Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

1 Copyright 2014 by ASME Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference  

E-Print Network [OSTI]

to "a crowdsourcing-based design model that leverages cloud computing, service-oriented architecture and manufacturing (CBDM) refers to "a service-oriented product development model in which service consumers are able to configure products or services as well as reconfigure manufacturing systems through Infrastructure-as-a-Service

2

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

3

Lehigh Valley Chapter, ASM International ASM Materials Camp -Lehigh Valley for High School Students  

E-Print Network [OSTI]

Lehigh Valley Chapter, ASM International ASM Materials Camp - Lehigh Valley for High School careers. The week-long day camp is conducted by graduate students at Lehigh University, overseen

Gilchrist, James F.

4

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

5

Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

6

Impact of the Massachusetts Pharmaceutical and Medical Device Manufacturer Code of Conduct on medical device physician-industry collaboration  

E-Print Network [OSTI]

The Massachusetts Pharmaceutical and Medical Device Manufacturer Code of Conduct (PCOC) or 105 CMR 970.000 was enacted by the Massachusetts state legislature and adopted by the Department of Public Health (DPH) in July ...

Wolf, Daniel W. (Daniel William)

2010-01-01T23:59:59.000Z

7

ASM Dinner MeetingASM Dinner MeetingASM Dinner MeetingASM Dinner Meeting ASM Ottawa Valley ChapterASM Ottawa Valley ChapterASM Ottawa Valley ChapterASM Ottawa Valley Chapter  

E-Print Network [OSTI]

Fund awarded a grant for a new Reactor Materials Research Labora- tory (RMTL) at Queen's University electron microscopes, in­ and ex-situ mechanical testing equipment, and a radiation detection researchASM Dinner MeetingASM Dinner MeetingASM Dinner MeetingASM Dinner Meeting ASM Ottawa Valley Chapter

Ellis, Randy

8

Conducting Successful Programs to Increase the Energy-Efficiency of Manufactured Housing  

E-Print Network [OSTI]

. In this region, the Bonneville Power Administration (Bonneville) has instituted several programs designed to promote energy-efficiency improvements in buildings. One of the latest targets of these programs is manufactured housing. Since 1985, Bonneville has...

Lee, A. D.; Riewer, S. M.; Volke, S. M.

1990-01-01T23:59:59.000Z

9

Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom  

DOE Patents [OSTI]

An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

Lin, YuPo J. (Naperville, IL); Henry, Michael P. (Batavia, IL); Snyder, Seth W. (Lincolnwood, IL)

2011-07-12T23:59:59.000Z

10

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations  

Broader source: Energy.gov [DOE]

This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

11

Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993  

E-Print Network [OSTI]

ENERGY CONSUMPTION CHARACTERISTICS OF LIGHT MANUFACTURING FACll..ITIES IN THE NORTHERN PLAINS: A study of detailed data from 10 industrial energy audits conducted in 1993. Michael Twedt Graduate Research Assistant IEOPIEADC South Dakota... profiles and common energy conservation opportunities. A statistical breakdown of energy consumption of 10 light manufacturing facilities by process, equipment type, and end use is provided. Common energy optimization procedures are also summarized...

Twedt, M.; Bassett, K.

12

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

13

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

14

Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference July 19-23, 2009, San Francisco, CA, USA HT2009-88261 SIMULATION OF FOCUSED RADIATION PROPAGATION AND TRANSIENT HEAT TRANSFER IN TURBID-dependent radiation and conduction bio-heat transfer model. Ultrashort pulsed radiation transport in the cylindrical

Guo, Zhixiong "James"

15

E-Print Network 3.0 - axial heat conduction Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2006 by ASME Proceedings of ASME TURBO EXPO 2007 Summary: and with lateral conduction loss) Figure 11 Heat transfer coefficient h at five axial locations on the casing plate......

16

1 Copyright 2007 by ASME Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition  

E-Print Network [OSTI]

1 Copyright © 2007 by ASME Proceedings of the 2007 ASME International Mechanical Engineering ­ ECAD INTEGRATION: OVERVIEW AND FUTURE RESEARCH PERSPECTIVES Kenway Chen Systems Realization Laboratory G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Savannah 210

17

ASM International NV | Open Energy Information  

Open Energy Info (EERE)

NV Jump to: navigation, search Name: ASM International NV Place: Bilthoven, Netherlands Product: Supplier of semiconductor process equipment in both front- and back-end markets,...

18

ASME Journal of Heat Transfer Vol.118, pp.592-598, 1996  

E-Print Network [OSTI]

. The coupled governing equations for time- dependent convective heat transfer in the fluid flow and conduction to pay increasing attention to the study of heat transfer and fluid flow characteristicsASME Journal of Heat Transfer Vol.118, pp.592-598, 1996 OSCILLATORY HEAT TRANSFER IN A PIPE

Zhao, Tianshou

19

A modified Activated Sludge Model No. 3 (ASM3) with two-step nitrificationedenitrification  

E-Print Network [OSTI]

A modified Activated Sludge Model No. 3 (ASM3) with two-step nitrificationedenitrification Ilenia of the Activated Sludge Models (ASM) [Henze, M., Gujer, W., Mino, T., van Loosdrecht, M.C.M., 2000. Ac- tivated Sludge Models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report No. 9. IWA Publishing

20

1 Copyright 2011 by ASME Proceedings of the ASME 2011 International Design Engineering Technical Conferences &  

E-Print Network [OSTI]

solutions in a global, economic, environmental, and societal context," [1]. Providing engineering students, social, economic and environmental issues in engineering, with no funds to support the actual overseas1 Copyright © 2011 by ASME Proceedings of the ASME 2011 International Design Engineering Technical

Lewis, Kemper E.

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

1 Copyright 2013 by ASME Proceedings of the ASME 2013 Summer Heat Transfer Conference  

E-Print Network [OSTI]

the misting process, the fluid flow and heat transfer of humid air as well as the heat transfer across and heat transfer in both fluid and solid domains. As an example, Aroussi .et al [2] numerically simulated1 Copyright © 2013 by ASME Proceedings of the ASME 2013 Summer Heat Transfer Conference HT2013 July

Bahrami, Majid

22

Proceedings of DETC'01 2001 ASME Design Engineering Technical Conferences  

E-Print Network [OSTI]

Proceedings of DETC'01 2001 ASME Design Engineering Technical Conferences September 9-12, 2001 Copyright 2001 by ASME Proceedings of DETC'01 ASME 2001 Design Engineering Technical Conference and Computers and Information in Engineering Conference Pittsburgh, PA, September 9-12, 2001 #12;works cited

Tsao, Tsu-Chin

23

ASME Material Challenges for Advanced Reactor Concepts  

SciTech Connect (OSTI)

This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

Piyush Sabharwall; Ali Siahpush

2013-07-01T23:59:59.000Z

24

ASM Conference on Prokaryotic Development  

SciTech Connect (OSTI)

Support was provided by DOE for the 2nd ASM Conference on Prokaryotic Development. The final conference program and abstracts book is attached. The conference presentations are organized around topics that are central to the current research areas in prokaryotic development. The program starts with topics that involve relatively simple models systems and ends with systems that are more complex. The topics are: i) the cell cycle, ii) the cytoskeleton, iii) morphogenesis, iv) developmental transcription, v) signaling, vi) multicellularity, and vii) developmental diversity and symbiosis. The best-studied prokaryotic development model systems will be highlighted at the conference through research presentations by leaders in the field. Many of these systems are also model systems of relevance to the DOE mission including carbon sequestration (Bradyrizobium, Synechococcus), energy production (Anabaena, Rhodobacter) and bioremediation (Caulobacter, Mesorhizobium). In addition, many of the highlighted organisms have important practical applications; the actinomycetes and myxobacteria produce antimicrobials that are of commercial interest. It is certain that the cutting-edge science presented at the conference will be applicable to the large group of bacteria relevant to the DOE mission.

Kaplan, H. B.

2005-07-13T23:59:59.000Z

25

The Draft of ASME PTC 19  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ASME0027 1 Copyright © 2006 Siemens Power Generation, Inc. ASME0027 1 Copyright © 2006 Siemens Power Generation, Inc. Proceedings of PWR2006 2006 Joint Conference of ASME Power and Electric Power May 2-4, 2006, Atlanta, GA, USA PWR2006-88112 TURNING NGCC INTO IGCC: CYCLE RETROFITTING ISSUES Juan Pablo Gutierrez, MSc. Siemens Power Generation 4400 Alafaya Trail Q2-286 Orlando, FL 32826 Juangutierrez@siemens.com Terry B. Sullivan, P.E. Siemens Power Generation 4400 Alafaya Trail Q2-286 Orlando, FL 32826 Terry.Sullivan@siemens.com Gerald J. Feller, Ph.D. Siemens Power Generation 4400 Alafaya Trail Q2-286 Orlando, FL 32826 Gerald.Feller@siemens.com ABSTRACT The increase in price of natural gas and the need for a cleaner technology to generate electricity has motivated the power industry to move towards Integrated

26

Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing > Derived Annual Estimates - Executive Summary Manufacturing > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This report presents a complete series of annual estimates of purchased energy used by the manufacturing sector of the U.S. economy, for the years 1974 to 1988. These estimates interpolate over gaps in the actual data collections, by deriving estimates for the missing years 1982-84 and 1986-87. For the purposes of this report, "purchased" energy is energy brought from offsite for use at manufacturing establishments, whether the energy is purchased from an energy vendor or procured from some other source. The actual data on purchased energy comes from two sources, the U.S. Department of Commerce Bureau of the Census's Annual Survey of Manufactures (ASM) and EIA's Manufacturing Energy Consumption Survey (MECS). The ASM provides annual estimates for the years 1974 to 1981. However, in 1982 (and subsequent years) the scope of the ASM energy data was reduced to collect only electricity consumption and expenditures and total expenditures for other purchased energy. In 1985, EIA initiated the triennial MECS collecting complete energy data. The series equivalent to the ASM is referred to in the MECS as "offsite-produced fuels." The completed annual series for 1974 to 1988 developed in this report links the ASM and MECS "offsite" series, estimating for the missing years. Estimates are provided for the manufacturing sector as a whole and at the two-digit Standard Industrial Classification (SIC) level for total energy consumption and for the consumption of individual fuels. There are no direct sources of data for the missing years (1982-1984 and 1986-1987). To derive consumption estimates, a comparison was made between the ASM, MECS, and other economic series to see whether there were any good predictors for the missing data. Various estimation schemes were analyzed to fill in the gaps in data after 1981 by trying to match known data for the 1974 to 1981 period.

27

E-Print Network 3.0 - asm heat treating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Example ASME code symbol stamps include S Power Boilers E Electric Boilers H Heating Boilers HLW Water... . Certification (American Society of Mechanical Engineers ASME...

28

E-Print Network 3.0 - asm news volume Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to concurrent control state... ASMs with turbo ASM submachines. 1 Introduction In recent work we made use of the Abstract State Source: Brger, Egon - Dipartimento di...

29

E-Print Network 3.0 - asm international europe Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machines 19881998: Commented ASM Bibliography Summary: , The ASM Thesis, Remarks, Future Work. 75 Y. Gurevich. Logic Activities in Europe. ACM SIGACT News, 1994... Abstract...

30

ASM International elects ORNL researchers Paranthaman, Pint fellows...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

two researchers at the Department of Energy's Oak Ridge National Laboratory to the rank of fellow, as well as a former ORNL researcher. The professional society ASM...

31

Manufacturing News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

32

1 Copyright 2002 by ASME Proceedings of DETC'2002  

E-Print Network [OSTI]

1 Copyright © 2002 by ASME Proceedings of DETC'2002 ASME 2002 Design Engineering Technical response of a system is. However, despite the enormous power of computational models, uncertainty models should contemplate uncertainties. Due to the uncertainties, the assessment of the validity

Chen, Wei

33

1 Copyright 2003 by ASME Proceedings of DETC' 03  

E-Print Network [OSTI]

., University of Michigan, Ann Arbor, MI 48109-2102 kazu@engin.umich.edu ABSTRACT Passenger vehicle to satisfy within reasonable ranges of design parameters. Vehicle traction performance and overall cost1 Copyright © 2003 by ASME Proceedings of DETC' 03 ASME Design Engineering Technical Conferences

Saitou, Kazuhiro "Kazu"

34

1 Copyright #### by ASME Proceedings of IMEC 2005  

E-Print Network [OSTI]

in step-wise fashion in response to the immediate environment. Each AV behavior generator allows1 Copyright © #### by ASME Proceedings of IMEC 2005: ASME INTERNATIONAL MECHANICAL ENGINEERING OF TRANSFERRING MULTI-AGENT BEHAVIORS FROM A LEARNING ENVIRONMENT IN THE PRESENCE OF SYNTHETIC SOCIAL FEATURES

Wu, Annie S.

35

1 Copyright 2007 by ASME Proceedings of FEDSM07  

E-Print Network [OSTI]

1 Copyright © 2007 by ASME Proceedings of FEDSM07 5th Joint ASME/JSME Fluids Engineering Summer Conference Jul 30, 2007 - Aug 02, 2007, San Diego, California, USA FEDSM2007-37524 FLUID MIXING CONTROL Engineering Iowa State University, Ames, Iowa 50011 Email: jinzy@iastate.edu Hu, Hui Department of Aerospace

Hu, Hui

36

Using PHA Results for Real Time Operator Support during ASM Sourabh Dash and Venkat Venkatasubramanian  

E-Print Network [OSTI]

Catalytic Cracking Unit (FCCU). Realizing the importance of ASM, Honeywell launched an industrial consortium

Venkatasubramanian, Venkat

37

ASM Asset Management DTVM SA | Open Energy Information  

Open Energy Info (EERE)

Management DTVM SA Management DTVM SA Jump to: navigation, search Name ASM Asset Management DTVM SA Place Rio de Janeiro, Rio de Janeiro, Brazil Zip 22640-100 Sector Carbon, Services Product Brazilian fund manager. It provides a range of financial services, including carbon finance and derivatives for both carbon project developers and investors. References ASM Asset Management DTVM SA[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. ASM Asset Management DTVM SA is a company located in Rio de Janeiro, Rio de Janeiro, Brazil . References ↑ "ASM Asset Management DTVM SA" Retrieved from "http://en.openei.org/w/index.php?title=ASM_Asset_Management_DTVM_SA&oldid=34236

38

1 Copyright 2010 by ASME Proceedings of the ASME 2010 International Design Engineering Technical Conferences &  

E-Print Network [OSTI]

-dof linkages, cams, and gear trains, such as the Ross-yoke Stirling engine mechanism shown in Figure 1 trains. #12;2 Copyright © 2010 by ASME Figure 1. Ross-Yoke Stirling Engine Mechanism www.ent.ohiou.edu/~urieli/stirling/engines

Williams II, Robert L.

39

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

40

ASME post construction pressure technology codes  

SciTech Connect (OSTI)

The need to continue to operate pressurized equipment and other facilities in a safe, reliable and cost effective manner has led to the development of many new approaches to in-service inspection, flaw evaluation, and repair. Interest on the part of users, regulatory authorities and others in standardizing these approaches has led to the formation of a new ASME Main Committee on Post Construction under the Board on Pressure Technology Codes and Standards, and a new Division of the Pressure Vessel Research Council on Continued Operation of Equipment. This paper provides a brief overview of these activities.

Sims, J.R. [Exxon Research and Engineering Co., Florham Park, NJ (United States)

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Additive Manufacturing: Implications on Research and Manufacturing  

E-Print Network [OSTI]

Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

Crawford, T. Daniel

42

Additive Manufacturing : Changing the Rules of Manufacturing  

Science Journals Connector (OSTI)

Aspects of 3D printing and additive or layer manufacturing can be treated as modular manufacturing or modular components of manufacturing in the contemporary sense. Such modular manufacturing involves specialized...

2014-06-01T23:59:59.000Z

43

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

44

Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0  

SciTech Connect (OSTI)

The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

NONE

1993-07-01T23:59:59.000Z

45

1 Copyright 2000 by ASME Proceedings of ICONE 8  

E-Print Network [OSTI]

1 Copyright © 2000 by ASME Proceedings of ICONE 8 8th International Conference on Nuclear Engineering April 2-6, 2000, Baltimore, MD USA ICONE-8320 STUDY OF ALLOYING ELEMENTS IN THE ZR MATRIX

Motta, Arthur T.

46

MST: Organizations: Manufacturing Processes & Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Processing Manufacturing Processing Manufacturing Process, Science, and Technology Mark Smith Mark Smith, Senior Manager Manufacturing Process Science and Technology conducts research and development on advanced manufacturing process and materials technologies. It provides manufacturing process development, technical consulting, and technology transfer to support Sandia product realization needs. This organization also provides prototype fabrication and specialized production services, as required, to support Sandia missions. Departments Dianna Blair Mike Kelly Alex Roesler Paul C. McKey Thin Film, Vacuum, and Packaging Organic Materials Ceramics and Glass Meso Mfg. and System Development Dianna Blair, Manager Mike Kelly, Manager Alex Roesler, Manager Paul C. McKey,

47

1 Copyright 2010 by ASME Proceedings of the ASME 2010 Pressure Vessels & Piping Division / K-PVP Conference  

E-Print Network [OSTI]

of characteristics TMM = transfer matrix method #12;2 Copyright © 2010 by ASME WATERHAMMER EQUATIONS Classical waterhammer theory [2-4] adequately describes the low-frequency vibration of elastic liquid columns in fully

Tijsseling, A.S.

48

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

49

Manufacturing Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

50

Green Manufacturing  

SciTech Connect (OSTI)

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31T23:59:59.000Z

51

Proceedings of HT-FED2004 2004 ASME Heat Transfer/Fluids Engineering Summer Conference  

E-Print Network [OSTI]

Proceedings of HT-FED2004 2004 ASME Heat Transfer/Fluids Engineering Summer Conference Charlotte curvature, and T is the extra 1 Copyright c 2004 by ASME Proceedings of HT-FED04 2004 ASME Heat Transfer/Fluids30EZ UK ABSTRACT A volume of fluid method is developed with a parabolic rep- resentation

Renardy, Yuriko

52

DIVISION & TECHNICAL COMMITTEE MEMBERSHIP: -Division Chair of the ASME NDE (Nondestructive Evaluation) Division, 2003-2005  

E-Print Network [OSTI]

DIVISION & TECHNICAL COMMITTEE MEMBERSHIP: - Division Chair of the ASME NDE (Nondestructive Evaluation) Division, 2003-2005 - Member of the Executive Committee of the ASME NDE Engineering Division, 1997-present - Secretary and Vice-Chairman of the ASME NDE Division from 2001 to 2003 - Program

Wong, Pak Kin

53

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

54

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

55

COPYRIGHT 2003 by ASME AERODYNAMICS OF TIP LEAKAGE FLOWS  

E-Print Network [OSTI]

COPYRIGHT 2003 by ASME 1 AERODYNAMICS OF TIP LEAKAGE FLOWS NEAR PARTIAL SQUEALER RIMS IN AN AXIAL of aerodynamic characteristics of full and partial-length squealer rims in a turbine stage. Full and partial of these "partial squealer tips" and their chordwise position are varied to find an optimal aerodynamic tip

Camci, Cengiz

56

1 Copyright 1996 by ASME Proceedings of the  

E-Print Network [OSTI]

1 Copyright © 1996 by ASME Proceedings of the 25th International Conference on Offshore Mechanics load scenarios including environmental extreme loads, accidental loads, earthquake loads and the effect of degradation. When the ability of structures to sustain damages is considered the codes and existing design

Baker, Jack W.

57

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

58

1 Copyright 2000 by ASME Proceedings of ICONE 8  

E-Print Network [OSTI]

. Birtcher Materials Science Division, Argonne National Laboratory, MSD 212 E203 9700 S. Cass Ave Argonne, IL resistance. The structure, size, distribution, and morphology of these precipitates depend on the alloy resistance. The corrosion resistance of the zirconium #12;2 Copyright © 2000 by ASME alloys used in nuclear

Motta, Arthur T.

59

NIST Standard Reference Database 10 NIST/ASME Steam Properties  

E-Print Network [OSTI]

#12;NIST Standard Reference Database 10 NIST/ASME Steam Properties Version 2.22 Users' Guide Allan;________________________ The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy. OPTIONS AND PREFERENCES............................................ 5 5.1 Specifying Units of Measure

Magee, Joseph W.

60

Proceedings of the 1999 ASME Design Engineering Technical Conferences  

E-Print Network [OSTI]

of the Internet, engineering and design services should be able to interact in a formal yet flexible mannerProceedings of the 1999 ASME Design Engineering Technical Conferences September 12­15, 1999, Las Vegas, Nevada DETC99/CIE-9077 AN INTERNET-BASED DISTRIBUTED SERVICE ARCHITECTURE Charles S. Han Stanford

Stanford University

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

1 Copyright 2006 by ASME Proceedings of OMAE'06  

E-Print Network [OSTI]

are routinely used to transport oil and gas between offshore production plants and the mainland, or between) unit weight [F/L3 ] INTRODUCTION Pipelines are used extensively in the offshore oil and gas industry1 Copyright © 2006 by ASME Proceedings of OMAE'06 25th International Conference on Offshore

Byrne, Byron

62

Department of Engineering Design Spring 2012 ASME Jaipur Foot  

E-Print Network [OSTI]

of this project was to design a Universal Testing Rig (UTR) to perform automated static testing on the Jaipur to be adjusted for the positions mandated by each test, and additionally enabled the rig to accommodate differentPENNSTATE Department of Engineering Design Spring 2012 ASME Jaipur Foot Overview The purpose

Demirel, Melik C.

63

1 Copyright 2004 by ASME Proceedings of Solar 2004  

E-Print Network [OSTI]

in overall savings. In this paper actual energy usage for an ICF house constructed in 1998 is compared1 Copyright © 2004 by ASME Proceedings of Solar 2004 July 11-14, 2004 Portland, Oregon ISEC2004-65022 USE OF INSULATED CONCRETE FORM (ICF) CONSTRUCTION FOR ENERGY CONSERVATION IN RESIDENTIAL CONSTRUCTION

Ribando, Robert J.

64

Operating nuclear plant feedback to ASME and French codes  

SciTech Connect (OSTI)

The French have an advantage in nuclear plant operating experience feedback due to the highly centralized nature of their nuclear industry. There is only one utility in charge of design as well as operations (EDF) and only one reactor vendor (Framatome). The ASME Code has played a key role in resolving technical issues in the design and operation of nuclear plants since the inception of nuclear power. The committee structure of the Code brings an ideal combination of senior technical people with both broad and specialized experience to bear on complex how safe is safe enough technical issues. The authors now see an even greater role for the ASME Code in a proposed new regulatory era for the US nuclear industry. The current legalistic confrontational regulatory era has been quite destructive. There now appears to be a real opportunity to begin a new era of technical consensus as the primary means for resolving safety issues. This change can quickly be brought about by having the industry take operating plant problems and regulatory technical issues directly to the ASME Code for timely resolution. Surprisingly, there is no institution in the US nuclear industry with such a mandate. In fact, the industry is organized to feedback through the Nuclear Regulatory Commission issues which could be far better resolved through the ASME Code. Major regulatory benefits can be achieved by closing this loop and providing systematic interaction with the ASME Code. The essential elements of a new regulatory era and ideas for organizing US institutional industry responsibilities, taken from the French experience, are described in this paper.

Journet, J. [Electricite de France, Clamart (France); O`Donnell, W.J. [O`Donnell Consulting Engineers, Bethel Park, PA (United States)

1996-12-01T23:59:59.000Z

65

The President's Manufacturing Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

66

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

67

Advanced Manufacturing Office Overview  

Broader source: Energy.gov [DOE]

Overview presentation by the Advanced Manufacturing Office for the Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

68

Additive Manufacturing Technology Assessment  

Office of Environmental Management (EM)

subtractive manufacturing 41 methods 1. Additive manufacturing is also called as 3D printing, 42 additive fabrication, or freeform fabrication. These new 43 techniques, while...

69

Photographic lens manufacturing and production technologies  

E-Print Network [OSTI]

An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

Kubaczyk, Daniel Mark

2011-01-01T23:59:59.000Z

70

Additive Manufacturing Technologies  

Science Journals Connector (OSTI)

Rapid Prototyping is the construction of complex three-dimensional parts using additive manufacturing technology.

Jrgen Stampfl; Markus Hatzenbichler

2014-01-01T23:59:59.000Z

71

Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

72

E-Print Network 3.0 - asme design technology Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TITLE INSTRUCTOR BOOK TITLE AUTHOR PUBLISHER ISBN ASM 104 Intro to Agri Systems D. Ess An Introduction to Agricultural Engineering Summary: SUBJ No. COURSE TITLE INSTRUCTOR...

73

DOE Hydrogen and Fuel Cell Overview: ASME 2011 5th International Conference on Energy Sustainability  

Broader source: Energy.gov [DOE]

Plenary presentation by Sunita Satyapal at the ASME 2011 5th International Conference on Energy Sustainability on August 8, 2011, in Washington, DC.

74

E-Print Network 3.0 - asme 3rd international Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: asme 3rd international Page: << < 1 2 3 4 5 > >> 1 CURRICULUM VITAE ET STUDIORUM MARCO AMABILI Summary: , Crete, Greece. Member of the International...

75

E-Print Network 3.0 - asme om code Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Summary: topologically and dimensionally for NURBS motion; Simulation with Autodesk Inventor; Coding API and GUI with C... at ASME International Design Engineering and...

76

E-Print Network 3.0 - asme nuclear engineering Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: asme nuclear engineering Page: << < 1 2 3 4 5 > >> 1 1 Science and Engineering Research Facility...

77

E-Print Network 3.0 - asme-csme applied mechanics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ASME, CSME, IEEE, and INCOSE. He is currently an Associate Professor of Mechanical Engineering... or services" and can be extended to include "the design of systems, parts,...

78

E-Print Network 3.0 - asme nanotechnology institute Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanotechnology institute Search Powered by Explorit Topic List Advanced Search Sample search results for: asme nanotechnology institute Page: << < 1 2 3 4 5 > >> 1 Institute for...

79

E-Print Network 3.0 - asme nuclear code Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

distribution is unlimited. Summary: . Indicate Industry or Code Certifications (ASME, API, TEMA, Class of Code-Stamp, etc.) CERTIFICATION... of Items for Nuclear Power Plants...

80

Khounsary Named Associate Editor of ASME Journal of Heat Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Science with the APS Superconducting Undulator New Science with the APS Superconducting Undulator Young of XSD Named Associate Editor of New Journal "Structural Dynamics" The Daguerreotype and the X-ray: A Deep Look Questions Rise about Seeding For Ocean C02 Sequestration X-ray Method Shows How Frog Embryos Could Help Thwart Disease APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Khounsary Named Associate Editor of ASME Journal of Heat Transfer October 22, 2013 Bookmark and Share Ali Khounsary Ali Khounsary of the APS Engineering Support Division has been appointed as an Associate Editor of the ASME Journal of Heat Transfer. The Journal of Heat Transfer, in publication since 1879, "disseminates information of permanent interest in the areas of heat and mass transfer.

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Proceedings of the ASME/JSME Joint Thermal Engineering Conference  

E-Print Network [OSTI]

80 720 760 800 Ion Mass [amu] ScC60 + C64 + Number of Carbon Atoms Intensity(arb.units) ScC60 + C60, California AJTE99-6513 Copyright © 1999 by ASME1 FT-ICR STUDIES OF LASER DESORBED CARBON CLUSTERS Shigeo-resolution was demonstrated for positive mass spectra of silicon, carbon, and metal-carbon binary clusters and negative mass

Maruyama, Shigeo

82

1 Copyright 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference  

E-Print Network [OSTI]

1 Copyright © 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference

83

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect (OSTI)

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

84

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect (OSTI)

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

85

Laser Technology: Additive Manufacturing  

Science Journals Connector (OSTI)

Selective Laser Sintering, and in general Additive Manufacturing Processes are becoming mature technologies; in the ... systems that are even utilized for direct parts manufacturing. However, the parts final user...

Srichand Hinduja; Lin Li

2013-01-01T23:59:59.000Z

86

The Advanced Manufacturing Partnership  

E-Print Network [OSTI]

;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

Das, Suman

87

Transactions of AMSE International Journal of Solar Energy Engineering 1 Copyright #### by ASME  

E-Print Network [OSTI]

Transactions of AMSE International Journal of Solar Energy Engineering 1 Copyright © #### by ASME is responsible for heavy electricity consumption. Solar energy affects the whole building, but in particular Journal of Solar Energy Engineering 2 Copyright © #### by ASME account by the model. Notice that these two

Paris-Sud XI, Université de

88

1 Copyright 2008 byASME Proceedings of IDETC/CIE 2008  

E-Print Network [OSTI]

development decisions on resource depletion, human health, and environmental degradation. However, designers1 Copyright © 2008 byASME Proceedings of IDETC/CIE 2008 ASME 2008 International Design Engineering with respect to the environmental impacts of modern products. To respond to this tightened scrutiny, product

Seepersad, Carolyn Conner

89

Proceedings of ASME Fluids Engineering Summer Meeting Symposium on Development and Applications of Immersed Boundary Methods  

E-Print Network [OSTI]

Proceedings of ASME Fluids Engineering Summer Meeting Symposium on Development and Applications-00983110,version1-25Apr2014 Author manuscript, published in "ASME Fluids Engineering Summer Meeting METHOD FOR SOLID-POROUS-FLUID MEDIA WITH APPLICATION TO PASSIVE FLOW CONTROL Chlo´e Mimeau Univ. Grenoble

Paris-Sud XI, Université de

90

Under review for ASME Journal of Mechanical Design 1 Copyright 1996 by ASME Proceedings of  

E-Print Network [OSTI]

stages of design is presented. NOMENCLATURE ASR Automotive Shredder Residue I/P Instrument Panel * Do-22, 1996, Irvine, California 96-DETC/DFM-1270 DESIGNING FOR MATERIAL SEPARATION: LESSONS FROM AUTOMOTIVE or by a moral sense of obligation, automotive manufacturers are attempting to reduce the environmental impacts

91

1 Copyright 2013 by ASME Proceedings of the ASME 2013 International Design Engineering Technical Conferences &  

E-Print Network [OSTI]

is that traditional manufacturing techniques are not optimized to create smart, articulating structures in the 0 of materials, embedded electrical components, and automated assembly with feature sizes down to 20 microns- layered structure which `pops up' to realize an articulating microsurgical gripper that includes a cable

Wood, Robert

92

Manufacturing Innovation Topics Workshop  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

93

A Review & Assessment of Current Operating Conditions Allowable Stresses in ASME Section III Subsection NH  

SciTech Connect (OSTI)

The current operating condition allowable stresses provided in ASME Section III, Subsection NH were reviewed for consistency with the criteria used to establish the stress allowables and with the allowable stresses provided in ASME Section II, Part D. It was found that the S{sub o} values in ASME III-NH were consistent with the S values in ASME IID for the five materials of interest. However, it was found that 0.80 S{sub r} was less than S{sub o} for some temperatures for four of the materials. Only values for alloy 800H appeared to be consistent with the criteria on which S{sub o} values are established. With the intent of undertaking a more detailed evaluation of issues related to the allowable stresses in ASME III-NH, the availabilities of databases for the five materials were reviewed and augmented databases were assembled.

R. W. Swindeman

2009-12-14T23:59:59.000Z

94

EI Summary of All Manufacturing SIC  

U.S. Energy Information Administration (EIA) Indexed Site

All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) The manufacturing sector includes establishments engaged in the mechanical or chemical transformation of materials or substances into new products. These operations are generally conducted in facilities described as plants, factories, or mills, while characteristically using power-driven machines and material-handling equipment. Manufacturing also includes such activities as the assembly of components of manufactured products and the blending of materials, such as lubricating oil, plastics, resins, or liquors.

95

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

96

Enabling Manufacturing Research through Interoperability  

E-Print Network [OSTI]

sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

2009-01-01T23:59:59.000Z

97

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

98

CIMplementation: Evaluating Manufacturing Automation  

E-Print Network [OSTI]

in the manufacturing organization if CIMplementation~* is to succeed. 1.0 INTRODUCTION There is much discussion today about Com puter Integrated Manufacturing (CIM). Automation tools like Computer Aided Design (CAD) systems, robots, automated material handling...~ Pressing the frontier of technology in one's own manufactur ing facility will not be without its pitfalls. Second, while automation engineers may be able to piece together the technological pieces of a CIM system, they cannot and do not evaluate...

Krakauer, J.

99

Manufacturing Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers http:energy.goveeresuccess-storiesarticles...

100

Acoustics by additive manufacturing:.  

E-Print Network [OSTI]

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance (more)

Setaki, F.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Contribution to Nanotechnology Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning...

102

Manufacturing Demonstration Facility  

Broader source: Energy.gov (indexed) [DOE]

is key to stroke recovery * Additive manufacturing allows custom fit glove device using brain machine interface to retrain movement * Gloves are light-weight, low cost and...

103

SSL Manufacturing Roadmap  

Broader source: Energy.gov [DOE]

Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

104

Clean Energy Manufacturing Initiative  

Broader source: Energy.gov [DOE]

Manufacturing technologies for cleaner energy generation, distribution, and use represents an important opportunity for U.S. economic growth, energy security, and accelerated innovation. Likewise,...

105

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

106

The French codes RCC-M and RSE-M -- Design, construction and in-service inspection rules for the mechanical components of PWR nuclear islands: An overview and a comparison to the ASME codes  

SciTech Connect (OSTI)

The RCC-M, ``Regles de Conception et de Construction des Materiels Mecaniques des Ilots Nucleaires REP`` or, in English, ``Design and Construction Rules for the Mechanical Components of PWR Nuclear Islands`` and the RSE-M, ``Regles de Surveillance en Exploitation des Materiels Mecaniques des Ilots Nucleaires REP`` or, in English, ``In-Service Inspection Rules for the Mechanical Components of PWR Nuclear Islands`` gather all design, construction and operating practices relating to the mechanical components of French PWR nuclear islands. This paper is a presentation of these two codes. Throughout this presentation the specific aspects of the French approach will be underlined and will be compared to that of the ASME codes--mainly Section 3 and Section 11. The broad general technical scopes of the French codes are similar to those of the ASME codes. However, in some important areas of design, material specifications, procurement and manufacturing, the provisions of the RCC-M and RSE-M deviate from those of a strict mechanical Code and are more self-sustaining than those of ASME.

Journet, J.; Masson, S.H.; Morel, A.; Remond, A.; Grandemange, J.M.

1995-12-01T23:59:59.000Z

107

Catalyst Manufacturing Science and  

E-Print Network [OSTI]

Catalyst Manufacturing Science and Engineering Consortium (CMSEC) Rutgers University New Jersey, U, automotive, and energy industries makes and/or uses catalysts, there has been no academic program focusing on the operations required to make catalytic materials. Thus, catalyst manufacturing processes are often designed

108

E-Print Network 3.0 - asme international mechanical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1990. Denton, J.D. Loss mechanisms... and mechanical performance of a high pressure turbine stage in a transient wind tunnel. ASME Paper No. 90-GT-353... loss mechanisms in a...

109

E-Print Network 3.0 - acceptability asme section Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the CoreASM language, and shows... in the step, or can be sent back to the Control API. 2.1. ... Source: Gervasi, Vincenzo - Dipartimento di Informatica, Universit di Pisa...

110

Digital Additive Manufacturing: From Rapid Prototyping to Rapid Manufacturing  

Science Journals Connector (OSTI)

The emergence of stereolithography in 1998 is a milestone for an entirely new class of layer-based manufacturing processes. This new manufacturing approach which allows direct digital manufacturing from CAD to a ...

K. K. B. Hon

2007-01-01T23:59:59.000Z

111

asme_paper_quantifying_variability_in_DR_sheds_generic.dvi  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0E 0E Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance Nathan Addy 1 , Johanna L. Mathieu 2 , Sila Kiliccote 1 , Duncan S. Callaway 3 1 Lawrence Berkeley National Laboratory 2 ETH Zurich 3 University of California, Berkeley August 2013 To be presented at the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, CA, November 15-21, 2013, and to be published in the Proceedings Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance Nathan Addy Environmental Energy Technologies Division Lawrence Berkeley National Lab Berkeley, California, USA Email: naddy@lbl.gov Johanna L. Mathieu Power Systems Laboratory ETH Z¨ urich Zurich, Switzerland Email: jmathieu@eeh.ee.ethz.ch

112

Solar Manufacturing Technology 2  

Broader source: Energy.gov [DOE]

The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds ten photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost of manufacturing and implementing efficiency-increasing technology in manufacturing processes.

113

Innovative Manufacturing Initiative Project Selections  

Office of Energy Efficiency and Renewable Energy (EERE)

The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

114

Laser Additive Manufacturing of Metals  

Science Journals Connector (OSTI)

Laser Additive Manufacturing (LAM) is based on a repeating layer wise manufacturing process which uses a laser beam to ... ) geometries into simpler two-dimensional (2D) manufacturing steps [1, 2...]. Thus LAM of...

Claus Emmelmann; Jannis Kranz; Dirk Herzog; Eric Wycisk

2013-01-01T23:59:59.000Z

115

Metal Additive Manufacturing: A Review  

Science Journals Connector (OSTI)

This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, o...

William E. Frazier

2014-06-01T23:59:59.000Z

116

Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets  

Broader source: Energy.gov [DOE]

Project to develop and validate a continuous manufacturing process for polyethylene fibers and sheets yielding a thermal conductivity value greater than 60 W/m.K.

117

1 Copyright 2003 by ASME Proceedings of DETC'03  

E-Print Network [OSTI]

, green engineering NOMENCLATURE ck Total cost for producer k cB Base manufacturing cost per vehicle of engineering performance, consumer demand, cost, and competition are integrated to predict the effects (without engine) cE j Engine manufacturing cost for design j cI Investment cost cP j Total production cost

Papalambros, Panos

118

Innovations in Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

119

Development of Additive Manufacturing Technology  

Science Journals Connector (OSTI)

Additive Manufacturing (AM) technology came about as a ... of different technology sectors. Like with many manufacturing technologies, improvements in computing power and reduction...

Dr. Ian Gibson; Dr. David W. Rosen

2010-01-01T23:59:59.000Z

120

Additive Manufacturing for Mass Customization  

Science Journals Connector (OSTI)

Additive manufacturing (AM) is a disruptive manufacturing technology that requires no tooling for production....additively build parts from numerous materials, including polymers, metals and ceramics. Within this...

Phil Reeves; Chris Tuck; Richard Hague

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Additive Manufacturing for Large Products.  

E-Print Network [OSTI]

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the (more)

Leirvg, Roar Nelissen

2013-01-01T23:59:59.000Z

122

Sandia National Laboratories: wind manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

123

1996 ASME IMECE Conference Proceedings: 5th Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Atlanta, Georgia. pg. 583-590.  

E-Print Network [OSTI]

1996 ASME IMECE Conference Proceedings: 5th Annual Symposium on Haptic Interfaces for Virtual) limited incline of the shaft pivoted in the abdominal wall. #12;1996 ASME IMECE Conference Proceedings: 5

124

1996 ASME IMECE Conference Proceedings: 5th Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Atlanta, Georgia. pg. 583590.  

E-Print Network [OSTI]

1996 ASME IMECE Conference Proceedings: 5th Annual Symposium on Haptic Interfaces for Virtual) limited incline of the shaft pivoted in the abdominal wall. #12; 1996 ASME IMECE Conference Proceedings: 5

125

Electrolyzer Manufacturing Progress and Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

126

1991 Manufacturing Consumption of Energy 1991 Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

1991 Executive Summary 1991 Executive Summary 1991 Figure showing the Largest Energy Consumers in the Manufacturing Sector Executive Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy Consumption Survey (MECS). The MECS is the only comprehensive source of national-level data on U.S. manufacturing energy use. The 1991 MECS is the third in an ongoing series of surveys conducted at 3-year intervals beginning in 1985. Pursuant to a provision of the Energy Policy Act of 1992, the MECS will be conducted biennially beginning in 1994. The MECS surveys a nationally representative sample of manufacturing establishments by means of mailed questionnaires. The 1991 sample represented 98 percent of the U.S. manufacturing sector universe, which consists of all manufacturing establishments in the 50 States and the District of Columbia. Compared with the 1988 MECS, the designed sample size for 1991 was increased from 12,065 manufacturing establishments to 16,054 establishments.

127

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

128

Advanced Drivetrain Manufacturing  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy.

129

Innovations in Manufacturing  

Science Journals Connector (OSTI)

...competition from steam engines and water...Century ofthe Steam Engine is a classic...of the American System of Manufactures...general-purpose machine tools, interchangeable...spe-cialized machine tools, and were con-fined...note that if the system was con-fined...Nel-son provides an assessment of working conditions...

THOMAS WEISS

1983-05-20T23:59:59.000Z

130

Photovoltaic industry manufacturing technology. Final report  

SciTech Connect (OSTI)

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

131

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

132

Transformational Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

133

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

134

Manufacturing News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

135

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

136

Manufacturing Initiative | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

137

Manufacturing News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

138

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

that convert hydrogen into electric energy, (2) hydrogen storage systems, and (3) large-scale hydrogen and prioritize topics for public-private R&D on manufacturing hydrogen storage system components. ScopeManufacturing for the Hydrogen Economy Manufacturing Research & Development of Onboard Hydrogen

139

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

140

Conductive Polymers  

SciTech Connect (OSTI)

Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

Bohnert, G.W.

2002-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Risk-based inspection in ASME Section XI  

SciTech Connect (OSTI)

By 1970 the first edition of the ASME Code Section XI, Inservice Inspection of Nuclear Reactor Coolant Systems was published. From its inception, the Section XI inservice inspection scope was based on a fundamental risk-based selection process. In other words the inservice inspection scope included components where the consequences of a pressure boundary failure were high. Once the consequence significant system boundaries were established, inspections would then be performed at locations believed to be most susceptible service induced failure. Current Section XI requirements require that inspection locations be selected on the basis of peak stress and fatigue usage values contained in the Design Reports. These original stress calculations were designed to qualify a design and assure that the plant would provide reliable service throughout its design life. For the most part, the fatigue usage values in these reports do not provide an accurate measure of service life. As service history has demonstrated, the use of Design Report stresses and fatigue usage values can be misleading. The Section XI ISI inspection requirements have always been intended to focus inspections at those locations in the plant that pose the greater risk to reactor safety. This fundamental principle behind the Section XI inspection requirements has guided Section XI since its inception. However, today Utility resources are limited. The move in many states to deregulate utilities and growing competition from independent power producers is challenging Owners to reduce operating and maintenance cost without sacrificing safety. These programs should allow plants to focus limited resources on those locations where damage mechanisms are active and consequences are high. This will provide for efficient use of plants resources and improve safety.

Lance, J.J.

1996-12-01T23:59:59.000Z

142

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

2010): Sustainable Manufacturing Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as the creation of manufacturing products that use materials and processes

Dornfeld, David

2011-01-01T23:59:59.000Z

143

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

144

Sustainable Manufacturing Greening Processes, Systems and Products  

E-Print Network [OSTI]

mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

Dornfeld, David

2010-01-01T23:59:59.000Z

145

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing Greening Processes, Systemsorimpact low Most sustainable Increaseprocess efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

146

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Alliance of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers...

147

Precision and Energy Usage for Additive Manufacturing  

E-Print Network [OSTI]

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

148

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

149

DOE - Office of Legacy Management -- Titanium Alloys Manufacturing Co Div  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Titanium Alloys Manufacturing Co Titanium Alloys Manufacturing Co Div of National Lead of Ohio - NY 41 FUSRAP Considered Sites Site: TITANIUM ALLOYS MANUFACTURING CO., DIV. OF NATIONAL LEAD OF OHIO (NY.41) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Titanium Alloy Metals Titanium Alloy Manufacturing Division Titanium Alloy Manufacturing (TAM) Division of National Lead Company The Titanium Pigment Co. NL Industries ICD/Niagara NY.41-1 NY.41-2 NY.41-3 Location: Niagara Falls , New York NY.41-1 Evaluation Year: 1993 NY.41-4 Site Operations: Produced commercial grade zirconium tetrachloride; conducted research and development relating to solid metallic hydride moderators; and experimental work relative to the conversion of thorium scrap to anhydrous tetrachloride. NY.41-5

150

Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference  

E-Print Network [OSTI]

economic and environmental sense. Ideally, engineers would aim for the shared space where environmentalProceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2009 August 30 ­ September 2, 2009, San Diego, California, U

Agogino, Alice M.

151

1 Copyright 2011 by ASME This paper presents the vision system and visual processing for  

E-Print Network [OSTI]

1 Copyright © 2011 by ASME ABSTRACT This paper presents the vision system and visual processing for a biomimetic elastic cable-driven quadruped robot Robo- Cat. This paper presents the vision system and visual-level cognition algorithms, software architec- ture and hardware implementation. The system uses two video cameras

Starzyk, Janusz A.

152

Proceedings of PVP2007 2007 ASME Pressure Vessels and Piping Division Conference  

E-Print Network [OSTI]

Proceedings of PVP2007 2007 ASME Pressure Vessels and Piping Division Conference July 22-26, 2007 either to fatigue or environmentally-assisted cracking exacerbated by residual stresses introduced during can have significant effects on the susceptibility of a material to degradation mechanisms

Cambridge, University of

153

Proceedings of the ASME 2012 Joint Rail Conference April 17-19, 2012, Philadelphia, Pennsylvania, USA  

E-Print Network [OSTI]

Proceedings of the ASME 2012 Joint Rail Conference JRC2012 April 17-19, 2012, Philadelphia, and Debakanta Mishra3 Department of Civil and Environmental Engineering University of Illinois at Urbana characteristics, foundation type, ballast settlement from fouling and/or degradation, as well as fill and subgrade

154

1 Copyright 2010 by ASME ROLE OF AUTOMATED SYMBOLIC GENERATION OF EQUATIONS OF MOTION IN  

E-Print Network [OSTI]

-efficient simulation models are vital for rapid design-refinement through iterative simulation- based parametric 1 Copyright © 2010 by ASME ROLE OF AUTOMATED SYMBOLIC GENERATION OF EQUATIONS OF MOTION-Multi-Body-Systems (AMBS) used in various applications. There is also increased interest in the model-based design

Krovi, Venkat

155

Proceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference  

E-Print Network [OSTI]

of design parameters. Three design cases are performed with a low-aspect-ratio steam turbine blade testedProceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference June 14-18, 2010 (Switzerland) Baden, Switzerland ABSTRACT For low-aspect-ratio turbine blades secondary loss reduc- tion

Liu, Feng

156

Proceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference  

E-Print Network [OSTI]

- istic of steam turbine blading in low pressure turbines. The re- sults demonstrate that the designProceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference June 8-12, 2009, Orlando,FL, USA GT2009-60115 THREE-DIMENSIONAL AERODYNAMIC DESIGN OPTIMIZATION OF A TURBINE BLADE BY USING

Liu, Feng

157

ASME Journal of Heat Transfer Vol. 121(3), pp.646-652, 1999  

E-Print Network [OSTI]

#12;3 Introduction Buoyancy-induced convective fluid flow with and without phase change heat transfer1 ASME Journal of Heat Transfer Vol. 121(3), pp.646-652, 1999 Variations of Buoyancy-Induced Mass-change heat transfer in a vertical porous tube heated at a constant heat flux. Experiments were carried out

Zhao, Tianshou

158

IEEE/ASME TRANSACTIONS ON MECHATRONICS 1 Technologies for Powered Ankle-Foot Orthotic  

E-Print Network [OSTI]

IEEEProof IEEE/ASME TRANSACTIONS ON MECHATRONICS 1 Technologies for Powered Ankle-Foot Orthotic-Wecksler, Member, IEEE, William K. Durfee, and G´eza F. Kogler 3 4 Abstract--Ankle-foot orthoses (AFOs) can be used Index Terms--Active assist, ankle-foot orthosis (AFO), fluid17 power, gait.18 I. MOTIVATION19 FOR MOST

Durfee, William K.

159

1 Copyright 2006 by ASME A NUMERICAL ANALYSIS OF GROWING WATER DROPLET INSIDE AN AIR  

E-Print Network [OSTI]

to generate electrical energy while water is produced as a byproduct. Proton Exchange Membrane fuel cells. According to him the flow through the channels on the cathode side of the fuel cell where water is produced1 Copyright © 2006 by ASME A NUMERICAL ANALYSIS OF GROWING WATER DROPLET INSIDE AN AIR SUPPLY

Kandlikar, Satish

160

E-Print Network 3.0 - asme power test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power test Search Powered by Explorit Topic List Advanced Search Sample search results for: asme power test Page: << < 1 2 3 4 5 > >> 1 E U R O P E A N S O U T H E R N O B S E R V...

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Proceedings of IDETC/CIE 2013 ASME 2013 International Design Engineering Technical Conferences &  

E-Print Network [OSTI]

Proceedings of IDETC/CIE 2013 ASME 2013 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference August 4-7, 2013, Portland, USA DETC2013-12620 AUTOMATICALLY INFERRING METRICS FOR DESIGN CREATIVITY Mark Fuge Berkeley Institute of Design Dept. of Mechanical

Fuge, Mark

162

Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference  

E-Print Network [OSTI]

Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2011 August 29-31, 2011, Washington, DC, USA DETC2011-48595 CREATIVITY AND LONG-TERM POTENTIATION: IMPLICATIONS FOR DESIGN Gregory M. Hallihan hallihan@mie.utoronto.ca L

Shu, Lily H.

163

ACC03-ASME0018 Controller Design for Flexible Systems with Friction  

E-Print Network [OSTI]

ACC03-ASME0018 Controller Design for Flexible Systems with Friction: Linear Programming Approach of friction is presented. A linear program- ming technique for finding an optimal control of linear flexible systems is extended to frictional systems. A floating oscillator is used in the development, where

Singh, Tarunraj

164

2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for  

E-Print Network [OSTI]

1 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for Wind as wind blade size has increased. Typical blade joints use paste adhesives several millimeters thick aircraft, which are also of relevance to wind blades in many instances. The strengths of lap-shear and many

165

1 Copyright 2007 by ASME SIMULATION OF OFFSHORE WIND TURBINE RESPONSE FOR  

E-Print Network [OSTI]

1 Copyright © 2007 by ASME SIMULATION OF OFFSHORE WIND TURBINE RESPONSE FOR EXTREME LIMIT STATES P loads for an offshore wind turbine using simulation, statistical extrapolation is the method of choice, for this turbine, a major source of response variability for both the blade and tower arises from blade pitch

Manuel, Lance

166

Proceedings of FEDSM'03: ASME/JSME Joint Fluids Engineering Conference  

E-Print Network [OSTI]

Proceedings of FEDSM'03: 4th ASME/JSME Joint Fluids Engineering Conference Honolulu, Hawaii, USA Reni Raju and Subrata Roy Computational Plasma Dynamics Laboratory Department of Mechanical Engineering is no longer valid as the mean free path of the fluid becomes comparable to the dimension of the system

Roy, Subrata

167

Manufacturing Science and Technology: Organizations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machining Operations Machining Operations Machining Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing & Systems Development Visiting Us AMTTP Center Organizational chart Organizations Our Business areas Manufacturing Science and Technology David Plummer, Director Manufacturing Enterprise Joe M. Harris, Senior Manager Machining Operations Mathew Donnelly, Manager Machining Services Daryl Reckaway, Acting Manager Electronic Fabrication Phillip L. Gallegos, Manager Manufacturing Process Science and Technology Mark F. Smith, Senior Manager Thin Film, Vacuum, and Packaging Mark F. Smith, Acting Manager Organic Materials Mike Kelly, Manager Ceramic and Glass Alex Roesler, Manager

168

Advanced Manufacturing Office: Motor Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

169

Revolutionizing Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

170

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

171

Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development  

SciTech Connect (OSTI)

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Hewes, T.; Peeks, B.

2013-11-01T23:59:59.000Z

172

Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)  

SciTech Connect (OSTI)

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Not Available

2013-11-01T23:59:59.000Z

173

Faculty Position in Mechanical Engineering Additive Manufacturing  

E-Print Network [OSTI]

Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

174

Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components  

E-Print Network [OSTI]

Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

Wisconsin at Madison, University of

175

Plumbing Manufacturer's Institute Ex Parte Communication Regarding...  

Broader source: Energy.gov (indexed) [DOE]

Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department...

176

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

177

Proceedings of the Sixth International ASME Conference on Nanochannels, Microchannels and Minichannels June 23-25, 2008, Darmstadt, Germany  

E-Print Network [OSTI]

Proceedings of the Sixth International ASME Conference on Nanochannels, Microchannels TRANSFER IN MICROSCALE SINGLE PHASE FLOW: A CRITICAL REVIEW Perry L. Young Rochester Institute of Technology PerryLYoung@gmail.com Satish G. Kandlikar Rochester Institute of Technology sgkeme

Kandlikar, Satish

178

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

179

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

180

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machining Machining PDF format (236 kb) MS&T's machining group consists of two departments: Manufacturing Processing, and Manufacturing Processes and Services. The two departments team to build, procure, and assemble unique prototype and production hardware with diverse quality requirements. The in-house capability can manufacture hardware ranging from microscopic to proportions measured in feet and tons. The group's outside contacts and resources are almost boundless. This team's expertise includes: precision machining, welding, fabrication and assembly, aircraft quality sheet metal construction, and explosives machining and assembly. The department can manage a variety of activities: design modifications, in-house fabrication, outside shop selection and surveillance and manufacturing records management.

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High Pressure Hydrogen Tank Manufacturing  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

182

ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

183

Electrolyzer Manufacturing Progress and Challenges  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

184

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

185

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

186

On the performance of the ASM 150 stressed membrane heliostat  

SciTech Connect (OSTI)

A single element, 150 m{sup 2} stressed-membrane central receiver heliostat was designed and manufactured by private German companies engaged in the development of commercial central receiver technology. It was installed at the Spanish-German solar test site, the Plataforma Solar de Almeria (PSA) near Tabernas in southern Spain in spring `95 (Haeger, M. et al., 1995). It is being evaluated together with two Spanish glass-metal heliostats in the frame of an extensive test program through 1996. First results of the test program are the subject of this paper. Results of beam quality measurements, performance tests of the focusing system and power consumption data are presented.

Weinrebe, G. [Plataforma Solar de Almeria, Tabernas (Spain); Schmitz-Goeb, M. [L and C Steinmueller, Gummersbach (Germany); Schiel, W. [Schlaich Bergermann and Partner, Stuttgart (Germany)

1996-12-31T23:59:59.000Z

187

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

Manufacturing for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

188

Demand Activated Manufacturing Architecture  

SciTech Connect (OSTI)

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

189

Petrick Technology Trends Of Manufacturing  

E-Print Network [OSTI]

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: � that firms sophisticated modeling and simulation of both new products and production processes; � that additive

190

Design for manufacturability Design verification  

E-Print Network [OSTI]

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

191

Manufacturing Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

192

Advanced Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

193

Manufacturing Fuel Cell Manhattan Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

194

Manufacturing Data | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Data Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Manufacturing Data These Federal datasets contain a wealth of information for manufacturing - either from information in a single dataset or by combining data from more than one place. This site will be enhanced with the addition of new datasets, and new apps using these datasets, as they are developed. Search Terms Category -Any- Geospatial Items per page 25 50 100 Apply Name Downloads Rating TradeStats Express TradeStats Express provides statistics on U.S. merchandise trade at the national and state levels. Data can also be displayed in maps, graphs, tables, or as exports, imports, and trade balances.... Data Extraction

195

1 Copyright 2014 by ASME A SOFT COMBUSTION-DRIVEN PUMP FOR SOFT ROBOTS  

E-Print Network [OSTI]

reach output flows up to 40 ml/min. Methane (CH4) combustion is used as the actuation source. The pump + 2H2O + 3.76N2 ­ 891kJ/mol (1) where the energy is released as heat. Air was used instead of pure1 Copyright © 2014 by ASME A SOFT COMBUSTION-DRIVEN PUMP FOR SOFT ROBOTS Constantinos Stergiopulos

Wood, Robert

198

Out of Bounds Additive Manufacturing Christopher  

E-Print Network [OSTI]

#12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

Pennycook, Steve

199

Beryllium Manufacturing Processes  

SciTech Connect (OSTI)

This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

Goldberg, A

2006-06-30T23:59:59.000Z

200

Advanced Manufacture of Reflectors  

SciTech Connect (OSTI)

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square a unique capability. The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Manufacturing Policies and Paradigms for Innovation  

Science Journals Connector (OSTI)

...2013 ). 4 About the Advanced Manufacturing Partnership 2.0; www.manufacturing.gov/amp.html. 5 For example , www1.eere.energy.gov/manufacturing/; www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__%28AVM...

William B. Bonvillian

2013-12-06T23:59:59.000Z

202

1 Copyright 2008 by ASME Proceedings of IMECE2008  

E-Print Network [OSTI]

Congress and Exposition November 2-6, 2008, Boston, Massachusetts, USA IMECE2008-68823 A HEAT PLATE LEADING load support and thermal management. The passive concept is based on high thermal conductance heat. Measuring of the axial temperature profile indicates effective spreading of thermal energy, a lowering

Wadley, Haydn

203

1 Copyright #### by ASME Proceedings of IMECE'04  

E-Print Network [OSTI]

Congress California, November13-19, 2004 IMECE2004-60065 A FEEDBACK CONTROLLED CARBON NANOTUBE BASED NEMS-mail: espinosa@northwestern.edu. ABSTRACT A switchable carbon nanotube based nano- electromechanical systems (NEMS) device with close-loop feedback is examined. The device is made of a conductive multi

Espinosa, Horacio D.

204

MEMBERS ONLY | Join | Renew | Shop | About | Contact Us | Home ASME.ORG > News & Public Policy > Press Releases > Research Begun on New Fuel Cell Type  

E-Print Network [OSTI]

SEARCH ASME: MEMBERS ONLY | Join | Renew | Shop | About | Contact Us | Home ASME.ORG > News, the magazine reports on a fuel cell that cleans domestic wastewater while producing electrical energy. This new, takes the high concentration of organic matter found in wastewater and coverts it to energy. "Where

205

MST: Organizations: Precision Meso Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

206

Prototype Design, Manufacturing, and Testing  

Science Journals Connector (OSTI)

Prototyping describes the practical realization of the theoretical concept of the nonimaging Fresnel lens. The steps that are to be taken in order to get a working prototype of the lens manufactured are as fol...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

207

Laser Additive Manufacturing in GE  

Science Journals Connector (OSTI)

There has been an increasing interest given to laser additive manufacturing (LAM) in recent years from across the global. GE has been one of the leading industries engaging in this...

Peng, Henry; Li, Yanmin; Guo, Rui; Wu, Zhiwei

208

Photovoltaics Manufacturing in Developing Countries  

Science Journals Connector (OSTI)

The need for energy sources in the developing countries might be partially satisfied by using photovoltaic power systems in addition to conventional means. A review of photovoltaic manufacturing in developing ...

G. Darkazalli; S. Hogan

1991-01-01T23:59:59.000Z

209

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

210

Fenner acquires PTFE seal manufacturer  

Science Journals Connector (OSTI)

Fenner Plc has announced the acquisition of substantially all of the operating assets and liabilities of EGC, a Houston-based manufacturer of fluoroplastic seals and other related fluoroplastic precision components.

2006-01-01T23:59:59.000Z

211

Funding Opportunity Announcement for Water Power Manufacturing...  

Energy Savers [EERE]

Funding Opportunity Announcement for Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014,...

212

Additive manufacturing: technology, applications and research needs  

Science Journals Connector (OSTI)

Additive manufacturing (AM) technology has been researched and ... complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past...

Nannan Guo; Ming C. Leu

2013-09-01T23:59:59.000Z

213

A Management Strategy for Additive Manufacturing:.  

E-Print Network [OSTI]

??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology. (more)

Zahn, N.Z.

2014-01-01T23:59:59.000Z

214

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

215

Request for Information (RFI): Advanced Manufacturing Office...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Manufacturing Office (AMO) Software Tools Request for Information (RFI): Advanced Manufacturing Office (AMO) Software Tools July 25, 2014 - 1:00pm Addthis Funding: This...

216

Solar Manufacturing Technology 2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization...

217

Autogenic Pressure Reactions for Battery Materials Manufacture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

218

2014 American Energy & Manufacturing Competitiveness Summit in...  

Office of Environmental Management (EM)

Council on Competitiveness 9 of 10 Advanced Manufacturing Office Director Mark Johnson delivers the lunch keynote during the American Energy & Manufacturing Competitiveness...

219

National Electrical Manufacturers Association (NEMA) Response...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

220

Explore Careers in Manufacturing | Department of Energy  

Office of Environmental Management (EM)

in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous...

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Technology Vehicles Manufacturing Loan Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM...

222

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

223

Mother nature as a wire manufacturer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mother nature as a wire manufacturer Mother nature as a wire manufacturer With computational models, scientists see how microbe directs electrons New research shows how electrons...

224

Process systems engineering of continuous pharmaceutical manufacturing  

E-Print Network [OSTI]

Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

Abel, Matthew J

2010-01-01T23:59:59.000Z

225

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor  

E-Print Network [OSTI]

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

Calgary, University of

226

Understanding Manufacturing Energy and Carbon Footprints, October...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

227

Clean Energy Manufacturing Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

228

Approaches for Additive Manufacturing of 3D Electronic Applications  

Science Journals Connector (OSTI)

Abstract Additive manufacturing processes typically used for mechanical parts can be combined with enhanced technologies for electronics production to enable a highly flexible manufacturing of personalized 3D electronic devices. To illustrate different approaches for implementing electrical and electronic functionality, conductive paths and electronic components were embedded in a powder bed printed substrate using an enhanced 3D printer. In addition, a modified Aerosol Jet printing process and assembly technologies adapted from the technology of Molded Interconnect Devices were applied to print circuit patterns and to electrically interconnect components on the surface of the 3D substrates.

J. Hoerber; J. Glasschroeder; M. Pfeffer; J. Schilp; M. Zaeh; J. Franke

2014-01-01T23:59:59.000Z

229

PEM Stack Manufacturing: Industry Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

© 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of where we have been; 2. Where we are today; 3. Where we would like to transition to; 4. Gaps and proposals. AUGUST 2009 P A G E 3 PEM Stack Manufacturing: Cost Overview * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA.

230

Oak Ridge Manufacturing Demonstration Facility (MDF)  

Office of Energy Efficiency and Renewable Energy (EERE)

The Manufacturing Demonstration Facility (MDF) is a collaborative manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

231

Designing a National Network for Manufacturing Innovation  

E-Print Network [OSTI]

Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

232

1 - Honeywell Bull in manufacturing automation  

Science Journals Connector (OSTI)

economy, the manufacturing industry has undergone great changes over the past 25 years. Now, with the expansion of computerised manufacturing control applications, computer manufacturers can meet the specialised needs of the manufacturing community. This paper also examines the CIM architecture at all levels, looks at current standards and at Honeywell Bull as a supplier.

R. Anderson

1988-01-01T23:59:59.000Z

233

Manufacturing Spotlight: Boosting American Competitiveness | Department of  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 - 1:06pm Addthis Libby Wayman Clean Energy Manufacturing Initiative Director Advancing the nation's clean energy manufacturing industry helps to capture the value of U.S. innovation in clean energy technologies, fosters further innovation right here in America, and makes U.S. manufacturers more competitive by reducing their energy costs - all while creating jobs and building a more sustainable planet for future generations. Industry and government are working together to expand American leadership in this sector by bringing new clean energy technologies to the marketplace and making manufacturing processes more energy efficient.

234

E-Print Network 3.0 - asme design engineering Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENGINEERING Summary: engineering. His research interests include computer- aided design, additive manufacturing, and design... IOWA STATE UNIVERSITY DEPARTMENT OF MECHANICAL...

235

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

236

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

237

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

238

Manufacturing Services | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Services Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Services Do you have a new idea? You may need to file a patent to both develop it and protect it. Find out more below. Search for existing patents Apply for a patent Business Owners Getting a business started, established, and growing is difficult. We want to make that easier. Check out the government services below that are available to businesses, and find out more about what's coming with StartUp America. Start a business Access financing Find opportunities to sell products and services to the government Grow your business Help with exporting for beginners and for experts. Shared Facilities Facilities can be a huge factor in whether you create a new product or

239

Manufacturing Energy and Carbon Footprints (2006 MECS)  

Broader source: Energy.gov [DOE]

Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lostand where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

240

Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Report #: DOE/EIA-0573(2005) Released Date: November 2006 Next Release Date: Not applicable Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing Mark Schipper 1 , Energy Information Administration (EIA) Abstract Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Power Quality from the Manufacturers Standpoint  

E-Print Network [OSTI]

Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

McEachern, A.

242

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

243

Big Efficieny for Small Manufacturing  

E-Print Network [OSTI]

Big Efficiency for Small Manufacturing Daniel Trombley American Council for an Energy-Efficient Economy Presented to: Industrial Energy Technology Conference New Orleans, LA May 21, 2014 ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial...-Sized Manufacturers http://www.aceee.org/research-report/ie1401 Daniel Trombley dtrombley@aceee.org www.aceee.org ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 ...

Trombley, D.

2014-01-01T23:59:59.000Z

244

DOE - Office of Legacy Management -- Penn Salt Manufacturing Co Whitemarsh  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Penn Salt Manufacturing Co Penn Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Penn Salt Company PA.20-1 Location: Philiadelphia , Pennsylvania PA.20-1 Evaluation Year: 1987 PA.20-1 Site Operations: Conducted process studies for recovery of uranium from fluoride scrap. PA.20-1 Site Disposition: Eliminated - AEC licensed operation. Potential for residual radioactive contamination considered remote due to limited quantities and scope of operations. PA.20-2 PA.20-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.20-1 Radiological Survey(s): None Indicated

245

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Plant Assessments Plant Assessments Plant-Wide Assessments Plant-wide assessments are one way to work with the DOE Industrial Technologies Program—most companies realize a minimum of $1 million in annual energy savings after just one assessment. Plants are selected through a competitive solicitation process, and agree to a minimum 50% cost-share for implementing the assessment. An industry-defined team conducts an on-site analysis of total energy use and identifies opportunities to save energy in your overall operations and in motor, steam, compressed air, and process heating systems. The recommendations could include implementing emerging technologies that would be particularly effective in your operation. These emerging technologies, although on the forefront of industrial manufacturing, are successful and commercially

246

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013  

Broader source: Energy.gov [DOE]

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

247

Manufacturing Energy and Carbon Footprints  

E-Print Network [OSTI]

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

248

Additive manufacturing method of producing  

E-Print Network [OSTI]

Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

Painter, Kevin

249

Acoustic Emission Monitoring of ASME Section III Hydrostatic Test: Watts Bar Unit 1 Nuclear Reactor  

SciTech Connect (OSTI)

Through the cooperation of the Tennessee Valley Authority, Pacific Northwest Laboratory has installed instrumentation on Watts Bar Nuclear Power Plant Unit 1 for the purpose of test and evaluation of acoustic emission (AE) monitoring of nuclear reactor pressure vessels and piping for flaw detection. This report describes the acoustic emission monitoring performed during the ASME Section III hydrostatic testing of Watts Bar Nuclear Power Plant Unit 1 and the results obtained. Highlights of the results are: Spontaneous AE was detected from a nozzle area during final pressurization. Evaluation of the apparent source of the spontaneous AE using an empirically derived AE/fracture mechanics relationship agreed within a factor of two with an evaluation by ASME Section XI Code procedures. AE was detected from a fracture specimen which was pressure coupled to the 10-inch accumulator nozzle. This provided reassurance of adequate system sensitivity. High background noise was observed when all four reactor coolant pumps were operating. Work is continuing at Watts Bar Unit 1 toward AE monitoring hot functional testing and subsequently monitoring during reactor operation.

Hutton,, P. H.; Taylor,, T. T.; Dawson,, J. F.; Pappas,, R. A.; Kurtz,, R. J.

1982-06-01T23:59:59.000Z

250

Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063  

SciTech Connect (OSTI)

High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikes and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)

Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A. [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd Starkville, MS 39759 (United States)] [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd Starkville, MS 39759 (United States)

2013-07-01T23:59:59.000Z

251

Copyright 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference  

E-Print Network [OSTI]

Copyright © 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference on the strengths of past research at Columbia and North Carolina State on recycling, composting, waste- to-energy of each technology has the potential 1 Proceedings of the 17th Annual North American Waste-to-Energy

Columbia University

252

Proceedings of ASME 2010 4th International Conference on Energy Sustainability May 17-22, 2010 Phoenix, Arizona, USA  

E-Print Network [OSTI]

1 Proceedings of ASME 2010 4th International Conference on Energy Sustainability ES2010 May 17 International Conference on Energy Sustainability ES2010 May 17-22, 2010, Phoenix, Arizona, USA ES2010- 0 #12-22, 2010 Phoenix, Arizona, USA ES2010-90190 CO-DESIGN OF ENERGY-EFFICIENT HOUSING WITH THE PINOLEVILLE

Agogino, Alice M.

253

84 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 11, NO. 1, FEBRUARY 2006 Inertial Vibration Control Using  

E-Print Network [OSTI]

84 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 11, NO. 1, FEBRUARY 2006 Inertial Vibration Control to reduce the vibration experienced by a host structure. Active vibration control systems typically include, the technique of sensorless active shunt control is applied to inertial vibration absorption. An elec- trical

Fleming, Andrew J.

254

1 Copyright 2010 by ASME Proceedings of the 3rd Joint US-European Fluids Engineering Summer Meeting and  

E-Print Network [OSTI]

1 Copyright © 2010 by ASME Proceedings of the 3rd Joint US-European Fluids Engineering Summer CHAMBERS Samira Darvishi Thomas Cubaud Department of Mechanical Engineering, Stony Brook University Stony a variety of complex and reactive fluids. We describe methods for producing and controlling high

Cubaud, Thomas

255

Student Affairs STUDENT CONDUCT  

E-Print Network [OSTI]

Student Affairs CODE OF STUDENT CONDUCT 2014-15 #12;Contents Letter from the Dean of Students ....................................................................ii Binghamton University's Code of Student Conduct Preamble...................... 1 Section I: Rules of Student Conduct.............................................................. 1 Section II: Definitions

Suzuki, Masatsugu

256

Explore Careers in Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

257

Manufacturers' View on Benchmarking and Disclosure  

U.S. Energy Information Administration (EIA) Indexed Site

Association of Electrical and Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax Incentives Shaheen- Portman Benchmarking and Disclosure Bullitt Center Seattle, Washington The Association of Electrical Equipment and Medical Imaging Manufacturers Energy Savings Performance Contracts ESPCs pay for efficiency upgrades with

258

Secure Manufacturing | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secure Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security challenges by providing leadership and direction to perform the following activities: solving unique, high-risk manufacturing problems; eliminating the most difficult manufacturability and development obstacles; protecting classified and proprietary materials, components, and information; developing unique technologies to optimize manufacturing and systems performance; and executing projects cost effectively and with timeliness. Y-12 accomplishes this mission to meet the national security challenges of today and those of the future, with capability and expertise in the following areas:

259

Batteries - Materials Processing and Manufacturing Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Processing and Manufacturing Materials Processing and Manufacturing Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * PHEV40 and AEV 100 possible with success in current R&D * Achievable with Li-ion manufacturing improvements and advanced chemistries in current Li-ion R&D * AEV300 more challenging * Requires manufacturing improvements and materials and chemistry improvements * Quantify benefits/ drawbacks of fast charging vs. increased electrode cost Barriers Interfering with Reaching the Targets * Materials cost * Need: Material synthesis in large quantities/ with increased impurities and broader size distributions or advanced manufacturing * Electrode thickness - manufacturing and performance * Separator cost/ performance/ safety

260

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

262

Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing  

Science Journals Connector (OSTI)

Cleaner production and sustainability are of crucial importance in the field of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologie...

Florent Le Bourhis; Olivier Kerbrat

2013-12-01T23:59:59.000Z

263

MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Broader source: Energy.gov (indexed) [DOE]

MANUFACTURING MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge) Manufacturing 332420 Other Metal Container Manufacturing 332439 Machine Shops 332710 Electroplating, Plating, Polishing, Anodizing, and Coloring 332813 Industrial valve Manufacturing 332911 Other Ordnance and Accessories Manufacturing 332995 All Other Miscellaneous Fabricated Metal Product Manufacturing

264

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

265

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

266

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

267

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

268

ACCEPTED FOR PUBLICATION IN THE IEEE/ASME TRANSACTIONS ON MECHATRONICS, OCTOBER 2008 1 The Sensor-based Random Graph Method  

E-Print Network [OSTI]

ACCEPTED FOR PUBLICATION IN THE IEEE/ASME TRANSACTIONS ON MECHATRONICS, OCTOBER 2008 1 The Sensor. An interesting multi-robot architecture in which robots are guided through the exploration by a market economy

269

Fact Sheet: 48C Manufacturing Tax Credits  

Broader source: Energy.gov (indexed) [DOE]

48C Manufacturing Tax Credits 48C Manufacturing Tax Credits In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act of 2009 included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C Advanced Manufacturing Tax Credit originally provided a 30% investment tax credit to 183 domestic clean energy manufacturing facilities valued at $2.3 billion. Today the IRS has announced the availability of additional 48C allocations, utilizing $150 million remaining tax credits that were never fully monetized by previous awardees. This tax credit program will help build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. These manufacturing facilities will also

270

Objective assessment of manufacturing technology investments  

E-Print Network [OSTI]

Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

Rothman, Craig Jeremy

2012-01-01T23:59:59.000Z

271

FACT SHEET: 48C MANUFACTURING TAX CREDITS  

Office of Energy Efficiency and Renewable Energy (EERE)

The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment.On February 7,...

272

Upcoming Funding Opportunity for Water Power Manufacturing |...  

Energy Savers [EERE]

Water Power Manufacturing Upcoming Funding Opportunity for Water Power Manufacturing March 24, 2014 - 12:00pm Addthis On March 24, 2014, the U.S. Department of Energy (DOE)...

273

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network [OSTI]

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

274

Benefits and Barriers of Smart Manufacturing  

E-Print Network [OSTI]

Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

Trombley, D.; Rogers, E.

2014-01-01T23:59:59.000Z

275

Refrigerator Manufacturers: Order (2013-CE-5341)  

Broader source: Energy.gov [DOE]

DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

276

Building Blocks for the Future of Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the Future of Manufacturing Building Blocks for the Future of Manufacturing Scott Smith 2011.05.04 Even though we grew up on opposite sides of the world, my colleague...

277

SunShot Initiative: Solar Manufacturing Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Manufacturing Technology to Solar Manufacturing Technology to someone by E-mail Share SunShot Initiative: Solar Manufacturing Technology on Facebook Tweet about SunShot Initiative: Solar Manufacturing Technology on Twitter Bookmark SunShot Initiative: Solar Manufacturing Technology on Google Bookmark SunShot Initiative: Solar Manufacturing Technology on Delicious Rank SunShot Initiative: Solar Manufacturing Technology on Digg Find More places to share SunShot Initiative: Solar Manufacturing Technology on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment Physics of Reliability: Evaluating Design Insights for Component

278

QTR Webinar: Chapter 8- Industry and Manufacturing  

Broader source: Energy.gov [DOE]

The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

279

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

280

Manufacturing Energy and Carbon Footprints Scope  

Broader source: Energy.gov [DOE]

List of manufacturing sectors selected for analysis along with North American Industry Classification System (NAICS) code descriptions

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Webinar: Additive Manufacturing for Fuel Cells  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

282

Honda: North American Manufacturing Facilities | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents & Publications Johnson Controls: EISA Presentation MEMA: Comments AZ Automotive...

283

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Broader source: Energy.gov (indexed) [DOE]

application of customized sensor driven modeling, measurement simulation technologies, energy management dashboards and a variety of manufacturing metrics for individual...

284

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network [OSTI]

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

285

Additive manufacturing of metallic tracks on  

E-Print Network [OSTI]

Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

Painter, Kevin

286

Pseudomonas fluorescens -A robust manufacturing platform  

E-Print Network [OSTI]

Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

Lebendiker, Mario

287

e! Science News Semiconductor manufacturing technique holds  

E-Print Network [OSTI]

arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cellse! Science News Semiconductor manufacturing technique holds promise for solar energy Published semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

Rogers, John A.

288

EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING  

E-Print Network [OSTI]

will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

Boyer, Edmond

289

Advanced Initiation Systems Manufacturing Level 2 Milestone Completion Summary  

SciTech Connect (OSTI)

Milestone Description - Advanced Initiation Systems Detonator Design and Prototype. Milestone Grading Criteria - Design new generation chip slapper detonator and manufacture a prototype using advanced manufacturing processes, such as all-dry chip metallization and solvent-less flyer coatings. The advanced processes have been developed for manufacturing detonators with high material compatibility and reliability to support future LEPs, e.g. the B61, and new weapons systems. Perform velocimetry measurements to determine slapper velocity as a function of flight distance. A prototype detonator assembly and stripline was designed for low-energy chip slappers. Pictures of the prototype detonator and stripline are shown. All-dry manufacturing processes were used to address compatibility issues. KCP metallized the chips in a physical vapor deposition system through precision-aligned shadow masks. LLNL deposited a solvent-less polyimide flyer with a processes called SLIP, which stands for solvent-less vapor deposition followed by in-situ polymerization. LANL manufactured the high-surface-area (HSA) high explosive (HE) pellets. Test fires of two chip slapper designs, radius and bowtie, were performed at LLNL in the High Explosives Application Facility (HEAF). Test fires with HE were conducted to establish the threshold firing voltages. pictures of the chip slappers before and after test fires are shown. Velocimetry tests were then performed to obtain slapper velocities at or above the threshold firing voltages. Figure 5 shows the slapper velocity as a function of distance and time at the threshold voltage, for both radius and bowtie bridge designs. Both designs were successful at initiating the HE at low energy levels. Summary of Accomplishments are: (1) All-dry process for chip manufacture developed; (2) Solventless process for slapper materials developed; (3) High-surface area explosive pellets developed; (4) High performance chip slappers developed; (5) Low-energy chip slapper detonator designs; and (6) Low-voltage threshold chip slapper detonator demonstrated.

Chow, R; Schmidt, M

2009-10-01T23:59:59.000Z

290

Sustainable Manufacturing via Multi-Scale, Physics-Based Process...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013 Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

291

Request for Information (RFI): Specific Clean Energy Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

Focus Areas Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Specific Clean Energy Manufacturing Focus Areas Suitable for a Manufacturing...

292

Request for Information (RFI): Clean Energy Manufacturing Topics...  

Broader source: Energy.gov (indexed) [DOE]

Request for Information (RFI): Clean Energy Manufacturing Topics Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Clean Energy Manufacturing Topics...

293

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

294

Private-Public Partnerships for U.S. Advanced Manufacturing  

Broader source: Energy.gov (indexed) [DOE]

Polymer Composite Manufacturing Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing...

295

NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop  

E-Print Network [OSTI]

&D Workshop Fuel Cell Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cell (SOFC) Manufacturing Lines and driving down the cost of fuel cell manufacturing through automation. What are the key technical Membrane Electrode Assembly Manufacturing Hypothetical Fuel Cell Manufacturing Platforms August 11, 2011

296

Microsoft Word - ASME FY08 Fuel Cell Peer Review Report_FINAL.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Host Organization Technology & Management Services, Inc. Steven T. Ostheim (412) 386-6485 Review Panel AMERICAN SOCIETY OF MECHANICAL ENGINEERS Minking K. Chyu, Chair, Peer Review Panel Richard Laudenat, Chair, Peer Review Executive Committee Michael Tinkleman, Director, Research ASME Center for Research and Technology Development (202) 785-7394 Meeting Facilitator and Final Report Ross Brindle, Energetics Incorporated (410) 953-6239 Work Done Under Prime Contract Number DE-AC26-05NT41816 (Subtask 305.01.02.3) FINAL REPORT 2008 STRATEGIC CENTER FOR COAL FUEL CELL PROGRAM PEER REVIEW MEETING Pittsburgh, Pennsylvania April 21-25, 2008 MEETING SUMMARY AND RECOMMENDATIONS REPORT José D. Figueroa NETL Project Manager and Meeting Coordinator

297

American Wind Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

American Wind Manufacturing American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11 6 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas.

298

Proceedings of DETC'02 ASME 2002 Design Engineering Technical Conferences and Computers and  

E-Print Network [OSTI]

technologies such as space frame, lightweight materials, and fuel cell or battery powered motors, which would a graph of its topology, and the optimal decomposition is obtained by combining FEM analyses sophisticated manufacturing methods that would likely result in the higher manufacturing cost. Also, one piece

Saitou, Kazuhiro "Kazu"

299

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

300

Code of Conduct  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Governance » Governance » Ethics, Accountability » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Code of Conduct (505) 667-7506 Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our work, and mutual respect and teamwork. LANL must demonstrate to customers and the public that the Laboratory is accountable for its actions and that it conducts business in a trustworthy manner. What is LANL's Code of Conduct? Charlie McMillan 1:46 Laboratory Director Charlie McMillan introduces the code LANL's Code of Conduct is designed to help employees recognize and

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

JLF Conduct of Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jupiter Laser Facility (JLF) Conduct Of Operations The Conduct of Operations is a set of procedures and guidelines that are put in place to ensure operational safety and security...

302

Design of a demand driven multi-item-multi-stage manufacturing system : production scheduling, WIP control and Kanban implementation  

E-Print Network [OSTI]

The project is conducted in a multi-item-multi-stage manufacturing system with high volume products. The objectives are to optimize the inventory structure and improve production scheduling process. The stock building plan ...

Zhou, Xiaoyu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

303

Recent progress in the photovoltaic manufacturing technology project (PVMaT)  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

Witt, C.E.; Mitchell, R.L.; Thomas, H. (National Renewable Energy Lab., Golden, CO (United States)); Herwig, L.O. (USDOE, Washington, DC (United States)); Ruby, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Sellers, R.

1994-12-09T23:59:59.000Z

304

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Broader source: Energy.gov (indexed) [DOE]

Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

305

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1989-05-23T23:59:59.000Z

306

CONDUCT OF OPERATIONS (CO)  

Broader source: Energy.gov (indexed) [DOE]

CONDUCT OF OPERATIONS (CO) CONDUCT OF OPERATIONS (CO) OBJECTIVE TA-55 SST Facility NNSA ORR Implementation Plan 1 1 CO.1 The formality and discipline of operations is adequate to conduct work safely and programs are inplace to maintain this formality and discipline. (Core Requirement 13) Criteria 1. Programmatic elements of conduct of operations are in place for TA-55 SST operations. 2. The TA-55 SST operations personnel adequately demonstrate the principles of conduct ofoperations requirements during the shift performance period. Approach Record Reviews: Review procedures and other facility documents to verify compliance with conduct of operations principles. Interviews: Interview a sampling of the TA-55 SST associated personnel to validate their understanding of the conduct of operations principles (e.g., procedure usage,

307

Development and application of proposed ASME Section XI Code changes for risk-based inspection of piping  

SciTech Connect (OSTI)

This synopsis has been written to describe a perspective on the development and application of ASME Section XI Code changes for risk-based inspection of piping. The content is specifically related to the use of risk-based technology for Inservice Inspection (ISI) of piping and efforts made to support the ASME Research/Westinghouse Owners Group/Millstone Unit 3 approach for use of this technology. The opinions contained herein may or may not reflect those of the ASME Codes and Standards Committees responsible for these activities. In order to take such a detailed technical subject and put it into an understandable format, the author has chosen to provide an analogy to simplify what is actually taking place. Risk-based technology in the ISI of piping can be likened to the process of making and using specifically ground prescription glasses to allow for better vision. It provides a process to develop and use these uniquely ground glasses that will dynamically focus on all the locations and obstacles within a plant`s piping systems that could cause that plant to trip and fall; more importantly it identifies the locations where the fall could possibly hurt someone else. In this way, Nuclear Safety is being addressed.

West, R.A. [Northeast Utilities Millstone Nuclear Power Station-USA, Hartford, CT (United States)

1996-12-01T23:59:59.000Z

308

Grouping Parts for Multiple Parts Production in Additive Manufacturing  

Science Journals Connector (OSTI)

Abstract Rapid prototyping (RP) has evolved to Additive Manufacturing (AM) in recent years. It can produce functional or end-use parts with small or even medium quantities. And further, due to its unique layer-by-layer construction principle, it can produce different parts at the same time in a same AM machine. To improve the productivity and machine utilization of AM processes under multiple parts production context, this paper propose the conception of Grouping parts. Based on the Group Technology (GT) used in traditional processing technologies, a modified Group Technology for AM under multiple parts manufacturing context is presented. To group parts, a set of key attributes affecting the AM production time, cost, quality and work preparation are identified to represent the parts, and then a Grey Clustering method is adopted to conduct the similarity analysis. A simple case study is presented in the end to illustrate the proposed conception and its methodology.

Yicha Zhang; Alain Bernard

2014-01-01T23:59:59.000Z

309

Software optimization for electrical conductivity imaging in polycrystalline diamond cutters  

SciTech Connect (OSTI)

We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

Bogdanov, G.; Ludwig, R. [Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 (United States); Wiggins, J.; Bertagnolli, K. [US Synthetic, 1260 South 1600 West, Orem, UT 84058 (United States)

2014-02-18T23:59:59.000Z

310

Advanced Manufacturing Office: MotorMaster+  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MotorMaster+ to MotorMaster+ to someone by E-mail Share Advanced Manufacturing Office: MotorMaster+ on Facebook Tweet about Advanced Manufacturing Office: MotorMaster+ on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ on Google Bookmark Advanced Manufacturing Office: MotorMaster+ on Delicious Rank Advanced Manufacturing Office: MotorMaster+ on Digg Find More places to share Advanced Manufacturing Office: MotorMaster+ on AddThis.com... MotorMaster+ This photo shows the inner workings of an industrial electric motor with gears. In the lower left hand corner are the words "MotorMaster+" and underneath are the words "Motor-Driven Systems." Download MotorMaster+ now! Version: 4.01.01 Release Date: September 21, 2010 Release Notes Metric Unit Measurements: No

311

High Pressure Hydrogen Tank Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

312

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electro Microfluidic Dual In-line Package (EMDIP) Electro Microfluidic Dual In-line Package (EMDIP) PDF format (115 kb) EMDIP diagram EMDIP Diagram Microfluidics is experiencing explosive growth in new product developments. Already there are many commercial applications for electro microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of surface micromachined microfluidic devices is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. In order to realize applications for these devices, an efficient method for packaging microfluidic devices is needed. Responding to this need, researchers at Sandia developed the Electro Microfluidic Dual In-Line Package (EMDIP) and the Fluidic Printed Wiring Board (FPWB).

313

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

314

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

315

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welding, Fabrication, & Metal Forming Welding, Fabrication, & Metal Forming PDF format (159 kb) The department consists of three trades: welding; fabrication and assembly; and precision metal forming. These interrelated groups use similar equipment and rely on each other's skills. One stop will get you the service of three reliable trades. The team manufactures and assembles prototype hardware and has the in-house capability of producing hardware with sizes ranging from thumbnail to rail-car. Expertise includes aircraft quality sheet metal construction, certified welding, and assembly. The staff has experience managing a variety of activities: design modification assistance; in-house fabrication; and project management and can work with your engineers to transform sketches and ideas into working prototypes.

316

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

317

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

318

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect (OSTI)

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

319

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

320

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Broader source: Energy.gov (indexed) [DOE]

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Manufacturing Jobs and Innovation Accelerator Challenge |  

Broader source: Energy.gov (indexed) [DOE]

Technical Assistance » Advanced Manufacturing Jobs and Innovation Technical Assistance » Advanced Manufacturing Jobs and Innovation Accelerator Challenge Advanced Manufacturing Jobs and Innovation Accelerator Challenge October 10, 2013 - 12:01pm Addthis The Advanced Manufacturing Jobs and Innovation Accelerator Challenge (Accelerator) is a multi-agency sponsored competition established to enhance existing regional networks of firms and institutions that accelerate technology-related innovation, business formation, and job creation. Funding provided to these regional networks (also called clusters) help academia, utilities, local governments, and private industry and investors expand partnerships, share strategic information more efficiently, and reduce costs by leveraging existing assets and resources (like physical facilities and equipment).

322

Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...  

Broader source: Energy.gov (indexed) [DOE]

SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify...

323

Moving towards green and sustainable manufacturing  

Science Journals Connector (OSTI)

The pressing needs of energy, water and other resource conservation worldwide is ... a major engineering challenge. In manufacturing, developing green technologies (from process and tooling to the ... manufacturi...

David Alan Dornfeld

2014-01-01T23:59:59.000Z

324

Oak Ridge Centers for Manufacturing Technology - Partnership...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in result from Jack Cook making contacts with some of the people who experienced the Oak Ridge Centers for Manufacturing Technology firsthand. Here is his introduction...

325

Oak Ridge National Laboratory Manufacturing Demonstration Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

326

Oak Ridge Centers for Manufacturing Technology ? testimonials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testimonials The first testimonial for the successful Oak Ridge Centers for Manufacturing Technology came from Mitchell Burnett. Mitch was among the first hourly paid employees, an...

327

Fiber Reinforced Polymer Composite Manufacturing Workshop  

Office of Energy Efficiency and Renewable Energy (EERE)

A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss manufacturing of composites. The workshop explored emerging FRP composite market applications in clean energy and barriers to the development and widespread commercial use of these lightweight, high-strength and high-stiffness materials. Improving the manufacturing speed and quality-and reducing their manufacturing costs-could accelerate their use in automotive, wind, compressed gas storage and other clean energy and industrial applications.

328

Manufacturing Success Stories | Department of Energy  

Office of Environmental Management (EM)

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers Assessment center has helped Colorado companies save...

329

Federal Energy and Manufacturing Workforce Training Programs...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

manufacturing related workforce training programs. Funded by the National Science Foundation, the Department of Labor and the Department of Energy these programs provide...

330

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

Precision Manufacturing, LCA, Machining, SustainabilityNOMENCLATURE API = CMOS = GWP = LCA = LCI = Mfg = MRR = RoHSLife Cycle Assessment (LCA). The following sections will

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

331

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TX National Center for Manufacturing Sciences Ann Arbor, MI Nimbis Services McLean, VA Praxair Tonawanda, NY Rockwell Automation Milwaukee, WI For additional information, please...

332

Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop  

Broader source: Energy.gov (indexed) [DOE]

Blue Team B (Washington II & III) - Manufacturing Process Technology Facilitators - Kelly Visconti and Steve Sikirica; Note taker - Theresa Miller Red Team (Madison Room) -...

333

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

334

PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING  

Broader source: Energy.gov [DOE]

A briefing to the Secretary's Energy Advisory Board on the clean energy manufacturing delivered by David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy.

335

National Network for Manufacturing Innovation: A Preliminary...  

Energy Savers [EERE]

capabilities from all the partners to build the proving grounds where innovations flourish and to help advance American domestic manufacturing. nstcnnmiprelimdesignfinal.pdf...

336

Composite Tube Trailer Design/Manufacturing Needs  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

337

Manufacturing Barriers to High Temperature PEM Commercialization  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

338

Supplemental Comments of the Plumbing Manufacturers Instititute...  

Broader source: Energy.gov (indexed) [DOE]

Supplemental Comments of the Plumbing Manufacturers Instititute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016...

339

American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

340

Laser and Intelligent Energy Field Manufacturing  

Science Journals Connector (OSTI)

Laser has demonstrated many important applications, including machining, welding, surface treating, additive manufacturing etc. Multiple hybrid processes had been developed, including...

Zhang, Wenwu

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fiber Reinforced Polymer Composite Manufacturing Workshop: Summary...  

Energy Savers [EERE]

for carbon fiber, including bio-based materials or natural gas; lower energy conversion of white fiber to carbon fiber; and composite manufacturing. Dr. Johnson then...

342

Manufacturing Ecosystems and Keystone Technologies (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

343

Additive Manufacturing: Current Status and Future Prospects  

Science Journals Connector (OSTI)

The potential implications of additive manufacturing or 3D printing technology are being recognized across a number ... wider adoption of and greater business value from 3D printing.

Jyotirmoyee Bhattacharjya; Sonali Tripathi

2014-01-01T23:59:59.000Z

344

Solar Manufacturing Incentive Grant (SMIG) Program  

Broader source: Energy.gov [DOE]

Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

345

Green Manufacturing Initiative Annual Report 2010  

E-Print Network [OSTI]

Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

de Doncker, Elise

346

A National Strategic Plan For Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

across hundreds of sites and thousands of users through conventional social network media and (2) deploy digitally programmable manufacturing equipment to 1,000 high schools....

347

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

348

2014 Manufacturing Energy and Carbon Footprints: Definitions...  

Broader source: Energy.gov (indexed) [DOE]

and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

349

Advanced Materials and Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

350

Manufacturing Licenses Available | Tech Transfer | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Manufacturing SHARE Manufacturing 200401490 Production of Materials with Superior Properties Utilizing High Magnetic Field (Related ID # 200501531, 200701867, 200802085, 200902312, 201002455, 201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID # 200701983, 200802088) 200701972 Manufacturing Biodiesel from Triglycerides (Related ID # 200702012, 200802186) 200701983 Meso-scale Fluidic Digital Valve 200802083 A Hydraulic Flow Control Device by Means of a Digital Poppet Valve 200802088 Miniature shape memory alloy fluid control valve 200902224 Glass Drawing for Wire Arrays 200902231 Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods 200902291 Method of Machining Carbon and Graphite foams 200902309 Multi-Winding Homopolar Electric Machine Offers

351

High conductance surge cable  

DOE Patents [OSTI]

An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

1998-12-08T23:59:59.000Z

352

High conductance surge cable  

DOE Patents [OSTI]

An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

Murray, Matthew M. (Espanola, NM); Wilfong, Dennis H. (Brooksville, FL); Lomax, Ralph E. (Santa Fe, NM)

1998-01-01T23:59:59.000Z

353

Research Conduct Policies  

Office of Science (SC) Website

Research Conduct Policies Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB)...

354

Manufacturer-To-Retailer versus Manufacturer-To-Consumer Rebates in a Supply Chain  

Science Journals Connector (OSTI)

Starting with a newsvendor model (single-product, single-period, stochastic demand), we build a single-retailer, single-manufacturer supply chain with endogenous manufacturer rebates and retail pricing. The deman...

Goker Aydin; Evan L. Porteus

2009-01-01T23:59:59.000Z

355

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering  

E-Print Network [OSTI]

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering University of Windsor F.A. Salustri, Department of Mechanical, Aerospace, and Industrial Engineering, Ryerson University To appear, Research in Engineering Design, Springer

Salustri, Filippo A.

356

Modeling of additive manufacturing process relevant feature in layer based manufacturing process planning  

Science Journals Connector (OSTI)

Compared with general machining processes, additive manufacturing (AM) process has stabler planning route ... approach is applied to the process planning of additive manufacturing in this paper. The concept of ....

Xi-juan Liu ???

2012-04-01T23:59:59.000Z

357

A Vehicle Manufacturers Perspective on Higher-Octane Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturers Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

358

Impact evaluation for the Manufactured Housing Acquisition Program: Technical appendix  

SciTech Connect (OSTI)

This document supplements the Manufactured Housing Acquisition Program (MAP) impact evaluation report, Lee et al. (1995). MAP is a voluntary energy-efficiency program for HUD-code manufactured homes conducted in the Pacific Northwest beginning in April 1992. Pacific Northwest Laboratory (PNL) prepared this and the impact evaluation reports for the Bonneville Power Administration (Bonneville). Lee et al. (1995) presents the objectives, methodology, and findings of the program evaluation. This report presents more details about specific aspects of the analysis. The authors used a three-tier approach to analyze the energy consumption of MAP and baseline homes. Chapter 2 discusses Tier 1, the billing data and simplified regression analysis. Chapter 3 presents the details of the Tier 2 analysis, the PRInceton Scorekeeping Method (PRISM). Chapter 4 presents details of the primary analysis technique that they used, a comprehensive regression analysis. Chapter 5 and 6 review two other studies of energy savings associated with MAP. Chapter 5 discusses the simulation model analysis conducted by Ecotope, Inc. Chapter 6 reviews the analysis by Regional Economic Research conducted for three Pacific Northwest investor-owned utilities. The final chapter, Chapter 7, presents details of the Bonneville levelized cost methodology used to estimate the cost of energy savings associated with MAP. Results are presented and discussed in many cases for the three different climate zones found in the Pacific Northwest. 18 refs., 29 tabs.

Lee, A.D.; Taylor, Z.T.; Schrock, D.W.; Kavanaugh, D.C.; Chin, R.I.

1995-10-01T23:59:59.000Z

359

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain  

E-Print Network [OSTI]

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain Goker Aydin rebates and retail pricing. The demand uncertainty is multiplicative, and the expected demand depends on the effective (retail) price of the product. A retailer rebate goes from the manufacturer to the retailer

Aydin, Goker

360

Watfactory Virtual Manufacturing Process Varying Inputs  

E-Print Network [OSTI]

with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

Zhu, Mu

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biologically inspired mutual synchronization of manufacturing machines  

E-Print Network [OSTI]

Biologically inspired mutual synchronization of manufacturing machines Erjen Lefeber,a,1 , Herman machine is developed. This control system is based on a synchronization mechanism of enzymes replacing of a single turnover cycle. In manufacturing, batch machines serve several jobs simultaneously, e.g., heat

Armbruster, Dieter

362

A Global Assessment of Manufacturing: Economic  

E-Print Network [OSTI]

A Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions Keywords production, materials, closed loop, China, emerging economies Abstract We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon

Gutowski, Timothy

363

Mechanical and Manufacturing Engineering Petroleum Engineering Minor  

E-Print Network [OSTI]

Mechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major program. This minor builds on the fundamentals provided by a basis in mechanical engineering and adds

Calgary, University of

364

Evaluating Energy Efficiency Improvements in Manufacturing Processes  

E-Print Network [OSTI]

and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

Boyer, Edmond

365

Simulation Model Driven Engineering for Manufacturing Cell  

E-Print Network [OSTI]

Simulation Model Driven Engineering for Manufacturing Cell Hironori Hibino1 , Toshihiro Inukai2 Abstract. In our research, the simulation model driven engineering for manufacturing cell (SMDE on the simulation model and to extend the range of control applications and simulation applications using the PC

Paris-Sud XI, Université de

366

D0 Silicon Upgrade: ASME Code and Pressure Calculations for Liquid Nitrogen Subcooler  

SciTech Connect (OSTI)

Included in this engineering note are three separate calculation divisions. The first calculations are the determination of the required thickness of the LN{sub 2} subcooler flat head according to ASME code. This section includes Appendix A-C. The minimum plate thickness determined was 0.563 in. The actual thickness chosen in fabrication was a 3/4-inch plate milled to 0.594-inch at the bolt circle. Along with the plate thickness, this section calculates the required reinforcement area at the top plate penetrations. It was found that a 1/4-inch fillet weld at each penetration was adequate. The next set of calculations were done to prove that the subcooler internal pressure will always be less than 15 psig and therefore will not be classified as a pressure vessel. The subcooler is always open to a vent pipe. Appendix D calculations show that the vent pipe has a capacity of 1042 lbs/hr if 15 psig is present at the subcooler. It goes on to show that the inlet piping would at that flow rate, see a pressure drop of 104 psig. The maximum supply pressure of the LN{sub 2} storage dewar is 50 psig. Appendix E addresses required flow rates for steady state, loss of vacuum, or fire conditions. Page E9 shows a summary which states the maximum pressure would be 1.50 psig at fire conditions and internal pressure.

Kuwazaki, Andrew; Leicht, Todd; /Fermilab

1995-10-04T23:59:59.000Z

367

Low Temperature PEM Fuel Cell Manufacturing Needs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PEM Fuel Cell PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project  Cost drivers were identified for the following: * MEA * Plates * Balance of Plant (BOP) * Fuel Processing Manufacturing Fuel Cell Project - Phase 1 Note that this presentation will be MEA centric as this is the working group I represent...  MEA Cost Drivers Identified: Identifying MEA Cost Drivers * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA. Thus, focus cost reduction efforts on MEA manufacturing methods. Identify gaps in MEA manufacturing technology: How much better can we do? Note: Cost reductions realized from both material price reduction

368

Manufacturing News and Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing News and Blog Manufacturing News and Blog Manufacturing News and Blog Blog Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 3:53 PM From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. Read The Full Story Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 1:06 PM Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. Read The Full Story Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory

369

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Broader source: Energy.gov (indexed) [DOE]

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

370

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) |  

Broader source: Energy.gov (indexed) [DOE]

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) May 28, 2010 DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards. DOE determined the product was noncompliant based on the company's own testing. Summit must immediately notify each person (or company) to whom Summit distributed the noncompliant products that the product does not meet Federal standards. In addition, Summit must provide to DOE documents and records showing the number of units Summit distributed and to whom. The manufacturer and/or

371

Revitalizing American Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Revitalizing American Manufacturing Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | Secretary Chu Secretary Chu Former Secretary of Energy "The Department of Energy has long been charged with accelerating energy

372

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Broader source: Energy.gov (indexed) [DOE]

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

373

Logistics implications of electric car manufacturing  

Science Journals Connector (OSTI)

The increasingly important role of electric cars manufacturing needs to develop new logistics concepts in automotive industry. This article analyses critical issues in logistics operations of electric cars based on the in-house perspective of the car manufacturer. The purpose of this paper is two-fold. Firstly, to verify existing research about the impact of electric car manufacturing on logistics operations. Secondly, to investigate concrete logistics implications based on different electric car operations models. Therefore, we use manufacturing phenotypes, which can be applied to separate and classify configuration and coordination principles and helps to reach a better understanding of relationships with their logistics implications. The presented model is based on real case study data of global auto industry and supports the academic study of cross-site comparisons. A holistic and consistent understanding of different operations types in electric car manufacturing will be necessary, which will help in evaluating the actual and future supply chain forms in the car industry.

Florian Klug

2014-01-01T23:59:59.000Z

374

Manufacturing Innovation Multi-Topic Workshop  

Broader source: Energy.gov [DOE]

DOEs Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently released AMO Request for Information (RFI) and a recently amended OSD ManTech RFI. AMO and OSD ManTech sought to know more about the challenges associated with advanced manufacturing technology that potentially could be overcome by pre-competitive collaboration as part of a Manufacturing Innovation Institute.

375

A measurement infrastructure for sustainable manufacturing  

Science Journals Connector (OSTI)

Global resource degradation, climate change, and environmental pollution are worsening due to increasing globalised industrialisation. Manufacturing industries have thus been put under pressure to cope with these problems while maintaining competitiveness. Sustainable manufacturing has been proposed to meet these challenges. The measurement of sustainability in manufacturing enables the quantitative measure of sustainability performance in specific manufacturing processes that will support decision-making for more sustainable processes and products. This paper describes a proposed sustainable manufacturing measurement infrastructure. The centre piece of this infrastructure is a sustainability performance management component that will effectively manage a sustainable indicator repository, measurement process guidelines, and sustainability performance analysis, evaluation, and reporting. The sustainability measurement infrastructure provides a foundation for decision-making tools development and enables users to create a tight integration into business strategy development processes. Examples in this paper are on carbon emissions and energy consumption.

Shaw C. Feng; Che B. Joung

2011-01-01T23:59:59.000Z

376

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

377

Manufacturing and testing VLPC hybrids  

SciTech Connect (OSTI)

To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of {+-}0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.

Adkins, L. R.; Ingram, C. M.; Anderson, E. J. [Guidance, Navigation and Sensors, Boeing (United States)

1998-11-09T23:59:59.000Z

378

Alternative Fuels Data Center: Clean Energy Manufacturing Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Energy Clean Energy Manufacturing Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Google Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Delicious Rank Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Energy Manufacturing Grants The Clean Energy Manufacturing Incentive Grant Program provides financial

379

Electrically conductive material  

DOE Patents [OSTI]

An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

1993-01-01T23:59:59.000Z

380

Electrically conductive material  

DOE Patents [OSTI]

An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

1993-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future  

E-Print Network [OSTI]

Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

Brock, David

382

Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Workshop: A Summary of Research Directions  

E-Print Network [OSTI]

Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Louis A. Martin-Vega Lehigh University Abstract: A workshop sponsored by NSF on Manufacturing Logistics for Manufacturing Logistics was defined. In this paper, we summarize future research directions in manufacturing

Wu, David

383

Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs |  

Broader source: Energy.gov (indexed) [DOE]

Energetx Composites: Retooling Manufacturing, Creating Michigan Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs July 23, 2012 - 4:58pm Addthis Using its fiberglass technology expertise and a grant from the Energy Department's State Energy Program (SEP), Energetx Composites was able to shift its operations to producing wind turbine blades. | Photo courtesy of Energetx Composites. Using its fiberglass technology expertise and a grant from the Energy Department's State Energy Program (SEP), Energetx Composites was able to shift its operations to producing wind turbine blades. | Photo courtesy of Energetx Composites. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What does this mean for me?

384

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Broader source: Energy.gov (indexed) [DOE]

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

385

DOE Hydrogen Analysis Repository: PEMFC Manufacturing Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PEMFC Manufacturing Cost PEMFC Manufacturing Cost Project Summary Full Title: Manufacturing Cost of Stationary Polymer Electrolyte Membrane (PEM) Fuel Cell Systems Project ID: 85 Principal Investigator: Brian James Keywords: Costs; fuel cells; stationary Performer Principal Investigator: Brian James Organization: Directed Technologies, Inc. (DTI) Address: 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 Telephone: 703-243-3383 Email: brian_james@directedtechnologies.com Period of Performance End: November 1999 Project Description Type of Project: Analysis Category: Cross-Cutting Objectives: Estimate the cost of the fuel cell system using the Directed Technologies, Inc. cost database built up over the several years under U.S. Department of Energy and Ford Motor Company contracts.

386

The ergonomic design of workstations using virtual manufacturing and response surface methodology  

E-Print Network [OSTI]

The ergonomic design of workstations using virtual manufacturing and response surface methodology- nomic and ergonomic results, a comprehensive study of the task at hand must be conducted and several time and productivity; and (ii) ergonomic measures such as energy exertion, posture analysis

Ben-Gal, Irad E.

387

Microsoft PowerPoint - D-R ASME-IGTI-DOE CO2 5-15-07.pps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compression Compression Carbon Dioxide Compression Harry Miller, Product Manager - Marketing ASME - IGTI Turbo Expo May 15, 2007 © Copyright 2006 Safe Harbor Disclosure Safe Harbor Disclosure Some of the information contained in this document contains "forward-looking statements". In many cases, you can identify forward-looking statements by terminology such as "may," "will," "should," "expects," "plans," "anticipates," "believes," "estimates," "predicts," "potential," or "continue," or the negative of such terms and other comparable terminology. These forward-looking statements are only predictions and as such inherently included risks and uncertainties. Actual events or results may differ materially as

388

Energy analysis of manufacturing process of a motorcycle  

Science Journals Connector (OSTI)

Energy analysis of a production unit helps to quantify the energy consumed at different stages, thus providing estimates of energy and material wastage, if any. From the general principles of energy analysis involving mass conversion efficiencies and the energy inputs at various stages of the production process of a motorcycle producing industry, namely Honda Motorcycle and Scooter India Pvt. Limited (HMSI), a methodology has been evolved to conduct a detailed energy analysis leading to the energy content (primary energy consumption per unit weight of the product) of the motorcycle. To facilitate the energy analysis, the whole production process has been divided into three main sub-processes, namely, frame production, engine production, and the assembly and inspection stages. Confining to the energy and material input within the premises of the industry, the energy content of the vehicle has been found to be 12.24 MJ/kg of vehicle weight. Out of the three stages, the frame manufacturing stage is found to be most energy intensive. Within frame manufacturing, the paint shop itself accounted for 87% of energy consumption. The results of this analysis, besides their use for identification of energy intensive areas, can also be used for conducting life cycle analysis.

Archak Patnayak; Narendra Kumar Bansal; Jyotirmay Mathur

2004-01-01T23:59:59.000Z

389

Improving Green Manufacturing Education in China Universities and Colleges  

Science Journals Connector (OSTI)

Green manufacturing is the irresistible development trend of manufacturing industries throughout the world, and green manufacturing education plays an extremely significant part in the process of going green for ...

Li Chen; Qing-chun Xiang

2014-01-01T23:59:59.000Z

390

Research and Applications of Cloud Manufacturing in China  

Science Journals Connector (OSTI)

In order to improve the produce efficiency of enterprises, scholars put forward many manufacturing modes, such as agile manufacturing, gridding manufacturing, and industry 4.0, IPS2, and so on. These manufacturin...

Bo Hu Li; Lin Zhang; Xudong Chai; Fei Tao

2014-01-01T23:59:59.000Z

391

Additive manufacturing and its societal impact: a literature review  

Science Journals Connector (OSTI)

Thirty years into its development, additive manufacturing has become a mainstream manufacturing process. Additive manufacturing build up parts by adding materials one ... parts on-demand. Its advantages over conv...

Samuel H. Huang; Peng Liu; Abhiram Mokasdar

2013-07-01T23:59:59.000Z

392

Additive Manufacturing Technologies for Enhancing the Development Process of Biodevices  

Science Journals Connector (OSTI)

A new set of manufacturing techniques and technologies has appeared in the ... by the name of rapid prototyping and manufacturing technologies. They are usually based on additive manufacturing processes and a...

Andrs Daz Lantada; Pilar Lafont Morgado

2013-01-01T23:59:59.000Z

393

High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

394

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION  

E-Print Network [OSTI]

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

Schumacher, Russ

395

Faculty Position in Ultra High Precision Robotics & Manufacturing  

E-Print Network [OSTI]

, manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

Candea, George

396

CONDUCTING A RECORDS INVENTORY  

Broader source: Energy.gov (indexed) [DOE]

PROCEDURE FOR CONDUCTING A RECORDS INVENTORY PROCEDURE FOR CONDUCTING A RECORDS INVENTORY Revision 1 10/31/07 Approved by: DOE Records Management Division, IM-23 PROCEDURE FOR CONDUCTING A RECORDS INVENTORY 1. GENERAL. A records inventory is compiling a descriptive list of each record series or system, including the location of the records and any other pertinent data. A records inventory is not a list of each document or each folder. 2. DEFINE THE RECORDS INVENTORY GOAL(S). The goals of a records inventory should be to: a. Gather information for scheduling purposes; b. Prepare for conversion to other media or to identify the volume of classified and/or permanent records in your organization's custody; and c. Identify any existing shortcomings, deficiencies, or problems with

397

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

398

Summit Manufacturing: Noncompliance Determination (2010-SE-0303)  

Broader source: Energy.gov (indexed) [DOE]

the the Matter of: Summit Manufacturing, Inc. Case Number 2010-SE-0303 NOTICE OF NONCOMPLIANCE DETERMINATION CERTIFICATION Manufacturers of certain covered products are required to certify compliance with the applicable energy conservation standards through submission of a compliance statement and a certification report. 10 CFR § 430.62. See 42 U.S.C. 6296 . The compliance statement is a legal statement by the manufacturer that the information provided in its certification reports is true , accurate and complete, that the basic models certified meet the applicable energy conservation standard, that the energy efficiency information report is the result of testing performed in conformance with the applicable test requirements in 10 CFR part 430, subpart B; and that the manufacturer is

399

Advanced Methods for Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methods for Manufacturing Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and construction processes (both technologies and methods) and show the most promise in shortening timelines and lowering overall deployment costs. The innovations selected for further development under the AMM program will collectively provide a major means of moving the U.S. nuclear industry from

400

Aurora Photovoltaics Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Aurora Photovoltaics Manufacturing Aurora Photovoltaics Manufacturing Jump to: navigation, search Name Aurora Photovoltaics Manufacturing Place Lawrenceville, New Jersey Zip 8648 Sector Solar Product A subsidiary of EPV solar, based in New Jersey, focused on manufacturing of PV cells. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Leitner Shriram Manufacturing Ltd | Open Energy Information  

Open Energy Info (EERE)

Leitner Shriram Manufacturing Ltd Leitner Shriram Manufacturing Ltd Jump to: navigation, search Name Leitner Shriram Manufacturing Ltd Place Chennai, Tamil Nadu, India Zip 600095 Sector Wind energy Product Chennai-based JV between Leitwind and Shriram EPC with the purpose of manufacturing MW-class wind turbines. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Manufacturing Research & Technologies | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research & Technologies Research & Technologies Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Research & Technologies It's clear that the government is working across a wide spectrum to help build the capabilities needed to support American manufacturers. Some agencies have very specific initiatives to help in this area. The National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Directorate supports research and education projects that (a) explore the foundations of computing and communication devices and their usage, (b) invent new computing and networking technologies and that explore new ways to make use of existing technologies and (c) explore the

403

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Miraial formerly Kakizaki Manufacturing Miraial formerly Kakizaki Manufacturing Jump to: navigation, search Name Miraial (formerly Kakizaki Manufacturing) Place Tokyo, Japan Zip 171-0021 Product Manufacturer of wafer handling products and other components for the global semiconductor industry. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Cost modeling for monoclonal antibody manufacturing  

E-Print Network [OSTI]

The Novartis BioPharmOps division is responsible for manufacturing large molecule products, including monoclonal antibodies, for late stage clinical trials and commercial sales. The BioPharmOps site in Huningue, France is ...

Simpson, Christina M. (Christina Margaret)

2011-01-01T23:59:59.000Z

405

Exergy Efficiency Definitions for Manufacturing Processes  

Science Journals Connector (OSTI)

The original application of thermodynamic metrics for manufacturing processes has been under development throughout the last decade. The metrics are based on the second law of thermodynamics. Therefore, the exergy

Renald; Karel Kellens; Wim Dewulf

2011-01-01T23:59:59.000Z

406

Clean Energy Technology Device Manufacturers' Credits (Delaware)  

Broader source: Energy.gov [DOE]

Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

407

A haptic stencil for manufacturing applications  

E-Print Network [OSTI]

The haptic stencil consists of a 5 DOF haptic device and an anti-collision algorithm that acts as a geometric stencil and can be used for a variety of applications ranging from training to rapid prototyping and manufacturing. ...

Mansukhani, Kirti Ramesh, 1981-

2004-01-01T23:59:59.000Z

408

Level schedule implementation in unstable manufacturing environments  

E-Print Network [OSTI]

American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

Lpez de Haro, Santiago

2008-01-01T23:59:59.000Z

409

4D printing : towards biomimetic additive manufacturing  

E-Print Network [OSTI]

Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

Tsai, Elizabeth Yinling

2013-01-01T23:59:59.000Z

410

Solid-State Lighting Manufacturing Workshop  

Broader source: Energy.gov [DOE]

Nearly 200 lighting industry leaders, chip makers, fixture and component manufacturers, and others gathered in Fairfax, Virginia, on April 21 and 22, 2009, for the first-ever DOE Solid-State...

411

American Energy and Manufacturing Competitiveness Summit Introduction...  

Broader source: Energy.gov (indexed) [DOE]

costs. Our labor costs for manufacturing are lower than many other countries like Germany and Japan. And third we have a good technology infrastructure. We can put all of...

412

Requirements & Status for Volume Fuel Cell Manufacturing  

E-Print Network [OSTI]

Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July ­Eliminate components, parts and process steps ­Standardize core components across products ­Standardize non-core

413

Cost Effective Cooling Strategies for Manufacturing Facilities  

E-Print Network [OSTI]

Industrial plants are designed for a specific purpose of manufacturing products or a group of products in the most cost effective way. One factor which is often very poorly addressed is the environmental requirements for the workplace. Environmental...

Kumar, R.

414

Industrial Activities at DOE: Efficiency, Manufacturing, Process...  

Energy Savers [EERE]

Process, and Materials R&D Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the...

415

Stronger Manufacturers' Energy Efficiency Standards for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

416

Association of Home Appliance Manufacturers Comment  

Broader source: Energy.gov [DOE]

The Association of Home Appliance Manufacturers (AHAM) respectfully submits the following comments to the Department of Energy (DOE) on its Regulatory Burden RFI, 79 Fed. Reg. 37963 (July 3, 2014).

417

Cycle to Cycle Manufacturing Process Control  

E-Print Network [OSTI]

Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

Hardt, David E.

418

Sandia National Laboratories: Numerical Manufacturing And Design...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NuMAD (Numerical Manufacturing And Design) is an open-source software tool written in Matlab which simplifies the process of creating a three-dimensional model of a wind turbine...

419

Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

420

Steam System Improvements at a Manufacturing Plant  

E-Print Network [OSTI]

BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

Compher, J.; Morcom, B.

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pollution from drug manufacturing: review and perspectives  

Science Journals Connector (OSTI)

...19] and Europe [9,14] as pollution sources, with concentrations of...the picture of pharmaceutical pollution from manufacturing is still highly...for some drugs, possibly even air pollution. 2. Effect studies A number of...

2014-01-01T23:59:59.000Z

422

Analyzing sampling methodologies in semiconductor manufacturing  

E-Print Network [OSTI]

This thesis describes work completed during an internship assignment at Intel Corporation's process development and wafer fabrication manufacturing facility in Santa Clara, California. At the highest level, this work relates ...

Anthony, Richard M. (Richard Morgan), 1971-

2004-01-01T23:59:59.000Z

423

Advanced Technology Vehicles Manufacturing (ATVM) Loan Program  

Broader source: Energy.gov [DOE]

The Advanced Technology Vehicles Manufacturing (ATVM) loan program was established inSection 136 of the Energy Independence and Security Act of 2007to support the production of fuel-efficient,...

424

Energy Department Trains Veterans in Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the first 24 participants marked the successful completion of the Advanced Manufacturing Internship program, a pilot effort sponsored by the U.S. Department of Energys (DOE) Office of Energy Efficiency and Renewable Energy (EERE).

425

Validation of Gene Therapy Manufacturing Processes  

Science Journals Connector (OSTI)

Specific issues of concern in the validation of gene therapy viral vector manufacturing processes include quality of raw materials, safety testing of cell and viral banks, production and purification of the ve...

Dominick Vacante; Gail Sofer; Stephen Morris

2002-01-01T23:59:59.000Z

426

Risk management practices in global manufacturing investment  

E-Print Network [OSTI]

the company of devout bring to a man.(NITI SHATAKAM of Bhartrihari, Sanskrit Poet, 6th Century) ii ABSTRACT This thesis explores risk management practices in global manufacturing investment. It reflects the growing internationalisation of manufacturing... (Narula & Dunning, 2000). Many academic publications and global institutions reports reflect this an increase in globalisation. UNCTAD reports the positive impact of globalisation across the world. This report states the difference in per capita...

Kumar, Mukesh

2010-07-06T23:59:59.000Z

427

Energetic additive manufacturing process with feed wire  

DOE Patents [OSTI]

A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

2000-11-07T23:59:59.000Z

428

Global manufacturing model and case studies  

E-Print Network [OSTI]

chain network. 3. 7 Level of firm's global manufacturing competitiveness. . . . 3. 8 A typical unit-cost curve. . 3. 9 Ford Fiesta production network in Western Europe. . . . . . . 35 38 39 42 3. 10 Integrated information system, 51 3. 11 World..., Japan, and Europe. 4. 1 Hofstede's scores of USA and Mexico. 91 4. 2 Average daily wage plus benefits and taxes by occupation. . . . 94 CHAPTER I INTRODUCTION Black & Decker, a $5 billion U. S. -based manufacturer of hand tools, provides an example...

Kijtawesataporn, Komsun

2012-06-07T23:59:59.000Z

429

Manufacturing Environment in the Year 2000  

E-Print Network [OSTI]

-l's Advanced Technical Planning Committee and the major companies they represent have evaluated the content and direction. Leading professionals in the CIM field have endorsed this paper as well as contributed to its content. Companies such as Hughes... have been eliminated; the walls between manufacturing; engineering, ma ket ing and finance have been replaced with one cohesive system that works ...CIM ...Computer Inte grated Manufacturing. I i Numerous architectures have been designed :hat...

Slautterback, W. H.

430

Duracold Refrigeration Manufacturing: Order (2013-CE-5342) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Duracold Refrigeration Manufacturing: Order (2013-CE-5342) Duracold Refrigeration Manufacturing: Order (2013-CE-5342) Duracold Refrigeration Manufacturing: Order (2013-CE-5342) April 25, 2013 DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Duracold Refrigeration Manufacturing. Duracold Refrigeration Manufacturing: Order (2013-CE-5342) More Documents & Publications Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) North Star Refrigerator: Order (2013-CE-5355) Schott Gemtron: Order (2013-CE-5358

431

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov/manufacturing Advanced Manufacturing Next-Generation Manufacturing As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future.

432

A Review of Engineering Research in Sustainable Manufacturing  

E-Print Network [OSTI]

focused on sustainable processes and systems. Despite recentto make their processes more sustainable, evaluating theirManufacturing Process Design for Sustainable Manufacturing,

2013-01-01T23:59:59.000Z

433

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

434

PEM Stack Manufacturing: Industry Status | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

American Energy and Manufacturing Competitiveness Summit Low Temperature PEM Fuel Cell Manufacturing Needs A Total Cost of Ownership Model for Low Temperature PEM Fuel...

435

Slice Contour Modification in Additive Manufacturing for Minimizing Part Errors.  

E-Print Network [OSTI]

??Additive Manufacturing (AM) is a process of manufacturing parts by combining layers of materials which are deposited on top of each other. AM processes have (more)

Sharma, Kunal

2014-01-01T23:59:59.000Z

436

Webinar: Additive Manufacturing for Fuel Cells | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Additive Manufacturing for Fuel Cells Webinar: Additive Manufacturing for Fuel Cells February 11, 2014 5:00PM to 6:00PM EST Online...

437

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

438

Miracle Wind Power Components Manufacture Co Ltd | Open Energy...  

Open Energy Info (EERE)

Miracle Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name: Miracle Wind Power Components Manufacture Co Ltd Place: Wuxi, Jiangsu Province, China Sector:...

439

EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

4: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn,...

440

U.S. Offshore Wind Manufacturing and Supply Chain Development...  

Office of Environmental Management (EM)

U.S. Offshore Wind Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical...

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Download the presentation slides from the "Joint...

442

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalys...

443

DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...  

Office of Environmental Management (EM)

Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

444

Energy Department to Work with National Association of Manufacturers...  

Office of Environmental Management (EM)

to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase...

445

Design for manufacturability with regular fabrics in digital integrated circuits  

E-Print Network [OSTI]

Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

Gazor, Mehdi (Seyed Mehdi)

2005-01-01T23:59:59.000Z

446

Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA...  

Energy Savers [EERE]

Polymer Composite Manufacturing - RFI Part 2 DE-FOA-0001056: Summary of Responses Clean Energy Manufacturing Innovation Institute for Composite Materials And Structures Webinar...

447

$23.5 Million Investment in Innovative Manufacturing Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative March 26, 2013 - 9:56am Addthis As part of the President's effort "to guarantee that the next...

448

Manufacturing Pre-Solicitation Transcript | Department of Energy  

Office of Environmental Management (EM)

Transcript Manufacturing Pre-Solicitation Transcript Transcript from the US DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting presolicitationtranscript.pdf...

449

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...  

Office of Environmental Management (EM)

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

450

Preliminary Fuel Cell Manufacturing R&D Topics | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preliminary Fuel Cell Manufacturing R&D Topics Preliminary Fuel Cell Manufacturing R&D Topics Preliminary draft research topics subject to revision prior to a soliciatation being...

451

20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

452

Proceedings from the Wind Manufacturing Workshop: Achieving 20...  

Office of Environmental Management (EM)

Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind...

453

Manufacturers of Noncompliant Products Agree to Civil Penalties...  

Energy Savers [EERE]

Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action Showerhead Manufacturer Agrees to Civil Penalty to Resolve Enforcement Action Two Manufacturers Agree to...

454

Indian Wind Turbine Manufacturers Association | Open Energy Informatio...  

Open Energy Info (EERE)

Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

455

AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA  

Broader source: Energy.gov [DOE]

AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.

456

AMO Issues Request for Information on Clean Energy Manufacturing...  

Energy Savers [EERE]

Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications AMO Issues Request for Information on Clean Energy Manufacturing Topics,...

457

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

458

References and Appendices: U.S. Manufacturing Energy Use and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis REFERENCES AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012a. Consider...

459

Metal and Glass Manufacturers Reduce Costs by Increasing Energy...  

Broader source: Energy.gov (indexed) [DOE]

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

460

Unlocking the Potential of Additive Manufacturing in the Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry PDF includes slides from...

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Upcoming Webinar February 11: Additive Manufacturing for Fuel...  

Broader source: Energy.gov (indexed) [DOE]

February 11: Additive Manufacturing for Fuel Cells Upcoming Webinar February 11: Additive Manufacturing for Fuel Cells February 6, 2014 - 12:00am Addthis On Tuesday, February 11,...

462

Energy Department Launches New Clean Energy Manufacturing Initiative |  

Broader source: Energy.gov (indexed) [DOE]

New Clean Energy Manufacturing New Clean Energy Manufacturing Initiative Energy Department Launches New Clean Energy Manufacturing Initiative March 26, 2013 - 10:56am Addthis News Media Contact (202) 586-4940 OAK RIDGE - As part of the Obama Administration's commitment to revitalizing America's manufacturing sector, today the Energy Department launched the Clean Energy Manufacturing Initiative (CEMI), a new Department initiative focused on growing American manufacturing of clean energy products and boosting U.S. competitiveness through major improvements in manufacturing energy productivity. The initiative includes private sector partnerships, new funding from the Department, and enhanced analysis of the clean energy manufacturing supply chain that will guide the Department's future funding decisions.

463

1 Copyright 2001by ASME We describe a Java process editor to assist designers with the  

E-Print Network [OSTI]

]. Sensors, actuators and other components are embedded to create robust, integrated designs [Cham, et al deposition manufacturing, but understand the functional and physical requirements of their designs, to guide that allows designers to guide the decomposition process. The approach draws upon previous work on a "design

Cutkosky, Mark

464

A novel methodology of design for Additive Manufacturing applied to Additive Laser Manufacturing process  

Science Journals Connector (OSTI)

Abstract Nowadays, due to rapid prototyping processes improvements, a functional metal part can be built directly by Additive Manufacturing. It is now accepted that these new processes can increase productivity while enabling a mass and cost reduction and an increase of the parts functionality. However, the physical phenomena that occur during these processes have a strong impact on the quality of the produced parts. Especially, because the manufacturing paths used to produce the parts lead these physical phenomena, it is essential to considerate them right from the parts design stage. In this context, a new numerical chain based on a new design for Additive Manufacturing (DFAM) methodology is proposed in this paper, the new DFAM methodology being detailed; both design requirements and manufacturing specificities are taken into account. The corresponding numerical tools are detailed in the particular case of thin-walled metal parts manufactured by an Additive Laser Manufacturing (ALM) process.

Remi Ponche; Olivier Kerbrat; Pascal Mognol; Jean-Yves Hascoet

2014-01-01T23:59:59.000Z

465

A Quantitative Study of the Impact of Additive Manufacturing in the Aircraft Spare Parts Supply Chain.  

E-Print Network [OSTI]

??Additive manufacturing is a promising manufacturing technology which is finding its way into mainstream manufacturing industry. As compared to conventional manufacturing it has a number (more)

Mokasdar, Abhiram S., M.S.

2012-01-01T23:59:59.000Z

466

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cq523_150.GIF (12759 bytes) cq523_150.GIF (12759 bytes) Study of inclusion effect on encapsulation stress Encapsulation Many of the components we work with are encapsulated in either highly filled epoxies or in foams of varying density. Encapsulation is performed for a variety of reasons, including high voltage standoff, shock and vibration isolation, stress relief, environmental isolation, etc. We not only perform encapsulation, but we conduct research into the component-encapsulation adhesive bond, fracture of the adhesive bond, the stress developed during cure, cure kinetics of the encapsulant material, and the effect of inclusions on the bulk stress field. We have worked to develop more environmentally friendly substitutes for the traditional epoxies and foams. We can help you choose an encapsulant material,

467

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

Angell, C.A.; Liu, C.

1996-04-09T23:59:59.000Z

468

Conduct of Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 2, dated 12-3-14, cancels Admin Chg 1.

2010-06-29T23:59:59.000Z

469

Sporting Good Manufacturing Company: Optimal Manufacturing and Shipping Cost Through Linear Programming Models  

E-Print Network [OSTI]

Figure 15: Example Transshipment Model.............................................................................. 18 vi List of Principal Symbols and Nomenclature SGMC Sporting Good Manufacturing Company LP Linear Programming CEO Chief... Executive Officer COO Chief Operation Officer PKR Pakistani Rupees EMGT Engineering Management O.F. Objective Function A i No. of bats manufactured in factory i; where i = k, l BB i No. of Stumps manufactured in factory i; where i = k, l C i No...

Malik, Ejaz

2009-05-15T23:59:59.000Z

470

DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS  

SciTech Connect (OSTI)

Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

M. M. Wu

2005-02-01T23:59:59.000Z

471

The Future of Manufacturing Takes Shape: 3D Printed Car on Display at Manufacturing Summit  

Office of Energy Efficiency and Renewable Energy (EERE)

This week in Washington, leaders in science, industry, and manufacturing gathered at the Energy Departments 2014 American Energy and Manufacturing Competitiveness Summit, jointly sponsored by the Council on Competitiveness. Also at the Summit was the world's first 3-D printed vehicle chassis, an innovation that resulted from a collaboration between Arizona-based Local Motors, Cincinnati Incorporated, and the Oak Ridge National Laboratorys Manufacturing Demonstration Facility (MDF) with the funding support of The Energy Departments Advanced Manufacturing Office.

472

Small Manufacturer Strategic Decision Making Assistance Tool (SMSDM): a Case Study of a Small Oklahoma Manufacturer.  

E-Print Network [OSTI]

??The propose was to design an informative analytical tool for small Oklahoma manufacturing firms that would assist in their strategic planning and decision making processes. (more)

Robertson, William D.

2011-01-01T23:59:59.000Z

473

The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office  

Broader source: Energy.gov [DOE]

This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization.

474

TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX  

E-Print Network [OSTI]

result is a material with high electrical conductivity and low thermal conductivity. Transport Models,2 , J. Rozen3 Introduction Thermal and electrical transport through a low-conductivity matrix containing conversion devices high electrical conductivity and low thermal conductivity are preferred for superior

Walker, D. Greg

475

Paper DS-14-1028 to appear in the Special Issue on Stochastic Models, Control and Algorithms in Robotics, ASME Journal of Dynamic Systems, Measurement and Control  

E-Print Network [OSTI]

in Robotics, ASME Journal of Dynamic Systems, Measurement and Control Robot Path Planning in Uncertain the problem of goal-directed robot path-planning in the presence of uncertainties that are induced by bounded) in the presence of uncertainties. 1. MOTIVATION AND INTRODUCTION In general, path planning of robots (e

Ray, Asok

476

Under Review for Publication in ASME J. Solar Energy Engineering SOL-12-1058 Life Estimation of Pressurized-Air Solar-Thermal Receiver Tubes  

E-Print Network [OSTI]

for a Brayton-cycle engine are challenging, and lack a large body of operational data unlike steam plants. WeUnder Review for Publication in ASME J. Solar Energy Engineering SOL-12-1058 Life Estimation estimates showed that the Brayton engine's turbine inlet temperature needs to be at least 1100 K

Tomkins, Andrew

477

Dynamic Updating Procedures in the ASM for the RCA III Hong-Il Lim, William Nayda, Bruce McCarl and Jay Atwood  

E-Print Network [OSTI]

of primary corn demand. Corn can also be wetmilled into starch, ethanol, corn oil, and corn syrup production and demand growth for use in the Agricultural Sector Model (ASM). The purpose of this procedure is to forecast demand and production in the future as part of the RCA III project. These parameters were

McCarl, Bruce A.

478

Manufacturing Change at the John Deere Harvester Works: Report on the Visit of the Ad Hoc Lean Aircraft Initiative Team, June 7, 1994  

E-Print Network [OSTI]

On June 7, 1994, an Ad Hoc team from LAI visited John Deere to conduct an informal benchmark of John Deere's successful change to Leaner Manufacturing. This report summarizes the results of that trip, as well as summarizing ...

Stahl, Fred

479

Low Temperature Proton Conductivity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and and MEAs at Freezing Temperatures Thomas A. Zawodzinski, Jr. Case Western Reserve University Cleveland, Ohio 2 Freezing Fuel Cells: Impact on MEAS Below 0 o C *Transport processes/motions slow down: questions re: lower conductivity,water mobility etc *Residual water will have various physical effects in different portions of the MEA questions re: durability of components 3 3 'States' of Water in Proton Conductors ? Freezing (bulk), bound freezable, bound non freezable water states claimed based on DSC * Freezing water more mobile, allegedly important for high conductivity Analysis common for porous systems Does the presence of these states matter? Why? 4 'State of Water' in PEMs At T < 0 o C *'Liquid-like' water freezes *'Non-freezing' fraction: water of solvation at pore

480

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactures asm conducted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Super ionic conductive glass  

DOE Patents [OSTI]

An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

Susman, Sherman (Park Forest, IL); Volin, Kenneth J. (Fort Collins, CO)

1984-01-01T23:59:59.000Z

482

Integrated Manufacturing for Advanced MEAs  

SciTech Connect (OSTI)

This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOEs 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

2007-03-30T23:59:59.000Z

483

Conduction cooled tube supports  

DOE Patents [OSTI]

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

484

Pushing the Envelope: A Case Study of Building the First Manufactured Home Using Structural Insulated Panels  

SciTech Connect (OSTI)

This paper for the ACEEE Summer Study describes construction of the first manufactured home ever produced from structural insulated panels. The home was built in July 2000 by Champion Enterprises at its Silverton, Oregon, plant. The house was completed on the assembly line in 9 days including a 300-mile road test. The paper examines the design and approval process leading to the project, the manufacturing process and its adjustment to SIPs, and the transportation and energy performance of the house after it was built. PNNL coordinated this project and conducted long-term monitoring on the house. The WSU Energy Program conducted building diagnostics testing once the house was occupied. PNNLs and WSUs involvement was funded by the U.S. DOE Building America Program. The Oregon Office of Energy conducted blower door and duct blaster tests. The completed home was estimated to reduce energy consumption by 50% and to have twice the structural strength required by HUD code for manufactured homes. The demonstration proved that the manufactured home production line could support SIPs production simultaneously with traditional construction and without major modifications, the line work in parallel with SIPs and traditional materials. The project revealed severl possibilities for further improving cost and time savings with SIPs construction, that might translate into increased capacity.

Baechler, Michael C.; Hadley, Donald L.; Sparkman, Ronald; Lubliner, Michael

2002-06-01T23:59:59.000Z

485

Thermal conductivity of the insulation system of the stator winding of a high-power turbogenerator with air cooling  

Science Journals Connector (OSTI)

Values of the thermal-conductivity coefficient of specimens of the frame insulation manufactured from pre- and unimpregnated, mica-containing tapes are determined. It is established that the tape structure, te...

A. Sh. Azizov; A. M. Andreev; A. M. Kostelov

2009-03-01T23:59:59.000Z

486

LightManufacturing | Open Energy Information  

Open Energy Info (EERE)

LightManufacturing LightManufacturing Jump to: navigation, search Logo: LightManufacturing Name LightManufacturing Address 855 4th Street Place California Zip 93449 Sector Solar Product heliostat, helisotats, sun trackers, solar thermal manufacturing systems. Year founded 2009 Number of employees 11-50 Company Type For Profit Phone number 415 796-6475 Website http://www.lightmanufacturings Coordinates 35.135012°, -120.6228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.135012,"lon":-120.6228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Teksun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Teksun PV Manufacturing Inc Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name Teksun PV Manufacturing Inc Address 401 Congress Ave Place Austin, Texas Zip 78701 Sector Solar Product Plan to manufacture large scale PV panels for utility scale solar power parks Website http://www.teksunpv.com/ Coordinates 30.266402°, -97.742959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.266402,"lon":-97.742959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

488

Faculty Position in Multi-scale Manufacturing Technologies  

E-Print Network [OSTI]

-precision additive manufacturing technologies; � multi-scale micro-precision manufacturing; � high throughput. Christian Enz Search Committee Chair E-mail: manufacturing-search@epfl.ch For additional information on EPFLFaculty Position in Multi-scale Manufacturing Technologies at the Ecole polytechnique f�d�rale de

Psaltis, Demetri

489

Manufacturing Energy and Carbon Footprint Definitions and Assumptions, October 2012  

Broader source: Energy.gov [DOE]

Definitions of parameters and table of assumptions for the Manufacturing Energy and Carbon Footprint

490

Turmoil in Traditional Industry: Prospects for Nonmetropolitan Manufacturing  

E-Print Network [OSTI]

During the last three decades, nonmetropolitan America has been relatively successful in recruiting and nurturing manufacturing activity. Yet with this success, rural America has realized that a development strategy focused on manufacturing, especially manufacturing in branch plants, will likely disappoint. There are simply too few new or relocating manufacturing plants to satisfy all communities interested. In addition, nonmetro manufacturers have exhibited characteristics different from manufacturers in general, characteristics that have dampened potential positive influences on the local economy. Nonmetropolitan manufacturers have been disproportionately lowwage operations with few opportunities for professional

L. Barkley

491

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on AddThis.com... More in this section... Federal State

492

Chiral Conductivities of Nanotubes  

Science Journals Connector (OSTI)

Chiral conductivities of nanotubes are examined within the framework of the Boltzmann transport equation. Electron transport along a chiral trajectory is decomposed into current components along the tubule axis and its circumference. Within a constant relaxation time approximation, these components are derived from the expectation values of Fermi velocities by using the appropriate operators and the wave functions at the Fermi level obtained by first-principles calculations. As a typical example, the chiral current of a doped BC2N tubule is illustrated, and the strength of the induced magnetic field is discussed.

Yoshiyuki Miyamoto; Steven G. Louie; Marvin L. Cohen

1996-03-18T23:59:59.000Z

493

Alternative Fuels Data Center: Battery Manufacturing Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Battery Manufacturing Battery Manufacturing Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Google Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Delicious Rank Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Battery Manufacturing Tax Incentives For taxation purposes, the taxable fair market value of manufacturing

494

Goodman Manufacturing: Noncompliance Determination (2011-SE-4301) |  

Broader source: Energy.gov (indexed) [DOE]

Noncompliance Determination (2011-SE-4301) Noncompliance Determination (2011-SE-4301) Goodman Manufacturing: Noncompliance Determination (2011-SE-4301) October 17, 2011 DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing . Goodman must immediately notify each person (or company) to whom Goodmany distributed the noncompliant products that the product does not meet Federal standards. In addition, Goodman must provide to DOE documents and records showing the number of units Goodman distributed and to whom. The manufacturer and/or private labeler of the product may be subject to civil

495

Manufacturer Voluntarily Reports Noncompliance | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance June 28, 2012 - 9:05am Addthis Cooper Power Systems, LLC ("Cooper"), a wholly-owned subsidiary of Cooper Industries notified the U.S. Department of Energy's ("DOE") Office of Enforcement that it had distributed three noncompliant basic models (five total units) of liquid-immersed distribution transformers in U.S. commerce. Each of these models failed to meet the minimum level of efficiency required by DOE regulations. Cooper discovered that it had distributed the noncompliant basic models when preparing its first certification report under new DOE regulations. Cooper immediately notified DOE of the noncompliance and requested guidance on corrective

496

Wind Manufacturing Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Manufacturing Tax Credit Wind Manufacturing Tax Credit Wind Manufacturing Tax Credit < Back Eligibility Commercial Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate No specific per project limitation; 100 million limit for all offshore wind tax credits (may be exceeded if EDA deems appropriate) Program Info Start Date 08/19/2010 State New Jersey Program Type Industry Recruitment/Support Rebate Amount 100% of the qualified capital investment Provider New Jersey Economic Development Authority In August 2010 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2010/Bills/AL10/57_.PDF S.B. 2036]) creating an offshore wind resource requirement within the [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NJ05R&re... state renewables portfolio standard (RPS)] and tax incentives for certain

497

Semiconductor Manufacturing International Corp SMIC | Open Energy  

Open Energy Info (EERE)

Manufacturing International Corp SMIC Manufacturing International Corp SMIC Jump to: navigation, search Name Semiconductor Manufacturing International Corp (SMIC) Place Shanghai, Shanghai Municipality, China Zip 201203 Sector Solar Product Semiconductor group launching solar cell production from its recycled silicon wafers. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect (OSTI)

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

499

A Simple Audio Conductivity Device  

Science Journals Connector (OSTI)

A Simple Audio Conductivity Device ... To solve these problems, the authors have built a simple audio conductivity device that is very sensitive to current flow. ...

Gregory Berenato; David F. Maynard

1997-04-01T23:59:59.000Z

500

Conductivity fuel cell collector plate and method of fabrication  

DOE Patents [OSTI]

An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

Braun, James C. (Juno Beach, FL)

2002-01-01T23:59:59.000Z