]

Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)...

351

Development of Energy Consumption Database Management System of Existing Large Public Buildings  

E-Print Network [OSTI]

The statistic data of energy consumption are the base of analyzing energy consumption. The scientific management method of energy consumption data and the development of database management system plays an important role in building energy...

Li, Y.; Zhang, J.; Sun, D.

2006-01-01T23:59:59.000Z

352

Manufacturing Energy and Carbon Footprint References | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctober 2012

353

Manufacturing Energy and Carbon Footprints Scope | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctober

354

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect (OSTI)

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

355

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects  

E-Print Network [OSTI]

Choices, and Energy Consumption. Praeger Publishers,The decomposition effect of energy consumption in China'sThe challenge of reducing energy consumption of the Top-1000

Ke, Jing

2014-01-01T23:59:59.000Z

356

Monitoring and optimization of energy consumption of base transceiver stations  

E-Print Network [OSTI]

The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six Base Transceiver Stations (BSs) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy.

Spagnuolo, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

2015-01-01T23:59:59.000Z

357

Instrumenting Linear Algebra Energy Consumption via On-chip Energy Counters  

E-Print Network [OSTI]

Instrumenting Linear Algebra Energy Consumption via On-chip Energy Counters James Demmel Andrew to lists, requires prior specific permission. #12;Instrumenting linear algebra energy consumption via on consumption is still a prevalent and growing problem within the computing sector. To evaluate energy

California at Berkeley, University of

358

EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies  

E-Print Network [OSTI]

EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies Ekhiotz Jon Vergara-awareness and propose EnergyBox, a tool that provides accurate and repeatable en- ergy consumption studies for 3G and WiFi transmissions at the user end. We recognize that the energy consumption of data transmission is highly

359

Clean Energy Manufacturing Initiative Midwest Regional Summit...  

Office of Environmental Management (EM)

Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Characterization of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHSS)...

360

Energy consumption testing of innovative refrigerator-freezers  

SciTech Connect (OSTI)

The high ambient temperature of the Canadian Standards Association (CSA) and the AHAM/DOE Refrigerator-Freezer Energy Consumption Standards is intended to compensate for the lack of door openings and other heat loads. Recently published results by Meier and Jansky (1993) indicate labeled consumption overpredicting typical field consumption by 15%. In-house field studies on conventional models showed labeled consumption overpredicting by about 22%. The Refrigerator-Freezer Technology Assessment (RFTA) test was developed to more accurately predict field consumption. This test has ambient temperature and humidity, door openings, and condensation control set at levels intended to typify Canadian household conditions. It also assesses consumption at exactly defined compartment rating temperatures. Ten conventional and energy-efficient production models were laboratory tested. The RFTA results were about 30% lower than labeled. Similarly, the four innovative refrigerator-freezer models, when field tested, also had an average of 30% lower consumption than labeled. Thus, the results of the limited testing suggest that the RFTA test may be a more accurate predictor of field use. Further testing with a larger sample is recommended. Experimental results also indicated that some innovative models could save up to 50% of the energy consumption compared with similar conventional units. The technologies that contributed to this performance included dual compressors, more efficient compressors and fan motors, off-state refrigerant control valve, fuzzy logic control, and thicker insulation. The larger savings were on limited production models, for which additional production engineering is required for full marketability.

Wong, M.T.; Howell, B.T.; Jones, W.R. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Long, D.L. [Statistical Solutions, Mississauga, Ontario (Canada)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370Japan

362

Reducing energy consumption and pollution in plastic manufacturing processes  

SciTech Connect (OSTI)

The goal of this paper is to understand the phase behavior of ethylene copolymers in compressible fluid streams, such as copolymer solutions in supercritical and near critical fluids.

Radosz, Maciej

2000-03-01T23:59:59.000Z

363

Manufacturing-Industrial Energy Consumption Survey(MECS) Historical  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial WorkingYear Jan

364

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY  

E-Print Network [OSTI]

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY JEFFREY S. DUKES Department of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I

Dukes, Jeffrey

365

Appliance Energy Consumption in Australia | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy Co Ltd Jump to:SummariesApiConsumption in

366

Reducing 3G energy consumption on mobile devices  

E-Print Network [OSTI]

The 3G wireless interface is a significant contributor to battery drain on mobile devices. This paper describes the design, implementation, and experimental evaluation of methods to reduce the energy consumption of the 3G ...

Deng, Shuo

2012-01-01T23:59:59.000Z

367

Smart Meters Help Balance Energy Consumption at Solar Decathlon  

Office of Energy Efficiency and Renewable Energy (EERE)

Clouds, rain, thunderstorms at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's teams, thanks to smart grid technology that is helping them monitor their energy consumption.

368

Efficiency alone as a solution to increasing energy consumption  

E-Print Network [OSTI]

A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

Haidorfer, Luke

2005-01-01T23:59:59.000Z

369

November 2012 Key Performance Indicator (KPI): Energy Consumption  

E-Print Network [OSTI]

and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating

Evans, Paul

370

Energy Consumption ESPRIMO E7935 E80+  

E-Print Network [OSTI]

joined the "Green Grid" and "Climate Savers Computing" initiatives and publishes SPECpower benchmark (WOL enabled) 4) 96.7 kWh/year Heat dissipation, WOL enabled (MJ, 1 W = 3.6 kJ/h) 348.3 MJ/year Heat Consumption (WOL enabled) 4) 103.6 kWh/year Heat dissipation, WOL enabled (MJ, 1 W = 3.6 kJ/h) 373.0 MJ

Ott, Albrecht

371

Energy resource management for energy-intensive manufacturing industries  

SciTech Connect (OSTI)

A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

Brenner, C.W.; Levangie, J.

1981-10-01T23:59:59.000Z

372

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

i n g s 2.1 Total Energy Consumption i n Japan's Residentialhouses. 2.1 Total Energy Consumption in Japan's Residentialorder to reduce total energy consumption. Figure 2 suggests

2006-01-01T23:59:59.000Z

373

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network [OSTI]

on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

374

Distributed Energy Consumption Control via Real-TimePricing Feedback in Smart Grid  

E-Print Network [OSTI]

on game- theoretic energy consumption scheduling for theK }). We denote the energy consumption of consumers as l kwhere l i k is the energy consumption of consumer i (i ? N )

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

375

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China Nan Zhou,Commercial Building Energy Consumption in China* Nan Zhou, 1whether and how the energy consumption trend can be changed

Zhou, Nan

2008-01-01T23:59:59.000Z

376

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network [OSTI]

L.von 2. The EV primary energy consumption relative to that~ Fig. 3. The EV primary energy consumption relative to thatVehicles on Primary Energy Consumption and Petroleum

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

377

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

window related primary energy consumption of the US building= 1.056 EJ. Primary energy consumption includes a site-to-the amount of primary energy consumption required by space

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

378

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

e d u c i n g Primary Energy Consumption and C O 2 emissionssystem can reduce primary energy consumption by about 22system can reduce primary energy consumption by about 26

2006-01-01T23:59:59.000Z

379

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

roughly 2.7% of total US energy consumption. The final tworoughly 1.5% of total US energy consumption. The final twoSpace Conditioning Energy Consumption in US Buildings Annual

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

380

Energy-Saving Opportunities for Manufacturing Enterprises (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet English/Chinese describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help Chinese manufacturing enterprises reduce industrial energy intensity.

Not Available

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium-Size Office Building  

E-Print Network [OSTI]

Uncertainties in Energy Consumption Introduced by Buildingand actual building energy consumption can be attributed touncertainties in energy consumption due to actual weather

Wang, Liping

2014-01-01T23:59:59.000Z

382

Clean Energy Manufacturing Initiative Solid-State Lighting  

SciTech Connect (OSTI)

The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

2014-09-23T23:59:59.000Z

383

Clean Energy Manufacturing Initiative Solid-State Lighting  

ScienceCinema (OSTI)

The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

2014-12-03T23:59:59.000Z

384

Nodes Placement for reducing Energy Consumption in Multimedia Transmissions  

E-Print Network [OSTI]

quality of multimedia traffic. Index Terms--Wireless Sensor Networks, Multimedia, Energy Saving, Quality on the energy saving by extending the lifetime of the network up to more than 15% while preserving video qualityNodes Placement for reducing Energy Consumption in Multimedia Transmissions Pasquale Pace Valeria

Paris-Sud XI, Université de

385

How Efficient Can We Be?: Bounds on Algorithm Energy Consumption  

E-Print Network [OSTI]

How Efficient Can We Be?: Bounds on Algorithm Energy Consumption Andrew Gearhart #12;Relation design use feedback to "cotune" compute kernel energy efficiency #12;Previous Work: Communication Lower-optimal" algorithms #12;Communication is energy inefficient! · On-chip/Off-chip gap isn't going to improve much Data

California at Irvine, University of

386

Energy-Efficient Appliance Manufacturing Tax Credit  

Broader source: Energy.gov [DOE]

'''''Note: This tax credit expired at the end of 2011. The American Taxpayer Relief Act of 2012 retroactively renewed this tax credit for certain appliances manufactured in 2012 and 2013. '''''

387

Clean Energy Technology Device Manufacturers' Credits (Delaware)  

Broader source: Energy.gov [DOE]

Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

388

Figure 1:Energy Consumption in USg gy p 1E Roberts, Energy in US  

E-Print Network [OSTI]

Figure 1:Energy Consumption in USg gy p 2008 1E Roberts, Energy in US Source: www.eia.gov #12 National Academy of Science 2009 #12;Figure 8: US Production of Primary Energy by Fuel 8E Roberts, Energy Consumption and Production 13E Roberts, Energy in US EIA Annual Energy Outlook 2012 #12;Figure 14: Oil Price

Sutton, Michael

389

State energy data report: Consumption estimates, 1960--1987  

SciTech Connect (OSTI)

The State Energy Data Report presents estimates of annual energy consumption at the state and national levels by major economic sector and by principal energy type for 1960 through 1987. Included in the report are documentation describing how the estimates were made for each energy source, sources of all input data, and a summary of changes from the State Energy Data Report published in April 1988.

Not Available

1989-04-20T23:59:59.000Z

390

Manufacturing Industrial Development for the Alternative Energy Systems-Final Report  

SciTech Connect (OSTI)

NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

2013-01-30T23:59:59.000Z

391

Energy Conservation Opportunities in Hydrocarbon Resin Manufacturing Facilities  

E-Print Network [OSTI]

"The results of a plant-wide assessment of the manufacturing facilities of Neville Chemical Company, a manufacturer of hydrocarbon resins will be presented in this paper. The project was co-funded by US Department of Energy under its Plant...

Ganji, A. R.; Hackett, B.; Chow, S.; Lonergan, R.; Wimer, J.

392

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z

393

Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development  

SciTech Connect (OSTI)

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Hewes, T.; Peeks, B.

2013-11-01T23:59:59.000Z

394

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

recently. In 2006, total energy consumption reached 2,4577.5% per year, total energy consumption in 2010 will reachof Enterprises Total Energy Consumption Mtce pe tro iro le

Price, Lynn

2008-01-01T23:59:59.000Z

395

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

recently. In 2005, total energy consumption reached 2,2257.5% per year, total energy consumption in 2010 will reachof Enterprises and Total Energy Consumption by Sector of the

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

396

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

Industry Constraining Energy Consumption of Chinas Largestone-to-one ratio of energy consumption to GDP given Chinagoal of reducing energy consumption per unit of GDP by 20%

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

397

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network [OSTI]

Chinas total primary energy consumption in 2005, along withof Chinas total primary energy consumption (Lin et al. ,accounted for, the primary energy consumption of the Top-

Price, Lynn

2008-01-01T23:59:59.000Z

398

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

Chinas total primary energy consumption in 2005, along withthe industrial sector primary energy consumption was 1,416of Chinas total primary energy consumption (Lin et al. ,

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

399

Energy Consumption and Energy Density in Optical and Electronic Signal Processing  

E-Print Network [OSTI]

Energy Consumption and Energy Density in Optical and Electronic Signal Processing Volume 3, Number-0655/$26.00 ©2011 IEEE #12;Energy Consumption and Energy Density in Optical and Electronic Signal Processing Rodney optical and digital electronic signal processing circuits, including the contributions to energy

Tucker, Rod

400

The effects of energy policies in China on energy consumption1  

E-Print Network [OSTI]

1 The effects of energy policies in China on energy consumption1 Ming-Jie Lu, C.-Y. Cynthia Lin and Song Chen Abstract This paper examines the effects of energy policies in China on energy consumption of energy policies, including environmental protection policies, policies that promote technological

Lin, C.-Y. Cynthia

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The effects of energy policies in China on energy consumption and GDP1  

E-Print Network [OSTI]

policies have significant impacts on diesel oil, gasoline and natural gas consumption. However, some energy The effects of energy policies in China on energy consumption and GDP1 Ming-Jie Lu, C.-Y. Cynthia Lin and Song Chen Abstract This paper examines the effects of energy policies in China on energy

Lin, C.-Y. Cynthia

402

Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate  

E-Print Network [OSTI]

1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild. "Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate the architectural and mechanical design of a building. Several researchers have demonstrated the analysis of low-energy

Chen, Qingyan "Yan"

403

World Energy Consumption and Carbon Dioxide Emissions: 1950 2050  

E-Print Network [OSTI]

-U" relation with a within- sample peak between carbon dioxide emissions (and energy use) per capita and perWorld Energy Consumption and Carbon Dioxide Emissions: 1950 2050 Richard Schmalensee, Thomas M capita income. Using the income and population growth assumptions of the Intergovernmental Panel

404

The Impact on Energy Consumption of Daylight Saving Clock Changes  

E-Print Network [OSTI]

The Impact on Energy Consumption of Daylight Saving Clock Changes S. I. Hilla, , F. Desobrya , E. W demonstrating po- tential energy savings which could be obtained were Great Britain to maintain Daylight Savings result from an extension of Daylight Saving Time (DST) over the months currently on Greenwich Mean Time

Hill, Simon I.

405

California Energy and Consumption Projections 2005-2050  

E-Print Network [OSTI]

State NG US NG Imports State Nuclear US Nuclear Imports Biomass Solar Wind Small Hydro 1.0 Quad BTUs 4 Hydro Renewable Energy Biomass Solar Wind Geothermal #12;Model Energy Consumption in Quads Take the 2005 by Source Year 2005 Year 2050 Natural Gas (Heating) Gas/Diesel (Heating/Trans) Hydro (Electricity) Coal

Keller, Arturo A.

406

Vending Machine Energy Consumption and VendingMiser Evaluation  

E-Print Network [OSTI]

As an effort to decrease the amount of non-critical energy used on the Texas A&M campus, and to assist Dixie Narco in evaluating the efficiency of their vending machines, the Texas A&M Energy Systems Laboratory investigated the power consumption...

Ritter, J.; Hugghins, J.

2000-01-01T23:59:59.000Z

407

annual energy consumption: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy consumption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Sample Annual and Monthly Energy...

408

Preliminary Analysis of Energy Consumption For Cool Roofing Measures  

E-Print Network [OSTI]

decisions by offering design requirements and establishing building codes. Over the last decade, muchPreliminary Analysis of Energy Consumption For Cool Roofing Measures By Joe Mellott, Joshua New to reduce energy demand by reflecting sunlight away from structures and back into the atmosphere. By use

Wang, Xiaorui "Ray"

409

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

410

Precision and Energy Usage for Additive Manufacturing  

E-Print Network [OSTI]

Solid Sparse uPrint Solid Standby Power (W) Idle Power (W)power consumption for the Dimension BST1200 with the part density set to solid andPower profile for the Dimension BST 1200 with part density set to solid

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

411

Energy Information Administration (EIA)- About the Manufacturing Energy  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683Diesel pricesArkansas56,4/15/2015Consumption Survey

412

Sales Tax Incentives for Energy-Efficient Manufactured Homes  

Broader source: Energy.gov [DOE]

In July 2008, [http://www.scstatehouse.gov/sess117_2007-2008/bills/1141.htm SB 1141] (known as the ''Energy-Efficient Manufactured Homes Incentive Program'') was enacted, which amended the sales...

413

Energy Used in Manufacturing Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2012 (HB 386) creating an exemption for energy used in the manufacturing of a product from the state's sales and use taxes. The sale, use, storage, or...

414

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network [OSTI]

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

415

Benton PUD- Energy Efficient Manufactured Homes Rebate Program  

Broader source: Energy.gov [DOE]

Benton PUD offers a $750 rebate to purchasers of Energy Star manufactured homes. Homes must be electrically heated and located in Benton PUD's service territory to receive the rebate. The rebate...

416

Issues in International Energy Consumption Analysis: Electricity...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

a bottom-up approach in their research paper from the Lawrence Berkeley National Lab (LBNL) in 2009, Residential and Transport Energy Use in India: Past Trend and Future Outlook....

417

Model for electric energy consumption in eastern Saudi Arabia  

SciTech Connect (OSTI)

Electrical energy consumption in the eastern province of Saudi Arabia is modeled as a function of weather data, global solar radiation, population, and gross domestic product per capita. Five years of data have been used to develop the energy consumption model. Variable selection in the regression model is carried out by using the general stepping-regression technique. Model adequacy is determined from a residual analysis technique. Model validation aims to determine if the model will function successfully in its intended operating field. In this regard, new energy consumption data for a sixth year are collected, and the results predicted by the regression model are compared with the new data set. Finally, the sensitivity of the model is examined. It is found that the model is strongly influenced by the ambient temperature.

Al-Garni, A.Z.; Al-Nassar, Y.N.; Zubair, S.M.; Al-Shehri, A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

1997-05-01T23:59:59.000Z

418

U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012 The report ranks...

419

U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumbenergyuselossemissionslg.gif How...

420

Mixed-Criticality Multiprocessor Real-Time Systems: Energy Consumption vs Deadline Misses  

E-Print Network [OSTI]

Mixed-Criticality Multiprocessor Real-Time Systems: Energy Consumption vs Deadline Misses Vincent that using the best compromise, the energy consumption can be reduced up to 17% while the percentage the energy consumption of MC systems. The energy consumption of embedded real-time systems is indeed

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Consumption Tools Pack Leandro Fontoura Cupertino, Georges DaCosta,  

E-Print Network [OSTI]

Energy Consumption Tools Pack Leandro Fontoura Cupertino, Georges DaCosta, Amal Sayah, Jean Consumption Tools Pack 1 / 23 #12;Outline 1 Introduction Motivation Our proposal 2 Energy Consumption Tools Energy Consumption Library Data Acquisition Tool Data Monitoring Tool Energy Profiler 3 Conclusions

Lefèvre, Laurent

422

uFLIP: Understanding the Energy Consumption of Flash Devices Matias Bjrling  

E-Print Network [OSTI]

uFLIP: Understanding the Energy Consumption of Flash Devices Matias Bjørling IT University Abstract Understanding the energy consumption of flash devices is important for two reasons. First, energy about the energy consumption of flash devices beyond their approximate aggregate consumption (low power

Paris-Sud XI, Université de

423

A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based on Large Datasets  

E-Print Network [OSTI]

A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based consumption of buildings based on historical performances is an important approach to achieve energy consumption plays an important role in the total energy consumption of end use. Energy efficiency in building

Paris-Sud XI, Université de

424

Balancing Peer and Server Energy Consumption in Large Peer-to-Peer File Distribution Systems  

E-Print Network [OSTI]

Balancing Peer and Server Energy Consumption in Large Peer-to-Peer File Distribution Systems}@swin.edu.au Abstract--Network induced energy consumption is a significant fraction of all ICT energy consumption. It is shown that using peer-to-peer and naively minimizing the transfer time results in energy consumption

Andrew, Lachlan

425

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

Trend and Forecast LG Electronics, October. http://TV model in 2007, and LG Electronics launched a 15-inch (two Korean manufacturers, LG Electronics and Samsung, also

Park, Won Young

2011-01-01T23:59:59.000Z

426

Residential Energy Consumption Survey: Housing Characteristics,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. Energy InformationU.S.tni

427

Teksun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & Solutions HomeTeksun PV Manufacturing

428

Manufacturing Success Stories | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturing Research and

429

Reducing Energy Consumption on Process Ovens & Oxidation Systems  

E-Print Network [OSTI]

recovery systems are capable of metals in the heat exchangers along with stresses recovering up to 97% of the energy used in the induced by changing process conditions can oxidation process. Most units on the market severely reduce the life...REDUCING ENERGY CONSUMPTION ON PROCESS OVENS & OXIDATION SYSTEMS Chris Worachek Design Engineer MEGTEC Systems De Pere, WI ABSTRACT With the uncertain cost of energy, optimizing the use of air in process dryers, ovens and air pollution...

Worachek, C.

430

Simulation Models to Optimize the Energy Consumption of Buildings  

E-Print Network [OSTI]

Page 1 of paper submitted to ICEBO 2008 Berlin SIMULATION MODELS TO OPTIMIZE THE ENERGY CONSUMPTION OF BUILDINGS Sebastian Burhenne Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany Dirk Jacob Fraunhofer...-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT In practice, building operation systems are only adjusted during commissioning. This is done manually and leads to failure-free but often inefficient operation. This work deals...

Burhenne, S.; Jacob, D.

431

Household Vehicles Energy Consumption 1994 - Appendix C  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A.DetailedW

432

Data Center Power Consumption | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared by:DTE Energy VideoDark MatterData CenterPower

433

Commercial Buildings Energy Consumption and Expenditures 1992  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECS Public Use Data

434

Sandia National Laboratories: reduce energy consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxide High-Efficiency Solaremissions

435

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network [OSTI]

behavior patterns in which American households use energy causes wide variations in total residential energy consumption per home,

Kelsven, Phillip

2013-01-01T23:59:59.000Z

436

Capping the Brown Energy Consumption of Internet Services at Low Cost  

E-Print Network [OSTI]

Capping the Brown Energy Consumption of Internet Services at Low Cost Kien T. Le Ricardo Bianchini Consumption of Data Centers 0 20 40 60 80 100 120 140 2000 2006 2011 Electricity consumption of US DCs Billion Energy Consumption · Improving efficiency does not promote green energy or guarantee limits on brown

437

Manufacturing Research and Development | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturing Research and Development

438

Starr Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.Stanly County,Manufacturing Inc Jump to:

439

assess energy consumption: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assess energy consumption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The Analysis and Assessment...

440

Survey: Techniques for Efficient energy consumption in Mobile Architectures  

E-Print Network [OSTI]

Survey: Techniques for Efficient energy consumption in Mobile Architectures Sean Maloney University@cs.ucsb.edu March 16th, 2012 Abstract As the world becomes more dependent on mobile technologies, battery life battery life is a delicate balance of give and take between longer battery life and more functionality

California at Santa Barbara, University of

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A method for evaluating transport energy consumption in suburban areas  

SciTech Connect (OSTI)

Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

2012-02-15T23:59:59.000Z

442

Analysis of federal incentives used to stimulate energy consumption  

SciTech Connect (OSTI)

The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

1981-08-01T23:59:59.000Z

443

Achieving Superior Energy Performance in US Manufacturing  

E-Print Network [OSTI]

U.S. industry has the capacity to significantly improve its overall energy performance and help meet both private-sector and national goals for energy and the environment. TheUS Department of Energys Industrial Technologies Program (ITP...

Scheihing, P.

444

Marketing energy conservation options to Northwest manufactured home buyers  

SciTech Connect (OSTI)

This study relies on extensive, existing survey data and new analyses to develop information that would help design a marketing plan to achieve energy conservation in new manufactured homes. Existing surveys present comprehensive information about regional manufactured home occupants and their homes that are relevant to a potential conservation marketing plan. An independent analysis of the cost-effectiveness of various efficiency improvements provides background information for designing a marketing plan. This analysis focuses on the economic impacts of alternative energy conservation options as perceived by the home owner. Identifying impediments to conservation investments is also very important in designing a marketing plan. A recent report suggests that financial constraints and the need for better information and knowledge about conservation pose the major conservation investment barriers. Since loan interest rates for new manufactured homes typically exceed site-built rates by a considerable amount and the buyers tend to have lower incomes, the economics of manufactured home conservation investments are likely to significantly influence their viability. Conservation information and its presentation directly influences the manufactured home buyer's decision. A marketing plan should address these impediments and their implications very clearly. Dealers express a belief that consumer satisfaction is the major advantage to selling energy efficient manufactured homes. This suggests that targeting dealers in a marketing plan and providing them direct information on consumers' indicated attitudes may be important. 74 refs.

Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

1985-06-01T23:59:59.000Z

445

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

LPG is a major energy source, while coal and electricity areoil coal Figure 14 Residential Primary Energy Consumption bytotal primary energy supply in 2000, coal will drop to about

Zhou, Nan

2010-01-01T23:59:59.000Z

446

Energy Consumption Analysis and Energy Conservation Evaluation of a Commercial Building in Shanghai  

E-Print Network [OSTI]

The paper presents a model of a commercial building in Shanghai with energy simulation software, and after calibration, the energy consumption of this building is calculated. On the basis of the simulation and calculation, a series of energy saving...

Chen, C.; Pan, Y.; Huang, Z.; Wu, G.

2006-01-01T23:59:59.000Z

447

Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an  

E-Print Network [OSTI]

Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

Ma, B.; Yan, Z.; Gui, Z.; He, J.

2006-01-01T23:59:59.000Z

448

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

on biomass for rural energy consumption as discussed aboverural China, total rural primary energy use is only 1.84EJ,Biomass is the major energy in rural areas. For lighting, an

Zhou, Nan

2010-01-01T23:59:59.000Z

449

The importance of population growth in future commercial energy consumption  

SciTech Connect (OSTI)

This paper estimates the contribution of population growth to commercial energy consumption, which is considered a major cause of increases in air pollution and greenhouse gases. This paper first summarizes some of the recent estimates of future energy use developed by well-known models. It then develops several alternative scenarios that use different assumptions about population growth and energy use per capita for 122 countries for the years 2020 and 2050. It calculates the relative contribution of population growth to the change in total commercial energy use and demonstrates the sensitivity of the results to different assumptions. Individual country data are separately summed to totals for more-developed countries (MDCs) and less-developed countries (LDCs). Under a business as usual scenario for both MDCs and LDCs, population growth is important, but not the most important factor, in future increases in global energy consumption. Analysis of other scenarios shows that while slower population growth always contributes to a slowing of future global energy consumption, such changes are not as effective as reductions in per capita commercial energy use. Calculations on a global basis are made in two ways: from global aggregates and by summing individual country data. Comparison of the results shows that the first method is misleading because of the heterogeneity of population growth rates and energy consumption rates of individual countries. The tentative conclusions reached in this paper are only small pieces of a much larger puzzle. More work needs to be done to better understand the dynamics of these relationships before the analysis is extended to the broader questions of population growth and environmental change.

Kolsrud, G. [Congress, Washington, DC (United States); Torrey, B.B. [Bureau of the Census, Washington, DC (United States)

1992-12-31T23:59:59.000Z

450

Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution  

SciTech Connect (OSTI)

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

1994-10-01T23:59:59.000Z

451

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

49 3.3.3. Pre-installation electricity consumption of CSIE. Kahn (2011). Electricity Consumption and Durable Housing:on Electricity Consumption .

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

452

Qualifying Advanced Energy Manufacturing Investment Tax Credit  

Broader source: Energy.gov [DOE]

2013 Update: Phase II of the Qualifying Advanced Energy Project is open. Required concept papers are due to the U.S. Department of Energy (DOE) by April 9, 2013. The U.S. DOE will review concept...

453

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

reliance on biomass for rural energy consumption shows thereliance on biomass for rural energy consumption shows theBiomass is the major energy in rural area. For lighting, an

Zhou, Nan

2010-01-01T23:59:59.000Z

454

Next Generation Manufacturing Processes | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment ofNews News Recent newsWinners

455

Factors affecting the energy consumption of two refrigerator-freezers  

SciTech Connect (OSTI)

Two refrigerator-freezers, one with a top-mounted freezer and one with side-by-side doors, were tested in the laboratory to determine the sensitivity of their energy consumption to various operational factors. Room temperature, room humidity, door openings, and the setting of the anti-sweat heater switch were the factors examined. The results indicated that the room temperature and door openings had a significantly greater effect on energy consumption than the other two factors. More detailed tests were then performed under different room temperature and door-opening combinations. The relationship of door openings and the equivalent test room temperature was established. Finally, the effect on energy of different temperature settings was studied. Test results are presented and discussed.

Kao, J.Y.; Kelley, G.E. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Building and Fire Research Lab.

1996-12-31T23:59:59.000Z

456

Manufacturing Energy and Carbon Footprints Scope  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007Naval Reactors' Cyber Security

457

American Wind Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof EnergyAdvanced Biofuels |National Wind Technology Center -1 of 9

458

Manufacturing Energy and Carbon Footprint - Sector: Transportation...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

459

Manufacturing Energy and Carbon Footprint - Sector: Computer...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 0 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

460

U.S. Manufacturing Energy Use and Loss: The Big Picture  

E-Print Network [OSTI]

A first step in realizing industrial energy efficiency opportunities is to understand how industry is using, and losing, energy. The U.S. Manufacturing Energy and Carbon Footprints provide a reliable macro-scale reference for manufacturing energy...

Brueske, S.; Sabouni, R.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Goodman Manufacturing Company Comment | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoing Off the GridNetworks |Goodman

462

Revitalizing American Manufacturing | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirementsEnergyJ uRevitalizing American

463

Advanced Blade Manufacturing | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021 Advance PatentBlade

464

Advanced Drivetrain Manufacturing | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021 AdvanceConversion

465

The President's Manufacturing Initiative | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,IndustrialDepartmentTheandTheThe

466

Solar Manufacturing Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S. DepartmentCommitmentGovernmentSmartDay 7 President'sThis

467

Next Generation Manufacturing Processes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,FermiJoshuaAugust1 |DepartmentDepartment ofDecember| Department ofNew

468

An analysis of residential energy consumption in a temperate climate  

SciTech Connect (OSTI)

Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

Clark, Y.Y.; Vincent, W.

1987-06-01T23:59:59.000Z

469

Department of Energy Joins with Manufacturers, Environmentalists...  

Office of Environmental Management (EM)

impact. We applaud DOE for its work and continue to urge both DOE and EPA to carefully balance implementation of mandatory standards and voluntary programs such as ENERGY STAR,"...

470

Energy Impacts of Productivity Improvements in Manufacturing  

E-Print Network [OSTI]

The complexity of industrial processes and the need to consider the interaction of various systems has led in many cases to the maturing of the energy audit in to a more sophisticated industrial assessment. The assessment team typically looks...

Mitrovic, B.; Muller, M. R.

471

Alternative Energy Manufacturing Tax Credit (Utah)  

Broader source: Energy.gov [DOE]

The Alternative Energy Development Incentive (AEDI) is a post-performance non-refundable tax credit for up to 100% of new state tax revenues (including, state, corporate, sales and withholding...

472

Energy Efficiency and Behavior in Manufacturing  

E-Print Network [OSTI]

difficult. In a Pew Center report on best practices in industrial energy efficiency (Prindle 2010), the author notes that corporate climate change and sustainability efforts have shown that energy ? typically only 5% of total revenues ? accounts... and companies These industrial behavior programs are intended to support a range of corporate goals, among them worker safety, product quality, customer response time, productivity and uptime, waste minimization, environmental compliance, demand response...

Trombley, D.; Foster, B.; Elliot, R. N.

2011-01-01T23:59:59.000Z

473

Manufacturer Voluntarily Reports Noncompliance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorageReview

474

Explore Careers in Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive SummitEnergy Efficient

475

Fine-grained Energy Consumption Characterization and Modeling Catherine Mills Olschanowsky, Tajana Rosing, and  

E-Print Network [OSTI]

Fine-grained Energy Consumption Characterization and Modeling Catherine Mills Olschanowsky, Tajana of the applications in the workload affect the energy consumption of the resource. Our experiments confirm that data the performance and energy-efficiency of candidate resources. Predicting the energy consumption of an HPC resource

Simunic, Tajana

476

Energy consumption in cellular network: ON-OFF model and impact of mobility  

E-Print Network [OSTI]

Energy consumption in cellular network: ON-OFF model and impact of mobility Thanh Tung Vu Telecom consumption in cellular network and we focus on the distribution of energy consumed by a base station. We first define the energy consumption model, in which the consumed energy is divided into two parts

477

Mechanism design for aggregating energy consumption and quality of service in speed  

E-Print Network [OSTI]

in a way that minimizes energy while respecting the jobs' deadlines. The energy consumption is then chargedScale. Higher speed means that jobs finish earlier at the price of a higher energy consumption. Each job hasMechanism design for aggregating energy consumption and quality of service in speed scaling

Paris-Sud XI, Université de

478

Manufacture of silicon carbide using solar energy  

DOE Patents [OSTI]

A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

Glatzmaier, Gregory C. (Boulder, CO)

1992-01-01T23:59:59.000Z

479

Understanding Manufacturing Energy Use Through Statistical Analysis  

E-Print Network [OSTI]

. The energy required to chill this glycol should be dependent on outdoor air temperature. The rest of the chilled glycol is sent to fan-coil units that recirculate plant air near heat-generating equipment. The energy required to chill this glycol is much... less dependent on outdoor air temperature. Thus, comparing the two breakdowns suggests that about (13% - 10%) / 13% = 23% of chiller electricity use is devoted to the fan coil units and the balance to the make-up air units. The biggest...

Kissock, J. K.; Seryak, J.

2004-01-01T23:59:59.000Z

480

Advanced Manufacturing Office Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Department Invests in Innovative Manufacturing Technologies |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartment of Energy 7 MillionHydrogen

482

Solar Manufacturing Technology 2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)SmartRemarkson solar

483

clean energy manufacturing | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ1 DevelopmentClean Energy

484

Energy Efficiency in BP's PTA Manufacturing Plants  

E-Print Network [OSTI]

BP is a leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA...

Clark, F.

2010-01-01T23:59:59.000Z

485

Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33), January 2014 (MECS 2010)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll Manufacturing (NAICS 31-33) Process

486

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network [OSTI]

Daily, 2007. Energy consumption per unit GDP down 1.23%increase in energy use per unit of GDP after 2002 following2006, the energy consumption per unit of GDP declined 1.23%

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

487

Energy Manufacturing: Principles and Recent June 28 July 1, 2011  

E-Print Network [OSTI]

) June 29, 2011 Wednesday (Solar Panels) 8:30 ­ 9:00 Introduction of Solar Energy - Steven Danyluk in algae biofuel production, overview of various photovoltaic solar cell technologies and manufacturing:30 ­ 17:30 Design of Advanced Heat-transfer fluids for Concentrated Solar Power - Amy Sun, Sandia (SNL

MacIver, Malcolm A.

488

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing  

E-Print Network [OSTI]

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel for integrated module including in-tank regulator · Developed high efficiency H2 fuel storage systems for DOE tank efficiency, the highest weight efficiency ever demonstrated, in partnership with Lawrence

489

Integrating Energy Management and Lean Manufacturing  

E-Print Network [OSTI]

. BACKGROUND Manitoba Hydro is an energy utility headquartered in Winnipeg, Manitoba, Canada that serves over 500,000 electric customers throughout Manitoba and over 200,000 natural gas customers in various communities throughout southern Manitoba.... Nearly all the electricity generated is from water power from 14 hydroelectric generating stations. Additionally, Manitoba Hydro exports electricity to over 30 electric utilities through participation in four wholesale markets in North America. All...

Stocki, M.

490

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity200320030399Energy

491

Bio Solutions Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon:Great EscapeBinary

492

American Energy and Manufacturing Competitiveness Summit Introduction |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere! America Saves

493

The electricity consumption impacts of commercial energy management systems  

SciTech Connect (OSTI)

An investigation of energy management systems (EMS) in large commercial and institutional buildings in North Carolina was undertaken to determine how EMS currently affect electricity consumption and what their potential is for being used to reduce on-peak electricity demand. A survey was mailed to 5000 commercial customers; the 430 responses were tabulated and analyzed; EMS vendors were interviewed, and 30 sites were investigated in detail. The detailed assessments included a site interview and reconstruction of historic billing data to evaluate EMS impact, if any. The results indicate that well-tuned EMS can result in a 10 to 40 percent reduction in billed demand, and smaller reductions in energy.

Buchanan, S.; Taylor, R.; Paulos, S.; Warren, W.; Hay, J.

1989-02-01T23:59:59.000Z

494

All Manufacturing (2010 MECS) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed. GovernmentFed.DepartmentSeptemberDirector,All

495

Wind Manufacturing Facilities | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1 WindWind

496

2014 Manufacturing Energy and Carbon Footprints: Scope  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issue ofOffice | Department44Scope The energy

497

MECS 2006 - All Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion DemonstratorEastLynnF 742MEA BREAKOUTAll

498

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy ResourcesMinnesota/Incentives <Minot Wind 2 JumpMiraial

499

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & Power Deployment » CHPCalendar17:5:Aboutof Energy

500

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & Power Deployment » CHPCalendar17:5:Aboutofof Energy