Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

2

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

J Related EIA Publications on Energy Consumption Energy Information AdministrationManufacturing Consumption of Energy 1991 526 Appendix J Related EIA Publications on Energy...

3

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

4

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

5

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

B Survey Design, Implementation, and Estimates Introduction The 1991 Manufacturing Energy Consumption Survey (MECS) has been designed by the Energy Information Administration...

6

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

1994-12-01T23:59:59.000Z

7

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

includes descriptions of the 30 groups that comprise the strata of the Manufacturing Energy Consumption Survey. These are the 20 major industrial groups (two-digit SIC) and...

8

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

9

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

10

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

11

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

12

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

13

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

14

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

15

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

16

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

17

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

18

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

19

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

20

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

The gross output for the petroleum and coal products subsector grew by about 3 percent, ... Manufacturing Energy Consumption Survey, MECS Definition of Fuel Use, ...

22

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

at the extent to which manufacturers exercised their ability to choose the mix of energy sources at their discretion. Nonswitchable Minimum Requirements Generally, a...

23

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... Manufacturing Energy Consumption Survey (MECS ... transportation, manufacturing, and a variety of consumer products. It is the ...

24

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... Manufacturing energy consumption data show large reductions in both manufacturing energy use and the energy intensity ...

25

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

26

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA)

How Did Manufacturers Use Natural Gas? Manufacturers used natural gas in processes, in boilers, for nonprocess uses, and as feedstock. In 1991 and 1994, ...

27

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Cost of Natural Gas Used in Manufacturing Sector ... Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased ...

28

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

29

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

30

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy Consumption Survey (MECS) Data Released › Graph showing total U.S. manufacturing energy consumption for all purposes has declined 17 percent from 2002 to 2010. Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010, March 19, 2013. First Estimates from 2010 Manufacturing Energy Consumption Survey (MECS) Released ›

31

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

A-Z Index A B C D E F G H I J K L M ... Manufacturing energy consumption data show large reductions in both manufacturing energy use and the energy intensity of ...

32

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

establishments within a stratum would also be homogeneous with respect to the quantities, types, and shares of energy consumed as fuels and for nonfuel purposes. Also, the weight...

33

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

with Other Series Appendix D Comparability of MECS Estimates with Other Series The Energy Information Administration (EIA) collects data from two distinct sources that, in...

34

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: March 28, 2012.

35

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: ...

36

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary ...

37

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - Release date: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17 percent from 2002 to 2010 (Figure 1), according to data from the U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS). line chart:air conditioning in U.S. Manufacturing gross output decreased by only 3 percent over the same period. Taken together, these data indicate a significant decline in the amount of energy used per unit of gross manufacturing output. The significant decline in energy intensity reflects both improvements in energy efficiency and changes in

38

Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report.

39

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, ...

40

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Units & Calculators ... 2012. Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, ...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

2002 Manufacturing Energy Consumption Survey Methodology and ... where Op,MECS is the MECS estimate of the amount of petroleum product p produced offsite and ...

42

Manufacturing Energy Consumption Survey (MECS) - U.S ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: ...

43

2002 Manufacturing Energy Consumption Survey - User Needs Survey  

U.S. Energy Information Administration (EIA) Indexed Site

2002 Manufacturing Energy Consumption Survey: User-Needs Survey 2002 Manufacturing Energy Consumption Survey: User-Needs Survey View current results. We need your help in designing the next “ Energy Consumption Survey” (MECS)! As our valued customer, you are in an important position to tell us what kinds of data are most useful in helping you understand energy consumption in the U.S. manufacturing sector. Below is a short electronic survey with just a few questions. We will stop collecting responses for user feedback on May 17, 2002. This deadline serves to meet our intended release date of April/May 2003 for fielding MECS2002. The MECS is designed to produce estimates of energy consumption and other energy-related activities in manufacturing. The survey also collects information on energy expenditures, average prices, onsite generation of

44

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go ManufacturingAvailable formats Cost of Natural Gas Used in Manufacturing Sector Has Fallen Released: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17

45

1991 Manufacturing Consumption of Energy 1991 Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

1991 Executive Summary 1991 Executive Summary 1991 Figure showing the Largest Energy Consumers in the Manufacturing Sector Executive Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy Consumption Survey (MECS). The MECS is the only comprehensive source of national-level data on U.S. manufacturing energy use. The 1991 MECS is the third in an ongoing series of surveys conducted at 3-year intervals beginning in 1985. Pursuant to a provision of the Energy Policy Act of 1992, the MECS will be conducted biennially beginning in 1994. The MECS surveys a nationally representative sample of manufacturing establishments by means of mailed questionnaires. The 1991 sample represented 98 percent of the U.S. manufacturing sector universe, which consists of all manufacturing establishments in the 50 States and the District of Columbia. Compared with the 1988 MECS, the designed sample size for 1991 was increased from 12,065 manufacturing establishments to 16,054 establishments.

46

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, ...

47

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, and electricity ...

48

Manufacturing-Industrial Energy Consumption Survey(MECS) Historical  

U.S. Energy Information Administration (EIA) Indexed Site

> Historical Publications > Historical Publications Manufacturing Establishments reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring energy consumption and related issues in the manufacturing sector. The MECS collects data on energy consumption, purchases and expenditures, and related issues and behaviors. Links to previously published documents are given below. Beginning in 1998, reports were only issued electronically. Additional electronic releases are available on the MECS Homepage. The basic unit of data collection for this survey is the manufacturing establishment. Industries are selected according to definitions found in the North American Industry Classification System (NAICS), which replace the earlier Standard Industrial Classification (SIC) system.

49

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

Table 2: Natural gas prices incurred by manufacturers, 2010, by region and establishment employment size (dollars per thousand cubic feet) Employment Size

50

Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing > Derived Annual Estimates - Executive Summary Manufacturing > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This report presents a complete series of annual estimates of purchased energy used by the manufacturing sector of the U.S. economy, for the years 1974 to 1988. These estimates interpolate over gaps in the actual data collections, by deriving estimates for the missing years 1982-84 and 1986-87. For the purposes of this report, "purchased" energy is energy brought from offsite for use at manufacturing establishments, whether the energy is purchased from an energy vendor or procured from some other source. The actual data on purchased energy comes from two sources, the U.S. Department of Commerce Bureau of the Census's Annual Survey of Manufactures (ASM) and EIA's Manufacturing Energy Consumption Survey (MECS). The ASM provides annual estimates for the years 1974 to 1981. However, in 1982 (and subsequent years) the scope of the ASM energy data was reduced to collect only electricity consumption and expenditures and total expenditures for other purchased energy. In 1985, EIA initiated the triennial MECS collecting complete energy data. The series equivalent to the ASM is referred to in the MECS as "offsite-produced fuels." The completed annual series for 1974 to 1988 developed in this report links the ASM and MECS "offsite" series, estimating for the missing years. Estimates are provided for the manufacturing sector as a whole and at the two-digit Standard Industrial Classification (SIC) level for total energy consumption and for the consumption of individual fuels. There are no direct sources of data for the missing years (1982-1984 and 1986-1987). To derive consumption estimates, a comparison was made between the ASM, MECS, and other economic series to see whether there were any good predictors for the missing data. Various estimation schemes were analyzed to fill in the gaps in data after 1981 by trying to match known data for the 1974 to 1981 period.

51

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... regardless of where the energy was produced. 2 Energy used as feedstock is the use of energy sources for raw material input or for ...

52

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The major energy sources in the United States are petroleum (oil), natural ... To compare or aggregate energy consumption across different energy sources like oil, ...

53

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, ... Manufacturing Energy and Carbon Footprints Associated Analysis.

54

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

DOE Uses MECS Data. Manufacturing Energy and Carbon Footprints Associated Analysis. Thank You. We welcome your comments or suggestions (optional).

55

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, biomass and ethanol.

56

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers.

57

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Survey (MECS) Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections MECS Industry Analysis Briefs Steel Industry Analysis The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago. Chemical Industry Analysis The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals

58

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Cost of Natural Gas Used in Manufacturing Sector Has Fallen.

59

Sustainability in Additive Manufacturing and Energy Consumption in ...  

Science Conference Proceedings (OSTI)

Symposium, Green Technologies for Materials Manufacturing and Processing IV. Presentation Title, Sustainability in Additive Manufacturing and Energy...

60

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Residential - RECS. Transportation. DOE Uses MECS Data. Manufacturing Energy and Carbon Footprints Associated Analysis. Thank You. We welcome your comments or ...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

This decline continues the downward trend in manufacturing energy use since the 1998 MECS report. About the MECS. Survey forms. Maps. MECS Terminology. Archives ...

62

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency. Energy use in homes, commercial buildings, ...

63

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates in Trillion Btu) XLS Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel Oil for Selected Purposes by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Barrels per Day) XLS Total Primary Consumption of Energy for All Purposes by Census Region and Economic Characteristics of the Establishment, 1991 (Estimates in Btu or Physical Units) XLS

64

Manufacturing Energy Consumption Survey (MECS) - Data - U.S....  

U.S. Energy Information Administration (EIA) Indexed Site

| 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy...

65

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 2.3 By Value of Shipments & Employment Size Category XLS PDF Energy Consumption as a Fuel Table 3.1 By Mfg. Industry & Region (physical units) XLS PDF

66

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu XLS XLS

67

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLSPDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Values RSE Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 2.3 By Value of Shipments & Employment Size Category XLS PDF

68

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

U.S. States. State energy information, detailed and ... 2010 MECS Survey Data 2010 | 2006 ... Table 5.7 By Region with Total Consumption of Electricity (physical ...

69

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

6 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 6 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms 2006 Data Tables Revision notice (November 2009): Tables 1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 3.5, 4.1 and 4.2 have been slightly revised due to further editing. The revisions in XLS are indicated with a value of "R" in an adjacent column. In the PDF versions, the revised values are superscripted with an "R". No further revisions are anticipated for these tables. all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF XLS

70

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, ...

71

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

U.S. Energy Information Administration (EIA) Indexed Site

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Cost of Natural Gas Used in Manufacturing Sector Has Fallen MECS 2010 - Release date: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers as well as other consumers. The 36% decrease in the average natural gas price paid by manufacturers

72

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Search EIA.gov. A-Z Index; A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ Consumption & Efficiency ... automobiles, and appliances. ...

73

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... storage, imports and exports, production, prices, sales.

74

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

75

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... The major users are residential and commercial buildings, industry, transportation, and electric power generators.

76

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Comprehensive data summaries, comparisons, analysis, and projections integrated across all energy sources. Highlights This Week in Petroleum ...

77

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy.

78

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... electric power plant emissions. Highlights ... This is similar to calculating your food energy intake by adding up the calories in whatever you eat.

79

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural ...

80

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... The steel industry is critical to the U ... That increase in supply has in turn lowered the price of natural gas to ...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Privacy/Security Copyright & Reuse Accessibility. Related Sites U.S. Department of Energy USA.gov FedStats. Stay Connected Facebook Twitter YouTube Email Updates

82

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

MECS Terminology MECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ B Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers. Breeze: The fine screenings from crushed coke. Usually breeze will pass

83

Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report  

E-Print Network (OSTI)

At the end of 1997, The Energy Information Administration (EIA) published a report titled What Took Place in the Economic Environment Between 1991 and 1994 That Affected the Energy Manufacturers Used? This report contains information gathered from Manufacturing Energy Consumption Surveys (MECS), representing a sampling of over 250,000 manufacturing establishments in 52 industries and nine geographical Census divisions. Although the report covers natural gas, distillate fuel oil, residual fuel oil, liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify electric motor systems. The report also introduces the US Department of Energy's Motor Challenge Program and the US Environmental Protection Agency's Green Lights and Energy Star Programs. Topics such as changes in the electricity market, technology improvements, price disparities, and lessons learned from the natural gas restructuring as related to the electric utility deregulation relate the changes that are impacting the industrial environment. Although the report details information from many industries, the four major energy consumers in the manufacturing sector are: * Petroleum and Coal Products (SIC 29) * Chemicals and Allied Products (SIC 28) * Paper and Allied Partners (SIC 26) * Primary Metal Industries (SIC 33) These industries are also very proactive in their attempts to promote energy efficiency in all areas, including electrical. For example, the IEEE-841 Standard motor is a result of the work of some of these industries. The impact on the industrial Maintenance, Repair, and Operations (MRO) suppliers and Original Equipment Manufacturers (OEM) markets show the need for increasing awareness in all aspects of electrical energy, especially in light of the implementation of the Energy Policy Act and the deregulation of the utility industry.

Lockhead, S.

1999-05-01T23:59:59.000Z

84

Manufacturing Energy Consumption Survey (MECS) - U.S ...  

U.S. Energy Information Administration (EIA)

Features Cost of Natural Gas Used in Manufacturing Sector Has Fallen. Release Date: September 6, 2013. Natural gas has been an important exception to ...

85

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... fuel switching capabilities, general energy-saving technologies, energy management activities, square footage, ...

86

Energy Use in Manufacturing  

Reports and Publications (EIA)

This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

William Gifford

2006-08-14T23:59:59.000Z

87

DOE/EIA-0515(85) Energy Information Administration Manufacturing Energy Consumption Survey:  

U.S. Energy Information Administration (EIA) Indexed Site

5(85) 5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S, Government Printing Office (GPO). Informa tion about purchasing this or other Energy Information Administration (ElA) publications may be obtained from the GPO or the ElA's National Energy Information Center (NEIC). Questions on energy statistics should be directed to the NEIC by man, telephone or telecommunications device for the deaf (TDD). Addresses, telephone numbers and hours appear below. National Energy Information Center. El-231 Energy Information Administration Forrestal Building, Room 1F-048 Washington. DC 20585 (202) 586-8800 TDD (202) 586-1181 Hours: 8:00-5:00, M-F, Eastern Time

88

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

89

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... An Assessment of EIA's Building Consumption Data. ... Commercial Buildings - CBECS. Manufacturing - MECS.

90

DOE/EIA-0516(85) Energy Information Administration Manufacturing Energy Consumption Survey:  

U.S. Energy Information Administration (EIA) Indexed Site

6(85) 6(85) Energy Information Administration Manufacturing Energy Consumption Survey: Changes in Energy Efficienc y 1980-198 5 0 6 6 T ' L I A n s n u e r b i r p u T J d J T O J u o i j E i a o s s v 1 I Q 3 H O O l O H d s > | i i e } a B B J O j s j o n p c u d j o s e u e s v : o } o n d s e s e - e s z ( 2 0 2 ) O Q ' u o i 6 u m s B M I U 8 L U U I 8 A O O ' S ' H s j u e i u n o o a j o l u e p u e i u u a d n g U J 9 1 S B 3 ' j - ^ ' ' U J ' d g - ' i u ' B g : s j n o H 1 8 1 . 1 - 9 8 9 ( 2 0 2 ) : A | U Q J B 9 Q 9 4 1 J 0 * 3 3 I A 8 Q S U O j l B O ! U n U J U J < X > 8 | 8 1 0 0 8 8 - 9 8 9 ( 2 0 2 ) 9 8 9 0 2 0 0 8 t O - d I L U O O U ' S u j p n n g U O | J B J t S ! U | L U p V U O U B L U J O J U I A B J 8 U 3 I . £ 2 - 1 3 ' J 8 i U 8 0 U O j l B U U J O J U l A 6 J 8 U 3 | B U O I i B N : M O | 8 q J B e d d B s j n o g p u s ' s j s q t u n u s u o i j d s i a j ' s s s s s j p p v ' ( Q Q l ) J Q J s o j A S p s u o ! J B O ! u n i u u u o o 8 | 8 i ' J O 8 u o q d a | 8 i ' H B I U A q Q | 3 N 9 M I 0 1 p s p s j j p s q p i n o i j s S O J I S J I B I S A B u o s u o u s s n o ' ( O I 3 N ) J Q 1 U 8 Q U O U B I U J O ^ U I A B j s u g I B U O J I B N s , v i 3 e g u o O d

91

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

92

Manufacturing Energy Portal  

Science Conference Proceedings (OSTI)

NIST Home > Manufacturing Energy Portal. Manufacturing Energy Portal. ... see all Manufacturing Energy programs and projects ... ...

2013-11-07T23:59:59.000Z

93

State Energy Data System Consumption Estimates Technical Notes  

U.S. Energy Information Administration (EIA)

as street lighting and public services; and the Manufacturing Energy Consumption Survey covers only manufacturing establishments,

94

Manufacturing Consumption of Energy 1994 - Derived measures of end-use  

U.S. Energy Information Administration (EIA) Indexed Site

eialogo eialogo Calculation of MECS Energy Measures Reported energy values were used to construct several derived values, which, in turn, were used to prepare the estimates appearing in MECS consumption tables--First Use, Total Inputs, Offsite-Produced. These derived values are displayed in Table 1 and defined as follows: Energy produced offsite and consumed as a fuel. This derived value represents onsite consumption of fuels that were originally produced offsite. That is, they arrived at the establishment as the result of a purchase or were transferred to the establishment from outside sources. As such, this derived value is equivalent to consumption of "purchased" fuels as reported by the Census Bureau for the years 1974-1981. The Census Bureau defines "purchased" fuels to include those actually purchased plus those

95

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. Coal. ... New 2010 Manufacturing Energy Consumption Survey (MECS) ...

96

Manufacturing Energy and Carbon Footprints  

E-Print Network (OSTI)

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much is lost? Answering these questions is the focus of this paper and the analysis described herein. Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions, for the fifteen most energy intensive manufacturing sectors, and for the entire U.S. manufacturing sector. Analysts and decision-makers utilize the footprints to better understand the distribution of energy use in energy-intensive industries and the accompanying energy losses. The footprints provide a benchmark from which to calculate the benefits of improving energy efficiency and for prioritizing opportunity analysis. A breakdown of energy consumption by energy type and end use allows for comparison both within and across sectors.

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

97

Table 2.3 Manufacturing Energy Consumption for Heat, Power, and ...  

U.S. Energy Information Administration (EIA)

1 "Net Electricity" is the sum of purchases, transfers in, and onsite generation from noncombustible renewable energy sources, minus quantities sold and transferred ...

98

Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 ...  

U.S. Energy Information Administration (EIA)

Notes: Data are estimates for the first use of energy for heat and power and as feedstocks or raw ... transfers in, and onsite generation from noncombustible

99

Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... Notes: - Data are estimates for the first use of energy for heat and power and as feedstocks or raw material inputs.

100

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Technical Workshop on Behavior Economics Presentations Technical Workshop on Behavior Economics Presentations Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

102

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

103

Fuel Consumption - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Energy Consumption Survey(RTECS), 1994 Fuel Consumption

104

Consumption & Efficiency - Analysis & Projections - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Vehicle Energy Consumption Survey Data; ... Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, ...

105

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports An Assessment of EIA's Building Consumption Data Background image of CNSTAT logo The U.S. Energy Information Administration (EIA) routinely uses feedback from customers and outside experts to help improve its programs and products. As part of an assessment of its consumption

106

Residential Energy Consumption Survey (RECS) - Energy Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

107

UK Energy Consumption by Sector The energy consumption data consists...  

Open Energy Info (EERE)

Consumption by Sector The energy consumption data consists of five spreadsheets:"overall data tables"plusenergy consumption data for each of the following...

108

DOE/EIA-0515(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S,...

109

Consumption Technical Notes  

U.S. Energy Information Administration (EIA)

as street lighting and public services; and the Manufacturing Energy Consumption Survey covers only manufacturing establishments,

110

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

111

Optimizing Manufactured Housing Energy Use  

E-Print Network (OSTI)

In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built to the basic HUD code standard and the other was constructed with features expected to produce a home that was 50% more energy efficient. FSEC and NCATSU began monitoring energy performance in both homes. In addition, the performance of each unit was evaluated using a DOE2 based computer energy analysis program developed by FSEC. A comparison of the performance of the units shows a measured energy savings in the more energy efficient unit of 52% for the Heating, cooling, and DHW energy use. This compares well with the energy savings predicted by the FSEC Energy Gauge program of 57%, even when accounting for the warmer than usual winter experienced during the testing period.

McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

2004-01-01T23:59:59.000Z

112

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

113

Energy-consumption modelling  

SciTech Connect

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

114

Resource Consumption of Additive Manufacturing Technology.  

E-Print Network (OSTI)

??The degradation of natural resources as a result of consumption to support the economic growth of humans society represents one of the greatest sustainability challenges. (more)

Nopparat, Nanond

2012-01-01T23:59:59.000Z

115

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

116

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Cost of Natural Gas Used in Manufacturing Sector Has Fallen. ... Annual state-level estimates of consumption for hydroelectric power, wind, geothermal, and solar energy.

117

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Vehicle Energy Consumption Survey Data; ... That increase in supply has in turn lowered the price of natural gas to manufacturers as well as other consumers.

118

Figure 63. Industrial delivered energy consumption by application ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 63. Industrial delivered energy consumption by application, 2011-2040 (quadrillion Btu) Manufacturing heat and power Nonmanufacturing heat ...

119

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

120

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Consumption & Efficiency - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports All Sectors Change category... All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Filter by: All Data Analysis Projections Today in Energy - Commercial Consumption & Efficiency Short, timely articles with graphs about recent commercial consumption and

122

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

123

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

124

Clean Energy Manufacturing Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

125

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

estimates" pertain to disclosures and to estimates that do not meet EIA publication standards. Disclosure will be conducted at the primary and secondary levels of the MECS....

126

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia. 3. Midwest: Illinois, Indiana, Iowa, Kansas, Michi- gan, Minnesota, Missouri, Nebraska, North Dako- ta, Ohio, South Dakota, and Wisconsin. 4. West: Alaska,...

127

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Metric Unit Mass Short Tons Short Tons Uranium Oxide (U 3 0 8 ) Short Tons Uranium Fluoride (UF 6 ) Long Tons Pounds(lb) Pounds Uranium Oxide(lb U 3 O 8 ) Ounces,...

128

EERE: Clean Energy Manufacturing Initiative Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Manufacturing Initiative Search Search Help Clean Energy Manufacturing Initiative EERE Clean Energy Manufacturing Initiative Printable Version Share this resource Send a...

129

ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

5 RESIDENTIAL TRANSPORTATION 5 RESIDENTIAL TRANSPORTATION ENERGY CONSUMPTION SURVEY Prepared for: UNITED STATES DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION OFFICE OF ENERGY MARKETS AND END USE ENERGY END USE DIVISION RESIDENTIAL AND COMMERCIAL BRANCH WASHINGTON, DC 20585 Prepared by: THE ORKAND CORPORATION 8484 GEORGIA AVENUE SILVER SPRING, MD 20910 October 1986 Contract Number DE-AC01-84EI19658 TABLE OF CONTENTS FRONT MATTER Index to Program Descriptions........................................... vi List of Exhibits ....................................................... viii Acronyms and Abbreviations ............................................. ix SECTION 1: GENERAL INFORMATION ........................................ 1-1 1.1. Summary ....................................................... 1-1

130

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

131

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

DOEEIA-0464(91) Distribution Category UC-950 Household Vehicles Energy Consumption 1991 December 1993 Energy Information Administration Office of Energy Markets and End Use U.S....

132

Energy Efficiency Standards for Manufactured Housing | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards for Manufactured Housing Section 413 of the Energy...

133

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

134

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

135

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

136

2009 Energy Consumption Per Person  

Energy.gov (U.S. Department of Energy (DOE))

Per capita energy consumption across all sectors of the economy. Click on a state for more information.

137

Electrical appliance energy consumption control methods and ...  

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy ...

138

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Appendix A How the Survey Was Conducted Introduction The Residential Transportation Energy Consumption Survey (RTECS) was designed by the Energy Information Administration (EIA)...

139

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

a regular basis at the time of the 1990 RECS personal interviews. Electricity: See Main Heating Fuel. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991...

140

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manufacturing Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

142

Improving energy efficiency in a pharmaceutical manufacturing environment -- office building  

E-Print Network (OSTI)

Reducing energy consumption without compromising the quality of products in a pharmaceutical manufacturing environment and maintaining the comfort of employees is of critical important in maintaining the financial viability ...

Li, Wu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

143

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

144

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

145

Renewable Energy Equipment Manufacturer Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturer Tax Credit Renewable Energy Equipment Manufacturer Tax Credit Eligibility Commercial Industrial Savings For Bioenergy Biofuels Alternative Fuel Vehicles Commercial...

146

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTIONENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

147

World energy consumption  

Science Conference Proceedings (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

148

Manufactured Home Energy Audit user`s manual  

SciTech Connect

The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

NONE

1997-09-01T23:59:59.000Z

149

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Maps by energy source and topic, includes ... Total United States energy consumption in homes has remained relatively stable for many years as increased energy ...

150

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Heating and cooling no longer majority of U.S. home energy use. Source: U.S. Energy Information Administration, Residential Energy Consumption Survey.

151

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

152

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

may not sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Form EIA-871A of the 2003 Commercial Buildings Energy Consumption Survey....

153

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

W as hi ng to n, DC DOEEIA-0464(94) Distribution Category UC-950 Household Vehicles Energy Consumption 1994 August 1997 Energy Information Administration Office of Energy Markets...

154

Rapid Metal Heating: Reducing Energy Consumption and Increasing Productivity in the Thermal Processing of Metals  

Science Conference Proceedings (OSTI)

Energy intensive manufacturing operations, such as iron and steel production, forging, and heat treating, are attempting to increase productivity while decreasing energy consumption.

2000-05-08T23:59:59.000Z

155

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997  

U.S. Energy Information Administration (EIA)

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997. OVERVIEW: MOST POPULOUS STATES ... Homes with air-conditioning: 95%... with a central air-conditioning system: 83%

156

2001 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey ... Office of Management and Budget, Washington, DC 20503. Form EIA-457A (2001) Form Approval: OMB No. 1905-0092 ...

157

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

158

Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

159

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

and Low Power Mode Energy Consumption, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

160

Manage energy use in manufacturing | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy consumption of building 39  

E-Print Network (OSTI)

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

162

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C31A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption...

163

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C25A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption...

164

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C32A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption...

165

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C10A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption...

166

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C30A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption...

167

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C35A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption...

168

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary ...

169

2009 Energy Consumption Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person 2009 Energy Consumption...

170

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Cost of Natural Gas Used in Manufacturing Sector Has Fallen. Release Date: ... and water consumption for hospital buildings greater than 200,000 squar ...

171

Reduces a processor's energy consumption  

E-Print Network (OSTI)

). Clearly, this is energy inefficient and wasteful of energy. 2 More precisely, the faster that a processor decide that energy is being wasted and will decrease the frequency/voltage level. Translation: LowerReduces a processor's energy consumption by up to 70% Diminishes greenhouse gas emissions Improves

172

Reduces electric energy consumption  

E-Print Network (OSTI)

implementation of the assessment recommendations is estimated to be $843,000 with a total implementation cost. Manufacturing at the facility includes both casting and extrusion processes. Process equipment, air compressors productivity. As a result, facility production costs can be reduced and profits can be increased. August 2001

173

Bio Solutions Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

search Name Bio Solutions Manufacturing Inc Place Las Vegas, Nevada Zip 89103 Product Waste-to-energy bioremediation developer. References Bio Solutions Manufacturing Inc1...

174

DOE/EIA-0516(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

6(85) Energy Information Administration Manufacturing Energy Consumption Survey: Changes in Energy Efficienc y 1980-198 5 0 6 6 T ' L I A n s n u e r b i r p u T J d J T O J u o i...

175

Monitoring Energy Consumption of Smartphones  

E-Print Network (OSTI)

With the rapid development of new and innovative applications for mobile devices like smartphones, advances in battery technology have not kept pace with rapidly growing energy demands. Thus energy consumption has become a more and more important issue of mobile devices. To meet the requirements of saving energy, it is critical to monitor and analyze the energy consumption of applications on smartphones. For this purpose, we develop a smart energy monitoring system called SEMO for smartphones using Android operating system. It can profile mobile applications with battery usage information, which is vital for both developers and users.

Ding, Fangwei; Zhang, Wei; Zhao, Xuhai; Ma, Chengchuan

2012-01-01T23:59:59.000Z

176

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

177

Residential Energy Consumption Survey (RECS) - Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating and cooling no longer majority of U.S. home energy use Pie chart of energy consumption in homes by end uses Source: U.S. Energy Information Administration, Residential...

178

Residential Energy Consumption Survey (RECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

RECS data show decreased energy consumption per household. RECS 2009 Release date: June 6, 2012. Total United States energy consumption in homes has remained ...

179

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

... video - Keeping Our Homes Warm, released November 2, 2012. Energy consumption per home has steadily declined over the last three decades ...

180

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum Weekly Petroleum Status Report Weekly Natural Gas ... Total United States energy consumption in homes has remained relatively ...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, ... State Energy Data System: Noncombustible Renewable Energy for 2011 ...

182

Energy Information Administration - Energy Efficiency, energy consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and related information. This site provides an in depth discussion of the concept of energy efficiency and how it is measured, measurement, summaries of formal user meetings on energy efficiency data and measurement, as well as analysis of greenhouse gas emissions as related to energy use and energy efficiency. At the site you will find links to other sources of information, and via a listserv all interested analysts can share ideas, data, and ask for assistance on methodological problems associated with energy use, energy efficiency, and greenhouse gas issues. Contact: Behjat.Hojjati@eia.doe.gov

183

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

2008 Standby Power Consumption Report, March. http://of measurement for the power consumption of audio, video andand Low Power Mode Energy Consumption, Energy Efficiency in

Park, Won Young

2011-01-01T23:59:59.000Z

184

Energy Department Launches Bold New Clean Energy Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Launches Bold New Clean Energy Manufacturing Initiative Energy Department Launches Bold New Clean Energy Manufacturing Initiative March 26, 2013 - 11:00am Addthis As...

185

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

186

Energy-Related Carbon Emissions in Manufacturing  

Reports and Publications (EIA)

Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

Information Center

2000-05-31T23:59:59.000Z

187

Ohio Advanced Energy Manufacturing Center  

Science Conference Proceedings (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

188

Ohio Advanced Energy Manufacturing Center  

SciTech Connect

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

189

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Center Energy Data Center Energy Consumption Trends to someone by E-mail Share Federal Energy Management Program: Data Center Energy Consumption Trends on Facebook Tweet about Federal Energy Management Program: Data Center Energy Consumption Trends on Twitter Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Google Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Delicious Rank Federal Energy Management Program: Data Center Energy Consumption Trends on Digg Find More places to share Federal Energy Management Program: Data Center Energy Consumption Trends on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Energy Consumption Trends

190

Renewable Energy Consumption for Nonelectric Use by Energy Use...  

Open Energy Info (EERE)

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 This dataset provides annual renewable energy consumption (in quadrillion Btu)...

191

Historical Renewable Energy Consumption by Energy Use Sector...  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Provides annual renewable energy consumption by source and end use between 1989 and 2008....

192

TV Energy Consumption Trends and Energy-Efficiency Improvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

TV Energy Consumption Trends and Energy-Efficiency Improvement Options Title TV Energy Consumption Trends and Energy-Efficiency Improvement Options Publication Type Report LBNL...

193

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

194

Household Vehicles Energy Consumption  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

Mark Schipper

2005-11-30T23:59:59.000Z

195

Energy Department Launches New Clean Energy Manufacturing Initiative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Clean Energy Manufacturing New Clean Energy Manufacturing Initiative Energy Department Launches New Clean Energy Manufacturing Initiative March 26, 2013 - 10:56am Addthis News Media Contact (202) 586-4940 OAK RIDGE - As part of the Obama Administration's commitment to revitalizing America's manufacturing sector, today the Energy Department launched the Clean Energy Manufacturing Initiative (CEMI), a new Department initiative focused on growing American manufacturing of clean energy products and boosting U.S. competitiveness through major improvements in manufacturing energy productivity. The initiative includes private sector partnerships, new funding from the Department, and enhanced analysis of the clean energy manufacturing supply chain that will guide the Department's future funding decisions.

197

Wind Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Alternative Fuel Vehicles --Batteries --Biofuels --Clean Cities -Building Design --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind...

198

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

199

Energy Manufacturing Matthew Realff and Steven Danyluk  

E-Print Network (OSTI)

Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

Das, Suman

200

The 1997 Residential Energy Consumption Survey -- Two Decades  

U.S. Energy Information Administration (EIA)

1997 Residential Energy Consumption Survey presents two decades of changes in energy consumption related Household Characteristics

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy-Saving Homes, Buildings, and Manufacturing | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Saving Homes, Buildings, and Manufacturing Energy-Saving Homes, Buildings, and Manufacturing Buildings Homes Advanced Manufacturing Government Energy Management Buildings...

202

Table CT1. Energy Consumption Estimates for Major Energy Sources ...  

U.S. Energy Information Administration (EIA)

R A D O. U.S. Energy Information Administration State Energy Data 2011: Consumption 89 Table CT6. Industrial Sector Energy Consumption Estimates, Selected Years, 1960 ...

203

Table CT1. Energy Consumption Estimates for Major Energy ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration State Energy Data 2011: Consumption 365 Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, North ...

204

Clean Energy Manufacturing Initiative Midwest Regional Summit...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy (EERE)'s Advanced Manufacturing Office works with industry, small business, universities, and other stakeholders to identify and invest in...

205

ENERGY STAR Resources for Small & Medium Manufactures  

NLE Websites -- All DOE Office Websites (Extended Search)

Small & Medium Manufacturers Guide to Energy Management June 2013 ENERGY STAR is a U.S. Environmental Protection Agency Program helping organizations and individuals fight climate...

206

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C12A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of...

207

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major...

208

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C29A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas...

209

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1...

210

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C28A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas...

211

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C27A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas...

212

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C9A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3...

213

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C11A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of...

214

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C5A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of...

215

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network (OSTI)

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

216

Clean Energy Manufacturing Incentive Program (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

217

Explore Careers in Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

218

Modelling Energy Consumption in China  

E-Print Network (OSTI)

Energy consumption in China has attracted considerable research interest since the middle 1990s. This is largely prompted by the environmental ramifications of the extensive use of fossil fuels in the country to propel two decades of high economic growth. Since the late 1980s, there has been an increasing awareness on the part of the Chinese government of the imperative for the balance of economic growth and environmental protection. The government has since taken various measures ranging from encouraging energy-saving practice, controlling waste discharges to financing R & D programs on improving energy efficiency. Against this backdrop has seen a constant decline of the energy intensity of the economy, measured as the ratio of total energy consumed in standard coal equivalent to the real GDP since 1989. Using the 1987 and 1997 input-output tables for China, the present study examines the impact of technical and structural changes in the economy on industry fuel consumption over the 10-year period. Technical changes are reflected in changes in direct input-output coefficients, which capture the technical evolvement of intermediate production processes. Structural changes refer to shifts in the pattern of final demand for energy, including the import and export composition of various fuels. Six fuels are included in the study, namely, coal, oil, natural gas, electricity, petroleum and coke and gas, which cover all of the energy types available in the input-output tables. It is found that the predominant force of falling energy intensity was changes in direct energy input requirements in various industries. Such changes were responsible for a reduction in the consumption of four of the six fuels per unit of total output. Structural changes were not conducive for improv...

Baiding Hu Department; Baiding Hu

2004-01-01T23:59:59.000Z

219

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Annual state-level estimates of consumption for hydroelectric power, wind, geothermal, and solar energy. Annual Energy Outlook 2013.

220

All Consumption Tables - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

1991b). Manufacturing Energy Consumption Survey: ConsumptionEnergy Databook Chapter IV, Energy Consumption Figure IV-12.Modes Chapter IV, Energy Consumption China Energy Databook

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

222

Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.  

SciTech Connect

This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

Onisko, Stephen A.; Roos, Carolyn; Baylon, David

1993-06-01T23:59:59.000Z

223

Lower railroad energy consumption reflects improved efficiency ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, biomass and ethanol.

224

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Gas furnace efficiency has large implications for residential ...

225

Solar energy systems for manufactured housing  

DOE Green Energy (OSTI)

The opportunities for solar energy utilization in manufactured housing such as mobile homes and modular homes are discussed. The general characteristics of the manufactured housing industry are described including market and prices. Special problems of the utilization of liquid heating collectors, air heating collectors, or passive types of solar heating systems in manufactured housing are considered. The market situation for solar energy in manufactured housing is discussed. The design of the Los Alamos Scientific Laboratory mobile/modular home is described.

Balcomb, J.D.

1976-01-01T23:59:59.000Z

226

Energy Star Helps Manufacturers To Achieve High Energy Performance  

E-Print Network (OSTI)

From personal electronic devices to homes and office buildings, ENERGY STAR is a recognized symbol of high quality energy performance which enables consumers, home buyers, and businesses to make informed energy decisions. Now, the U.S. Environmental Protection Agency, within the construct of ENERGY STAR, is extending the benefits to manufacturers in new and meaningful ways. Through the development of tools and technical resources specifically targeting manufacturing companies, ENERGY STAR seeks to provide a means for these businesses to understand and achieve excellence in energy performance by reinforcing the link between energy, financial, and environmental performance. Discussed are the enhanced programmatic offerings as well as two new tools under development that will illustrate the impact of energy consumption on financial performance. The first tool will permit an assessment of energy performance, or benchmark it, at a plant level normalizing for such variables as product type, annual plant hours, plant capacity, annual product value, number of employees, and location. Use of this tool and the information it provides as a means to assess, track and provide targets for plant energy performance is examined. The second tool seeks to elevate the consideration of energy use to an executive level within an organization by calculating financial energy indices specific to individual companies and industrial sectors. These indices relate a business' energy use to such factors as net operating income, value of sales, net income, and so forth. Corporate executives, Wall Street analysts, and energy managers are intended to be the primary users of these ratios. Programmatic improvements to ENERGY STAR include greater networking among participants in the partnership and more opportunities for recognition of their achievements. With the new tools, resources, and program enhancements, it is believed that manufacturers will be equipped with valuable and credible information from which more informed and progressive energy performance decisions can be made. Further, these businesses will be doing their part to demonstrate that protection of the environment is good for business.

Dutrow, E.; Hicks, T.

2001-05-01T23:59:59.000Z

227

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

228

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

229

Resource Consumption in Additive Manufacturing with a PSS Approach.  

E-Print Network (OSTI)

??Since the 1980s, additive manufacturing (AM) has gradually advanced from rapid prototyping applications towards fabricating end consumer products. Many small companies may prefer accessing AM (more)

Nopparat, Nanond; Kianian, Babak; Thompson, Anthony

2012-01-01T23:59:59.000Z

230

Manufactured Home Energy Audit (MHEA)Users Manual (Version 7)  

Science Conference Proceedings (OSTI)

The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the U.S. Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA uses a relatively standard Windows graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment appliances, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. Weatherization retrofit measures are evaluated based on the predicted energy savings after installation of the measure, the measure cost, and the measure life. Finally, MHEA recommends retrofit measures that are energy and cost effective for the particular home being evaluated. MHEA evaluates each manufactured home individually and takes into account local weather conditions, retrofit measure costs, and fuel costs. The recommended package of weatherization retrofit measures is tailored to the home being evaluated. More traditional techniques apply the same package of retrofit measures to all manufactured homes, often the same set of measures that are installed into site-built homes. Effective manufactured home weatherization can be achieved only by installing measures developed specifically for manufactured homes. The unique manufactured home construction characteristics require that each of these measures is evaluated separately in order to devise a package of measures that will result in high energy and dollar savings. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes. The National Renewable Energy Laboratory originally developed MHEA for the U.S. Department of Energy Weatherization Assistance Program. Conversion to a Windows-based program with additional modifications has been performed by the Oak Ridge National Laboratory. Many energy consumption and economic calculations resemble those found in the Computerized Instrumented Residential Audit written by Lawrence Berkeley National Laboratory and the National Energy Audit written by Oak Ridge National Laboratory. The calculations are similar in structure but have been altered to more accurately represent a manufactured home's unique energy use characteristics. Most importantly, MHEA helps meet the DOE Weatherization Assistance Program goals to increase client comfort and use federal dollars wisely.

Gettings, M.B.

2003-01-27T23:59:59.000Z

231

Energy Report: U.S. Wind Energy Production and Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing...

232

Energy Department Launches Bold New Clean Energy Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

for manufacturers. Another key element of the initiative is creating new public-private partnerships that focus on improving U.S. clean energy manufacturing...

233

EERE News: Energy Department Launches New Clean Energy Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

manufacturing of cost-competitive clean energy technologies, from wind, solar, and geothermal to batteries and biofuels. As a part of this increased focus on manufacturing...

234

State energy data report 1992: Consumption estimates  

SciTech Connect

This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

Not Available

1994-05-01T23:59:59.000Z

235

Residential Energy Consumption Survey Data Tables  

U.S. Energy Information Administration (EIA)

Below are historical data tables from the Residential Energy Consumption Survey (RECS). These tables cover the total number of households ...

236

Energy Consumption and Expenditures RECS 2001  

U.S. Energy Information Administration (EIA)

Water Heating. Space Heating. Appliances. Air-Conditioning. About the Data. Tables: Total Energy Consumption in U.S ...

237

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years December 20, 2013 Gas furnace efficiency has large implications for residential natural gas use December 5, 2013 EIA publishes state fact sheets on residential energy consumption and characteristics August 19, 2013 All 48 related articles › Other End Use Surveys Commercial Buildings - CBECS Manufacturing - MECS Transportation About the RECS EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage

238

Historical Renewable Energy Consumption by Energy Use Sector and Energy  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset

239

Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

240

Manufacturing Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propylene (C 3 H 6): A normally gaseous olefinic hydrocarbon recovered from refinery processes or petrochemical processes. In the manufacturing ...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA Energy Efficiency-Manufacturing Industry Trend Data, 1998 and 2002  

Gasoline and Diesel Fuel Update (EIA)

Trends 1998, 2002, and 2006 Trends 1998, 2002, and 2006 Manufacturing Industry Trend Data 1998, 2002, and 2006 (NAICS) Page Last Modified: May 2010 Below are data from the 1998, 2002, and 2006 Manufacturing Energy Consumption Survey (MECS), and other sources by industry type. The tables provide estimates for energy consumed for all purposes, fuel consumption, offsite-produced fuel consumption, and nonfuel consumption for selected industries, as well as economic (nominal and real) and physical indicators. Site Energy Consumption 1998, 2002, and 2006 Table 1a. Consumption of Energy (Site Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 html Table 1 excel table 1a. pdf table 1a. Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006

242

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

243

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

244

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network (OSTI)

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

245

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and State. The report covers the period from 2006 through 2010.

2012-12-11T23:59:59.000Z

246

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIRSTTR...

247

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff...

248

Department of Energy Joins with Manufacturers, Environmentalists...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by law, is based on the consensus agreement reached by stakeholders which balances energy savings, consumer choice and manufacturer impact. We applaud DOE for its work and...

249

Advanced Manufacturing Office: Western Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Advanced Manufacturing Office: Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting to someone by E-mail Share Advanced...

250

Integrating Energy Management and Lean Manufacturing  

E-Print Network (OSTI)

There is a close relationship between energy efficiency and lean manufacturing. Lean focuses on the continuous elimination of non-value added activities and waste in a manufacturing process. Energy management focuses on the continuous elimination of wasted energy in a manufacturing process. This paper will focus on industrial facilities that participated in a Power Smart Lean initiative with Manitoba Hydro. The objective of this service is to leverage lean principles by capitalizing on the synergies between lean manufacturing and energy management to increase the incorporation of energy efficiency into a manufacturing plant. Case studies are presented showing the resulting electric and gas saving opportunities from identifying and reducing wasted energy. Examples are presented to show the incidental energy savings realized by facilities that have used lean to improve productivity. Finally, case studies are discussed which demonstrate the utilization of lean approaches and tools with parallels to energy management.

Stocki, M.

2009-05-01T23:59:59.000Z

251

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

252

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

A video about changes in home heating in the United States. Annual Energy Review Consumption Statistics. Released September 27, 2012. A report of annual energy ...

253

Commercial Buildings Energy Consumption and Expenditures 1992  

Annual Energy Outlook 2012 (EIA)

(92) Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Contacts The Energy Information Administration (EIA) prepared this...

254

Residential Energy Consumption Survey data show decreased ...  

U.S. Energy Information Administration (EIA)

Total U.S. energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the ...

255

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2008-09-02T23:59:59.000Z

256

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2006-03-07T23:59:59.000Z

257

Revitalizing American Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing American Manufacturing Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | Secretary Chu Secretary Chu Former Secretary of Energy "The Department of Energy has long been charged with accelerating energy

258

EIA Average Energy Consumption 2005  

U.S. Energy Information Administration (EIA)

Table US8. Average Consumption by Fuels Used, 2005 Physical Units per Household Fuels Used (physical units of consumption per household using the fuel)

259

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

260

Manufacturing News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing News and Blog Manufacturing News and Blog Manufacturing News and Blog Blog Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 3:53 PM From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. Read The Full Story Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 1:06 PM Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. Read The Full Story Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

262

annual energy consumption | OpenEI  

Open Energy Info (EERE)

energy consumption energy consumption Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

263

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Realizing Building End-Use Efficiency with Ermerging Technologies Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

264

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative Realizing Building End-Use Efficiency with Ermerging Technologies

265

Understanding Manufacturing Energy Use Through Statistical Analysis  

E-Print Network (OSTI)

Energy in manufacturing facilities is used for direct production of goods, space conditioning, and general facility support such as lighting. This paper presents a methodology for statistically analyzing plant energy use in terms of these major end uses.

Kissock, J. K.; Seryak, J.

2004-01-01T23:59:59.000Z

266

Modelling Office Energy Consumption: An Agent Based  

E-Print Network (OSTI)

Modelling Office Energy Consumption: An Agent Based Approach Tao Zhang, Peer-Olaf Siebers, Uwe · Overall Project Background · Office Energy Consumption · Case Study · Simulation Experiments · Conclusions #12;Overall Project Background · EPSRC funded City Energy Future Project ­ Under Energy & Complexity

Aickelin, Uwe

267

Alternative Fuels Data Center: Clean Energy Manufacturing Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Energy Clean Energy Manufacturing Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Google Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Delicious Rank Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Energy Manufacturing Grants The Clean Energy Manufacturing Incentive Grant Program provides financial

268

Consumption & Efficiency | U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Consumption and efficiency analysis & projections. Annual Energy Outlook 2013 Reference Case: consumption by sector projections; energy intensity projections

269

EIA Renewable Energy- The Role of Renewable Energy Consumption in ...  

U.S. Energy Information Administration (EIA)

Pie graph and bar graph showing the percentage of renewable energy consumption in the Nation's overall energy supply

270

Residential Energy Consumption Survey Results: Total Energy Consumptio...  

Open Energy Info (EERE)

Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005)

271

Modeling, Kinetics, and Energy Consumption  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , General Abstracts: Materials Processing and Manufacturing Division.

272

MANUFACTURING  

Science Conference Proceedings (OSTI)

... Energy Efficiency in Buildings: Solid State Climate Control ... TE materials is green job creation, as Table ... can provide 21,454 US jobs in manufacturing ...

2011-08-01T23:59:59.000Z

273

Energy-Efficient Manufactured Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufactured Homes Manufactured Homes Energy-Efficient Manufactured Homes June 24, 2013 - 10:20am Addthis There are many opportunities to improve the energy efficiency of manufactured homes. | Photo courtesy of ©iStockphoto.com/Marje There are many opportunities to improve the energy efficiency of manufactured homes. | Photo courtesy of ©iStockphoto.com/Marje What does this mean for me? Manufactured homes (formerly called mobile homes) mean affordable housing for many Americans. Newer manufactured homes offer amenities found in site-built homes, and can be retrofitted to improve energy efficiency and incorporate renewable energy technologies. Like site-built homes, new manufactured homes (formerly known as mobile homes) can be designed for energy efficiency and renewable energy. You can

274

Energy-Efficient Manufactured Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufactured Homes Manufactured Homes Energy-Efficient Manufactured Homes June 24, 2013 - 10:20am Addthis There are many opportunities to improve the energy efficiency of manufactured homes. | Photo courtesy of ©iStockphoto.com/Marje There are many opportunities to improve the energy efficiency of manufactured homes. | Photo courtesy of ©iStockphoto.com/Marje What does this mean for me? Manufactured homes (formerly called mobile homes) mean affordable housing for many Americans. Newer manufactured homes offer amenities found in site-built homes, and can be retrofitted to improve energy efficiency and incorporate renewable energy technologies. Like site-built homes, new manufactured homes (formerly known as mobile homes) can be designed for energy efficiency and renewable energy. You can

275

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

276

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

277

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

278

Energy consumption metrics of MIT buildings  

E-Print Network (OSTI)

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

279

TECHNICAL DOCUMENTATION Commercial Buildings Energy Consumption Survey  

Reports and Publications (EIA)

This is the technical documentation for the public use data set based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), the national sample survey of commercial buildings and their energy suppliers conducted by the Energy Information Administration.

Information Center

1996-07-01T23:59:59.000Z

280

Estimated U.S. gasoline consumption low compared to five-year ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Consumption & Efficiency. Energy use in homes, commercial buildings, manufacturing, and transportation. Coal.

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A Green Solution To Energy Consumption  

Science Conference Proceedings (OSTI)

Presentation Title, MAX HT Bayer Sodalite Scale Inhibiter: A Green Solution To Energy Consumption. Author(s), Morris E. Lewellyn, Alan Rothenberg, Calvin...

282

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

283

Renewable Energy Consumption and Electricity Preliminary ...  

U.S. Energy Information Administration (EIA)

Renewable Energy Consumption and Electricity Preliminary Statistics 2010 June 2011 ... and Job Creation Act of 2010 (H.R. 4853) was signed in December

284

Residential Energy Consumption Survey (RECS) 2009 Technical ...  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey (RECS) Using the 2009 microdata file to compute estimates and standard errors (RSEs) February 2013 Independent Statistics & Analysis

285

California Energy Commission - Electricity Consumption by Planning...  

Open Energy Info (EERE)

Planning Area (1990-2009) Electricity consumption data from the California Energy Commission by planning area for Commercial, Residential, Ag & Water Pump, Streetlight,...

286

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security & Safety Energy Economy Funding Opportunities State & Local Government Science & Innovation Science & Technology Science Education Innovation Energy Sources Energy Usage...

287

State energy data report 1993: Consumption estimates  

SciTech Connect

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1995-07-01T23:59:59.000Z

288

State Energy Data Report, 1991: Consumption estimates  

DOE Green Energy (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

Not Available

1993-05-01T23:59:59.000Z

289

Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Report #: DOE/EIA-0573(2005) Released Date: November 2006 Next Release Date: Not applicable Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing Mark Schipper 1 , Energy Information Administration (EIA) Abstract Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

290

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 141 68 117 8,634 4,165 8,376 16.3 16.3 14.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 17 7 12 696 439 857 24.1 15.7 14.0 5,001 to 10,000 .............................. 12 5 15 865 451 868 13.8 12.1 17.7 10,001 to 25,000 ............................ 16 12 16 1,493 933 1,405 11.0 13.0 11.5

291

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ................................ 162 538 343 17,509 32,945 19,727 9.2 16.3 17.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 24 54 38 2,072 2,767 1,640 11.4 19.4 23.0 5,001 to 10,000 .............................. 16 41 29 1,919 3,154 1,572 8.2 13.0 18.4 10,001 to 25,000 ............................ 28 69 45 3,201 5,610 3,683 8.7 12.3 12.2

292

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 580 986 471 12,407 22,762 13,304 46.8 43.3 35.4 Building Floorspace (Square Feet) 1,001 to 5,000 ............................... 86 103 61 1,245 1,271 659 69.0 81.0 92.1 5,001 to 10,000 ............................. 57 101 60 1,154 1,932 883 49.4 52.3 67.6 10,001 to 25,000 ........................... 105 174 65 2,452 3,390 1,982 42.6 51.2 32.7

293

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 41 131 168 3,430 10,469 12,202 12.0 12.5 13.8 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 5 9 20 369 662 921 12.9 13.9 21.9 5,001 to 10,000 .............................. 3 8 9 360 768 877 8.4 10.4 10.8 10,001 to 25,000 ............................ Q 16 24 674 1,420 2,113 Q 11.6 11.2

294

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using Fuel Oil (million square feet) Fuel Oil Energy Intensity (gallons/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings .............................. 1,302 172 107 64 6,464 2,909 4,663 2,230 0.20 0.06 0.02 Q Building Floorspace (Square Feet) 1,001 to 10,000 ............................ 381 Q Q Q 763 Q 274 Q 0.50 Q 0.10 Q 10,001 to 100,000 ........................ 404 63 Q Q 1,806 648 985 351 0.22 0.10 Q Q Over 100,000 ............................... 517 21 45 Q 3,894 2,055 3,404 1,780 0.13 0.01 0.01 Q

295

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 85 364 550 1,861 8,301 10,356 45.4 43.8 53.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q 42 69 Q 427 741 Q 98.4 92.9 5,001 to 10,000 .............................. Q 32 49 Q 518 743 Q 62.1 65.5 10,001 to 25,000 ............................ Q 47 102 Q 952 1,860 Q 49.7 54.6

296

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings* ............................... 4,645 64,783 5,820 9,168 3,037 1,928 222 634 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 672 1,164 386 250 34 Q 5,001 to 10,000 .............................. 889 6,585 516 790 262 209 36 Q 10,001 to 25,000 ............................ 738 11,535 776 1,229 407 309 27 Q 25,001 to 50,000 ............................ 241 8,668 673 1,058 350 258 16 Q 50,001 to 100,000 .......................... 129 9,057 759 1,223 405 244 26 Q

297

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 178 238 104 3,788 7,286 2,521 47.0 32.7 41.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 27 11 346 360 218 66.6 75.8 51.9 5,001 to 10,000 .............................. 14 36 Q 321 662 Q 45.1 53.8 Q 10,001 to 25,000 ............................ 31 33 Q 796 1,102 604 39.5 29.9 Q

298

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 201 412 431 13,124 31,858 25,200 15.3 12.9 17.1 Principal Building Activity Education ....................................... 9 55 45 806 5,378 3,687 11.1 10.2 12.2 Food Sales ..................................... 36 24 Q 747 467 Q 48.8 51.1 Q

299

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................. 1,488 2,794 1,539 17,685 29,205 17,893 84.1 95.7 86.0 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 191 290 190 2,146 2,805 1,838 89.1 103.5 103.5 5,001 to 10,000 ............................ 131 231 154 1,972 2,917 1,696 66.2 79.2 91.0 10,001 to 25,000 .......................... 235 351 191 3,213 4,976 3,346 73.1 70.5 57.0

300

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 454 715 356 378 134 8,486 14,122 8,970 11,796 5,098 53.5 50.6 39.7 32.0 26.3 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 57 84 35 58 16 666 1,015 427 832 234 84.8 83.1 81.9 69.6 66.6 5,001 to 10,000 ........................... 50 57 33 61 17 666 1,030 639 1,243 392 75.2 54.9 51.2 49.2 44.0

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Total Energy Consumption by Major Fuel for All Buildings, 2003 A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings ................................ 4,859 71,658 6,523 10,746 3,559 2,100 228 636 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 685 1,185 392 257 34 Q 5,001 to 10,000 .............................. 948 7,033 563 883 293 224 36 Q 10,001 to 25,000 ............................ 810 12,659 899 1,464 485 353 28 Q 25,001 to 50,000 ............................ 261 9,382 742 1,199 397 278 17 Q 50,001 to 100,000 .......................... 147 10,291 913 1,579 523 277 29 Q

302

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 137 254 189 261 202 11,300 18,549 12,374 17,064 10,894 12.1 13.7 15.3 15.3 18.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 19 27 14 32 23 1,210 1,631 923 1,811 903 15.7 16.4 15.0 17.8 25.8 5,001 to 10,000 ........................... 12 18 15 27 14 1,175 1,639 1,062 1,855 914 10.2 10.9 14.3 14.3 15.5

303

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 172 234 452 185 13,899 17,725 26,017 12,541 12.4 13.2 17.4 14.7 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 14 30 52 19 1,031 1,742 2,410 1,296 13.5 17.4 21.5 14.6 5,001 to 10,000 .............................. 11 17 37 21 1,128 1,558 2,640 1,319 9.8 10.8 14.0 15.8 10,001 to 25,000 ............................ 22 33 59 28 2,094 3,317 4,746 2,338 10.4 10.0 12.5 12.1

304

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 448 728 511 350 10,162 14,144 15,260 8,907 44.1 51.5 33.5 39.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 50 92 68 40 547 1,086 912 629 90.6 84.6 74.5 63.7 5,001 to 10,000 .............................. 39 63 69 46 661 1,064 1,439 806 59.2 59.4 48.1 57.4 10,001 to 25,000 ............................ 58 133 81 70 1,293 2,656 2,332 1,542 45.2 50.1 34.7 45.7

305

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 467 882 688 7,144 21,928 19,401 65.4 40.2 35.5 Principal Building Activity Education ....................................... Q 137 101 419 3,629 2,997 53.9 37.6 33.7 Food Sales ..................................... 16 Q Q 339 Q Q 46.6 Q Q

306

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 168 185 165 5,453 3,263 5,644 30.9 56.6 29.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 29 18 Q 334 266 363 87.9 68.5 60.2 5,001 to 10,000 .............................. 25 Q Q 545 291 514 45.6 62.7 54.4 10,001 to 25,000 ............................ 20 45 26 626 699 844 32.1 63.9 30.6

307

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 66 254 57 5,523 13,837 3,546 12.0 18.3 16.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 10 28 7 821 1,233 481 12.4 22.4 15.4 5,001 to 10,000 .............................. 7 20 5 681 1,389 386 10.8 14.4 13.3 10,001 to 25,000 ............................ 9 31 12 1,204 2,411 842 7.8 12.8 14.1

308

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings* ............................... 436 1,064 309 5,485 12,258 3,393 79.5 86.8 91.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 116 36 922 1,207 538 64.9 96.5 67.8 5,001 to 10,000 .............................. 44 103 Q 722 1,387 393 60.5 74.0 Q

309

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ............................... 1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7 Food Sales ................................... 144 Q Q 765 467 Q 188.5 Q Q

310

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings* ........................... 990 1,761 1,134 1,213 724 10,622 17,335 11,504 15,739 9,584 93.2 101.6 98.5 77.0 75.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

311

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings* ............................. 1,188 2,208 2,425 13,374 29,260 22,149 88.8 75.5 109.5 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7

312

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 . Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings* ............................... 575 381 530 7,837 3,675 7,635 73.4 103.8 69.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 464 871 110.9 94.7 73.0 5,001 to 10,000 .............................. 60 36 76 879 418 820 68.2 86.7 92.9 10,001 to 25,000 ............................ 53 76 73 1,329 831 1,256 40.2 91.7 58.4

313

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 456 1,241 340 5,680 13,999 3,719 80.2 88.7 91.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 123 37 922 1,283 547 64.9 96.2 67.6 5,001 to 10,000 .............................. 45 111 27 738 1,468 420 61.6 75.4 63.2

314

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings* ............................. 1,271 1,690 1,948 911 12,905 17,080 23,489 11,310 98.5 98.9 82.9 80.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 118 206 240 108 1,025 1,895 2,533 1,336 115.1 108.5 94.9 80.6 5,001 to 10,000 ............................ 102 117 185 112 1,123 1,565 2,658 1,239 90.7 74.7 69.5 90.8

315

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 684 446 617 9,022 4,207 8,613 75.8 106.1 71.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 466 871 110.9 94.8 73.0 5,001 to 10,000 .............................. 67 39 84 957 465 878 69.7 84.8 95.1 10,001 to 25,000 ............................ 77 91 89 1,555 933 1,429 49.4 97.2 62.4

316

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 345 1,052 1,343 3,452 10,543 12,424 99.8 99.7 108.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 37 86 147 383 676 986 95.9 127.9 148.9 5,001 to 10,000 .............................. 39 68 83 369 800 939 106.0 85.4 88.2 10,001 to 25,000 ............................ Q 121 187 674 1,448 2,113 Q 83.4 88.4

317

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 1,522 3,228 1,772 18,031 33,384 20,243 84.4 96.7 87.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 193 300 193 2,168 2,904 1,850 89.0 103.2 104.2 5,001 to 10,000 ............................ 134 263 165 2,032 3,217 1,784 66.0 81.9 92.5 10,001 to 25,000 .......................... 241 432 226 3,273 5,679 3,707 73.6 76.1 60.9

318

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings ............................ 1,086 1,929 1,243 1,386 879 11,529 18,808 12,503 17,630 11,189 94.2 102.6 99.4 78.6 78.6 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

319

How ENERGY STAR Helps Manufacturers Improve the Energy Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Helps Manufacturers Improve the Energy Performance of their Operations Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and...

320

State energy data report 1994: Consumption estimates  

Science Conference Proceedings (OSTI)

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) All Buildings ................................ 4,859 71,658 14.7 6,523 1,342 91.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 685 265 99.0 5,001 to 10,000 .............................. 948 7,033 7.4 563 594 80.0 10,001 to 25,000 ............................ 810 12,659 15.6 899 1,110 71.0 25,001 to 50,000 ............................ 261 9,382 36.0 742 2,843 79.0

322

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* ............................... 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 .............................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................ 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................ 241 8,668 35.9 673 2,790 77.6 75.8

323

State energy data report 1996: Consumption estimates  

Science Conference Proceedings (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

324

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Manufacturin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving...

325

Compiler Support for Reducing Leakage Energy Consumption  

Science Conference Proceedings (OSTI)

Current trends indicate that leakage energy consumption will be an important concern in upcoming process technologies. In this paper, we propose a compiler-based leakage energy optimization strategy. Our strategy is built upon a data-flow analysis that ...

W. Zhang; M. Kandemir; N. Vijaykrishnan; M. J. Irwin; V. De

2003-03-01T23:59:59.000Z

326

Reducing the Energy Consumption of Networked Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing the Energy Consumption of Networked Devices Speaker(s): Ken Christensen Date: July 19, 2005 - 12:00pm Location: 90-4133 When Personal Computers are networked, energy...

327

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, EIAs analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8 percent of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9 percent of annual operating cost, previously have received somewhat less attention, however. In AEO2006, energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50 percent of the projected increase in industrial natural gas consumption from 2004 to 2030.

Information Center

2007-03-11T23:59:59.000Z

328

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot...

329

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of...

330

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

331

Table 2.1e Transportation Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1e Transportation Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

332

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive...

333

Energy Management Pathfinding: Understanding Manufacturers' Ability and Desire to Implement Energy Efficiency  

E-Print Network (OSTI)

Manufacturers are scrambling for relief from today's energy expenses and price volatility. Most industry decision-makers believe the solution is to seek the lowest available energy prices. Too often, managers fail to grasp the opportunities offered by energy management, which focuses on both consumption and prices. Industry can be resistant to energy management for a variety of reasons. Simply put, energy management has no traditional place in the typical manufacturer's chart of organization, job descriptions, and performance accountabilities. While technology is fundamental to energy efficiency, it is people who make it work in an organizational context. DuPont, Frito-Lay, Unilever, and Kimberly-Clark are a few of the forward-thinking companies that have found ways to build energy management into their daily operations to positive effect. The Alliance to Save Energy is documenting these companies' experiences in a series of case studies that reflect the organizational and behavioral aspects of corporate-wide energy management. Case studies show that energy management motives and approaches are somewhat varied-there is no one size fits all solution. The Alliance offers a typology of industrial energy management strategies to illustrate the range of opportunities available to industry. Ultimately, it is a manufacturer's organizational character that determines its ability to manage energy consumption. A checklist included in this paper allows the reader to diagnose a manufacturer's aptitude for undertaking various energy management strategies.

Russell, C.

2005-01-01T23:59:59.000Z

334

How much of world energy consumption and electricity generation is ...  

U.S. Energy Information Administration (EIA)

How much of world energy consumption and electricity generation is from renewable energy? EIA estimates that about 10% of world marketed energy consumption is from ...

335

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

336

Residential Energy Consumption Survey: Quality Profile  

SciTech Connect

The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

NONE

1996-03-01T23:59:59.000Z

337

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

338

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

339

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................... 155 447 288 17,163 28,766 17,378 9.0 15.5 16.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 52 37 2,049 2,668 1,628 11.3 19.6 23.0 5,001 to 10,000 .............................. 15 35 27 1,859 2,854 1,484 8.1 12.2 18.1 10,001 to 25,000 ............................ 27 55 37 3,141 4,907 3,322 8.5 11.3 11.2

340

Estimates of US biomass energy consumption 1992  

DOE Green Energy (OSTI)

This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

Not Available

1994-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

New Investment in Energy-Efficient Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in Energy-Efficient Manufacturing Investment in Energy-Efficient Manufacturing New Investment in Energy-Efficient Manufacturing March 26, 2013 - 11:30am Addthis The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility. The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs

342

New Investment in Energy-Efficient Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Investment in Energy-Efficient Manufacturing New Investment in Energy-Efficient Manufacturing New Investment in Energy-Efficient Manufacturing March 26, 2013 - 11:30am Addthis The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility. The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs

343

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, &...

344

Energy Consumption Issues on Mobile Network Systems  

Science Conference Proceedings (OSTI)

This paper describes energy consumption demographic data in operating real mobile networks. We examine published data from NTT DoCoMo, which is the largest mobile telecommunication operator in Japan and operating nation-wide 3G networks, and identify ... Keywords: Moble Network, Power Consumption, Battery, CO2, Green Network

Minoru Etoh; Tomoyuki Ohya; Yuji Nakayama

2008-07-01T23:59:59.000Z

345

Predicting summer energy consumption from homeowners attitudes  

SciTech Connect

Two surveys examined the relationship between homeowners attitudes toward energy use and their actual summer electric consumption. In Survey 1, 56 couples filled out questionnaires concerning their energy attitudes. A factor analysis of their responses revealed four factors: comfort and health concerns, effort to conserve and monetary savings, role of the individual, and legitimacy of the energy crisis. The factors were entered into a multiple regression analysis to predict actual summer electric consumption. The attitudinal factors together significantly accounted for 55% of the variance in summer electric consumption. The comfort and health factor by itself explained 30% of the consumption variance. Survey 2, consisting of 69 couples, was conducted to elaborate the meaning of the factors. The results of the factor analysis of Survey 2 revealed six factors: comfort, health, individual's role, belief in science, legitimacy of the energy crisis, and effort to conserve. An overall regression analysis showed that the factors significantly explained nearly 60% of the summer consumption variance. The comfort factor was again the best predictor of summer electric consumption, accounting for 42% of the variance. It was concluded that attitudes about one's comfort are significantly related to household energy consumption (primarily air conditioning). The implications for energy conservation campaigns were discussed. 10 references, 3 tables.

Seligman, C.; Kriss, M.; Darley, J.M.; Fazio, R.H.; Becker, L.J.; Pryor, J.B.

1979-01-01T23:59:59.000Z

346

UN Alcohol Energy Data: Consumption by Other Consumers The Energy  

Open Energy Info (EERE)

Other Consumers The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary;...

347

Residential Energy Consumption - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The Residential Energy Consumption Survey provides national and regional information about U.S. households and their energy usage. The first survey was conducted in 1978.

348

Number, Energy Consumption, and Energy-Related Carbon ...  

U.S. Energy Information Administration (EIA)

Tabulation of changes in the number, energy consumption, and energy-related carbon emissions of U.S. households, 1980-1997.

349

Floorspace, Energy Consumption, and Energy-Related Carbon ...  

U.S. Energy Information Administration (EIA)

Tabulation of changes in the amount of floorspace, energy consumption, and energy-related carbon emissions of U.S. commercial buildings, 1979-1995.

350

Figure 66. Change in delivered energy consumption for energy ...  

U.S. Energy Information Administration (EIA)

Change in delivered energy consumption for energy-intensive industries in three cases, 2011-2040 ... Iron and steel Bulk chemicals Glass Paper products Food products

351

Energy Conservation Opportunities in Hydrocarbon Resin Manufacturing Facilities  

E-Print Network (OSTI)

"The results of a plant-wide assessment of the manufacturing facilities of Neville Chemical Company, a manufacturer of hydrocarbon resins will be presented in this paper. The project was co-funded by US Department of Energy under its Plant-Wide Opportunity Assessment Program. Resin manufacturing is a highly energy intensive process. The process needs extensive heating accomplished through steam boilers and thermal oil heaters, and cooling which is accomplished through refrigeration as well as process cooling water systems. Detailed energy assessment of Neville Chemical plants has shown significant energy conservation opportunities. For the less capital-intensive measures, energy cost savings of 20% to 30% with paybacks of less than two years were identified. The identified measures can be easily replicated in similar facilities. In this paper, details of the processes in hydrocarbon resin production from an energy consumption viewpoint will be discussed, current prevalent practices in the industry will be elaborated, and potential measures for energy use and cost savings will be outlined."

Ganji, A. R.

2003-05-01T23:59:59.000Z

352

Energy Department Launches Bold New Clean Energy Manufacturing Initiative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bold New Clean Energy Manufacturing Bold New Clean Energy Manufacturing Initiative Energy Department Launches Bold New Clean Energy Manufacturing Initiative March 26, 2013 - 11:00am Addthis As part of the Energy Department's launch of the Clean Energy Manufacturing Initiative, Assistant Secretary David Danielson toured the new Carbon Fiber Facility at Oak Ridge National Laboratory. Carbon fiber has the potential to improve the fuel efficiency of vehicles. | Photo courtesy of Jason Richards, Oak Ridge National Laboratory. As part of the Energy Department's launch of the Clean Energy Manufacturing Initiative, Assistant Secretary David Danielson toured the new Carbon Fiber Facility at Oak Ridge National Laboratory. Carbon fiber has the potential to improve the fuel efficiency of vehicles. | Photo courtesy of Jason

353

State energy data report 1995 - consumption estimates  

Science Conference Proceedings (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1997-12-01T23:59:59.000Z

354

Energy Information Administration (EIA)- Manufacturing ...  

U.S. Energy Information Administration (EIA)

Facility HVAC : 19: 19: 0: Facility Lighting: 17: 19-2: Equipment Installation or Retrofit for the Primary Purpose of Using a Different Energy Source: ...

355

Energy Information Administration (EIA)- Manufacturing ...  

U.S. Energy Information Administration (EIA)

... regardless of where the energy was produced. Not included in fuel are electricity inputs from onsite cogeneration, nor generation from combustible ...

356

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

breakdown of the energy consumption of the CSE mixed- useFigure 3.7: The energy consumption of HVAC during ourSpring 2011 tests - Energy consumption for electricity and

Balaji, Bharathan

2011-01-01T23:59:59.000Z

357

Leitner Shriram Manufacturing Ltd | Open Energy Information  

Open Energy Info (EERE)

Leitner Shriram Manufacturing Ltd Leitner Shriram Manufacturing Ltd Jump to: navigation, search Name Leitner Shriram Manufacturing Ltd Place Chennai, Tamil Nadu, India Zip 600095 Sector Wind energy Product Chennai-based JV between Leitwind and Shriram EPC with the purpose of manufacturing MW-class wind turbines. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

California Energy Commission - Electricity Consumption by County  

Open Energy Info (EERE)

County (2006-2009) Electricity consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009.


...

359

Illinois energy consumption 1963-1977  

SciTech Connect

This report contains current and historical Illinois energy consumption data by consuming sector and fuel type. It also contains detailed description of mapping techniques used in developing the data.

Hill, L.; Biermann, W.

1979-06-01T23:59:59.000Z

360

OpenEI - Renewable Energy Consumption  

Open Energy Info (EERE)

Jul 2011 18:05:28 +0000 Meredith1219 758 at http:en.openei.orgdatasets EIA Data: 2009 United States Renewable Energy Consumption by Sector and Source http:en.openei.org...

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers' Pictorial Superpowers How the Smart Grid Helps Homeowners Reduce Their Energy Use EcoCAR Challenge Finish Line Event 1 of 8 Students Earn Street Cred With the...

362

Glass manufacturing is an energy-intensive industry mainly ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... There is substantial potential for energy efficiency improvements in glass manufacturing. Estimates range from ...

363

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Solar Wind Maximum Rebate $2,000,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 (ARRA) State Michigan Program Type Industry Recruitment/Support Provider Department of Energy, Labor and Economic Growth '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future solicitations.''''' In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Clean Energy Advanced Manufacturing portion of this program is

364

Exploring the Wind Manufacturing Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring the Wind Manufacturing Map Exploring the Wind Manufacturing Map August 15, 2012 - 5:01pm Addthis America's wind energy industry supports a growing domestic industrial...

365

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

console usage and national energy consumption: Results fromNational Energy Consumption .Discussion National Energy Consumption Under the assumption

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

366

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

commercial). National Energy Consumption Estimates We usedsection entitled National Energy Consumption Estimates).section entitled National Energy Consumption Estimates).

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

367

Study on optimal train movement for minimum energy consumption.  

E-Print Network (OSTI)

?? The presented thesis project is a study on train energy consumption calculation and optimal train driving strategies for minimum energy consumption. This study is (more)

Gkortzas, Panagiotis

2013-01-01T23:59:59.000Z

368

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu. Figures in this table...

369

Residential Energy Consumption for Water Heating (2005) Provides...  

Open Energy Info (EERE)

Residential Energy Consumption for Water Heating (2005) Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in...

370

California Energy Commission - Natural Gas Consumption by Utility  

Open Energy Info (EERE)

California Energy Commission - Natural Gas Consumption by Utility (1990-2009) California Energy Commission natural gas consumption data by Utility company for Commercial,...

371

Changes in Energy Intensity in the Manufacturing Sector 1985-1994  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Energy Intensity in the Manufacturing Sector 1985 - 1994 Full Report Introduction Summary of Data Data Tables Data Summaries All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone (32) Metals (33) Fab. Metals (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites Commercial Residential Transportation International Manufacturing Energy Intensity Changes in Energy Intensity Click for Full Graph Manufacturing Energy Consumption Consumption of Energy Click for Full Graph Manufacturing Shipments History of Shipments Click for Full Graph The focus of this data report is on intensity of energy use, measured by energy consumption relative to constant dollar shipments of manufactured products -- commonly called energy intensities (EI) by energy analysts. This report explicitly relates changes in two energy measures of energy intensity to efficiency, while being cognizant that there are structural and behavioral effects enmeshed in those measures of energy efficiency. Reporting EI serves to continue the Intensity Change report series.

372

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

373

Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &  

Gasoline and Diesel Fuel Update (EIA)

How Will Buildings Be Selected for the 2012 CBECS? How Will Buildings Be Selected for the 2012 CBECS? Background and Overview Did You Know? In the CBECS, commercial refers to any structure that is neither residential, manufacturing/ industrial, nor agricultural. Building refers to a structure that is totally enclosed by walls that extend from the foundation to the roof. Data collection for the 2012 Commercial Buildings Energy Consumption Survey (CBECS) will begin in April 2013, collecting data for reference year 2012. The goal of the CBECS is to provide basic statistical information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings. The 2003 CBECS estimated that there were 4.9 million commercial buildings in the US. Because it would be completely impractical and prohibitively

374

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

of Commercial Building Energy Consumption in China, 2008,Residential Energy Consumption Survey, Human and Socialfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

375

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

376

Appliance Energy Consumption in Australia | Open Energy Information  

Open Energy Info (EERE)

Appliance Energy Consumption in Australia Appliance Energy Consumption in Australia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Energy Consumption in Australia Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.energyrating.gov.au/resources/program-publications/?viewPublicatio Equivalent URI: cleanenergysolutions.org/content/appliance-energy-consumption-australi DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling The document sets out the equations necessary to calculate the star rating index for appliances that carry an energy label in Australia. Equations for new air conditioner and refrigerator algorithms from April 2010 are included. Televisions, which have carried a mandatory energy label from

377

Figure 1.6 State-Level Energy Consumption Estimates and Estimated ...  

U.S. Energy Information Administration (EIA)

Figure 1.6 State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita

378

Energy consumption of building 39; Energy consumption of building thirty-nine.  

E-Print Network (OSTI)

??The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further (more)

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

379

Performance Evaluation of Energy Consumption in MANETs  

E-Print Network (OSTI)

The mobility of nodes in MANET may result in dynamic topology with high rate of link breakage and network partitions leading to interruption in communication and packet loss. Many routing protocols have been proposed in the literature with different characteristics and properties. The routing protocols suffer from various overheads causing energy loss which is further aggravated by link breaks. The present work concentrate on the energy consumption issues of routing protocols. We have evaluated the performance of DSDV, DSR and AODV routing protocols with respect to energy consumption indicating their usage of nodes energy.

Ashish Kumar; M. Q. Rafiq; Kamal Bansal

2012-01-01T23:59:59.000Z

380

Opportunities and Barriers in the Implementation of Energy Efficiency Measures in Plastic Manufacturing  

E-Print Network (OSTI)

The plastic industry in the U.S. employs approximately 9% [1] of the manufacturing work force and consumes approximately 6% [1] of the total energy used by the U.S. industries. According to the Department of Energy (DOE), manufacturers of plastic and other resins are consuming nearly 1,070 trillion Btu [1] of energy in their operations every year, valued at $6.0[1] billion. As escalating energy prices continue to be a concern for industry, many plastic manufacturers are striving to reduce their energy consumption to stay competitive. An alternative to reduced energy consumption is to put in place an energy efficiency strategy. However, while most plastic manufactures are aware of the energy efficiency opportunities in their facilities, the implementation of these opportunities face certain market barriers. These barriers are identified as customers lack the information about energy efficiency technologies, and have limited capital funding to implement the energy efficiency measures. Additionally, it is hard to identify the energy savings opportunities and difficult to quantify their impacts. The purpose of this paper is to discuss the various energy efficiency opportunities in plastic manufacturing and address the market barriers in implementing them. We will identify the energy savings opportunities in plastic manufacturing that can be introduced to reduce energy consumption and decrease production costs, thus giving the customers more competitive edge in both the regional and global markets. We will also discuss various popular energy efficiency measures, the energy savings associated with each measure and their projected simple payback. In terms of policy implication, this paper will discuss various strategies of mitigating potential market barriers in implementing energy efficiency measures on plastic manufacturing industries.

Kanunho, A; Yong, J. C.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Consumption of Die Casting Operations  

SciTech Connect

Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

Jerald Brevick; clark Mount-Campbell; Carroll Mobley

2004-03-15T23:59:59.000Z

382

Marketing energy conservation options to Northwest manufactured home buyers. Revision 1  

SciTech Connect

Manufactured, or HUD-Code, homes comprise a growing share of the housing stock in the Northwest, as well as nationally. Their relatively low cost has made them especially attractive to lower income families, first-time home-buyers, and retired persons. The characteristics of manufactured home (MH) buyers, the unique energy consumption characteristics of the homes, and their increasing market share make this market an especially critical one for energy consumption and conservation planning in the Northwest. This study relies on extensive, existing survey data and new analyses to develop information that can potentially assist the design of a marketing plan to achieve energy conservation in new manufactured homes. This study has the objective of assisting BPA in the development of a regional approach in which numerous organizations and parties would participate to achieve conservation in new manufactured homes. A previous survey and information collected for this study from regional dealers and manufacturers provide an indication of the energy conservation options being sold to manufactured home buyers in the PNW. Manufacturers in the Northwest appear to sell homes that usually exceed the HUD thermal requirements. Manufacturers typically offer efficiency improvements in packages that include fixed improvements in insulation levels, glazing, and infiltration control. Wholesale costs of these packages range from about $100 to $1500. Typical packages include significant upgrades in floor insulation values with modest upgrades in ceilings and walls. This study identifies trends and impacts that a marketing plan should consider to adequately address the financial concerns of manufactured home buyers.

Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

1985-10-01T23:59:59.000Z

383

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

384

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

385

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

386

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

387

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

388

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

389

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWhsquare foot)...

390

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

391

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

392

DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption  

Gasoline and Diesel Fuel Update (EIA)

/HRIf /HRIf Residential Energy Consumption Survey. Consumption and Expenditures, April 1981 Through March 1982 an Part I: National Data Energy Information Administration Washington, D.C. (202) 20fr02 'O'Q 'uoifkjjUSBM ujiuud juaoiujeAog 'S'n siuawnooQ jo luapuaiuuadns - 0088-292 (202) 98S02 '0'Q 8f 0-d I 6ujp|ing uoiieflSjUjiup v UOIIBUJJOJU | ABjau 3 02-13 'jaiuao UOIJBUJJOJUI XBjaug IBUO!;BN noA pasopua s; uujoi japjo uy 'MO|aq jeadde sjaqoinu auoydajaj PUB sassajppv 'OI3N 9>4i oi papajip aq pinoqs X6jaue uo suotjsenQ '(OIBN) J9»ueo aqjeiMJO^ui ASjaug (BUOIJEN s,vi3 QMi JO OdO 941 UUGJJ peuiBiqo eq ABOI suoijBonqnd (vi3) UO!JBJ;S!UILUPV UOIIBUUJO|U| XBjeug jaiflo PUB SJMJ p ssBiiojnd PUB UOIIBLUJO^JI 6uuepjQ (Od9) 90IWO Bujjuud luetuujaAOQ -g'n 'sjuaiunooa p juapuaiuuedng aqt LUOJI aiqB||BAB si uoHBOjiqnd sjt|i

393

Energy Efficiency in BP's PTA Manufacturing Plants  

E-Print Network (OSTI)

BP is a leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA manufacturing process has significantly improved over the past several years, which has translated into substantial decreases in greenhouse gas emissions across our global sites. The talk will provide a general overview of the PTA business and manufacturing process, as well as selected examples of enabling technology evolutions leading to this improved performance.

Clark, F.

2010-01-01T23:59:59.000Z

394

Energy Used in Manufacturing Sales and Use Tax Exemption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used in Manufacturing Sales and Use Tax Exemption Used in Manufacturing Sales and Use Tax Exemption Energy Used in Manufacturing Sales and Use Tax Exemption < Back Eligibility Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State Georgia Program Type Sales Tax Incentive Georgia enacted legislation in April 2012 (HB 386) creating an exemption for energy used in the manufacturing of a product from the state's sales and use taxes. The sale, use, storage, or consumption of energy which is necessary and integral to the manufacture of tangible personal property at a manufacturing plant in the state of Georgia shall be exempt from all sales and use taxation except for the sales and use tax for educational

395

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Trends Consumption Trends Data centers can consume up to 100 times more energy than a standard office building. Often, less than 15% of original source energy is used for the information technology equipment within a data center. Figure 1 outlines typical data center energy consumption ratios. An illustration that features a graphic of a coal container representing 100 units of coal. This enters a graphic of a power plant, where those 100 units of coal are turned into 35 units of energy. The 35 units of energy are distributed by power lines, represented by a graphic of power lines, where 33 units are delivered to a pie chart representing data typical data center energy end use. The data center pie chart features 48% representing server load and computing operation consumption; 43% representing cooling equipment consumption; and 9% representing power conversion and distribution consumption.

396

Manage energy use in manufacturing | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve building and plant performance Improve building and plant performance » Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing

397

Manufacturer Voluntarily Reports Noncompliance | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance June 28, 2012 - 9:05am Addthis Cooper Power Systems, LLC ("Cooper"), a wholly-owned subsidiary of Cooper Industries notified the U.S. Department of Energy's ("DOE") Office of Enforcement that it had distributed three noncompliant basic models (five total units) of liquid-immersed distribution transformers in U.S. commerce. Each of these models failed to meet the minimum level of efficiency required by DOE regulations. Cooper discovered that it had distributed the noncompliant basic models when preparing its first certification report under new DOE regulations. Cooper immediately notified DOE of the noncompliance and requested guidance on corrective

398

Consumption  

E-Print Network (OSTI)

www.eia.gov Annual Energy Outlook 2013 projections to 2040 Growth in energy production outstrips consumption growth Crude oil production rises sharply over the next decade Motor gasoline consumption reflects more stringent fuel economy standards The U.S. becomes a net exporter of natural gas in the early 2020s U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski

2013-01-01T23:59:59.000Z

399

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

400

Monitoring and Management of Refinery Energy Consumption  

E-Print Network (OSTI)

Since 1972, the U.S. refining industry has made much progress in reducing energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and manage the daily use of energy. Setting up an energy auditing system will tell management how well each unit in the refinery is being operated and can be used as a valuable tool in reducing energy costs. An example of an energy monitorirg and management system is discussed and illustrated with examples.

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Renewable energy consumption and economic efficiency: Evidence from European countries  

Science Conference Proceedings (OSTI)

This paper examines the relationship between renewable energy consumption and economic efficiency. For this reason

2013-01-01T23:59:59.000Z

402

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Consumption & Efficiency. Energy use in homes, commercial buildings, manufacturing, and ...

403

Short-Term Energy Outlook - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Consumption & Efficiency. Energy use in homes, commercial buildings, manufacturing, and ...

404

Today in Energy - Archive - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Consumption & Efficiency. Energy use in homes, commercial buildings, manufacturing, and ...

405

The Impact of Distributed Programming Abstractions on Application Energy Consumption  

E-Print Network (OSTI)

The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon measure and analyze the impact of distributed programming abstractions on application energy consumption future efforts in creating energy efficient distributed programming abstractions. Keywords: energy

Ryder, Barbara G.

406

Wind Energy In America: Supporting Our Manufacturers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In America: Supporting Our Manufacturers In America: Supporting Our Manufacturers Wind Energy In America: Supporting Our Manufacturers August 16, 2012 - 10:01am Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11

407

Opportunities for Energy Efficiency and Demand Response in Corrugated Cardboard Manufacturing Facilities  

E-Print Network (OSTI)

Corrugated cardboard manufacturing is an energy intensive process, in both electric power and steam. Based on the US Census Bureau, there are approximately 1,733 corrugated and solid fiber box manufacturing facilities in the United States. The corrugated and solid fiber box manufacturing enjoyed a growth in number of plants of 4.9% between 1992 and 1997 (U.S. Census, 1997). In this paper, details of the processes in corrugated cardboard production from an energy consumption viewpoint will be discussed, current prevalent practices in the industry will be elaborated and potential measures for energy use and cost savings will be outlined. The results from detailed energy audits of 12 large corrugated cardboard production plants in California will be discussed, their energy consumption will be compared, and potential savings on the national scale will be addressed.

Chow, S.; Hackett, B.; Ganji, A. R.

2005-01-01T23:59:59.000Z

408

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

409

Achieving Superior Energy Performance in US Manufacturing  

E-Print Network (OSTI)

U.S. industry has the capacity to significantly improve its overall energy performance and help meet both private-sector and national goals for energy and the environment. TheUS Department of Energys Industrial Technologies Program (ITP) is partnering with industry to drive a 25% reduction in industrial energy intensity by 2017and also contribute to an 18% reduction in carbon intensity economy-wide by 2012. To expedite progress in achieving these targets, ITP and industry are collaborating with the American National Standards Institute (ANSI), non-profits, USEPA and NIST to facilitate the development of energy management standards and certification for manufacturing plants. The paper will describe the program criteria and opportunities for participation in the future.

Scheihing, P.

2009-05-01T23:59:59.000Z

410

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

411

Measuring energy consumption of a database cluster  

E-Print Network (OSTI)

Abstract: Energy consumption of database servers is a growing concern for companies as it is a critical part of a data centers cost. To address the rising cost and the waste of energy, a new paradigm called GreenIT arose. Hardware and software developers are aiming at more energy-efficient systems. To improve the energy footprint of database servers, we developed a cluster of small-scale nodes, that can be dynamically powered dependent on the workload. This demo shows the measurement framework we set up to measure hardware components as well as an entire cluster of nodes. Well exhibit the measurement devices for components and servers and show the systems behavior under varying workloads. Attendees will be able to adjust workloads and experience their impact on energy consumption. 1

Volker Hudlet; Daniel Schall; Ag Dbis; Tu Kaiserslautern

2011-01-01T23:59:59.000Z

412

Clean Energy Manufacturing Incentive Program (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Other Maximum Rebate Aggregate amount of grants awarded and outstanding at any time cannot exceed $36 million Program Info State Virginia Program Type Industry Recruitment/Support In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

413

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings ................................ 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ Q Q Q Q Q 25,001 to 50,000 ............................ Q Q Q Q Q 50,001 to 100,000 .......................... Q Q Q Q Q 100,001 to 200,000 ........................ 17,452 118.10 Q Q Q

414

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

415

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million dollars) All Buildings ................................ 67 5,576 83 636 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ 18 289 16 Q Q 25,001 to 50,000 ............................ 10 369 35 Q Q 50,001 to 100,000 .......................... 8 574 70 Q Q 100,001 to 200,000 ........................ 9 1,399 148 165 Q

416

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 All Buildings Using Natural Gas Natural Gas Consumption Natural Gas Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) All Buildings ................................ 2,538 48,473 19.1 2,100 2,037 16,010 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,134 3,175 2.8 257 249 2,227 5,001 to 10,000 .............................. 531 3,969 7.5 224 218 1,830 10,001 to 25,000 ............................ 500 7,824 15.6 353 343 2,897 25,001 to 50,000 ............................ 185 6,604 35.8 278 270 2,054

417

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

Figure 4.4: Power consumption of a desktop PC + 3 LCDChapter 2 Trends in Building Consumption 2.1 UCSD as abreakdown of the energy consumption of the CSE mixed- use

Balaji, Bharathan

2011-01-01T23:59:59.000Z

418

Form EIA-3 Users Manual Quarterly Coal Consumption and Quality Report, Manufacturing and  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Users Manual Quarterly Coal Consumption and Quality Report, Manufacturing and Transformation/Processing Coal Plants and Commercial and Institutional Coal Users Document Number: 001 Version: 2.0 June 2011 1 June 2011 Document History Number Date Section Description 1 2 May 2011 June 2011 Document initiation. Revised screen shots and remove external user references. Primary POC: Tejasvi Raghuveer Phone: (202) 586-8926 Email: Tejasvi.Raghuveer@eia.gov Document Changes/Maintenance POC: Primary POC: Tejasvi Raghuveer Phone: (202) 586-8926 Email: Tejasvi.Raghuveer@eia.gov Project References: Coal Internet Data Collection (CIDC) User's Manual, September 2007

419

Minneapolis residential energy consumption. Final report  

SciTech Connect

This report deals with residential energy consumption in single - family, townhouse, low - rise, and high - rise structures in Minnapolis, Minn., with the year 1957 chosen as a typical weather year for the area. Design and structural features considered important in defining the residences were structural parameters (construction details, dimensions, and materials), energy consumption parameters (heating and cooling equipment, types of fuels and energy used, and appliances and their energy consumption levels), and lifestyle parameters (thermostat set points, relative humidity set points, type and number of appliances, daily profile of appliance use, and use of ventilation fans). Annual heating and cooling loads and resultant energy requirements were calculated using a time - response computer program. This program included subroutines for determining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The heating load was significantly higher than the cooling load for single - family and townhouse residences, as would be expected for the cold Minneapolis climate. Due to increased internal heat generation, low - rise and high - rise cooling and heating loads were similar in magnitude. Energy - conserving modifications involving both structural and comfort control system changes resulted in the following: single - family residences consumed 47 percent, townhouse residences consumed 52 percent, low - rise residences consumed 53 percent, and high - rise residences consumed 34 percent of the primary energy required by the characteristic residence. Supporting data, layouts of the residences, and references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-11-01T23:59:59.000Z

420

Validation of the Manufactured Home Energy Audit (MHEA)  

SciTech Connect

The Manufactured Home Energy Audit (MHEA) is an energy audit tool designed specifically to identify recommended weatherization measures for mobile homes as part of the U.S. Department of Energy's (DOE's) Weatherization Assistance Program. A field validation of MHEA was performed using billing/delivery data collected on 86 mobile homes heated primarily by electricity, natural gas, or propane to assess the audit's accuracy and the validity of its recommendations. The validation found that MHEA overpredicts the annual space-heating energy savings of weatherization measures to be installed in mobile homes, which leads to low realization rates, primarily because of its large overprediction of annual pre-weatherization space-heating energy consumption. However, MHEA's annual space-heating energy savings estimates and realization rates can be improved considerably using MHEA's built-in billing adjustment feature. In order to improve the accuracy of MHEA's annual space-heating energy savings estimates and realization rate, the cause of MHEA's overprediction of annual pre-weatherization space-heating energy consumption needs to be further investigated and corrected. Although MHEA's billing adjustment feature improved MHEA's annual space-heating energy savings estimates, alternative methods of making the correction that may provide improved performance should be investigated. In the interim period before permanent improvements to MHEA can be made, the following recommendations should be followed: (a) do not enter into MHEA insulation thicknesses of 1 in. or less and especially zero (0 in.) unless such low levels have been verified through visual inspection of several parts of the envelope area in question; (b) use MHEA's billing adjustment feature to develop a list of recommended measures based on adjusted energy savings if possible, especially in mobile homes that have several major energy deficiencies; and (c) do not use MHEA's "evaluate duct sealing" option at this time (although certainly seal all duct leaks and use diagnostics as appropriate to find leakage sites and quantify improvements).

Ternes, Mark P [ORNL

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

State Residential Energy Consumption Shares  

Gasoline and Diesel Fuel Update (EIA)

This next slide shows what fuels are used in the residential market. When a This next slide shows what fuels are used in the residential market. When a energy supply event happens, particularly severe winter weather, it is this sector that the government becomes most concerned about. As you can see, natural gas is very important to the residential sector not only in DC, MD and VA but in the United States as well. DC residents use more natural gas for home heating than do MD and VA. While residents use heating oil in all three states, this fuel plays an important role in MD and VA. Note: kerosene is included in the distillate category because it is an important fuel to rural households in MD and VA. MD and VA rely more on electricity than DC. Both MD and VA use propane as well. While there are some similarities in this chart, it is interesting to note

422

Table 1.5 Energy Consumption, Expenditures, and Emissions ...  

U.S. Energy Information Administration (EIA)

Consumption per Capita: Energy Expenditures 1: Energy ... 2009. 94,559,407 [R] 308 : 1,061,220 [R] ... 2 Carbon dioxide emissions from energy consumption. See Table 11.1.

423

Energy-Efficient Appliance Manufacturing Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Appliance Manufacturing Tax Credit Energy-Efficient Appliance Manufacturing Tax Credit Energy-Efficient Appliance Manufacturing Tax Credit < Back Eligibility Industrial Savings Category Appliances & Electronics Maximum Rebate The aggregate amount of credit allowed for 2011 is $25 million per taxpayer. Certain refrigerators and clothes washers will not add to the aggregate credit amount. See summary below for more details. Program Info Start Date 01/01/2007 Expiration Date 12/31/2013 Program Type Industry Recruitment/Support Rebate Amount Dishwashers: $25 - $75 per unit, varies by energy and water efficiency; Clothes washers: $175 - $225 per unit, varies by type, and energy and water efficiency; Refrigerators: $150 or $200, depending on energy-efficiency rating Provider U.S. Internal Revenue Service

424

Energy Information Administration/Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

, , Energy Information Administration/Household Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related characteristics of highway vehicles available for personal use by members of U.S. households. The data were collected in the 1994 Residential Transportation Energy Consumption Survey, the final cycle in a series of nationwide energy consumption surveys conducted during the 1980's and 1990's by the Energy Information Administrations. Engines Became More Powerful . . . Percent Distribution of Total Residential Vehicle Fleet by Number of Cylinders, 1988 and 1994 Percent Distribution of Vehicle Fleet by Engine Size, 1988 and 1994 Percent Percent 4 cyl Less than 2.50 liters 6 cyl 2.50- 4.49 liters 8 cyl 4.50 liters or greater 20 20 40 40 Vehicle

425

Wind Energy Manufacturing Tax Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Manufacturing Tax Incentive Wind Energy Manufacturing Tax Incentive Wind Energy Manufacturing Tax Incentive < Back Eligibility Commercial Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate Up to 100% income tax exemption Program Info Start Date 1/1/2008 Expiration Date 12/31/2033 State Arkansas Program Type Industry Recruitment/Support Rebate Amount Varies, depending on amount invested and other factors Provider Arkansas Economic Development Commission With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or components. A full income tax exemption is available for business that meet certain criteria, including locating in the state before December 31, 2007. Businesses that

426

Energy consumption in the pipeline industry  

SciTech Connect

Estimates are developed of the energy consumption and energy intensity (EI) of five categories of U.S. pipeline industries: natural gas, crude oil, petroleum products, coal slurry, and water. For comparability with other transportation modes, it is desirable to calculate EI in Btu/Ton-Mile, and this is done, although the necessary unit conversions introduce additional uncertainties. Since water and sewer lines operate by lift and gravity, a comparable EI is not definable.

Banks, W. F.

1977-12-31T23:59:59.000Z

427

Modelling of Turkey's net energy consumption using artificial neural network  

Science Conference Proceedings (OSTI)

The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using artificial neural network (ANN) technique in order to determine the future level of the energy consumption in Turkey. Two different models ... Keywords: Turkey, artificial neural networks, energy forecasting, energy sources, estimation, gross generation, net energy consumption

Adnan Sozen; Erol Arcaklioglu; Mehmet Ozkaymak

2005-04-01T23:59:59.000Z

428

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, ... particularly for space heating, ...

429

American Energy and Manufacturing Competitiveness Summit | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy and shorten the time needed to bring a product to market. On display at the

430

Virginia Manufacturer Keeps Jobs Local By Embracing Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Now LEADER initiative, which calls on manufacturers to reduce their facilities' energy intensity by 25% over a 10-year timeframe. Since becoming a LEADER Company, Volvo's...

431

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Government...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Government Energy Management Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective...

432

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving...

433

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Homes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions...

434

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

435

Data Center Energy Consumption Trends | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Data Center Energy Efficiency » Data Center Program Areas » Data Center Energy Efficiency » Data Center Energy Consumption Trends Data Center Energy Consumption Trends October 8, 2013 - 10:09am Addthis Data centers can consume up to 100 times more energy than a standard office building. Often, less than 15% of original source energy is used for the information technology equipment within a data center. Figure 1 outlines typical data center energy consumption ratios. An illustration that features a graphic of a coal container representing 100 units of coal. This enters a graphic of a power plant, where those 100 units of coal are turned into 35 units of energy. The 35 units of energy are distributed by power lines, represented by a graphic of power lines, where 33 units are delivered to a pie chart representing data typical data center energy end use. The data center pie chart features 48% representing server load and computing operation consumption; 43% representing cooling equipment consumption; and 9% representing power conversion and distribution consumption.

436

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing |  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Motor Vehicle Manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

437

Electrical energy consumption control apparatuses and electrical energy consumption control methods  

DOE Patents (OSTI)

Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

Hammerstrom, Donald J.

2012-09-04T23:59:59.000Z

438

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global...

439

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Primary Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ............................... 4,404 63,307 14.4 9,168 3,037 890 69,032 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,384 6,346 2.7 1,164 386 113 10,348 5,001 to 10,000 .............................. 834 6,197 7.4 790 262 77 7,296 10,001 to 25,000 ............................ 727 11,370 15.6 1,229 407 119 10,001

440

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings ................................ 3,533 0.10 3.9 0.11 1.11 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,177 0.41 1.4 0.48 1.18 5,001 to 10,000 .............................. 2,573 0.36 3.0 0.42 1.17 10,001 to 25,000 ............................ 3,045 0.19 3.6 0.23 1.18 25,001 to 50,000 ............................ 5,184 0.14 5.6 0.15 1.09 50,001 to 100,000 .......................... 8,508 0.11 9.3 0.12 1.10 100,001 to 200,000 ........................ 12,639 0.09 13.1 0.09 1.03

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWh/square foot) 25th Per- centile Median 75th Per- centile per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) All Buildings ................................ 226 14.9 3.8 8.8 18.1 17.9 1.18 0.079 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 48 17.8 3.8 9.0 20.0 4.4 1.63 0.092 5,001 to 10,000 .............................. 96 12.9 4.0 8.2 15.5 9.2 1.23 0.096 10,001 to 25,000 ............................ 178 11.4 3.1 7.2 15.0 15.2 0.97 0.086

442

Energy Information Administration - Transportation Energy Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply...

443

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... State Energy Data System ... routinely uses feedback from customers and outside experts to help improve its programs ...

444

How much of world energy consumption and electricity ...  

U.S. Energy Information Administration (EIA)

How much of world energy consumption and electricity generation is from renewable energy? EIA estimates that about 10% of world marketed energy ...

445

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 23 Table 2.1 Energy Consumption by Sector (Trillion Btu) End-Use Sectors Electric

446

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

447

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Part 1: Housing Unit Characteristics and Energy Usage Indicators Energy Consumption 2 Energy Expenditures 2 Total U.S. (quadrillion Btu) Per Household (Dollars) Per

448

Los angeles residential energy consumption. Final report  

SciTech Connect

Heating and cooling energy requirements were determined for characteristic single - family, townhouse, low - rise, and high - rise residences in Los Angeles, Calif. Using 1951 as a typical weather year for the area, heating and cooling energy requirements were determined for modified versions of these characteristic residences after both structural and comfort control modifications had been incorporated. Parameters of concern were structural (construction details, dimensions, and materials), energy consumption (heating and cooling equipment, types of fuel and energy used, and appliances and their energy consumption levels), and lifestyle (thermostat set points, relative humidity points, type and number of appliances, daily profile of appliance use, and use of ventilation fans). Annual heating and cooling loads and resultant energy requirements were calculated with the aid of a computer program. This program included subroutines for determining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The cooling load for the single - family residence was moderately larger than the heating load. Due to increased internal heat generation, the cooling load for the remaining residences was much larger than the heating load. Energy - conserving modifications resulted in the following: single - family residences required 55 percent, townhouse residences required 57 percent, low - rise residences required 55 percent, and high - rise residences required 82 percent of the primary energy consumed by the characteristic structure. Supporting data, illustrative layouts of the residences, and a list of references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-09-01T23:59:59.000Z

449

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Estimation of Energy End-use Consumption Estimation of Energy End-use Consumption 2003 CBECS The energy end-use consumption tables for 2003 (Detailed Tables E1-E11 and E1A-E11A) provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, personal computers, office equipment (including servers), and other uses. Although details vary by energy source (Table 1), there are four basic steps in the end-use estimation process: Regressions of monthly consumption on degree-days to establish reference temperatures for the engineering models, Engineering modeling by end use, Cross-sectional regressions to calibrate the engineering estimates and account for additional energy uses, and

450

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

0 2003 Commercial Primary Energy Consumption Intensities, by Principal Building Type Consumption Percent of Total | Consumption Percent of Total Building Type (thousand BtuSF)...

451

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Full-Scale Production Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Design Production and Manufacturing Process Advanced Research Projects Agency: Tech-to-Market Resources - general tech-to-market (T2M) resources. DOE Advanced Manufacturing Office: Manufacturing Demonstration Facility - a collaborative manufacturing community that works to provide real data to

452

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

453

White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)  

E-Print Network (OSTI)

strategy for key energy consumption products in China products with high energy consumption and increasing theas manufacturing energy consumption, environment pollution,

Zhou, Nan

2013-01-01T23:59:59.000Z

454

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Chemical Industry Analysis. The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, ...

455

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Industry Analysis Briefs Steel Industry Analysis. The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of ...

456

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, ...

457

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, ... Environment. Greenhouse gas data, ... Privacy/Security Copyright & Reuse Accessibility.

458

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy...  

Annual Energy Outlook 2012 (EIA)

U. S. Census Regions and Divisions: census map About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use...

459

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. ... The chemical industries are a cornerstone of the U.S. economy, ...

460

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products.

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

462

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants ... commercial buildings, industry, transportation, and electric power ... exception to the trend of rising prices for ...

463

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile ...

464

Map Data: State Consumption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Map Data: State Consumption stateconsumptionpc2009.csv More Documents & Publications Map Data: Renewable Production Map Data: State Spending...

465

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

466

Starr Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Starr Manufacturing Inc Address 4175 Warren Sharon Rd Place Vienna, Ohio Zip 44473 Sector Biofuels, Biomass, Buildings, Carbon, Efficiency, Hydrogen, Renewable Energy, Services, Wind energy Product Engineering/architectural/design; Manufacturing; Research and development;Retail product sales and distribution;Trainining and education Phone number 330-394-9891 Website http://www.starrmfg.com Coordinates 41.2378232°, -80.6685983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2378232,"lon":-80.6685983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Atlanta residential energy consumption. Final report  

SciTech Connect

Energy consumption in Atlanta, Ga., was analyzed for single - family, townhouse, low - rise, and high - rise structures for 1955, which was selected as a typical weather year. A two - step procedure was employed in calculating energy requirements. In the first step, hourly heating and cooling loads were determined for each dwelling unit. In the second step, monthly and annual energy required to meet heating and cooling loads was calculated using specific heating, cooling, and ventilation systems. Design and structural features considered important in defining the residential structures were construction details and materials, heating and cooling equipment, types of fuels and energy used, and appliances and their energy consumption levels. Lifestyle parameters incorporated in the analysis included thermostat set points, relative humidity set points, type and number of appliances, daily profile of appliance use, and use of ventilation fans. The computer program for determining heating and cooling loads, or heat delivery / removal requirements, for each residence involved subroutines for ascertaining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The low - rise type of structure had a cooling load that was more than twice as large as the heating load. The other structures had cooling loads about 1.5 times as large as heating loads. Energy - conserving modifications, involving both structural and comfort control system changes, resulted in the following: single - family and townhouse residences achieved a 32 - percent annual heating load reduction and a 16 - percent cooling load reduction through structural modifications; and low - rise and high - rise residences achieved a 43 - percent reduction in primary energy consumption. Supporting data, illustrative layouts of the residences, and references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-08-01T23:59:59.000Z

468

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

469

Lean, Energy, and Savings: Energy Impacts of Lean Manufacturing  

E-Print Network (OSTI)

Most utility energy efficiency programs for industry focus on equipment replacement. A key result is confidence in the amount of resulting energy savings. Utility programs focusing on behavior - that is, using a piece of equipment more optimally - often suffer from a perceived inability to accurately quantify resulting savings. The last few decades have seen a proliferation of Lean Manufacturing practices across industry, where organizations focus on eliminating waste. Energy is often a component of these wastes, but challenges in quantifying results have slowed the inclusion of Lean in utility energy efficiency programs. In 2011 the Northwest Energy Efficiency Alliance completed an effort that applied energy concepts within the Manufacturing Extension Partnership organizations of the Northwest. A critical project component was quantifying the energy savings from a Lean implementation at a food processing facility. This paper provides details on that project's approach, results, and next steps.

Milward, R.; Gilless, C.; Brown, K.

2013-01-01T23:59:59.000Z

470

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... State Energy Data System ...

471

Energy Impacts of Productivity Improvements in Manufacturing  

E-Print Network (OSTI)

The complexity of industrial processes and the need to consider the interaction of various systems has led in many cases to the maturing of the energy audit in to a more sophisticated industrial assessment. The assessment team typically looks for potential improvements in energy use in concert with examination of waste streams and potential productivity improvements. The benefits of this new approach are substantial in particular with respect to productivity improvements. Such projects are much easier to interest management in than waste or pure energy ones. In many cases they may also require smaller capital investments as many of the projects involve changes in practices and procedures. In a large number of cases, the impact of productivity projects on energy use in the plant are ignored or underestimated. This is unfortunate as the appropriate tracking of energy impacts would lower implementation payback times and potentially lead to greenhouse gas reduction credits. This paper examines how energy impacts are currently tracked in productivity projects and suggests two techniques for dramatically improving the accuracy of these estimates. Experiences from the DOE Industrial Assessment Center program are used as well as data from the programs publicly available database. It is shown that in many of the recommended productivity improvements there is an associated absolute reduction in energy use. For example, it is common to recommend the elimination of steps in a process by improving quality control etc. Savings are tracked in terms of time and manpower, but the elimination of parts of the process normally results in a reduction in energy consumption. Often, this reduction is underreported. Also very common, however, is that case where a productivity recommendation leads to an increase of total energy use. For example better management of process equipment will lead to greater load factors. Handled incorrectly this can lead to a negative energy impact which could result in increased paybacks and misleading indications about energy efficiency. Analysis shows that even when there is an increase in energy use, the amount of energy per product unit goes down, making a process demonstrably more energy efficient. Arguments are presented why using an Energy Intensity Metric is critical in properly accounting for energy impact of productivity on plant energy use. We present a concept called Virtual Reduction in Operating Time and show how it can be used to improve accounting for energy impacts.

Mitrovic, B.; Muller, M. R.

2002-04-01T23:59:59.000Z

472

Slideshow: Innovation in the Manufacturing Sector | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy

473

Ensuring American Leadership in Clean Energy Manufacturing | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing December 11, 2013 - 1:40pm Addthis Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. David Danielson David Danielson

474

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

A video about changes in home heating in the United States. Annual Energy Review Consumption Statistics. Released September 27, ...

475

Table 2.9 Commercial Buildings Consumption by Energy Source ...  

U.S. Energy Information Administration (EIA)

parking garages. Web Page: For related information, ... "Commercial Buildings Energy Consumption Survey." 6 Distillate fuel oil, residual fuel oil, ...

476

Table F28: Wind Energy Consumption Estimates, 2011  

U.S. Energy Information Administration (EIA)

Table F28: Wind Energy Consumption Estimates, 2011 State Commercial Industrial Electric Power Total Commercial Industrial Electric Power Total

477

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Vehicle Energy Consumption Survey Data; ... The major users are residential and commercial buildings, industry, transportation, and electric power generators.

478

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

Waste-to-Energy Biomass Digester with Decreased Water Consumption Contact Information: Jeremy Nelson Phone: 970.491.7100 Email: ...

479

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

U.S. energy-related carbon-dioxide emissions, including both direct fuel consumption (primarily natural gas)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

480

Research on Building Energy Consumption Situation in Shanghai  

E-Print Network (OSTI)

This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between the building and the whole society, and between the building and the air conditioning system. Eight public buildings in Shanghai have been chosen for analyzing the characteristics of energy consumption of the air conditioning system in real time.

Yang, X.; Tan, H.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturing energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Chapter 2. Consumption of Fossil Fuels - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

48 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 2. Consumption of Fossil Fuels

482

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

483

CoNNECT: Analytics for Energy Consumption Data  

Ability to correlate data with weather patterns Ability to benchmark consumption with peers ... solar energy potential on individual building ...

484

Residential Energy Consumption Survey: housing characteristics, 1982  

Science Conference Proceedings (OSTI)

Data in this report cover fuels and their use in the home, appliances, square footage of floor space, heating equipment, thermal characteristics of the housing unit, conservation activities, wood consumption, indoor temperatures, and weather. The 1982 survey included a number of questions on the reasons households make energy conservation improvements to their homes. Results of these questions are presented. Discussion also highlights data pertaining to: trends in home heating fuels, trends in conservation improvements, and characteristics of households whose energy costs are included in their rent.

Thompson, W.

1984-08-01T23:59:59.000Z

485

Revitalizing Innovation in Michigan for Clean Energy Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing April 25, 2011 - 4:33pm Addthis Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Kerry Duggan What does this mean for me? Michigan has expanded its manufacturing focus beyond automobiles. Companies across Michigan are producing advanced batteries, motors, controllers, lighting devices, wind machines, photovoltaic modules, and other clean energy products. To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Last week, I got

486

Income Growth, Energy Consumption and Carbon Emissions in China  

Science Conference Proceedings (OSTI)

The paper examines the long-run relationship between per capita income growth, energy consumption, and pollutant emissions in China during the period 19532004. We find that energy consumption, pollutant emissions and income are cointegrated in ... Keywords: Energy consumption, Pollutant emissions, Causality, Multivariate cointegration, China

Zhi Zhao; Jiahai Yuan

2008-11-01T23:59:59.000Z

487

Energy Consumption in Downlink MIMO Relay Systems with Multiple Users  

Science Conference Proceedings (OSTI)

This paper focuses on the energy consumption problem in the downlink MIMO relay systems with multiple users. Power consumption under the target sum capacity is used as the energy efficient performance metric. Three transmission schemes, i.e. regenerate ... Keywords: Energy Consumption, MIMO, Relay, Multiple Users

Jie Xu; Ling Qiu

2010-12-01T23:59:59.000Z

488

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Features Heating and cooling no longer majority of U.S. home energy use. Release Date: March 7, 2013. For decades, space heating and cooling (space conditioning ...

489

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

Features Heating and cooling no longer majority of U.S. home energy use. Release Date: March 7, 2013. For decades, space heating and cooling (space ...

490

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Heating and cooling no longer majority of ... 2012. Total United States ... as increased energy efficiency has offset the increase in the number and average size of ...

491

Stronger Manufacturers' Energy Efficiency Standards for Residential Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stronger Manufacturers' Energy Efficiency Standards for Residential Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today January 23, 2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing standards that go into effect today, January 23, 2006, for products manufactured in, or imported into, the United States. "Homeowners who choose to buy more energy-efficient air conditioning systems after today will realize significant savings in their energy bills and greatly reduce their energy use," said Secretary of Energy Samuel W. Bodman. "These new energy efficiency standards are the first of several

492

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Cost of Natural Gas Used in Manufacturing Sector Has Fallen. ... geothermal, and solar energy. Annual Energy Outlook 2013. Released April 15, 2013May 2, 2013 .

493

Pakistan - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Consumption & Efficiency. Energy use in homes, commercial buildings, manufacturing, and transportation. Coal.

494

Fuel Cell Technologies Office American Energy and Manufacturing Competitiveness Parternship: Fuel Cell Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

12/19/2013 eere.energy.gov 12/19/2013 eere.energy.gov Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership http://www.aemcsummit.compete.org/ Fuel Cell Manufacturing Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Dr. Nancy Garland Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office 2 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov The Future of Fuel Cell Manufacturing Panel Session * Federal program: DOE Fuel Cell Technologies Office * National trade association: Fuel Cell & Hydrogen Energy Association * State Coalition Example: Ohio Fuel Cell Coalition 3 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov * Clean Energy Patent Growth Index

495

International Energy Outlook 2000 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. Current Trends Influencing World Energy Demand Changing world events and their effects on world energy markets shape the long-term view of trends in energy demand. Several developments in 1999—shifting short-term world oil markets, the recovery of developing Asian markets, and a faster than expected recovery in the economies of the former Soviet Union— are reflected in the projections presented in this year’s International Energy Outlook 2000 (IEO2000). In 1998, oil prices reached 20-year lows as a result of oil surpluses

496

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

497

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

498

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

2006-01-01T23:59:59.000Z

499

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

Residential Energy Consumption Survey, Human and Socialof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

500

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

I. Azevedo. 2012, Electricity consumption and energy savingsMcKenney. 2007. Energy consumption by consumer electronicsK. Roth. 2011. Energy Consumption of Consumer Electronics in

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z