Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

2

Solar and Wind Manufacturing Incentive  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturers of solar or wind equipment or components in Kansas may be eligible for financing through the Kansas Department of Commerce to support research, development, engineering or...

3

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global...

4

Wind Manufacturing Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Tax Credit Wind Manufacturing Tax Credit Wind Manufacturing Tax Credit < Back Eligibility Commercial Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate No specific per project limitation; 100 million limit for all offshore wind tax credits (may be exceeded if EDA deems appropriate) Program Info Start Date 08/19/2010 State New Jersey Program Type Industry Recruitment/Support Rebate Amount 100% of the qualified capital investment Provider New Jersey Economic Development Authority In August 2010 New Jersey enacted legislation ([http://www.njleg.state.nj.us/2010/Bills/AL10/57_.PDF S.B. 2036]) creating an offshore wind resource requirement within the [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NJ05R&re... state renewables portfolio standard (RPS)] and tax incentives for certain

5

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

6

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: Mon,...

7

Wind Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Alternative Fuel Vehicles --Batteries --Biofuels --Clean Cities -Building Design --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind...

8

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Wind Manufacturing American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11 6 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas.

9

Exploring the Wind Manufacturing Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring the Wind Manufacturing Map Exploring the Wind Manufacturing Map August 15, 2012 - 5:01pm Addthis America's wind energy industry supports a growing domestic industrial...

10

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

11

Wind power manufacturing and supply chain summit USA.  

Science Conference Proceedings (OSTI)

The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

Hill, Roger Ray

2010-12-01T23:59:59.000Z

12

Wind Energy Manufacturing Tax Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Manufacturing Tax Incentive Wind Energy Manufacturing Tax Incentive Wind Energy Manufacturing Tax Incentive < Back Eligibility Commercial Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate Up to 100% income tax exemption Program Info Start Date 1/1/2008 Expiration Date 12/31/2033 State Arkansas Program Type Industry Recruitment/Support Rebate Amount Varies, depending on amount invested and other factors Provider Arkansas Economic Development Commission With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or components. A full income tax exemption is available for business that meet certain criteria, including locating in the state before December 31, 2007. Businesses that

13

EPAct at One Event - Clipper Wind Manufacturing Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPAct at One Event - Clipper Wind Manufacturing Facility EPAct at One Event - Clipper Wind Manufacturing Facility EPAct at One Event - Clipper Wind Manufacturing Facility August 2, 2006 - 8:37am Addthis Remarks for Energy Secretary Samuel Bodman Thank you, Tom, for the introduction. I enjoyed my tour of your new manufacturing facility this morning, and am very excited about the tremendous strides being made here in the development of wind turbine technology, and its integration into our national economy. I'd also like to thank Senator Grassley for his ardent support for increasing the amount of windpower in the U.S. and especially his leadership on the production tax credit for renewable energy. Congressman Leach and Congressman Nussle have also provided unwavering support to this industry and to this region. Their staffs are represented here and I thank

14

Iskra Wind Turbine Manufacturers Ltd | Open Energy Information  

Open Energy Info (EERE)

Iskra Wind Turbine Manufacturers Ltd Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name Iskra Wind Turbine Manufacturers Ltd Place Nottingham, United Kingdom Sector Wind energy Product Iskra manufactures and markets the AT5-1 home-sized wind turbine rated at 5.3 kW, suitable for low wind speeds. References Iskra Wind Turbine Manufacturers Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iskra Wind Turbine Manufacturers Ltd is a company located in Nottingham, United Kingdom . References ↑ "Iskra Wind Turbine Manufacturers Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Iskra_Wind_Turbine_Manufacturers_Ltd&oldid=347129" Categories: Clean Energy Organizations

15

Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Yeelong Wind Power Equipment Manufacturing Co Ltd Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place Hebei Province, China Sector Wind energy Product China-based wind turbine equipment manufacturer. References Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd is a company located in Hebei Province, China . References ↑ "[ Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hebei_Yeelong_Wind_Power_Equipment_Manufacturing_Co_Ltd&oldid=346424

16

Miracle Wind Power Components Manufacture Co Ltd | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Miracle Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name Miracle Wind...

17

NREL: Wind Research - Providing Incentives to Help Grow Small...  

NLE Websites -- All DOE Office Websites (Extended Search)

Providing Incentives to Help Grow Small Wind: Wind Powering America Lessons Learned February 25, 2013 Wind Powering America asked Mark Mayhew, small wind program manager for the...

18

Energy Report: U.S. Wind Energy Production and Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing...

19

Providence Heights Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Providence Heights Wind Farm Facility Providence Heights Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Midwest Wind Energy Location Bureau County IL Coordinates 41.264075°, -89.580853° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.264075,"lon":-89.580853,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Tax Credit for Manufacturers of Small Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit for Manufacturers of Small Wind Turbines Tax Credit for Manufacturers of Small Wind Turbines Tax Credit for Manufacturers of Small Wind Turbines < Back Eligibility Industrial Savings Category Wind Buying & Making Electricity Program Info Start Date 01/01/03 State Oklahoma Program Type Industry Recruitment/Support Rebate Amount Based on square footage of rotor swept area: 25.00/ft^2 for 2005 through 2012 Provider Oklahoma Tax Commission '''''Note: After a 2 year moratorium on all state tax credits, this credit may be claimed for tax year 2012 and subsequent tax years, for small wind turbines manufactured on or after July 1, 2012.''''' Oklahoma offers an income tax credit to the manufacturers of small wind turbines for tax years 2003 through 2012. Oklahoma manufacturers of wind turbines with a rated capacity of between 1 kilowatt (kW) and 50 kW are

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wind Turbine Manufacturers in the United States: Locations and Local Impacts (Presentation)  

SciTech Connect

Suzanne Tegen's presentation about U.S. wind energy manufacturing (presented at WINDPOWER 2010 in Dallas) provides information about challenges to modeling renewables; wind energy's economic "ripple effect"; case studies about wind-related manufacturing in Colorado, Iowa, Ohio, and Indiana; manufacturing maps for the Great Lakes region, Arkansas, and the United States; sample job announcements; and U.S. Treasury Grant 1603 funding.

Tegen, S.

2010-05-26T23:59:59.000Z

22

Property:WindTurbineManufacturer | Open Energy Information  

Open Energy Info (EERE)

WindTurbineManufacturer WindTurbineManufacturer Jump to: navigation, search This is a property of type Page. Pages using the property "WindTurbineManufacturer" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + Northern Power Systems + A AB Tehachapi Wind Farm + Vestas + AFCEE MMR Turbines + GE Energy + AG Land 1 + GE Energy + AG Land 2 + GE Energy + AG Land 3 + GE Energy + AG Land 4 + GE Energy + AG Land 5 + GE Energy + AG Land 6 + GE Energy + AVTEC + Northern Power Systems + Adair Wind Farm I + Vestas + Adair Wind Farm II + Siemens + Adams Wind Project + Alstom + Aeroman Repower Wind Farm + GE Energy + Affinity Wind Farm + Suzlon Energy Company + Agassiz Beach Wind Farm + Vestas + Agriwind Wind Farm + Suzlon Energy Company + Ainsworth Wind Energy Facility + Vestas +

23

U.S. Offshore Wind Manufacturing and Supply Chain Development  

SciTech Connect

The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nations land-based wind market. Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

Hamilton, Bruce Duncan [Navigant Consulting, Inc.

2013-02-22T23:59:59.000Z

24

Exploring the Wind Manufacturing Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Map Wind Manufacturing Map Exploring the Wind Manufacturing Map August 15, 2012 - 5:01pm Addthis America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? The domestic wind manufacturing industry has grown dramatically in the last 5 years, and now nearly 70 percent of the turbines installed in the United States are built here. The growth of the wind energy industry in the United States includes an expanding domestic manufacturing base, with 13 facilities that opened in 2010 and an additional 16 in 2011. These and older facilities are visualized by the map above using data collected by the National

25

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

DOE Green Energy (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

26

Nordex Dongying Wind Power Equipment Manufacturing Co Ltd | Open...  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Nordex Dongying Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Nordex...

27

Wind Energy In America: Supporting Our Manufacturers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In America: Supporting Our Manufacturers In America: Supporting Our Manufacturers Wind Energy In America: Supporting Our Manufacturers August 16, 2012 - 10:01am Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11

28

Manufactured Home Testing in Simulated and Naturally Occurring High Winds  

SciTech Connect

A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for stick built structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was sponsored by the US Department of Energy, US Department of Housing and Urban Development, and the Manufactured Housing Institute. The results of this research can lead to savings in annual losses of life and property by providing validated information to enable the advancement of code requirements and by developing engineering software that can predict and optimize wind resistance.

W. D. Richins; T. K. Larson

2006-08-01T23:59:59.000Z

29

Astraeus Wind Modifies Manufacturing in Michigan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan Astraeus Wind Modifies Manufacturing in Michigan May 14, 2010 - 3:35pm Addthis Lindsay Gsell When the assembly line was introduced to the automobile industry, everything changed. Cars were produced in less time with fewer errors, and each one was exactly the same as the last. As a result, the industry boomed. Astraeus Wind LLC hopes to bring this type of success to wind turbine manufacturing by standardizing the blade manufacturing process. The company wants to experiment with new materials to strengthen the blades while creating an automated process to assemble them, creating identical blades in a fast, efficient manner. CEO Jeff Metts says standardizing this process will help ensure each blade has the same measurements, lower the amount of time needed for production

30

Beijing Goldwind Kechuang Wind Turbine Manufacturer | Open Energy  

Open Energy Info (EERE)

Goldwind Kechuang Wind Turbine Manufacturer Goldwind Kechuang Wind Turbine Manufacturer Jump to: navigation, search Name Beijing Goldwind Kechuang Wind Turbine Manufacturer Place Beijing, Beijing Municipality, China Zip 100000 Sector Wind energy Product A manufacturer set up by Goldwind in Beijing for producing wind turbines. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Wind Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams...

32

Wind turbine composite blade manufacturing : the need for understanding defect origins, prevalence, implications and reliability.  

DOE Green Energy (OSTI)

Renewable energy is an important element in the US strategy for mitigating our dependence on non-domestic oil. Wind energy has emerged as a viable and commercially successful renewable energy source. This is the impetus for the 20% wind energy by 2030 initiative in the US. Furthermore, wind energy is important on to enable a global economy. This is the impetus for such rapid, recent growth. Wind turbine blades are a major structural element of a wind turbine blade. Wind turbine blades have near aerospace quality demands at commodity prices; often two orders of magnitude less cost than a comparable aerospace structure. Blade failures are currently as the second most critical concern for wind turbine reliability. Early blade failures typically occur at manufacturing defects. There is a need to understand how to quantify, disposition, and mitigate manufacturing defects to protect the current wind turbine fleet, and for the future. This report is an overview of the needs, approaches, and strategies for addressing the effect of defects in wind turbine blades. The overall goal is to provide the wind turbine industry with a hierarchical procedure for addressing blade manufacturing defects relative to wind turbine reliability.

Cairns, Douglas S. (Montana State University, Bozeman, MT); Riddle, Trey (Montana State University, Bozeman, MT); Nelson, Jared (Montana State University, Bozeman, MT)

2011-02-01T23:59:59.000Z

33

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Million Weatherized American Homes David Arakawa (ORNL) Secretarial Achievement Awards Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing...

34

Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)  

DOE Green Energy (OSTI)

This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

James, T.; Goodrich, A.

2013-12-01T23:59:59.000Z

35

Shenyang Tianxiang Wind Equipments Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Tianxiang Wind Equipments Manufacturing Co Ltd Tianxiang Wind Equipments Manufacturing Co Ltd Jump to: navigation, search Name Shenyang Tianxiang Wind Equipments Manufacturing Co., Ltd Place Shenyang, Liaoning Province, China Sector Wind energy Product Liaoning Province-based JV and manufacturer of rotor blades, hubs, nacelle covers, and other key components for wind turbines. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Wooden wind turbine blade manufacturing process  

DOE Patents (OSTI)

A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

Coleman, Clint (Warren, VT)

1986-01-01T23:59:59.000Z

37

Wind Projects Providing Hope for Penn. Workers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Projects Providing Hope for Penn. Workers Wind Projects Providing Hope for Penn. Workers Wind Projects Providing Hope for Penn. Workers March 8, 2010 - 11:28am Addthis Joshua DeLung The Recovery Act made three large-scale wind projects possible in Pennsylvania, and employees at Gamesa Wind are back to work filling orders for them. $22.8 million in stimulus grants are putting 79 laid-off employees back on the job and making it possible for Gamesa to hire 50 additional workers at its other Pennsylvania locations. Gov. Edward Rendell has also announced that 257 jobs will be created at three wind farms across Pennsylvania. In that state, as well as many across the country, the Recovery Act helped avoid massive layoffs, provided relief to families in need, trained people for green jobs and enabled employers to hire workers doing jobs that are

38

Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6,...

39

Cooperative Extension Service & Wind Powering America Collaborate to Provide Wind Energy Information to Rural Stakeholders (Poster)  

DOE Green Energy (OSTI)

Cooperative Extension's presence blankets much of the United States and has been a trusted information source to rural Americans. By working together, Cooperative Extension, Wind Powering America, and the wind industry can better educate the public and rural stakeholders about wind energy and maximize the benefits of wind energy to local communities. This poster provides an overview of Cooperative Extension, wind energy issues addressed by the organization, and related activities.

Jimenez, A.; Flower, L.; Hamlen, S.

2009-05-01T23:59:59.000Z

40

Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Equipment Manufacturing Co Ltd Equipment Manufacturing Co Ltd Jump to: navigation, search Name Nordex (Yinchuan) Wind Power Equipment Manufacturing Co. Ltd Place Yinchuan, Ningxia Autonomous Region, China Sector Wind energy Product Subsidiary of Nordex that manufactures its MW-class wind turbines in Yinchuan, China. Set-up through a JV between Nordex AG, Ningxia Electric Power, & Ningxia Tianjing Electric Energy. Coordinates 38.467899°, 106.262299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.467899,"lon":106.262299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

QUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGEQUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGEenergy have long argued that wind power and other renewable

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

42

NORDIC Wind Manufacturing Project Nordic Windpower USA Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2,2011 2,2011 Record of Categorical Exclusion for NORDIC Wind Manufacturing Project Nordic Windpower USA Inc. Description of Proposed Action: The Department of Energy's (DOE's) proposed action is to issue a loan guarantee to Nordic Windpower USA Inc., for the assembly and testing of two-bladed, patented teeter hub technology wind turbines. The initial production will be of 1 MW N 1 000 Nordic wind turbine nacelles. The assembly and testing operations would take place in an existing facility, Super Hangar Bay 12, within the Kansas City International Airport in Kansas City, Missouri. The Super Hangar facility is located adjacent to Interstate 29 on the east side of the airport. Bay 12 was designed for overhauling large aircraft such as the Boeing 747 and includes ample space for Nordic's assembly and testing operations. Project

43

Eldora-New Providence Schools Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Eldora-New Providence Schools Wind Farm Eldora-New Providence Schools Wind Farm Jump to: navigation, search Name Eldora-New Providence Schools Wind Farm Facility Eldora-New Providence Schools Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Eldora - New Providence Schools Developer Eldora - New Providence Schools Energy Purchaser Eldora - New Providence Schools Location Hardin County IA Coordinates 42.3794°, -93.2497° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3794,"lon":-93.2497,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Wind Turbine Manufacturers in the U. S.: Locations and Local Impacts (Presentation)  

Wind Powering America (EERE)

by by the Alliance for Sustainable Energy, LLC. Wind Turbine Manufacturers in the U.S.: Locations and Local Impacts WINDPOWER 2010 Conference and Exhibition Dallas, Texas Suzanne Tegen May 26, 2010 NREL/PR-6A2-47913 Challenges to modeling Renewables Renewables represent new industries * Not isolated as an industry in conventional I/O codes Requires detailed knowledge of project costs and industry specific expenditures * Equipment, Engineering, Labor, Permitting, O&M, etc. The Wind JEDI Model * Provides a project basic project recipe for specific RE technologies * Applies Industry Specific Multipliers derived from IMPLAN National Renewable Energy Laboratory Innovation for Our Energy Future

45

Memorandum of Understanding between the U.S. Wind Turbine Manufacturer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S....

46

Memorandum of Understanding between the U.S. Wind Turbine Manufacturer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030...

47

DOE provides detailed offshore wind resource maps - Today in ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Wind energy potential is broken down by wind speed, water depth, and distance from shore.

48

Manufactured Home Testing in Simulated and Naturally Occurring High Winds for WCTE Conference  

SciTech Connect

A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for "stick built" structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tie-downs. This project was sponsored by the US Department of Energy, US Department of Housing and Urban Development, and the Manufactured Housing Institute. The results of this research can lead to savings in annual losses of life and property by providing validated information to enable the advancement of code requirements and by developing engineering software that can predict and optimize wind resistance.

William D. Richins; Thomas K. Larson; Jeffrey M. Lacy; Ryan G. Kobbe

2006-08-01T23:59:59.000Z

49

Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum of Understanding between the U.S. Wind Turbine Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 this Memorandum of Understanding (MOU), the U.S. Department of Energy (DOE) and the signing members of the wind turbine industry (the Parties) agree to work cooperatively to define and develop the framework for appropriate technology R&D and siting strategies for realizing 20% Wind Energy by 2030. Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve

50

Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects  

E-Print Network (OSTI)

1 Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects Jared W. Nelson The Blade Reliability Collaborative has been formed to perform comprehensive studies to improve wind turbine uni-directional wind turbine fiber-reinforced composite material with an epoxy resin were utilized

51

DOE provides detailed onshore wind resource map - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... Puerto Rico and the U.S. Virgin Islands do not have 80-meter wind maps available but have 50-meter ...

52

DOE provides detailed onshore wind resource map - Today in Energy ...  

U.S. Energy Information Administration (EIA)

... electric power plant emissions. Highlights ... Puerto Rico and the U.S. Virgin Islands do not have 80-meter wind maps available but have 50-meter wind maps.

53

Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)  

DOE Green Energy (OSTI)

Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

William C. Leighty; DOE Project Officer - Keith Bennett

2005-10-04T23:59:59.000Z

54

Nantong Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd NCWA | Open  

Open Energy Info (EERE)

Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd NCWA Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd NCWA Jump to: navigation, search Name Nantong Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd (NCWA) Place Nantong, Jiangxi Province, China Zip 226017 Sector Wind energy Product Nantong-based wind turbine manufacturer. Coordinates 32.087399°, 121.062218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.087399,"lon":121.062218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Energy Report: U.S. Wind Energy Production and Manufacturing Surges,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: U.S. Wind Energy Production and Manufacturing Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy August 14, 2012 - 9:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released a new report today highlighting strong growth in the U.S. wind energy market in 2011, increasing the U.S. share of clean energy and supporting tens of thousands of jobs, and underscoring the importance of continued policy support and clean energy tax credits to ensure that the manufacturing and jobs associated with this booming global industry remain in America According to the 2011 Wind Technologies Market Report, the United States remained one

56

Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dept. Reports: U.S. Wind Energy Production and Manufacturing Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 8:00am Addthis WASHINGTON - The Energy Department released two new reports today showcasing record growth across the U.S. wind market -- increasing America's share of clean, renewable energy and supporting tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time - representing 43 percent of all new electric additions and accounting for $25 billion in U.S. investment.

57

MANUFACTURING  

Science Conference Proceedings (OSTI)

... Energy Efficiency in Buildings: Solid State Climate Control ... TE materials is green job creation, as Table ... can provide 21,454 US jobs in manufacturing ...

2011-08-01T23:59:59.000Z

58

Reports Show Record High U.S. Wind Energy Production and Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Show Record High U.S. Wind Energy Production and Reports Show Record High U.S. Wind Energy Production and Manufacturing Reports Show Record High U.S. Wind Energy Production and Manufacturing August 6, 2013 - 12:00pm Addthis Two men work on the nacelle of a wind turbine. The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time-representing 43% of all new electric additions and accounting for $25 billion in U.S. investment.

59

Economic Development Impacts in Colorado from Four Vestas Manufacturing Facilities, Wind Powering America Fact Sheet Series  

SciTech Connect

This case study summarizes the economic development benefits to Colorado from four Vestas manufacturing facilities: one in Windsor, two in Brighton, and one in Pueblo (which is planned to be the world's largest tower-manufacturing facility). In the midst of an economic slowdown during which numerous U.S. manufacturers have closed their doors, wind energy component manufacturing is one U.S. industry that has experienced unprecedented growth during the past few years. As demand for wind power in the United States has increased and transportation costs have increased around the world, states have seen a significant increase in the number of manufacturers that produce wind turbine components in the United States. Vestas' Colorado operations will bring approximately $700 million in capital investment and nearly 2,500 jobs to the state.

2009-04-01T23:59:59.000Z

60

Economic Development Impacts in Colorado from Four Vestas Manufacturing Facilities, Wind Powering America Fact Sheet Series  

DOE Green Energy (OSTI)

This case study summarizes the economic development benefits to Colorado from four Vestas manufacturing facilities: one in Windsor, two in Brighton, and one in Pueblo (which is planned to be the world's largest tower-manufacturing facility). In the midst of an economic slowdown during which numerous U.S. manufacturers have closed their doors, wind energy component manufacturing is one U.S. industry that has experienced unprecedented growth during the past few years. As demand for wind power in the United States has increased and transportation costs have increased around the world, states have seen a significant increase in the number of manufacturers that produce wind turbine components in the United States. Vestas' Colorado operations will bring approximately $700 million in capital investment and nearly 2,500 jobs to the state.

Not Available

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Department Reports U.S. Wind Energy Production and Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports U.S. Wind Energy Production and Reports U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Department Reports U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 12:00pm Addthis The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time-representing 43% of all new electric additions and accounting for $25 billion in U.S. investment. In the first four years of the Obama Administration, American electricity

62

DOE provides detailed offshore wind resource maps - Today in ...  

U.S. Energy Information Administration (EIA)

Offshore wind turbines, however, are costlier, take longer to build, and are more challenging to maintain. The United States does not currently have any operating, ...

63

Providing Minute-to-Minute Regulation from Wind Plants: Preprint  

DOE Green Energy (OSTI)

In this paper, we extend the previous analysis using time series data from existing wind plants, system loads, and regulation and energy markets.

Kirby, B.; Milligan, M.; Ela, E.

2010-10-01T23:59:59.000Z

64

High Rise Fire Study Provides Insight Into Deadly Wind-Driven ...  

Science Conference Proceedings (OSTI)

High Rise Fire Study Provides Insight Into Deadly Wind-Driven Fires. From NIST Tech Beat: May 5, 2009. ...

2011-04-05T23:59:59.000Z

65

Pages that link to "Indian Wind Turbine Manufacturers Association...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

66

Pages that link to "Iskra Wind Turbine Manufacturers Ltd" | Open...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

67

Pages that link to "Beijing Goldwind Kechuang Wind Turbine Manufacture...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

68

Providing Minute-to-Minute Regulation from Wind Plants  

SciTech Connect

Our earlier work showed that it may be both technically and economically feasible for wind plants to supply minute-to-minute regulation under some circumstances. In this paper, we extend the previous analysis using time series data from existing wind plants, system loads, and regulation and energy markets. Both wind plant response performance requirements and power system needs are addressed. In present-day regulation markets, the regulation market price is typically based on the supplier's opportunity cost in the energy market. With a near-zero marginal production cost, wind would not be expected to be an attractive regulation supplier most of the time. Minimum load problems, typically on nights with high wind, and the need for conventional generators to incur additional costs when operating above minimum loads appear to make regulation from wind an economical option for some hours of the year. Unlike contingency reserves whose prices are generally low at night, the price for regulation typically remains high around the clock. In this paper, we examine wind and regulation markets in several regions to assess the viability of the concept.

Kirby, B.; Milligan, M.; Ela, E.

2010-01-01T23:59:59.000Z

69

Changes related to "Iskra Wind Turbine Manufacturers Ltd" | Open...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

70

Changes related to "Beijing Goldwind Kechuang Wind Turbine Manufacture...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

71

Indian Wind Turbine Manufacturers Association | Open Energy Informatio...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source...

72

Changes related to "Indian Wind Turbine Manufacturers Association...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

73

Energy Report: U.S. Wind Energy Production and Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department released a new report today highlighting strong growth in the U.S. wind energy market in 2011, increasing the U.S. share of clean energy and supporting tens of...

74

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.  

E-Print Network (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms. Today's utility-scale wind turbine structures are more complex and their compo- nents more of algorithms to control the dynamic systems of wind turbines must account for multiple complex, nonlinear

75

Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint  

DOE Green Energy (OSTI)

As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

Muljadi, E.; Singh, M.; Gevorgian, V.

2012-11-01T23:59:59.000Z

76

Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades  

DOE Green Energy (OSTI)

EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

77

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.  

E-Print Network (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms. Today's utility-scale wind turbine structures are more complex and their compo- nents more turbine designers is to capture the maximum amount of energy, with minimal structural loading, for minimal

78

Wind Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

This guideline provides component-level information regarding the maintenance of major components associated with a wind turbine. It combines recommendations offered by major equipment manufacturers with lessons learned from owner/operators of wind turbine facilities.

2012-06-29T23:59:59.000Z

79

Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing  

DOE Green Energy (OSTI)

The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

2000-06-01T23:59:59.000Z

80

Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

QUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGE AGAINST VOLATILE NATURAL GAS PRICES  

E-Print Network (OSTI)

1 LBNL-50484 QUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGE AGAINST VOLATILE NATURAL GAS VOLATILE NATURAL GAS PRICES Mark Bolinger, Ryan Wiser, and William Golove Ernest Orlando Lawrence Berkeley natural gas price volatility during the winter of 2000/2001 ­ have mostly been qualitative in nature

82

Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

83

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Jump to: navigation, search Name Solar Wind Place Krasnodar, Romania Zip 350000 Sector Solar, Wind energy Product Russia-based PV product manufacturer. Solar Wind manufactures...

84

Wind energy bibliography  

DOE Green Energy (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

85

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

DOE Green Energy (OSTI)

Advocates of renewable energy have long argued that wind power and other renewable technologies can mitigate fuel price risk within a resource portfolio. Such arguments--made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001--have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that wind and other renewables provide. This paper attempts to quantify this benefit by equating it with the cost of achieving price stability through other means, particularly gas-based financial derivatives (futures and swaps). We find that over the past two years, natural gas consumers have had to pay a premium of roughly 0.50 cents/kWh over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost is potentially large enough to tip the scales away from new investments in natural gasfired generation and in favor of investments in wind power and other renewable technologies.

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-05-31T23:59:59.000Z

86

1 QUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGE AGAINST VOLATILE NATURAL GAS PRICES  

E-Print Network (OSTI)

Advocates of renewable energy have long argued that wind power and other renewable technologies can mitigate fuel price risk within a resource portfolio. Such arguments made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001 have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that wind and other renewables provide. This paper attempts to quantify this benefit by equating it with the cost of achieving price stability through other means, particularly gas-based financial derivatives (futures and swaps). We find that over the past two years, natural gas consumers have had to pay a premium of roughly 0.50/kWh over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost is potentially large enough to tip the scales away from new investments in natural gasfired generation and in favor of investments in wind power and other renewable technologies.

Mark Bolinger; Ryan Wiser; William Golove; Mark Bolinger; Ryan Wiser; William Golove

2002-01-01T23:59:59.000Z

87

Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades  

SciTech Connect

EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

88

Utilizing cable winding and industrial robots to facilitate the manufacturing of electric machines  

Science Conference Proceedings (OSTI)

Cable wound electric machines are used mainly for high voltage and direct-drive applications. They can be found in areas such as wind power, hydropower, wave power and high-voltage motors. Compared to conventional winding techniques, cable winding includes ... Keywords: Automated production, Electric machine assembly, Industrial robot, Powerformer, Stator winding, Wave energy converter

Erik Hultman; Mats Leijon

2013-02-01T23:59:59.000Z

89

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

DOE Green Energy (OSTI)

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

90

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

SciTech Connect

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

91

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

energy resources such as wind power carry no natural gas fuel priceenergy have long argued that wind power and other renewable technologies can mitigate fuel priceenergy resources such as wind power, which by their nature are immune to natural gas fuel price

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

92

Guide to commercially available wind machines  

DOE Green Energy (OSTI)

Wind Energy Conversion Systems (WECS) commercially available in the United States are described. The terms used to describe these wind systems are defined and their significance discussed. Lists of manufacturers and distributors, subsystem components and suppliers, and references are provided.

Not Available

1978-04-03T23:59:59.000Z

93

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

natural gas- fired generation and in favor of investments in wind powerpower, which has nearly achieved economic parity with natural gas-fired generation

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

94

DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity  

Energy.gov (U.S. Department of Energy (DOE))

MOU Launches Government-Industry Effort to Define and Develop Technologies and Siting Strategies Necessary to Achieve 20% Wind Energy by 2030...

95

Wind Power Career Chat  

DOE Green Energy (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

96

MODEL REQUEST FOR PROPOSALS TO PROVIDE ENERGY AND OTHER ATTRIBUTES FROM AN OFFSHORE WIND POWER PROJECT  

DOE Green Energy (OSTI)

This document provides a model RFP for new generation. The 'base' RFP is for a single-source offshore wind RFP. Required modifications are noted should a state or utility seek multi-source bids (e.g., all renewables or all sources). The model is premised on proposals meeting threshold requirements (e.g., a MW range of generating capacity and a range in terms of years), RFP issuer preferences (e.g., likelihood of commercial operation by a date certain, price certainty, and reduction in congestion), and evaluation criteria, along with a series of plans (e.g., site, environmental effects, construction, community outreach, interconnection, etc.). The Model RFP places the most weight on project risk (45%), followed by project economics (35%), and environmental and social considerations (20%). However, if a multi-source RFP is put forward, the sponsor would need to either add per-MWh technology-specific, life-cycle climate (CO2), environmental and health impact costs to bid prices under the 'Project Economics' category or it should increase the weight given to the 'Environmental and Social Considerations' category.

Jeremy Firestone; Dawn Kurtz Crompton

2011-10-22T23:59:59.000Z

97

New Aerodynamics Simulations Provide Better Understanding of Wind Plant Underperformance and Loading (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) develop a high-fidelity large-eddy simulation model designed to predict the performance of large wind plants with a higher degree of accuracy than current models.

Not Available

2011-02-01T23:59:59.000Z

98

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

building solar panels and wind turbines; constructing fuel-that the fortunes of wind turbine manufacturers are relatedThe wind industry value chain Wind turbine manufacturing and

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

99

2011 Grants for Offshore Wind Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Facilities Wind Manufacturing Facilities Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams...

100

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Saving Energy and Resources Revolutionizing Manufacturing INFOGRAPHIC: Wind Energy in America National Wind Technology Center - Colorado America's Wind Testing...

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

One-Up On L1: Can X-rays Provide Longer Advanced Warning of Solar Wind Flux Enhancements Than Upstream Monitors?  

E-Print Network (OSTI)

Observations of strong solar wind proton flux correlations with ROSAT X-ray rates along with high spectral resolution Chandra observations of X-rays from the dark Moon show that soft X-ray emission mirrors the behavior of the solar wind. In this paper, based on an analysis of an X-ray event observed by XMM-Newton resulting from charge exchange of high charge state solar wind ions and contemporaneous neutral solar wind data, we argue that X-ray observations may be able to provide reliable advance warning, perhaps by as much as half a day, of dramatic increases in solar wind flux at Earth. Like neutral atom imaging, this provides the capability to monitor the solar wind remotely rather than in-situ. Key words: solar wind/magnetosphere interaction, solar wind charge exchange (SWCX), soft X-rays, space weather 1

M. R. Collier A; T. E. Moore A; S. L. Snowden B; K. D. Kuntz C

2005-01-01T23:59:59.000Z

102

Wind energy information directory  

DOE Green Energy (OSTI)

Wind Energy Information has been prepared to provide researchers, designers, manufacturers, distributors, dealers, and users of wind energy conversion systems with easy access to technical information. This directory lists organizations and publications which have the main objective of promoting the use of wind energy conversion systems, some organizations that can respond to requests for information on wind energy or make referrals to other sources of information, and some publications that occasionally include information on wind energy. The bibliography contains references to information for both the neophyte and the expert.

None

1979-10-01T23:59:59.000Z

103

Application of Resin Transfer Molding to the Manufacture of Wind Turbine Blade Substructures. Final Report  

DOE Green Energy (OSTI)

The U.S. has generally lacked the capability for an iterative process of detailed structural design, manufacturing, and testing at the full blade level to achieve specific structural performance, cost, and weight targets. This project examined the effects that different composites processing methods had on the performance of representative blade substructures. In addition, the results of the testing of these substructures was used to validate NuMAD, the design tool developed at Sandia National Laboratories.

Hedley, C. W.; Ritter, W. J.; Ashwill, T.

2001-07-26T23:59:59.000Z

104

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

growth in U.S. wind turbine manufacturing capability and the drop in wind power plantgrowth in U.S. wind turbine manufacturing capability and the drop in wind power plant

Wiser, Ryan

2012-01-01T23:59:59.000Z

105

Revealing the Hidden Value that the Federal Investment Tax Credit and Treasury Cash Grant Provide To Community Wind Projects  

E-Print Network (OSTI)

Mark Bolinger. 2009. 2008 Wind Technologies Market Report.EA/EMP/reports/2008-wind- technologies.pdf Wiser, Ryan, MarkBuild a Durable Market for Wind Power in the United States

Bolinger, Mark A.

2011-01-01T23:59:59.000Z

106

Revealing the Hidden Value that the Federal Investment Tax Credit and Treasury Cash Grant Provide To Community Wind Projects  

E-Print Network (OSTI)

involving wind turbines of less than 100 kW. Howeverfrom a single 100 kW turbine up to a wind farm consisting

Bolinger, Mark A.

2011-01-01T23:59:59.000Z

107

Techno-economics analysis of a wind/PV hybrid system to provide electricity for a household in Malaysia  

Science Conference Proceedings (OSTI)

This paper is study on techno-economics analysis of a wind/PV hybrid system for a household in Malaysia. One year recorded wind speed and solar radiation are used for the design of a hybrid energy system. In 2004 average annual wind speed in Kuala Terengganu ... Keywords: electrical load, techno-economics analysis, wind/PV hybrid system

Ahmad Fudholi; Mohd Zamri Ibrahim; Mohd Hafidz Ruslan; Lim Chin Haw; Sohif Mat; Mohd Yusof Othman; Azami Zaharim; Kamaruzzaman Sopian

2012-01-01T23:59:59.000Z

108

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

value of renewable energy by equating it with the cost ofin renewable energy are often compared to the cost of index-renewable energy technologies can provide this benefit at a lower cost,

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

109

Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-01-01T23:59:59.000Z

110

Simulation of the Manufacturing of Non-Crimp Fabric-Reinforced Composite Wind Turbine Blades to Predict the Formation of Wave Defects  

SciTech Connect

NCFs (Non-Crimp Fabrics) are commonly used in the design of wind turbine blades and other complex systems due to their ability to conform to complex shapes without the wrinkling that is typically experienced with woven fabrics or prepreg tapes. In the current research, a form of vacuum assisted resin transfer molding known as SCRIMP registered is used to manufacture wind turbine blades. Often, during the compacting of the fabric layers by the vacuum pressure, several plies may bunch together out-of-plane and form wave defects. When the resin is infused, the areas beneath the waves become resin rich and can compromise the structural integrity of the blade. A reliable simulation tool is valuable to help predict where waves and other defects may appear as a result of the manufacturing process. Forming simulations often focus on the in-plane shearing and tensile behavior of fabrics and do not necessarily consider the bending stiffness of the fabrics, which is important to predict the formation of wrinkles and/or waves. This study incorporates experimentally determined in-plane shearing, tensile, and bending stiffness information of NCFs into a finite element model (ABAQUS/Explicit) of a 9-meter wind turbine blade to investigate the mechanical behaviors that can lead to the formation of waves as a result of the manufacturing process.

Fetfatsidis, K. A.; Sherwood, J. A. [Department of Mechanical Engineering, University of Massachusetts, Lowell One University Ave., Lowell, MA 01854 (United States)

2011-05-04T23:59:59.000Z

111

Capability of DFIGs to Provide Reactive Power Support and Low Voltage Ride Through in Hybrid Wind Farms with FSIGs.  

E-Print Network (OSTI)

??This thesis examines the low voltage event performance of hybrid wind farms containing both economical Fixed Speed Induction Generators (FSIGs) and the increasingly popular but (more)

Van Kirk III, Bruce Bartlett

2012-01-01T23:59:59.000Z

112

Wind for Schools Project Curriculum Brief (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

Not Available

2010-08-01T23:59:59.000Z

113

Can a VHF Doppler Radar Provide Synoptic Wind Data? A Comparison of 30 Days of Radar and Radiosonde Data  

Science Conference Proceedings (OSTI)

A number of experiments have shown that UHF and VHF Doppler radars can make clear air wind measurements in the troposphere and lower stratosphere, even in the presence of clouds and precipitation. Past comparisons of radar and rawinsonde ...

Miguel Folkmar Larsen

1983-10-01T23:59:59.000Z

114

Astraeus Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Astraeus Wind Energy Inc Jump to: navigation, search Name Astraeus Wind Energy Inc Place Eaton Rapids, Michigan Sector Wind energy Product Michigan-based manufacturer of large...

115

Property Tax Abatement for Production and Manufacturing Facilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abatement for Production and Manufacturing Facilities Abatement for Production and Manufacturing Facilities Property Tax Abatement for Production and Manufacturing Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Program Info Start Date 5/25/2007 State Montana Program Type Industry Recruitment/Support Rebate Amount 50% tax abatement Provider Montana Department of Revenue In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable energy research and

116

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

117

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

118

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

wind turbine manufacturers: Denmark, Spain, Japan, India,India France Netherlands Australia Canada Approximate Windand India The data presented in Figure 11 are for wind-

Wiser, Ryan

2010-01-01T23:59:59.000Z

119

Distributed Wind Market Applications  

SciTech Connect

Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

Forsyth, T.; Baring-Gould, I.

2007-11-01T23:59:59.000Z

120

Contract No. DE-AC36-99-GO10337High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

E-Print Network (OSTI)

Contract No. DE-AC36-99-GO10337NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at

A. Laxson; N. Blair; A. Laxson; N. Blair

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wind World | Open Energy Information  

Open Energy Info (EERE)

World Jump to: navigation, search Name Wind World Place Denmark Sector Wind energy Product WindWorld was a turbine manufacturer that was purchased by NEG Micon in 1998. NEG Micon...

122

Heliostat manufacturing analysis  

DOE Green Energy (OSTI)

Results of a manufacturing cost analysis of heliostats are presented. The two primary objectives are: (1) providing a base for uniform cost analysis, and (2) providing facility and manufacturing cost estimates for planning purposes in the development of a heliostat industry. The manufacturing analysis provides materials, labor, equipment, and facility costs for each step in the manufacturing process. Detailed procedures are presented for cost estimates. These include estimating worksheets for each component of the manufacturing costs.

Drumheller, K.

1978-10-01T23:59:59.000Z

123

AeroWind Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name AeroWind Inc. Place Potsdam, New York Sector Wind energy Product Wind turbines manufacturer. References AeroWind Inc.1 LinkedIn...

124

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name Howden Wind Turbines Ltd Place United Kingdom Sector Wind energy Product Howden was a manufacturer of wind turbines in the...

125

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

Building a national wind turbine industry: experiences fromthe worlds largest manufacturer of wind turbines. 1 Inthe worlds installed wind turbines were erected in China,

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

126

Wind Energy Economic Development and Impacts | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Economic Development and Impacts Wind Energy Economic Development and Impacts Jump to: navigation, search Wind turbine blades wind their way by train through Denver. Photo by Dennis Schroeder, NREL 20894 Meeting 20% of the nation's electricity demand with wind energy will lead to benefits to rural landowners and towns, the manufacturing sector, and infrastructure across America.[1] The following provide more information about wind energy and economic development: Resources European Wind Energy Association. Economic Benefits of Wind This page outlines the economic benefits of wind energy in Europe. National Renewable Energy Laboratory. (March 2013). Economic Development from New Generation and Transmission in Wyoming and Colorado. Accessed November 29, 2013. This fact sheet summarizes a recent analysis, commissioned by the Wyoming

127

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

128

EERE News: Energy Department Launches New Clean Energy Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

manufacturing of cost-competitive clean energy technologies, from wind, solar, and geothermal to batteries and biofuels. As a part of this increased focus on manufacturing...

129

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

130

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

131

Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms  

SciTech Connect

This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

Lewis, Joanna; Wiser, Ryan

2005-11-15T23:59:59.000Z

132

Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms  

SciTech Connect

This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

Lewis, Joanna; Wiser, Ryan

2005-11-15T23:59:59.000Z

133

2008 WIND TECHNOLOGIES MARKET REPORT  

SciTech Connect

The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

2009-07-15T23:59:59.000Z

134

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

135

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, ... Manufacturing Energy and Carbon Footprints Associated Analysis.

136

NIST's Manufacturing Extension Partnership Awards $9.1 ...  

Science Conference Proceedings (OSTI)

... Covering areas from supplying the wind energy industry to introducing advanced manufacturing simulations in small- and medium-sized ...

2010-10-14T23:59:59.000Z

137

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, biomass and ethanol.

138

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

139

Advanced Manufacturing Office: Advanced Manufacturing Partnership  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national...

140

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

142

Manufacturing Industrial Development for the Alternative Energy Systems-Final Report  

SciTech Connect

NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

2013-01-30T23:59:59.000Z

143

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

144

White Papers on Advanced Manufacturing Questions  

Science Conference Proceedings (OSTI)

... manufacturing, and sustainability needs at the design phase. ... the civilian sector has no single entity that ... who design and make wind turbines and ...

2013-07-31T23:59:59.000Z

145

Upcoming Funding Opportunity for Tower Manufacturing and ...  

... and Lower Cost of Energy" intends to support partnerships leading to innovative designs and processes for wind turbine tower manufacturing and ...

146

Duration Test Report for the Ventera VT10 Wind Turbine  

DOE Green Energy (OSTI)

This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2013-06-01T23:59:59.000Z

147

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

The Effects of Integrating Wind Power on Transmission SystemInterconnection Policies and Wind Power: A Discussion ofof their database of wind power projects, and for providing

Bolinger, Mark

2010-01-01T23:59:59.000Z

148

Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

Curtis, A.; Gevorgian, V.

2011-07-01T23:59:59.000Z

149

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-09-01T23:59:59.000Z

150

BeWind Power Ltd | Open Energy Information  

Open Energy Info (EERE)

BeWind Power Ltd Jump to: navigation, search Name BeWind Power Ltd Place India Sector Wind energy Product Wind turbine manufacturer, jointly owned by Indowind and EU Energy...

151

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

to Drive Wind Development. . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with SiemensAnnual Report on U.S. Wind Power Installation, Cost, and

2008-01-01T23:59:59.000Z

152

Wind Energy Sales Tax Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Wind-energy conversion systems used as electric-power sources are exempt from Minnesota's sales tax. Materials used to manufacture, install, construct, repair or replace wind-energy systems also...

153

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

154

wind engineering & natural disaster mitigation  

E-Print Network (OSTI)

wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

Sinnamon, Gordon J.

155

Harbin Hafei Winwind Wind Power Equipment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hafei Winwind Wind Power Equipment Co Ltd Hafei Winwind Wind Power Equipment Co Ltd Jump to: navigation, search Name Harbin Hafei-Winwind Wind Power Equipment Co Ltd Place Harbin, Heilongjiang Province, China Zip 150060 Sector Services, Wind energy Product Manufacturer of wind turbines. Provides installation and after-sale services and technology support. References Harbin Hafei-Winwind Wind Power Equipment Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Harbin Hafei-Winwind Wind Power Equipment Co Ltd is a company located in Harbin, Heilongjiang Province, China . References ↑ "Harbin Hafei-Winwind Wind Power Equipment Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Harbin_Hafei_Winwind_Wind_Power_Equipment_Co_Ltd&oldid=346385"

156

Manufacturing Skills Certification System  

Science Conference Proceedings (OSTI)

... system to their business so that they utilize the skills certification system ... provide input to The Manufacturing Institute about aggregate skill needs of ...

2012-09-20T23:59:59.000Z

157

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

2006-05-01T23:59:59.000Z

158

Wind Power Today  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

159

Landmark Report Analyzes Current State of U.S. Offshore Wind Industry (Fact Sheet)  

DOE Green Energy (OSTI)

New report assesses offshore wind industry, offshore wind resource, technology challenges, economics, permitting procedures, and potential risks and benefits. The National Renewable Energy Laboratory (NREL) recently published a new report that analyzes the current state of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad understanding of the offshore wind resource, and details the associated technology challenges, economics, permitting procedures, and potential risks and benefits of developing this clean, domestic, renewable resource. The United States possesses large and accessible offshore wind energy resources. The availability of these strong offshore winds close to major U.S. coastal cities significantly reduces power transmission issues. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater than the nation's present electric capacity. According to the report, developing the offshore wind resource along U.S. coastlines and in the Great Lakes would help the nation: (1) Achieve 20% of its electricity from wind by 2030 - Offshore wind could supply 54 gigawatts of wind capacity to the nation's electrical grid, increasing energy security, reducing air and water pollution, and stimulating the domestic economy. (2) Provide clean power to its coastal demand centers - Wind power emits no carbon dioxide (CO2) and there are plentiful winds off the coasts of 26 states. (3) Revitalize its manufacturing sector - Building 54 GW of offshore wind energy facilities would generate an estimated $200 billion in new economic activity, and create more than 43,000 permanent, well-paid technical jobs in manufacturing, construction, engineering, operations and maintenance. NREL's report concludes that the development of the nation's offshore wind resources can provide many potential benefits, and with effective research, policies, and commitment, offshore wind energy can play a vital role in future U.S. energy markets.

Not Available

2011-09-01T23:59:59.000Z

160

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Green Energy Manufacturing Tax Credit (Manitoba, Canada) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) < Back Eligibility Commercial Industrial Savings Category Buying & Making Electricity Solar Wind Program Info Funding Source Government of Manitoba State Manitoba Program Type Corporate Tax Incentive Provider Manitoba Finance This refundable income tax credit will be equal to 10% of the value of qualifying property produced in Manitoba and sold before 2019 for residential or commercial use in Manitoba. Qualifying property includes equipment for wind power, solar energy, geothermal energy, hydrogen fuel cells, geothermal ground source heating systems and solar thermal heating equipment. In the 2011 Budget, the total Green Energy Equipment Tax Credit on

162

Mid-Atlantic Regional Wind Energy Institute  

DOE Green Energy (OSTI)

As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to address them, wind and wildlife materials and sample model ordinances. Video and presentations from each in-person meeting and webinar recordings are also available on the site. At the end of the two-year period, PennFuture has accomplished its goal of giving a unified voice and presence to wind energy advocates in the Mid-Atlantic region. We educated a broad range of stakeholders on the benefits of wind energy and gave them the tools to help make a difference in their states. We grew a database of over 500 contacts and hope to continue the discussion and work around the importance of wind energy in the region.

Courtney Lane

2011-12-20T23:59:59.000Z

163

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy and Resources Revolutionizing Manufacturing National Wind Technology Center - Colorado America's Wind Testing Facilities Beyond Solyndra: How the Energy Department's...

164

Vestas Wind Technology China Co Ltd | Open Energy Information  

Open Energy Info (EERE)

China Co Ltd Jump to: navigation, search Name Vestas Wind Technology (China) Co Ltd Place Tianjin Municipality, China Zip 300462 Sector Wind energy Product A manufacturer engaged...

165

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homes David Arakawa (ORNL) Secretarial Achievement Awards American Wind Manufacturing Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing...

166

Shanghai Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Jump to: navigation, search Name Shanghai Wind Power Co Ltd Place Shanghai Municipality, China Zip 200437 Sector Wind energy Product Engaged in the design and manufacturing of...

167

Wind for Schools Project Curriculum Brief (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

2010-08-01T23:59:59.000Z

168

Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine  

DOE Green Energy (OSTI)

This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

van Dam, J.; Baker, D.; Jager, D.

2010-05-01T23:59:59.000Z

169

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network (OSTI)

Commercial Scale Wind Turbines in Canada. AprilDevelopmentofChina?sWindTurbine ManufacturingIndustryduties on importingwindturbinecomponents. 13

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

170

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

171

Wind powering America: Iowa  

DOE Green Energy (OSTI)

Wind resources in the state of Iowa show great potential for wind energy development. This fact sheet provides a brief description of the state's wind resources and the financial incentives available for the development of wind energy systems. It also provides a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

172

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

173

PowerWind GmbH | Open Energy Information  

Open Energy Info (EERE)

PowerWind GmbH PowerWind GmbH Jump to: navigation, search Name PowerWind GmbH Place Hamburg, Germany Zip 20457 Sector Wind energy Product PowerWind GmbH is a German manufacturer and service provider of wind turbines. Coordinates 53.553345°, 9.992455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.553345,"lon":9.992455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Wind Power Outlook 2004  

DOE Green Energy (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

175

PowerJet Wind Turbine Project  

SciTech Connect

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energyâ??s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJetâ??s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assemblyâ??including the electronic and mechanical controls designed, manufactured and field tested during the course of this projectâ??proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOEâ??s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

176

NREL: Learning - Renewable Energy for Electricity Providers  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy for Electricity Providers Photo of wind turbines. The Ponnequin Wind Farm in Colorado generates electricity for 6,000 customers. You'll find many renewable energy...

177

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

178

Solar and Wind Energy Business Franchise Tax Exemption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Business Franchise Tax Exemption Solar and Wind Energy Business Franchise Tax Exemption Solar and Wind Energy Business Franchise Tax Exemption < Back Eligibility Commercial Industrial Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate None Program Info Start Date 1982 State Texas Program Type Industry Recruitment/Support Rebate Amount All Provider Comptroller of Public Accounts Companies in Texas engaged solely in the business of manufacturing, selling, or installing solar energy devices are exempted from the franchise tax. The franchise tax is Texas's equivalent to a corporate tax. There is no ceiling on this exemption, so it is a substantial incentive for solar manufacturers. For the purposes of this exemption, a solar energy device means "a system

179

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Solar Wind Maximum Rebate $2,000,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 (ARRA) State Michigan Program Type Industry Recruitment/Support Provider Department of Energy, Labor and Economic Growth '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future solicitations.''''' In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Clean Energy Advanced Manufacturing portion of this program is

180

Sales Tax Exemption for Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales Tax Exemption for Manufacturing Facilities Sales Tax Exemption for Manufacturing Facilities Sales Tax Exemption for Manufacturing Facilities < Back Eligibility Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate 50% of capital investment in the eligible project Program Info Start Date 7/1/2008 State Kentucky Program Type Sales Tax Incentive Rebate Amount 100% sales and use tax refund Provider Kentucky Cabinet for Economic Development In August 2007 Kentucky established the ''Incentives for Energy Independence Act'' to promote the development of renewable energy and alternative fuel facilities, energy efficient buildings, alternative fuel vehicles, research and development activities and other energy initiatives. This includes a sales tax exemption which allows manufacturers to apply for

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tax Credit for Renewable Energy Equipment Manufacturers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate $20 million Program Info Expiration Date 1/1/2014 State Oregon Program Type Industry Recruitment/Support Rebate Amount 50% of eligible costs (10% per year for 5 years) Provider Oregon Business Development Department The Tax Credit for Renewable Energy Resource Equipment Manufacturing Facilities was enacted as a part of Oregon's Business Energy Tax Credit (BETC) in July 2007, with the passage of [http://www.leg.state.or.us/07reg/measpdf/hb3200.dir/hb3201.en.pdf HB

182

Wind Turbines through the Years | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water ---Carbon Capture & Sequestration -Consumption -Smart Grid Science &...

183

Manufacturing Portal  

Science Conference Proceedings (OSTI)

... datasets. Manufacturers of more. In Situ Characterization of Nanoscale Gas-Solid Interactions by TEM Observing and ...

2013-09-09T23:59:59.000Z

184

About Manufacturing  

Science Conference Proceedings (OSTI)

... reflects the changes in prices that manufacturers ... Petroleum Electricity Natural Gas Coal Emissions ... Position Abroad on a Historical Cost Basis ...

2013-07-25T23:59:59.000Z

185

Manufacturing News  

Science Conference Proceedings (OSTI)

... Two New MEP Centers Will Serve Kentucky and South Dakota Manufacturers Release Date: 01/24/2013 Small and mid ...

2010-09-22T23:59:59.000Z

186

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

187

NREL: Wind Research - Field Verification Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Verification Project Field Verification Project The mission of the Field Verification Project (FVP) was to enable U.S. industry to complete the research, testing, and field verification needed to fully develop advanced wind energy technologies that lead the world in cost-effectiveness and reliability. The project, completed in 2003, included cost-shared research with industry partners to lead to the development of advanced technology wind turbines and support for projects that verify performance of wind turbine technologies in actual operational applications. FVP provided small wind turbine (<=100 kW) manufacturers with opportunities to operate and monitor their turbines under a range of distributed power applications and environments throughout the United States. This experience helped U.S. companies validate and improve the

188

Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine  

Science Conference Proceedings (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

Huskey, A.; Bowen, A.; Jager, D.

2010-05-01T23:59:59.000Z

189

Wind Turbine Safety and Function Test Report for the ARE 442 Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests that were performed on the turbines, including power performance, duration, noise, and power quality tests. Test results provide manufacturers with reports that can be used for small wind turbine certification. The test equipment includes an ARE 442 wind turbine mounted on a 100-ft free-standing lattice tower. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

van Dam, J.; Baker, D.; Jager, D.

2010-02-01T23:59:59.000Z

190

Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans Edison Innovation Clean Energy Manufacturing Fund - Grants and Loans < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Construction Appliances & Electronics Commercial Lighting Lighting Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Maximum Rebate Total (grants and loans): $3.3 million Grants: $300,000 Loans: $3 million Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund) Start Date 05/23/2011 State New Jersey Program Type Industry Recruitment/Support Rebate Amount Varies Provider New Jersey Economic Development Authority

191

NREL: Transmission Grid Integration - Wind Integration Datasets  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Integration Datasets The Wind Integration Datasets provide energy professionals with a consistent set of wind profiles for the eastern United States and the western United...

192

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

193

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

194

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

195

Wind Resource Maps (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

196

Manufacturing research strategic plan  

SciTech Connect

This plan provides an overall strategic roadmap for the DOE-defense programs advanced manufacturing research program which supports the national science based stockpile stewardship program. This plan represents a vision required to develop the knowledge base needed to ensure an enduring national capability to rapidly and effectively manufacture nuclear weapons.

1995-11-01T23:59:59.000Z

197

Integrated manufacturing system of high-pressure FRP pipes  

Science Conference Proceedings (OSTI)

In order to realise industrialised manufacturing of epoxy FRP pipes, the manufacturing system which can accomplish winding, internal heating curing and extraction processes by only one machine tool was developed. The winding motion control is undertaken ... Keywords: FEM, FRP pipes, blowing control, cooling control, curing control, embedded controllers, fibreglass reinforced plastics, finite element method, high-pressure pipes, integrated manufacturing, internal heating curing, motion control, simulation, thermochemical modelling, winding

Bo You; Jiazhong Xu; Xiongjian Wang

2007-11-01T23:59:59.000Z

198

Green Manufacturing Portal  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Portal. Green Manufacturing Portal. ... see all Green Manufacturing programs and projects ... ...

2012-12-27T23:59:59.000Z

199

Green Manufacturing Events  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Events. Green Manufacturing Events. (showing 1 - 1 of 1). Manufacturing Innovations ...

2011-06-20T23:59:59.000Z

200

Manufacturing Energy Portal  

Science Conference Proceedings (OSTI)

NIST Home > Manufacturing Energy Portal. Manufacturing Energy Portal. ... see all Manufacturing Energy programs and projects ... ...

2013-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

202

DeWind GmbH | Open Energy Information  

Open Energy Info (EERE)

GmbH Place Lubeck, Germany Zip D - 23569 Sector Wind energy Product Germany-based large scale wind turbine manufacturer. References DeWind GmbH1 LinkedIn Connections CrunchBase...

203

Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint  

DOE Green Energy (OSTI)

As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

2012-03-01T23:59:59.000Z

204

Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint  

SciTech Connect

As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

2012-03-01T23:59:59.000Z

205

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

206

Wind Powering America Webinar Series (Postcard), Wind Powering...  

Wind Powering America (EERE)

Wind Powering America webinar series provides expert information on today's key wind energy topics. * Webinars are presented on the third Wednesday of every month. * Recordings...

207

Manufacturing News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

208

Manufacturing Growth  

Science Conference Proceedings (OSTI)

... report, even the lithium-ion batteries used in Chevy's much anticipated electric car, the Volt, are supplied by South Korean battery manufacturer LG ...

2013-07-31T23:59:59.000Z

209

Advanced Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

210

WindTamer Corp | Open Energy Information  

Open Energy Info (EERE)

energy Product US-based developer and manufacturer of small-scale, diffuser augmented wind turbines (DAWT). Coordinates 42.793381, -77.81616 Loading map......

211

America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy and Resources Revolutionizing Manufacturing INFOGRAPHIC: Wind Energy in America Beyond Solyndra: How the Energy Department's Loans are Accelerating America's...

212

THE ENERGY BALANCE OF MODERN WIND TURBINES  

E-Print Network (OSTI)

A modern Danish 600 kW wind turbine will recover all the energy spent in its manufacture, maintenance, and scrapping within some three months of its commissioning.

unknown authors

1997-01-01T23:59:59.000Z

213

Suzlon Wind Energy Corp | Open Energy Information  

Open Energy Info (EERE)

Corp Jump to: navigation, search Name Suzlon Wind Energy Corp Place Chicago, Illinois Zip 60631 Product Regional office of turbine manufacturer, Suzlon Energy. References Suzlon...

214

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

215

20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)  

SciTech Connect

This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure, streamlined siting and permitting regimes, improved reliability and operability of wind systems, and increased U.S. wind manufacturing capacity. To meet these challenges, the DOE Wind Energy Program will continue to work with industry partners to increase wind energy system reliability and operability and improve manufacturing processes. The program also conducts research to address transmission and grid integration issues, to better understand wind resources, to mitigate siting and environmental issues, to provide information to industry stakeholders and policy makers, and to educate the future generations.

2008-05-01T23:59:59.000Z

216

20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)  

DOE Green Energy (OSTI)

This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure, streamlined siting and permitting regimes, improved reliability and operability of wind systems, and increased U.S. wind manufacturing capacity. To meet these challenges, the DOE Wind Energy Program will continue to work with industry partners to increase wind energy system reliability and operability and improve manufacturing processes. The program also conducts research to address transmission and grid integration issues, to better understand wind resources, to mitigate siting and environmental issues, to provide information to industry stakeholders and policy makers, and to educate the future generations.

Not Available

2008-05-01T23:59:59.000Z

217

Methods of making wind turbine rotor blades  

DOE Patents (OSTI)

A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

Livingston, Jamie T. (Pensacola, FL); Burke, Arthur H. E. (Gulf Breeze, FL); Bakhuis, Jan Willem (Nijverdal, NL); Van Breugel, Sjef (Enschede, NL); Billen, Andrew (Daarlerveen, NL)

2008-04-01T23:59:59.000Z

218

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

for the costs and benefits of wind energy relative to itsbenefits, including better utilization of the transmission system and providing increased flexibility to integrate wind energy.

Wiser, Ryan

2010-01-01T23:59:59.000Z

219

Manufacturing Extension Partnership, Manufacturing Data and ...  

Science Conference Proceedings (OSTI)

... Manufacturing Data & Trends. Manufacturing is a dynamic and changing industry. In this ... Voytek. DATA RESOURCES. Capacity ...

2013-06-17T23:59:59.000Z

220

Wind Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 6, 2013 August 6, 2013 Our latest Infographic highlights key findings from the 2012 Wind Technologies Market Report. | Infographic by Sarah Gerrity. America's Wind Industry Reaches Record Highs Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry. August 5, 2013 Wind Industry Soars to New Heights Watch the video as Jose Zayas, Director of the Wind and Water Power Technologies Office, highlights the latest wind industry trends in the 2012 Wind Technologies Market Report. August 16, 2012 Wind Energy In America: Supporting Our Manufacturers Profiling success stories of the American wind industry. August 14, 2012 A Banner Year for the U.S. Wind Industry

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Wind Power Today, 2010, Wind and Water Power Program (WWPP)  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

2010-05-01T23:59:59.000Z

222

Blade Manufacturing Improvement Project: Final Report  

SciTech Connect

The Blade Manufacturing Improvement Project explores new, unique and improved materials integrated with innovative manufacturing techniques that promise substantial economic enhancements for the fabrication of wind turbine blades. The primary objectives promote the development of advanced wind turbine blade manufacturing in ways that lower blade costs, cut rotor weight, reduce turbine maintenance costs, improve overall turbine quality and increase ongoing production reliability. Foam Matrix (FMI) has developed a wind turbine blade with an engineered foam core, incorporating advanced composite materials and using Resin Transfer Molding (RTM) processes to form a monolithic blade structure incorporating a single molding tool. Patented techniques are employed to increase blade load bearing capability and insure the uniform quality of the manufactured blade. In production quantities, FMI manufacturing innovations may return a sizable per blade cost reduction when compared to the cost of producing comparable blades with conventional methods.

SHERWOOD, KENT

2002-10-01T23:59:59.000Z

223

Wind characteristics for agricultural wind energy applications  

SciTech Connect

Wind energy utilization in agriculture can provide a potentially significant savings in fuel oil consumption and ultimately a cost savings to the farmer. A knowledge of the wind characteristics within a region and at a location can contribute greatly to a more efficient and cost-effective use of this resource. Current research indicates that the important wind characteristics include mean annual wind speed and the frequency distribution of the wind, seasonal and diurnal variations in wind speed and direction, and the turbulent and gustiness characteristics of the wind. Further research is underway to provide a better definition of the total wind resource available, improved methods for siting WECS and an improved understanding of the environment to which the WECS respond.

Renne, D. S.

1979-01-01T23:59:59.000Z

224

Manufacturing technologies  

SciTech Connect

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

225

DOE Wind Program Update: June 4, 2006;  

SciTech Connect

The DOE Wind Program Update provides WindPower Conference attendees with information about recent DOE events, including Assistant Secretary Karsner, a wind turbine blade test facility CRADA, and 2005 Wind Energy Award recipients.

2006-06-01T23:59:59.000Z

226

Wind Economic Development (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

Not Available

2011-08-01T23:59:59.000Z

227

Wind energy information guide  

DOE Green Energy (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

228

Wind Rose Bias Correction  

Science Conference Proceedings (OSTI)

Wind rose summaries, which provide a basis for understanding and evaluating the climatological behavior of local wind, have a directional bias if a conventional method is used in their generation. Three techniques used to remove this bias are ...

Scott Applequist

2012-07-01T23:59:59.000Z

229

Wind Energy Benefits  

DOE Green Energy (OSTI)

Wind energy provides many benefits, including economic and environmental. This two-sided fact sheet succinctly outlines the top ten wind energy benefits and is especially well suited for general audiences.

Not Available

2005-04-01T23:59:59.000Z

230

NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency and  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Wind Technology Patents Boost Efficiency and Lower Costs NREL's Wind Technology Patents Boost Efficiency and Lower Costs March 22, 2013 Wind energy research conducted at the National Wind Technology Center (NWTC) at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) during the last decade has earned the lab two patents, one for adaptive pitch control and one for a resonance blade test system that will ultimately help its industry partners increase the efficiency of wind technologies and reduce the cost of wind energy. The most recent patent for adaptive pitch control for variable-speed wind turbines was granted in May 2012. Variable-speed wind turbines use rotor blade pitch control to regulate rotor speed at the high wind speed limit. Although manufacturers and operators have been interested in developing a nominal pitch to improve

231

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

232

Alternative Energy Manufacturing Tax Credit (Utah) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Tax Credit (Utah) Manufacturing Tax Credit (Utah) Alternative Energy Manufacturing Tax Credit (Utah) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Maximum Rebate Up to 100% of new state tax revenues (including, state, corporate, sales and withholding taxes) over the life of the project or 20 years, whichever is less. Program Info Start Date 05/12/2009 State Utah Program Type Industry Recruitment/Support Rebate Amount Determined on a case-by-case basis by the Governor's Office of Economic Development based on statutory guidelines and evaluation criteria. Provider Utah Governor's Office of Economic Development The Alternative Energy Development Incentive (AEDI) is a post-performance non-refundable tax credit for up to 100% of new state tax revenues

233

Wind Power Today: Federal Wind Program Highlights  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

Not Available

2005-04-01T23:59:59.000Z

234

Wind powering America: Vermont  

DOE Green Energy (OSTI)

Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

235

Duration Test Report for the SWIFT Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Duration testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

Mendoza, I.; Hur, J.

2013-01-01T23:59:59.000Z

236

Safety and Function Test Report for the SWIFT Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Safety and Function testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, duration, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

Mendoza, I.; Hur, J.

2013-01-01T23:59:59.000Z

237

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

238

Advanced Manufacturing Partnership  

Energy.gov (U.S. Department of Energy (DOE))

AMO leads DOE's participation in the national interagency Advanced Manufacturing Partnership (AMP). AMO joins with other Federal agencies investing in innovation and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national economy. AMO contributes more broadly to the AMP with activities in Technology Development, Shared Infrastructure and Facilities, Education and Workforce Development.

239

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network (OSTI)

thebuildingofwindfarms with turbines manufacturedtender for a 100 MW wind farm located in Huilai,wind turbines in its wind farm projects. Policy

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

240

Model-based fault detection and isolation of a liquid-cooled frequency converter on a wind turbine  

Science Conference Proceedings (OSTI)

With the rapid development of wind energy technologies and growth of installed wind turbine capacity in the world, the reliability of the wind turbine becomes an important issue for wind turbine manufactures, owners, and operators. The reliability of ...

Peng Li, Peter Fogh Odgaard, Jakob Stoustrup, Alexander Larsen, Kim Mrk

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Manufacturing Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Office: News on Twitter Bookmark Advanced Manufacturing Office: News on Google Bookmark Advanced Manufacturing Office: News on Delicious Rank Advanced Manufacturing...

242

Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energetx Composites: Retooling Manufacturing, Creating Michigan Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs July 23, 2012 - 4:58pm Addthis Using its fiberglass technology expertise and a grant from the Energy Department's State Energy Program (SEP), Energetx Composites was able to shift its operations to producing wind turbine blades. | Photo courtesy of Energetx Composites. Using its fiberglass technology expertise and a grant from the Energy Department's State Energy Program (SEP), Energetx Composites was able to shift its operations to producing wind turbine blades. | Photo courtesy of Energetx Composites. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What does this mean for me?

243

Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation; Preprint  

DOE Green Energy (OSTI)

'Community wind' refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an 'absentee' project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

Lantz, E.; Tegen, S.

2009-04-01T23:59:59.000Z

244

Abstract--The offshore wind farm with installed back-to-back power converter in wind turbines is studied. As an  

E-Print Network (OSTI)

is studied. As an example the Burbo Bank offshore wind farm with Siemens Wind Power wind turbines is taken are compared with measurement data from the Burbo Bank offshore wind farm. The delimitations of both power manufacturers such as General Electric (GE) Energy, Siemens Wind Power, Vestas Wind Systems or Gamesa use back

Bak, Claus Leth

245

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Produce 20 Percent of U.S. Electricity By 2030 Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

246

National Skills Assessment of the U.S. Wind Industry in 2012  

DOE Green Energy (OSTI)

A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand today's domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

Levanthal, M.; Tegen, S.

2013-06-01T23:59:59.000Z

247

Application of Radar Wind Observations for Low-Level NWP Wind Forecast Validation  

Science Conference Proceedings (OSTI)

The Finnish Meteorological Institute has produced a new numerical weather prediction modelbased wind atlas of Finland. The wind atlas provides information on local wind conditions in terms of annual and monthly wind speed and direction averages. ...

Kirsti Salonen; Sami Niemel; Carl Fortelius

2011-06-01T23:59:59.000Z

248

Wind power outlook 2006  

DOE Green Energy (OSTI)

This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

anon.

2006-04-15T23:59:59.000Z

249

Cost Study for Large Wind Turbine Blades  

SciTech Connect

The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

250

Wind powering America: Kansas  

DOE Green Energy (OSTI)

Wind resources in the state of Kansas show great potential for wind energy development according to the wind resource assessment conducted by the Kansas Electric Utilities Research Program, UWIG, and DOE. This fact sheet provides a brief description of the resource assessment and description of the state's new educational wind kiosk as well as its green power program and financial incentives available for the development of renewable energy technologies. A list of contacts for more information is also included.

NREL

2000-04-11T23:59:59.000Z

251

Manufacturing Extension Partnership Homepage  

Science Conference Proceedings (OSTI)

... The Manufacturing Extension Partnership (MEP) is a catalyst for strengthening American manufacturing accelerating its ongoing transformation ...

2013-08-23T23:59:59.000Z

252

Stakeholder Engagement and Outreach: Wind Farms  

Wind Powering America (EERE)

Wind Farms Wind Farms When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133. Software Wind Energy Finance Calculator Tool for financial analysis of

253

Stakeholder Engagement and Outreach: Siting Wind Turbines  

Wind Powering America (EERE)

Resources & Tools Resources & Tools Siting Wind Turbines Wind Powering America works to increase deployment of wind energy. This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists, state wildlife agencies, and wind industry leaders. Its purpose is to help lay the scientific groundwork and best practices for wind farm siting and operations, through targeted initiatives: wind-wildlife research, landscape assessment, mitigation, and education. Ordinances Regulating Development of Commercial Wind Energy Facilities

254

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

2007. "Utility Wind Integration and Operating Impact Statethat the integration of 20% wind into US electricity marketsand integration costs, Figure 8 provides a supply curve for wind

Wiser, Ryan H

2010-01-01T23:59:59.000Z

255

Method and apparatus for wind turbine air gap control - Energy ...  

Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings ...

256

Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)  

DOE Green Energy (OSTI)

This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

Not Available

2012-04-01T23:59:59.000Z

257

Managing Wind Power Forecast Uncertainty in Electric Grids.  

E-Print Network (OSTI)

??Electricity generated from wind power is both variable and uncertain. Wind forecasts provide valuable information for wind farm management, but they are not perfect. Chapter (more)

Mauch, Brandon Keith

2012-01-01T23:59:59.000Z

258

Strengthening Americas Energy Security with Offshore Wind (Fact Sheet) (Revised), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

crane mounted on a barge designed for offshore crane mounted on a barge designed for offshore wind turbine installation lifts a rotor into place. Photo courtesy of © DOTI 2009-alpha ventus Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing. However, realizing these benefits will require overcoming key barriers to the development and deployment of offshore wind technology, including its relatively high cost of energy, technical challenges surrounding installation and

259

Economic Development Impacts of 20% Wind (Poster)  

SciTech Connect

Meeting 20% of the nation's electricity demand with wind energy will require enourmous investment in wind farms, manufacturing, and infrastructure. This investment will create substantial economic development impacts on local, regional, and national levels. This conference poster for Windpower 2007 outlines the various economic development impacts from a 20% wind scenario.

Kelly, M.; Tegen, S.

2007-06-01T23:59:59.000Z

260

Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)  

DOE Green Energy (OSTI)

Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

Not Available

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

262

Manufacturing Licenses Available | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing SHARE Manufacturing 200401490 Production of Materials with Superior Properties Utilizing High Magnetic Field (Related ID # 200501531, 200701867, 200802085, 200902312, 201002455, 201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID # 200701983, 200802088) 200701972 Manufacturing Biodiesel from Triglycerides (Related ID # 200702012, 200802186) 200701983 Meso-scale Fluidic Digital Valve 200802083 A Hydraulic Flow Control Device by Means of a Digital Poppet Valve 200802088 Miniature shape memory alloy fluid control valve 200902224 Glass Drawing for Wire Arrays 200902231 Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods 200902291 Method of Machining Carbon and Graphite foams 200902309 Multi-Winding Homopolar Electric Machine Offers

263

Dynamic Models for Wind Turbines and Wind Power Plants  

DOE Green Energy (OSTI)

The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

Singh, M.; Santoso, S.

2011-10-01T23:59:59.000Z

264

Clean Energy Manufacturing Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

265

Horizon Wind  

E-Print Network (OSTI)

The Washington Department of Fish and Wildlife (WDFW) does not have regulatory authority specific to wind power development at this time. WDFW is an agency with environmental expertise as provided for through the Washington Administrative Code (WAC) 197-11-920. Comments related to environmental impacts are provided to regulatory authorities through the State Environmental Policy Act (SEPA) Revised Code of Washington (RCW) 43.21C review process.

Cover Photo; Nina Carter; Heath Packard; Lisa Paribello; Craig Dublanko; Dana Peck; Nicole Hughes; Bill Robinson; Robert Kruse; Arlo Corwin; Joe Buchanan; Ted Clausing; Eric Cummins; Travis Nelson; Eric Pentico; Mike Ritter; Jeff Tayer; James Watson; William Weiler; David Mcclure

2009-01-01T23:59:59.000Z

266

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network (OSTI)

States, new large-scale wind turbines were installed in 18The average size of wind turbines installed in the Uniteddominant manufacturer of wind turbines supplying the U.S.

Bolinger, Mark A

2009-01-01T23:59:59.000Z

267

Comparison of Wind-Turbine Aeroelastic Codes Used for Certification: Preprint  

DOE Green Energy (OSTI)

NREL created aeroelastic simulators for horizontal-axis wind turbines accepted by Germanischer Lloyd (GL) WindEnergie GmbH for manufacturers to use for on-shore wind turbine certification.

Buhl, M. L., Jr.; Manjock, A.

2006-01-01T23:59:59.000Z

268

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy.  

E-Print Network (OSTI)

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering have been able to identify shortcomings in the design, testing, and operation of wind turbines findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment

269

Wind Electrolysis: Hydrogen Cost Optimization  

DOE Green Energy (OSTI)

This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

Saur, G.; Ramsden, T.

2011-05-01T23:59:59.000Z

270

An assessment of the economic impact of the wind turbine supply chain in Illinois  

SciTech Connect

The enormous growth of wind energy in Illinois and around the country has led to a shortage of wind turbines. Turbine manufacturers have sold out their capacity into 2010. To the extent that Illinois manufacturing can integrate itself into the wind turbine supply chain, Illinois can enjoy the economic benefits from both having wind farms and supplying the parts to build them. (author)

Carlson, J. Lon; Loomis, David G.; Payne, James

2010-08-15T23:59:59.000Z

271

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

1994-12-01T23:59:59.000Z

272

Manufacturing Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

273

Manufacturing technology  

SciTech Connect

This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

1993-08-01T23:59:59.000Z

274

Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010  

DOE Green Energy (OSTI)

The objective of this project was to provide wind resource inputs to the Eastern Wind Integration and Transmission Study.

Brower, M.

2009-12-01T23:59:59.000Z

275

Community Wind: Once Again Pushing the Envelope of Project Finance  

SciTech Connect

In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.

bolinger, Mark A.

2011-01-18T23:59:59.000Z

276

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

277

NREL: Wind Research - Field Test Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Sites Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC are participants in NREL's Small Wind Turbine Independent Test Program. Small and mid-sized turbines field tested at the NWTC include those manufactured by Atlantic Orient Corporation, Bergey Windpower, Southwest Wind Power, Northern Power Systems, Endurance Wind Power Inc., Gaia-Wind Ltd.,

278

Wind Power Today and Tomorrow  

DOE Green Energy (OSTI)

Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.

Not Available

2004-03-01T23:59:59.000Z

279

Wind energy applications guide  

DOE Green Energy (OSTI)

The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

anon.

2001-01-01T23:59:59.000Z

280

Methods to Manufacture Cermets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacture Cermets Methods to Manufacture Cermets There are many methods to manufacture cermets. One option is shown here. DU dioxide and steel powder are mixed, the mixture is...

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security & Safety Energy Economy Funding Opportunities State & Local Government Science & Innovation Science & Technology Science Education Innovation Energy Sources Energy Usage...

282

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers' Pictorial Superpowers How the Smart Grid Helps Homeowners Reduce Their Energy Use EcoCAR Challenge Finish Line Event 1 of 8 Students Earn Street Cred With the...

283

Wooden wind turbine blade manufacturing process  

SciTech Connect

A laminated wooden rotor blade is described having a flatbottomed air foil, comprising a two-sided tapered laminate composed of compression bonded parallel layers of wood having a convex side in a predetermined contour to which all of the layers of wood are approximately parallel over the entire length of the blade and a flat twisted side, the surface of which at any point along the length of the blade is rectilinear in cross section but of varying orientation along the length of the blade according to a predetermined twist schedule, the flat side cutting across the laminae of the blade to reveal the parallel edges thereof.

Coleman, C.

1986-07-01T23:59:59.000Z

284

Wind Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

285

Wind Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPEN 2012 Projects Clean Cities Coalition Regions Clean Cities Coalition Regions Google Crisis Map for Hurricane Sandy Google Crisis Map for Hurricane Sandy Alternative...

286

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Advanced Manufacturing Trades Training Program Business Program Lead Yvonne Baros Advanced Manufacturing Trades Training Program Tom Souther Advanced Technology Academy...

287

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skills Standards The Academic and Employability Skills Standards align Sandia's training efforts in advanced manufacturing with the recommendations of the Manufacturing Skill...

288

Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth  

E-Print Network (OSTI)

cost of manufacturing wind turbines has increased due to higher commodity (materials and energy)on the cost (and price) of energy delivered from a windrising cost of materials and energy used to manufacture wind

Bolinger, Mark A

2009-01-01T23:59:59.000Z

289

MST: Organizations: Manufacturing Processes & Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Processing Manufacturing Processing Manufacturing Process, Science, and Technology Mark Smith Mark Smith, Senior Manager Manufacturing Process Science and Technology conducts research and development on advanced manufacturing process and materials technologies. It provides manufacturing process development, technical consulting, and technology transfer to support Sandia product realization needs. This organization also provides prototype fabrication and specialized production services, as required, to support Sandia missions. Departments Dianna Blair Mike Kelly Alex Roesler Paul C. McKey Thin Film, Vacuum, and Packaging Organic Materials Ceramics and Glass Meso Mfg. and System Development Dianna Blair, Manager Mike Kelly, Manager Alex Roesler, Manager Paul C. McKey,

290

Sizing Wind/Photovoltaic Hybrids for Households in Inner Mongolia  

DOE Green Energy (OSTI)

Approximately 140,000 wind turbines currently provide electricity to about one-third of the non-grid-connected households in Inner Mongolia. However, these households often suffer from a lack of power during the low-wind summer months. This report describes an analysis of hybrid wind/photovoltaic (PV) systems for such households. The sizing of the major components is based on a subjective trade-off between the cost of the system and the percent unmet load, as determined by the Hybrid 2 software in conjunction with a simplified time-series model. Actual resource data (wind speed and solar radiation) from the region are processed so as to best represent the scenarios of interest. Small wind turbines of both Chinese and U.S. manufacture are considered in the designs. The results indicate that combinations of wind and PV are more cost-effective than either one alone, and that the relative amount of PV in the design increases as the acceptable unmet load decreases and as the average wind sp eed decreases.

Barley, C. D.; Lew, D. J.; Flowers, L. T.

1997-06-01T23:59:59.000Z

291

Manufacturing Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

Not Available

2011-10-01T23:59:59.000Z

292

Summit Manufacturing: Case Closure (2010-SE-0303)  

Energy.gov (U.S. Department of Energy (DOE))

DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

293

Leitner Shriram Manufacturing Ltd | Open Energy Information  

Open Energy Info (EERE)

Leitner Shriram Manufacturing Ltd Leitner Shriram Manufacturing Ltd Jump to: navigation, search Name Leitner Shriram Manufacturing Ltd Place Chennai, Tamil Nadu, India Zip 600095 Sector Wind energy Product Chennai-based JV between Leitwind and Shriram EPC with the purpose of manufacturing MW-class wind turbines. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Clean Energy Manufacturing Incentive Program (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Other Maximum Rebate Aggregate amount of grants awarded and outstanding at any time cannot exceed $36 million Program Info State Virginia Program Type Industry Recruitment/Support In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

295

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

296

Water Jet Applications for Gas Turbine Manufacturing - State of the Art  

Science Conference Proceedings (OSTI)

Presentation Title, Water Jet Applications for Gas Turbine Manufacturing - State of the Art ... Impact of Materials Selection on the Sustainability of Wind Energy.

297

Wind energy systems information user study  

DOE Green Energy (OSTI)

This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-01-01T23:59:59.000Z

298

Wind powering America: Massachusetts  

DOE Green Energy (OSTI)

This fact sheet provides a brief description of the wind resources in Massachusetts, the state financial incentives to develop wind systems and its net metering and green power programs. The fact sheet also provides a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

299

2010 Georgia Manufacturing Survey  

Science Conference Proceedings (OSTI)

... Linked to Innovation Manufacturing Wages by Percentages of Respondents ... Manufacturing Strategies by Industry Group (Percentage of firms ...

2013-07-31T23:59:59.000Z

300

Materials Processing & Manufacturing Division  

Science Conference Proceedings (OSTI)

In its broadest scope, the Materials Processing & Manufacturing Division (MPMD) covers manufacturing from product design to production, integrating process...

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Additive Manufacturing - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCES: Research Groups for the Additive Manufacturing of Superalloys Compilation of groups involved in additive manufacturing, 0, 1118, Lynette...

302

Advanced Manufacturing Office: Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Solicitations on Twitter Bookmark Advanced Manufacturing Office: Solicitations on Google Bookmark Advanced Manufacturing Office: Solicitations on Delicious Rank Advanced...

303

Advanced Manufacturing Office: Webcasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webcasts on Twitter Bookmark Advanced Manufacturing Office: Webcasts on Google Bookmark Advanced Manufacturing Office: Webcasts on Delicious Rank Advanced...

304

Advanced Manufacturing Office: Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Subscribe on Twitter Bookmark Advanced Manufacturing Office: Subscribe on Google Bookmark Advanced Manufacturing Office: Subscribe on Delicious Rank Advanced...

305

Advanced Manufacturing Office: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Workshops on Twitter Bookmark Advanced Manufacturing Office: Workshops on Google Bookmark Advanced Manufacturing Office: Workshops on Delicious Rank Advanced...

306

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

307

WindLogics Inc | Open Energy Information  

Open Energy Info (EERE)

Product WindLogics provides wind resource analysis and long-period variability forecasting services. References WindLogics Inc1 LinkedIn Connections CrunchBase Profile No...

308

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

309

An overview of DOE`s wind turbine development programs  

DOE Green Energy (OSTI)

The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

1993-09-01T23:59:59.000Z

310

Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)  

DOE Green Energy (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Not Available

2010-02-01T23:59:59.000Z

311

Wind for Schools: A Wind Powering America Project (Brochure)  

DOE Green Energy (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Baring-Gould, I.

2009-08-01T23:59:59.000Z

312

Operation of a third generation wind turbine  

SciTech Connect

A modern wind turbine was installed on May 26, 1982, at the USDA Conservation and Production Research Laboratory, Bushland, Texas. This wind machine was used to provide electrical energy for irrigation pumping and other agricultural loads. The wind turbine purchased for this research is an Enertech Model 44, manufactured by Enertech Corporation, Norwich, Vermont. The horizontal-axis wind turbine has a 13.4 m diameter, three-bladed, fixed-pitch rotor on a 24.4-m tower. The blades are laminated epoxy-wood, and are attached to a steel hub. A 25-kW induction generator provides 240 V, 60 Hz, single-phase electrical power. The wind turbine operated 64 percent of the time, while being available to operate over 94 percent of the time. The unit had a net energy production of over 80,000 kWh in an average windspeed of 5.9 m/s at a height of 10 m in a 16-month period. The blade pitch was originally offset two degrees from design to maintain power production within the limitations of the gearbox, generator, and brakes. A maximum output of 23.2 kW averaged over a 15-second period indicated that with a new brake, the system was capable of handling more power. After a new brake was installed, the blade pitch was changed to one degree from design. The maximum power output measured after the pitch change was 29.3 kW. Modified blade tip brakes were installed on the wind turbine on July 7, 1983. These tip brakes increased power production at lower windspeeds while reducing power at higher windspeeds.

Vosper, F.C.; Clark, R.N.

1983-12-01T23:59:59.000Z

313

Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems  

SciTech Connect

EXECUTIVE SUMMARY The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

314

Wind Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Report Wind Report Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the world. Related Links Top 8 Things You Didn't Know About Distributed Wind Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Test your energy knowledge by learning interesting facts about distributed wind. Charting the Future of Energy Storage As we continue to incorporate more renewable energy into the grid, technologies that store energy like batteries will be key to providing a continuous flow of clean energy even when the wind isn't blowing and the sun doesn't shine. Wind Industry Soars to New Heights

315

Wind Energy Information Guide 2004  

DOE Green Energy (OSTI)

The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

anon.

2004-01-01T23:59:59.000Z

316

NREL: Wind Research - National Wind Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Center The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), located at the base of the foothills just south of Boulder, Colorado, is the nation's premier wind energy technology research facility. Built in 1993, the center provides an ideal environment for the development of advanced wind energy technologies. The goal of the research conducted at the center is to help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Research at the NWTC is organized under two main categories, Wind Technology Development and Testing and Operations. Illustration of the National Wind Technology Center's organization chart. Fort Felker is listed as the Center Director, with Mike Robinson, Deputy Center Director; Paul Veers, Chief Engineer, and Laura Davis and Dorothy Haldeman beneath him. The Associate Director position is empty. Beneath them is the Wind Technology Research and Development Group Manager, Mike Robinson; the Testing and Operations Group Manager, Dave Simms; and the Offshore Wind and Ocean Power Systems Acting Supervisor, Fort Felker.

317

20% Wind Energy by 2030  

DOE Green Energy (OSTI)

This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

Not Available

2008-07-01T23:59:59.000Z

318

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

319

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

320

Secure Manufacturing | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Secure Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security challenges by providing leadership and direction to perform the following activities: solving unique, high-risk manufacturing problems; eliminating the most difficult manufacturability and development obstacles; protecting classified and proprietary materials, components, and information; developing unique technologies to optimize manufacturing and systems performance; and executing projects cost effectively and with timeliness. Y-12 accomplishes this mission to meet the national security challenges of today and those of the future, with capability and expertise in the following areas:

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine  

E-Print Network (OSTI)

innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine The Skystream 3.7 wind (NREL) and Southwest Windpower, a commercially successful small wind turbine manufacturer. NREL drew blade design that makes the wind turbine more efficient and quieter than most. Small wind turbines

322

Availability of wind power  

DOE Green Energy (OSTI)

Meteorological studies of available wind power were begun at Sandia in 1973 to support the development of a vertical-axis wind turbine (VAWT, ''egg-beater''). This presentation reviews work to date. Copies of seven source reports were provided to ELETROBRAS; Scientia, Ltda., has included them in an extensive bibliography that was distributed at the seminar. This report summarizes those climatological studies that are needed to assist and promote wind energy exploitation in Brazil.

Reed, J.W.

1978-01-01T23:59:59.000Z

323

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Wind News RSS October 23, 2013 New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012. August 13, 2013 Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Supports Obama Administration Goal to Power Federal Agencies with 20 Percent Clean Energy by 2020 August 6, 2013 Reports Show Record High U.S. Wind Energy Production and Manufacturing The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the

324

Field Testing: Independent, Accredited Testing and Validation for the Wind Industry (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the field testing capabilities at the National Wind Technology Center (NWTC). NREL's specialized facilities and personnel at the NWTC provide the U.S. wind industry with scientific and engineering support that has proven critical to the development of wind energy for U.S. energy needs. The NWTC's specialized field-testing capabilities have evolved over 30 years of continuous support by the U.S. Department of Energy Wind and Hydropower Technologies Program and long standing industry partnerships. The NWTC provides wind industry manufacturers, developers, and operators with turbine and component testing all in one convenient location. Although industry utilizes sophisticated modeling tools to design and optimize turbine configurations, there are always limitations in modeling capabilities, and testing is a necessity to ensure performance and reliability. Designs require validation and testing is the only way to determine if there are flaws. Prototype testing is especially important in capturing manufacturing flaws that might require fleet-wide retrofits. The NWTC works with its industry partners to verify the performance and reliability of wind turbines that range in size from 400 Watts to 3 megawatts. Engineers conduct tests on components and full-scale turbines in laboratory environments and in the field. Test data produced from these tests can be used to validate turbine design codes and simulations that further advance turbine designs.

Not Available

2011-11-01T23:59:59.000Z

325

Solar and Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Easements Solar and Wind Easements Solar and Wind Easements < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Montana Program Type Solar/Wind Access Policy Provider Montana Department of Environmental Quality Montana's solar and wind easement provisions allow property owners to create solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Solar easements should be negotiated with neighboring property owners. Montana's solar easement law was enacted in 1979; the wind easement law was originally enacted in 1983.

326

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

327

Manufacturing Data | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Data Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Manufacturing Data These Federal datasets contain a wealth of information for manufacturing - either from information in a single dataset or by combining data from more than one place. This site will be enhanced with the addition of new datasets, and new apps using these datasets, as they are developed. Search Terms Category -Any- Geospatial Items per page 25 50 100 Apply Name Downloads Rating TradeStats Express TradeStats Express provides statistics on U.S. merchandise trade at the national and state levels. Data can also be displayed in maps, graphs, tables, or as exports, imports, and trade balances.... Data Extraction

328

Task 3.0:Life-Cycle Database for Wind Energy Systems  

DOE Green Energy (OSTI)

Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

329

Alternative Fuels Data Center: Clean Energy Manufacturing Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Energy Clean Energy Manufacturing Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Google Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Delicious Rank Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Energy Manufacturing Grants The Clean Energy Manufacturing Incentive Grant Program provides financial

330

Great Lakes WIND Network | Open Energy Information  

Open Energy Info (EERE)

WIND Network WIND Network Jump to: navigation, search Name Great Lakes WIND Network Address 4855 W 130th Place Cleveland, Ohio Zip 44135 Sector Wind energy Product Business and legal services;Consulting; Energy provider: energy transmission and distribution; Investment/finances;Maintenance and repair;Manufacturing; Research and development; Trainining and education Phone number 215-588-1440 Website http://www.glwn.org Coordinates 41.4228056°, -81.7801592° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4228056,"lon":-81.7801592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Wind Powering America Podcasts, Wind Powering America (WPA)  

SciTech Connect

Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

Not Available

2012-04-01T23:59:59.000Z

332

Wind Powering America Webinar: Wind and Wildlife Interactions | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Wildlife Interactions and Wildlife Interactions Wind Powering America Webinar: Wind and Wildlife Interactions November 23, 2011 - 2:08pm Addthis This webinar is part of the U.S. Department of Energy's Wind Powering America 2011 webinar series. This webinar will provide an overview of wind turbine and wildlife issues, including a summary of research plans by the American Wind and Wildlife Institute. Other topics will include an update of the U.S. Fish and Wildlife Service wind regulations and bat/wind turbine interactions. The webinar is free; no registration is required. More Addthis Related Articles Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends DOE Announces Webinar on Tying Energy Efficiency to Compensation and Performance Reviews, and More

333

New England Wind Forum: Historic Wind Development in New England:  

Wind Powering America (EERE)

Transition to Modern Wind Turbines Transition to Modern Wind Turbines Cold weather operation of the 550-kW Zond Z-40 FS wind turbines at the 6-MW Green Mountain Power wind plant. PIX05593. Cold weather operation of the 550-kW Zond Z-40 FS wind turbines at the 6-MW Green Mountain Power wind plant. Green Mountain Power also installed New England's seventh wind farm, with eleven 550-kW turbines manufactured by Zond Corporation (now owned by GE Wind), in Searsburg, VT, in 1996. Although installation was completed late in 1996, the turbines produced no power during their first winter due to mechanical failures with blade bolts and gearboxes. After mud season in 1997, all gearboxes were replaced, and the Searsburg wind farm went on line in June 1997. It is a local attraction that has received a significant amount of positive attention from visitors and the media. Green Mountain Power reports that the wind farm continues to perform reasonably well, with availability in the 85% to 95% range.

334

US Wind Farmers Network  

DOE Green Energy (OSTI)

Through this program Windustry representatives have produced, widely used, and distributed new materials and have participated in a wide variety of wind energy events, meetings, and conferences. In this work Windustry representatives have sought to reach a broad audience and grow interest and enthusiasm for wind energy. At the same time, Windustry representatives have sought to provide tools, detailed case studies, and other technical resources that deepen Windustry constituency's knowledge of wind energy options. All of this has served to facilitate development of many actual wind energy projects, particularly projects that emphasize local and community benefits.

Lisa Daniels; DOE Project Officer - Keith Bennett

2005-04-15T23:59:59.000Z

335

U.S. Department of Energy Wind Turbine Development Projects  

DOE Green Energy (OSTI)

This paper provides an overview of wind-turbine development activities in the Unites States and relates those activities to market conditions and projections. Several factors are responsible for a surge in wind energy development in the United States, including a federal production tax credit, ''green power'' marketing, and improving cost and reliability. More development is likely, as approximately 363 GW of new capacity will be needed by 2020 to meet growing demand and replace retiring units. The U.S. Department of Energy (DOE) is helping two companies develop next-generation turbines intended to generate electricity for $0.025/kWh or less. We expect to achieve this objective through a combination of improved engineering methods and configuration advancements. This should ensure that wind power will compete effectively against advanced combined-cycle plants having projected generating costs of $0.031/kWh in 2005. To address the market for small and intermediate-size wind turbines, DOE is assisting five companies in their attempts to develop new turbines having low capital cost and high reliability. Additional information regarding U.S. wind energy programs is available on the internet site www.nrel.gov/wind/. E-mail addresses for the turbine manufacturers are found in the Acknowledgements.

Migliore, P. G. (National Renewable Energy Laboratory); Calvert, S. D. (U.S. Department of Energy)

1999-04-26T23:59:59.000Z

336

Session: Offshore wind  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

337

Session: Offshore wind  

SciTech Connect

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

338

Small Wind Information (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

Not Available

2011-08-01T23:59:59.000Z

339

Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2009-04-01T23:59:59.000Z

340

Manufacturers use of business services  

SciTech Connect

This paper summarized findings from a Colorado and Utah survey of manufacturing and business service establishments which provided information on the use of business services among different types of firms in this interior region of the United States. The paper provides information which helps to shed light on various areas of inquiry on the relationship between manufacturers and producer services, but certainly calls for additional investigation. Most of the findings are consistent with those found by studies in other areas. Manufacturers are not a major source of sales for business service firms and the availability of business services is not cited as an important location consideration for manufacturers. Given the strong mining and agricultural sectors in these states, the fact that so little trade was with the primary sector may have been surprising. However, most of the responses in the surveys were from the urban areas of Denver and Salt Lake City. One of the hypotheses in the literature, as defined by Perry and Goe, concerns whether the growth in business services and the decline in manufacturing employment is a result of the trend toward the use of contracted services by manufacturers. The aggregate results of the study do not provide much evidence to support the proposition that this occurs. However, the results show that the larger firms internalize certain specialized business services more so than the smaller firms. The greater use company-provided legal services by the larger manufacturers is a case in point. This finding is consistent with Scott`s finding in the printed circuits industry in which larger establishments provided more functions internally than did the smaller establishments. In the case of engineering, architectural, and business management services it appears that many smaller manufacturers do not use such services at all, but that the larger establishments have more needs for professional services.

Calzonetti, F. [West Virginia Univ., Morgantown, WV (United States); Allison, T. [Argonne National Lab., IL (United States)

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Utility Wind Integration Group Distributed Wind/Solar Interconnection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed Wind/Solar Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop May 21, 2013 8:00AM MDT to May 22, 2013 5:00PM MDT Golden, Colorado This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight on integrating large-scale renewable generation into the transmission system. Held at the National Renewable Energy Laboratory's (NREL) state-of-the-art Energy Systems Integration Facility (ESIF) on the first day and at the Western Area Power Administration's Electric Power Training Center (EPTC) on the second day, the workshop will provide an overview of wind and solar interconnection

342

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

precision machining technology, automated machining and manufacturing technology, welding, photonics technology, microelectromechanical systems (MEMS), and testing and...

343

Advanced Manufacturing Office: About the Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

collapse processing steps to lower the energy intensity of manufactured products. Next-Generation Materials cut energy use and provide new functional properties that enable...

344

Advanced Manufacturing Office: About Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Centers (CEACs) provide outreach to manufacturers considering adoption of combined heat and power (CHP) technology-to save energy and money. Energy Experts and...

345

Fact Sheet: 48C Manufacturing Tax Credits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

48C Manufacturing Tax Credits 48C Manufacturing Tax Credits In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act of 2009 included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C Advanced Manufacturing Tax Credit originally provided a 30% investment tax credit to 183 domestic clean energy manufacturing facilities valued at $2.3 billion. Today the IRS has announced the availability of additional 48C allocations, utilizing $150 million remaining tax credits that were never fully monetized by previous awardees. This tax credit program will help build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. These manufacturing facilities will also

346

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

347

The President's Manufacturing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

348

Manufacturing Day 2012  

Science Conference Proceedings (OSTI)

... City, I had the opportunity to visit GAL Manufacturing Corp., an elevator parts manufacturer in the Bronx, right down the road from Yankee Stadium. ...

2013-02-28T23:59:59.000Z

349

Microelectronics Manufacturing Infrastructure  

Science Conference Proceedings (OSTI)

... But the manufacturing infrastructure is aging. ... to create an integrated infrastructure for manufacturing ... will enhance the value and utility of portable ...

2011-10-19T23:59:59.000Z

350

Winds Shift for Wisconsin Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company July 14, 2010 - 3:53pm Addthis Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Wausaukee Composites to reopen wind turbine parts facility in 2010. 150 jobs expected to be created. Plant will make nacelles for 1.5 MW to 3 MW turbines. A wind turbine parts facility in Cuba City, Wis., is getting another chance

351

Winds Shift for Wisconsin Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company July 14, 2010 - 3:53pm Addthis Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Wausaukee Composites to reopen wind turbine parts facility in 2010. 150 jobs expected to be created. Plant will make nacelles for 1.5 MW to 3 MW turbines. A wind turbine parts facility in Cuba City, Wis., is getting another chance

352

KDOT Grainfield Wind Project | Open Energy Information  

Open Energy Info (EERE)

Grainfield Wind Project Grainfield Wind Project Jump to: navigation, search Name KDOT Grainfield Wind Project Facility KDOT Grainfield Sector Wind energy Facility Type Community Wind Location KS Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 101029 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

353

KDOT Osborne Wind Project | Open Energy Information  

Open Energy Info (EERE)

Wind Project Wind Project Jump to: navigation, search Name KDOT Osborne Wind Project Facility KDOT Osborne Sector Wind energy Facility Type Community Wind Location KS Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 105071 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

354

Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind  

Open Energy Info (EERE)

Huachuang Wind Energy Corporation HCWE aka China Creative Wind Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China Creative Wind Energy Co Ltd) Place Shenyang, Liaoning Province, China Sector Wind energy Product A company engaged in 1.5MW wind turbine manufacturing. It is also known as China Creative Wind Energy Co Ltd. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

DOE Green Energy (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

Grace, R. C.; Gifford, J.

2010-01-01T23:59:59.000Z

356

System and method for upwind speed based control of a wind turbine ...  

A method for controlling power output of a wind turbine generator in response to an anticipated change in wind speed is provided. The method includes sensing wind ...

357

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network (OSTI)

of large amounts of wind power production might requirewill be satisfactory as wind power provides an increasing64 7.2 Wind Power in Relation to System

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

358

U.S. Wind Power Project Database  

SciTech Connect

The database represents an inventory of wind power projects under development in the U.S. The database is designed to provide a concise overview of the current status of domestic projects (200 as of 1 Dec 2007). The database contains key project data on wind power plants currently being evaluated, developed, or constructed. It is of value to anyone interested in tracking wind power development including utilities, power project developers, equipment manufacturers, transporters and other vendors, investment banks, regulators, consultants, and analysts. The database is a Microsoft Excel spreadsheet which enables users to easily and quickly search for projects of interest by developer, technology, location, size, cost, status, or other characteristics. The database is updated as project specifics change to ensure that information is kept timely. Updates are provided via email on a monthly basis as part of an annual subscription. Database fields include: developer, owner, project name and description, location, technology, capacity, investment cost, proposed in-service date, status, air quality permit, and CPCN/siting approval.

NONE

2007-12-15T23:59:59.000Z

359

Wind Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

360

County Wind Ordinance Standards  

Energy.gov (U.S. Department of Energy (DOE))

[http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Caroline County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance amends Chapter 175 of the Code of Public Local Laws of Caroline County, Maryland to provide for the erection, maintenance, and operation of small wind energy systems, as well as...

362

UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process August 4, 2010 - 2:04pm Addthis Researchers at the University of Massachusetts Lowell work on a wind blade project. | Photo courtesy of University of Massachusetts Lowell Researchers at the University of Massachusetts Lowell work on a wind blade project. | Photo courtesy of University of Massachusetts Lowell Stephen Graff Former Writer & editor for Energy Empowers, EERE A research team at the University of Massachusetts Lowell is ironing out the kinks in blade manufacturing to make way for safer, lighter and cheaper blades. The Wind Turbine Research Group (WTRG) at UMass Lowell has received $401,885 in American Recovery and Reinvestment Act funds to figure out

363

Wind Energy Myths; Wind Powering America Fact Sheet Series  

NLE Websites -- All DOE Office Websites (Extended Search)

wind energy provided the lowest cost of any new generation resource submitted to an Xcel Energy solicitation bidding process (except for one small hydro plant). The commission...

364

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

Webinars Webinars Conference Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Energy Education Project The New England Wind Energy Education Project (NEWEEP) is designed to complement the New England Wind Forum website and newsletter as a comprehensive source of objective information on wind energy issues in the New England region. The project, funded by the U.S. Department of Energy's (DOE's) former Wind Powering America Initiative under a 2-year grant, began as an eight-part webinar series and a conference. The NEWEEP webinar series provides the public with objective information to allow informed decisions about proposed wind energy projects throughout the New England region.

365

NREL: Renewable Resource Data Center - Wind Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

366

Locating Chicago Manufacturing  

E-Print Network (OSTI)

and engineering.3 The Chicago Manufacturing Renaissance Council itself is a unique public-private partnership

Illinois at Chicago, University of

367

Manufacturing Simulation Portal  

Science Conference Proceedings (OSTI)

... in planning by robots in scenarios relevant to more. ... SUSTAINABLE MANUFACTURING PROCESS ANALYSIS APPLICATIONS DEVELOPMENT. ...

2012-12-27T23:59:59.000Z

368

Topic: Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Project. Sustainable Manufacturing Program. Sustainability Characterization for Product Assembly Processes Project. Testbed ...

2012-09-19T23:59:59.000Z

369

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

370

MST: Organizations: Precision Meso Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

371

Manufacturing Energy and Carbon Footprints  

E-Print Network (OSTI)

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much is lost? Answering these questions is the focus of this paper and the analysis described herein. Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions, for the fifteen most energy intensive manufacturing sectors, and for the entire U.S. manufacturing sector. Analysts and decision-makers utilize the footprints to better understand the distribution of energy use in energy-intensive industries and the accompanying energy losses. The footprints provide a benchmark from which to calculate the benefits of improving energy efficiency and for prioritizing opportunity analysis. A breakdown of energy consumption by energy type and end use allows for comparison both within and across sectors.

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

372

Small Wind Guidebook/Image Library | Open Energy Information  

Open Energy Info (EERE)

Image Library Image Library < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information *Capacity-10 kilowatts *Turbine manufacturer-Bergey Windpower Company

373

MANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED MANUFACTURING  

E-Print Network (OSTI)

and an additive process. Manufacturability indexes are calculated at the tool design stage, these indexes provide an accurate view of which areas of the tool will advantageously be machined or manufactured by an additive], but manufacturing features for additive technologies are still under development [5]. Furthermore, for free

Paris-Sud XI, Université de

374

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)  

DOE Green Energy (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

2010-09-01T23:59:59.000Z

375

Applications: Wind turbine and blade design  

E-Print Network (OSTI)

Capability Applications: Wind turbine and blade design optimization Energy production enhancement Summary: As the wind energy industry works to provide the infra- structure necessary for wind turbine develops a means to aug- ment power production with wind-derived energy. Turbines have become massive

376

Development in wind energy technology: an update  

Science Conference Proceedings (OSTI)

This paper presents an overview of the development in wind energy technology. Growth in wind technology and components of wind energy conversion systems are provided. Ratings, and system size are included for various applications in addition to power ... Keywords: development, power electronics converters, technology, wind energy

Faeka M. H. Khater

2012-04-01T23:59:59.000Z

377

Workforce Development and Wind for Schools (Poster)  

DOE Green Energy (OSTI)

As the United States dramatically expands wind energy deployment, the industry is faced with the need to quickly develop a skilled workforce and to address public acceptance. Wind Powering America's Wind for Schools project addresses these challenges. This poster, produced for the American Wind Energy Association's annual WINDPOWER conference, provides an overview of the project, including objectives, methods, and results.

Newcomb, C.; Baring-Gould, I.

2012-06-01T23:59:59.000Z

378

Paul S. Veers Wind Energy Technology Department  

E-Print Network (OSTI)

Paul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3 Y WIND ENERGY SEMINAR SERIES Wind energy is a growing electricity source around the world, providing. The rapid expansion of wind is largely due to its relative similarity in levelized cost of energy to fossil

Ginzel, Matthew

379

Applied wind energy research at the National Wind Technology Center  

DOE Green Energy (OSTI)

Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

Robinson, M C; Tu, P

1996-06-01T23:59:59.000Z

380

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Recognition Awards The AMTTP won Sandia's Silver President's Quality Award and the Manufacturing Science and Technology Center's Gold Recognition and Team Award. Letters of...

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

MEST & SIT Skills Standard Technical Institute Partners Training Areas Program Recognition Partners Contacts News Articles Advanced Manufacturing Trades Training Program (AMTTP)...

382

Wind shear for large wind turbine generators at selected tall tower sites  

DOE Green Energy (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

383

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

384

Wind Powering America Program Overview (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind Powering America Program.

Not Available

2008-04-01T23:59:59.000Z

385

Overview of Offshore Wind Technology: Preprint  

SciTech Connect

This paper provides a short overview of some of the challenges facing the growth of offshore wind energy technology.

Butterfield, C. P.; Musial, W.; Jonkman, J.

2007-10-01T23:59:59.000Z

386

Stakeholder Priorities in Wind Energy (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of stakeholder priorities as they relate to wind power, including priorities by region and type.

Lantz, E.

2011-05-01T23:59:59.000Z

387

Stakeholder Engagement and Outreach: Utility-Scale Land-Based 80-Meter Wind  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites within a fairly large region and determining a potential site's economic and technical viability. A wind resource map of the United States. Washington wind map and resources. Oregon wind map and resources. California wind map and resources. Idaho wind map and resources. Nevada wind map and resources. Arizona wind map and resources. Utah wind map and resources. Montana wind map and resources. Wyoming wind map and resources. North Dakota wind map and resources. South Dakota wind map and resources. Nebraska wind map and resources. Colorado wind map and resources. New Mexico wind map and resources. Kansas wind map and resources. Oklahoma wind map and resources. Texas wind map and resources. Minnesota wind map and resources. Iowa wind map and resources. Missouri wind map and resources. Arkansas wind map and resources. Lousiana wind map and resources. Wisconsin wind map and resources. Michigan wind map and resources. Michigan wind map and resources. Illinois wind map and resources. Indiana wind map and resources. Ohio wind map and resources. Kentucky wind map and resources. Tennessee wind map and resources. Mississippi wind map and resources. Alabama wind map and resources. Georgia wind map and resources. Florida wind map and resources. South Carolina wind map and resources. North Carolina wind map and resources. West Virginia wind map and resources. Virginia wind map and resources. Maryland wind map and resources. Pennsylvania wind map and resources. Delaware wind map and resources. New Jersey wind map and resources. New York wind map and resources. Maine wind map and resources. Vermont wind map and resources. New Hampshire wind map and resources. Massachusetts wind map and resources. Rhode Island wind map and resources. Connecticut wind map and resources. Alaska wind map and resources. Hawaii wind map and resources.

388

Renewable Energy Manufacturing Tax Credit (South Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Tax Credit (South Carolina) Manufacturing Tax Credit (South Carolina) Renewable Energy Manufacturing Tax Credit (South Carolina) < Back Eligibility Industrial Savings Category Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate $500,000 for any year and $5 million total for all years Program Info Start Date 01/01/2010 Expiration Date 12/31/2015 State South Carolina Program Type Industry Recruitment/Support Rebate Amount 10% South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015. In order to qualify, a business must: *manufacture renewable energy systems and components in South Carolina for solar, wind, geothermal, or other renewable energy uses

389

Pilots to Inform the Creation of Potential New Manufacturing ...  

Science Conference Proceedings (OSTI)

... SMMs grow their businesses and compete within global manufacturing supply ... We provide clients around the globe with insight, analysis, and ...

2013-08-06T23:59:59.000Z

390

Wind Powering America's Wind for Schools Project: Summary Report  

DOE Green Energy (OSTI)

This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

Baring-Gould, I.; Newcomb, C.

2012-06-01T23:59:59.000Z

391

EERE News: Reports Show Record High U.S. Wind Energy Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reports Show Record High U.S. Wind Energy Production and Manufacturing August 06, 2013 Two men work on the nacelle of a wind turbine. The Energy Department released two new reports...

392

LIDAR Wind Speed Measurements of Evolving Wind Fields  

DOE Green Energy (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

393

LIDAR Wind Speed Measurements of Evolving Wind Fields  

SciTech Connect

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

394

New England Wind Forum: Historic Wind Development in New England: Wrap Up  

Wind Powering America (EERE)

Wrap Up Wrap Up Remote Power in Isolated Electric Systems Additional installations of earlier-generation wind turbines occurred at Cuttyhunk Island, MA (a 200-kW WTG turbine operated as part of a wind-diesel installation), and Block Island, RI, which hosted one of the first four 200-kW MOD-OA units developed under the Department of Energy's large wind research program. Small Wind Turbine Manufacturing Vermont was a hotbed for early small-machine manufacturers. North Wind (now Northern Power Systems) and Enertech won two of the first contracts awarded by the Department of Energy wind research program for small-machine design. NPS still survives as a successful business today, while Enertech was succeeded by Atlantic Orient, which in turn has taken on new life in Canada as Entegrity. (Other companies, such as Astral Wilcon and Pinson Energy in Massachusetts, are no longer in business.)

395

Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)  

DOE Green Energy (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

Not Available

2012-03-01T23:59:59.000Z

396

Wind Power in China | Open Energy Information  

Open Energy Info (EERE)

in China in China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Contents 1 Summary 2 Estimate Potential 3 Current Projects 4 China Manufacturers 4.1 Wind Companies in Wind Power in China 5 China's Wind Goals 6 References Summary Installed wind capacity: approximately 30 GW by end of 2010 (est), added 13.8 GW in 2009 Installed wind capacity doubled each year, Min Deqing China_2050_Wind_Technology_Roadmap Estimate Potential Offshore wind energy generation potential in China estimate to be 11,000 terawatt-hours (TWh) similar to that of the North Sea in western Europe.[1][2] Current Projects 7 large projects or "megabases" (2010) [3] Inner Mongolia approximately 4.3 GW capacity in 2010 (66 projects; 40 more planned)[4] 1.25 GW offshore project in Guangdong

397

CgWind: A high-order accurate simulation tool for wind turbines and wind farms  

DOE Green Energy (OSTI)

CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

2010-02-22T23:59:59.000Z

398

Wind Developer's Perspective on Incorporating Wind in Cap and Trade Program  

Wind Powering America (EERE)

Developer's Perspective Developer's Perspective on Incorporating Wind in Cap & Trade Programs January 12, 2006 Kevin Rackstraw Clipper Windpower, Inc. Clipper Windpower, Inc. 301/263 301/263- -0028 0028 krackstraw@clipperwind.com krackstraw@clipperwind.com About Clipper Windpower * Founded by James Dehlsen, a wind energy pioneer and recognized world leader in the wind industry, and founder of the company that is now GE Wind * Team is one of the most experienced in the business * Both a developer of wind projects and manufacturer of large wind turbines * Over $1.5 billion of wind projects developed * Another $4 billion of wind projects in the development pipeline Motivations * Emissions reduction claims: * In cap and trade states, neither we nor our marketers can state that we reduce capped emissions w/out allowances

399

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

400

Modern, three-blade wind turbines are 50 to 90 meters in diameter...  

NLE Websites -- All DOE Office Websites (Extended Search)

of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities. In addition, the nation will continue to need skilled scientists...

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ERCOT Wind Development  

Science Conference Proceedings (OSTI)

At present, Texas leads the nation in wind development. Capacity reached 8005 MW in 2008, an addition of over 5000 MW in two years. Further, the state is committed to expanding the transmission system to tap as much as 18,456 MW of wind power. Focusing on the period 2008-2012, this study examines the market response to wind capacity, particularly in the time leading up to the expansion of the Texas transmission system. The study is introductory in nature, providing a foundation for more extensive analysi...

2009-03-30T23:59:59.000Z

402

Stakeholder Engagement and Outreach: Residential-Scale 30-Meter Wind Maps  

Wind Powering America (EERE)

Residential-Scale 30-Meter Wind Maps Residential-Scale 30-Meter Wind Maps The Stakeholder Engagement and Outreach initiative provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map. Go to the Nevada wind resource map. Go to the Montana wind resource map. Go to the Wyoming wind resource map. Go to the Utah wind resource map. Go to the Colorado wind resource map. Go to the Arizona wind resource map. Go to the New Mexico wind resource map. Go to the North Dakota wind resource map. Go to the South Dakota wind resource map. Go to the Nebraska wind resource map. Go to the Kansas wind resource map. Go to the Oklahoma wind resource map. Go to the Texas wind resource map. Go to the Minnesota wind resource map. Go to the Iowa wind resource map. Go to the Missouri wind resource map. Go to the Arkansas wind resource map. Go to the Louisiana wind resource map. Go to the Wisconsin wind resource map. Go to the Illinois wind resource map. Go to the Indiana wind resource map. Go to the Michigan wind resource map. Go to the Ohio wind resource map. Go to the Kentucky wind resource map. Go to the Tennessee wind resource map. Go to the Mississippi wind resource map. Go to the Alabama wind resource map. Go to the Florida wind resource map. Go to the Georgia wind resource map. Go to the South Carolina wind resource map. Go to the North Carolina wind resource map. Go to the Virginia wind resource map. Go to the West Virginia wind resource map. Go to the Pennsylvania wind resource map. Go to the Maryland wind resource map. Go to the Delaware wind resource map. Go to the New Jersey wind resource map. Go to the New York wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. Go to the Massachusetts wind resource map. Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Alaska wind resource map. Go to the Hawaii wind resource map.

403

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co  

Open Energy Info (EERE)

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd) Place Xi An, Shaanxi Province, China Zip 710021 Sector Wind energy Product Subsidiary of Xiâ€(tm)an Aero-Engine that manufactures its 600kW wind turbines in Xi An, China. References Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd) is a company located in Xi An, Shaanxi Province, China . References ↑ "[ Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind

404

NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

REL's wind energy research and development efforts at REL's wind energy research and development efforts at the National WInd Technology Center (NWTC) have contributed to numerous successes for the wind industry. In addition to helping its industry partners develop commercially successful wind turbines, NREL has developed award-winning components and modeling software. The Laboratory also engages in deployment activities that help schools, communities, and utilities understand the benefits of wind energy and how it can be successfully integrated into our nation's electrical system to provide for a cleaner, more secure energy future. NREL's successes in wind energy research, development, and deployment have: * Reduced the cost of large and small wind turbine technologies

405

Offshore Wind Research (Fact Sheet)  

SciTech Connect

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

2011-10-01T23:59:59.000Z

406

Offshore Wind Research (Fact Sheet)  

DOE Green Energy (OSTI)

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

407

Analysis of Mesoscale Model Data for Wind Integration (Poster)  

DOE Green Energy (OSTI)

Supports examination of implications of national 20% wind vision, and provides input to integration and transmission studies for operational impact of large penetrations of wind on the grid.

Schwartz, M.; Elliott, D.; Lew, D.; Corbus, D.; Scott, G.; Haymes, S.; Wan, Y. H.

2009-05-01T23:59:59.000Z

408

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides a brief description of the Wind Energy Market and describes the U.S. Department of Energy's Wind Program research and development efforts.

Not Available

2012-10-01T23:59:59.000Z

409

New England Wind Forum: About the New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum The U.S. Department of Energy launched the New England Wind Forum in 2005 to provide a single, comprehensive source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. New England Is Proud to Be the Birthplace of the U.S. Wind Power Industry New England is the birthplace of the U.S. wind industry and home to a number of industry "firsts." New England has relied on the wind from its early days, from powering seafaring commerce to grinding grain in the windmills of Cape Cod - several of which still stand as a testament to the past. Photo of old windmill, Eastham, Cape Cod, MA. Library of Congress, Prints & Photographs Division, Carl Van Vechten Collection, July, 1936. Click on the image to view a larger version.

410

Wind for Schools: A Wind Powering America Project (Brochure)  

Wind Powering America (EERE)

for Schools: for Schools: A Wind Powering America Project Donna Berry - Utah State University/PIX13969 2 2 What is the Wind for Schools Project? Energy is largely taken for granted within our society, but that perception is changing as the economic and environmental impacts of our current energy supply structure are more widely understood. The U.S. Department of Energy's (DOE's) Wind Powering America program (at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. A wind turbine located at a school provides students and teachers with a physical example of how communities can take

411

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

412

Wind Energy Teachers Guide  

DOE Green Energy (OSTI)

This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

anon.

2003-01-01T23:59:59.000Z

413

Financial Innovation Among the Community Wind Sector in the United States  

DOE Green Energy (OSTI)

In the relatively brief history of utility-scale wind generation, the 'community wind' sector - defined here as consisting of relatively small utility-scale wind power projects that are at least partly owned by one or more members of the local community - has played a vitally important role as a 'test bed' or 'proving ground' for wind turbine manufacturers. In the 1980s and 1990s, for example, Vestas and other now-established European wind turbine manufacturers relied heavily on community wind projects in Scandinavia and Germany to install - and essentially field-test - new turbine designs. The fact that orders from community wind projects seldom exceeded more than a few turbines at a time enabled the manufacturers to correct any design flaws or manufacturing defects fairly rapidly, and without the risk of extensive (and expensive) serial defects that can accompany larger orders. Community wind has been slower to take root in the United States - the first such projects were installed in the state of Minnesota around the year 2000. Just as in Europe, however, the community wind sector in the U.S. has similarly served as a proving ground - but in this case for up-and-coming wind turbine manufacturers that are trying to break into the broader U.S. wind power market. For example, community wind projects have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010),1 Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Just as it has provided a proving ground for new turbines, so too has the community wind sector in the United States served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the 'partnership flip structure' - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adapted by the broader wind market. More recently, a handful of community wind projects built in the United States over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures. These projects include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into 'New Markets Tax Credits' using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind financing structures that could serve as useful examples for other projects - both community and commercial wind alike. This new wave of financial innovation occurring in the community wind sector has been facilitated by policy changes, most of them recent. Most notably, the American Recovery and Reinvestment Act of 2009 ('the Recovery Act') enables, for a limited time, wind power (and other types of) projects to elect either a 30% investment tax credit ('ITC') or a 30% cash grant (the 'Section 1603 grant') in lieu of the federal incentive that has historically been available to wind projects in the U.S. - a 10-year production tax credit ('PTC'). This flexibility, in turn, enables wind power projects to pursue lease financing for the first time - leasing is not possible under the PTC. Because they are based on a project's cost rather than energy generation, the 30% ITC and Section 1603 grant also reduce performance risk relative to the PTC - this, too, is an important enabler of lease financing. Finally, by providing a cash rather than ta

Bolinger, Mark

2011-01-19T23:59:59.000Z

414

Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Keeping America Competitive: Bringing Down the Cost of Small Wind Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines January 23, 2013 - 2:26pm Addthis Bison standing in front of a 10 kW wind turbine manufactured by Bergey Windpower Company. | Photo by Northwest Seed, NREL. Bison standing in front of a 10 kW wind turbine manufactured by Bergey Windpower Company. | Photo by Northwest Seed, NREL. Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office How can I participate? Interested in a small wind turbine for your home? Here's information to guide you. How do we stay competitive in the global wind energy market? A key component is continued leadership in manufacturing small wind turbines - those rated at 100 kilowatts or less.

415

Soap Manufacturing Technology  

Science Conference Proceedings (OSTI)

Soap producers as well as anyone with an interest in soap technology will benefit from the new AOCS Press Soap Manufacturing Technology book. Soap Manufacturing Technology Surfactants and Detergents aocs articles Detergents division divisions fabric

416

Energy Use in Manufacturing  

Reports and Publications (EIA)

This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

William Gifford

2006-08-14T23:59:59.000Z

417

MODELING WIND TURBINES IN THE GRIDLAB-D SOFTWARE ENVIRONMENT  

SciTech Connect

In recent years, the rapid expansion of wind power has resulted in a need to more accurately model the effects of wind penetration on the electricity infrastructure. GridLAB-D is a new simulation environment developed for the U.S. Department of Energy (DOE) by the Pacifi c Northwest National Laboratory (PNNL), in cooperation with academic and industrial partners. GridLAB-D was originally written and designed to help integrate end-use smart grid technologies, and it is currently being expanded to include a number of other technologies, including distributed energy resources (DER). The specifi c goal of this project is to create a preliminary wind turbine generator (WTG) model for integration into GridLAB-D. As wind power penetration increases, models are needed to accurately study the effects of increased penetration; this project is a beginning step at examining these effects within the GridLAB-D environment. Aerodynamic, mechanical and electrical power models were designed to simulate the process by which mechanical power is extracted by a wind turbine and converted into electrical energy. The process was modeled using historic atmospheric data, collected over a period of 30 years as the primary energy input. This input was then combined with preliminary models for synchronous and induction generators. Additionally, basic control methods were implemented, using either constant power factor or constant power modes. The model was then compiled into the GridLAB-D simulation environment, and the power outputs were compared against manufacturers data and then a variation of the IEEE 4 node test feeder was used to examine the models behavior. Results showed the designs were suffi cient for a prototype model and provided output power similar to the available manufacturers data. The prototype model is designed as a template for the creation of new modules, with turbine-specifi c parameters to be added by the user.

Fuller, J.C.; Schneider, K.P.

2009-01-01T23:59:59.000Z

418

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

419

Wind shear climatology for large wind turbine generators  

DOE Green Energy (OSTI)

Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

1982-10-01T23:59:59.000Z

420

Manufacturing Extension Partnership  

Science Conference Proceedings (OSTI)

... research and development programs with manufacturing and military applications including robotic deburring, automated lay up of thermoplastic ...

2009-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Manufacturing Modeling and Simulation  

Science Conference Proceedings (OSTI)

... An integrated data model for manufacturing activities will be defined ... Measurement science techniques, including classic statistics, will be applied ...

2013-01-04T23:59:59.000Z

422

Technology Development and Manufacturing ...  

Science Conference Proceedings (OSTI)

... Manufacturing Tax Credits; Loan Guarantees Renewable Energy FY 11 Budget- Univ. ... Products China Philippines Czech Republic 25 30 35 ...

2013-06-11T23:59:59.000Z

423

Green Manufacturing News  

Science Conference Proceedings (OSTI)

... New MEP Advisory Board White Paper Assesses the Present and Future of American Manufacturing Release Date: 04/13/2010 ...

2010-10-27T23:59:59.000Z

424

Sustainable Manufacturing Briefing  

Science Conference Proceedings (OSTI)

... enhance their brands. Is sustainability an opportunity or cost? There is no ... demonstrate, deploy, and accredit new sustainable manufacturing ...

2012-08-29T23:59:59.000Z

425

Testimonials from Manufacturing  

Science Conference Proceedings (OSTI)

... The economic environment is difficult for Cargill Corn Milling, as it is difficult for many manufacturing companies today. ...

2013-01-30T23:59:59.000Z

426

Wind Farm | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Farm Wind Farm Wind Farm The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal building in Greensburg. Technical assistance provided by the U.S. Department of Energy and the National Renewable Energy Laboratory was influential in helping Greensburg and its partners build the wind farm. The town uses only about 1/4 to 1/3 of the power generated to reach its "100% renewable energy, 100% of the time" goal. Excess power is placed back on the grid and offered as renewable energy credits for other Kansas Power Pool and Native Energy customers. The Greenburg Wind Farm continues to have an impact, inspiring Sunflower

427

PJM Interconnection Interview on Wind  

Wind Powering America (EERE)

Vol. 9, No. 5 - December 5, 2007 Vol. 9, No. 5 - December 5, 2007 PJM on wind Wind power is growing rapidly in the United States and in Pennsylvania where 8 wind farms that total 259 megawatts now operate. Those wind farms already generate enough power for about 80,000 homes. Another 4,714 megawatts are in various stages of development within Pennsylvania, which would create enough power for an additional 1.4 mil- lion homes. Just in the Keystone state, wind power is creating thousands of jobs. Across the nation, wind power provides hundreds of millions of dollars of tax payments and rental fees to land- owners, and displaces more and more electricity that would otherwise be made by burning coal, oil, or natural gas. Wind farms create zero air pollution; require no destructive

428

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1997-11-11T23:59:59.000Z

429

Elastomeric member and method of manufacture therefor  

DOE Patents (OSTI)

An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

Hoppie, Lyle O. (Birmingham, MI)

1985-01-01T23:59:59.000Z

430

High wind evaluation in the Southern Ocean Xiaojun Yuan  

E-Print Network (OSTI)

1 High wind evaluation in the Southern Ocean Xiaojun Yuan Lamont-Doherty of Earth Observatory based scatterometer instruments provide crucial surface wind measurements with high resolution over winds at high wind bands because these regions host the strongest wind fields at the ocean surface

Khatiwala, Samar

431

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy.  

E-Print Network (OSTI)

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy, the commission determined that wind energy provided the lowest cost of any new generation resource submitted a reduction in payments by electricity customers of $305 million in one year.2 2 Wind energy requires

Massachusetts at Amherst, University of

432

NREL: Wind Research - SWIFT Wind Turbine Testing and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

SWIFT Wind Turbine Testing and Results SWIFT Wind Turbine Testing and Results The SWIFT wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing the SWIFT small wind turbine at the National Wind Technology Center (NWTC). The competitive grant was awarded to Cascade Engineering. The SWIFT is a 1-kilowatt (kW), five-bladed with outer ring, horizontal-axis upwind small wind turbine. The turbine's rotor diameter is 2 meters, and its hub height is 13.72 meters. The SWIFT uses a single-phase permanent-magnet generator rated at 1 kW grid connected through an inverter at 240 volts AC. Testing Summary Supporting data and explanations for data provided in this table will be provided in the final reports. Data presented are preliminary and subject

433

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

434

Advancing manufacturing through computational chemistry  

SciTech Connect

The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

1995-12-31T23:59:59.000Z

435

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

436

A Comparison of Winds Observed at Christmas Island using a Wind-Profiling Doppler Radar with NMC and ECMWF Analyses  

Science Conference Proceedings (OSTI)

Wind profilers can provide useful wind data from remote regions of the globe, and incorporation of upper-level wind profiler data into analysis products can significantly improve the quality of analyses in data sparse regions.

Kenneth S. Gage; John R. McAfee; Ben Balsley; William G. Collins; Daniel Sderman; Horst Bttger; Alan Radford

1988-09-01T23:59:59.000Z

437

Wind News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News and Blog Wind News and Blog Wind News and Blog Blog Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 1:35 PM Two state-of-the-art wind turbine drivetrain test facilities are now open for business: the Clemson University Wind Turbine Drivetrain Testing Facility in South Carolina and a National Renewable Energy Laboratory dynamometer at the National Wind Technology Center in Colorado. Read The Full Story Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association

438

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 International Energy Agency (IEA) Wind member countries. August 26, 2009 NWTC Installs Multimegawatt Research Turbines NREL's National Wind Technology Center installed the first of two multimegawatt wind turbines last week to be used for research to advance wind turbine performance and reliability. February 3, 2009 U.S. Wind Industry Takes Global Lead The U.S. wind energy industry broke another global record in 2008 by installing 8,358 megawatts (MW) of new capacity, bringing our nation's total wind energy capacity to 25,170 MW. The United States now claims the largest wind energy capacity in the world, taking the lead from Germany.

439

Advanced Manufacturing Jobs and Innovation Accelerator Challenge |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assistance » Advanced Manufacturing Jobs and Innovation Technical Assistance » Advanced Manufacturing Jobs and Innovation Accelerator Challenge Advanced Manufacturing Jobs and Innovation Accelerator Challenge October 10, 2013 - 12:01pm Addthis The Advanced Manufacturing Jobs and Innovation Accelerator Challenge (Accelerator) is a multi-agency sponsored competition established to enhance existing regional networks of firms and institutions that accelerate technology-related innovation, business formation, and job creation. Funding provided to these regional networks (also called clusters) help academia, utilities, local governments, and private industry and investors expand partnerships, share strategic information more efficiently, and reduce costs by leveraging existing assets and resources (like physical facilities and equipment).

440

Mexico Wind Resource Assessment Project  

Science Conference Proceedings (OSTI)

A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

Schwartz, M.N.; Elliott, D.L.

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

442

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

443

"S" Glass Manufacturing Technology Transfer  

SciTech Connect

A glass-ceramic-to metal sealing technology patented by Sandia National Laboratories, Albuquerque (SNLA) was developed by MRC-Mound for use in the manufacture of weapon components. Successful implementation attracted increasingly widespread weapon use of this technology. "S-glass" manufacturing technology was transferred to commercial vendors to ensure that weapons production schedules would be met in the coming years. Such transfer also provided sources of this fledgling technology for the Department of Defense (DOD), aerospace and other commercial uses. The steps involved in the technology transfer are described, from the initial cooperative development work of Sandia and Mound scientists and technologists to the final phase of qualifying commercial vendors for component manufacture.

Buckner, Dean, A.; McCollister, Howard, L.

1988-06-01T23:59:59.000Z

444

Advanced Blade Manufacturing Project - Final Report  

SciTech Connect

The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

POORE, ROBERT Z.

1999-08-01T23:59:59.000Z

445

PEM Stack Manufacturing: Industry Status  

NLE Websites -- All DOE Office Websites (Extended Search)

© 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of where we have been; 2. Where we are today; 3. Where we would like to transition to; 4. Gaps and proposals. AUGUST 2009 P A G E 3 PEM Stack Manufacturing: Cost Overview * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA.

446

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Distributed Wind Jump to: navigation, search Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations.[1] Resources Clean Energy States Alliance. (2010). State-Based Financing Tools to Support Distributed and Community Wind Projects. Accessed September 27, 2013. This guide reviews the financing role that states, and specifically state clean energy funds, have played and can play in supporting community and distributed wind projects. Clean Energy States Alliance. (May 2010). Supporting Onsite Distributed Wind Generation Projects. Accessed September 27, 2013.

447

Revitalizing Innovation in Michigan for Clean Energy Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing April 25, 2011 - 4:33pm Addthis Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Kerry Duggan What does this mean for me? Michigan has expanded its manufacturing focus beyond automobiles. Companies across Michigan are producing advanced batteries, motors, controllers, lighting devices, wind machines, photovoltaic modules, and other clean energy products. To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Last week, I got

448

Steam Champions in Manufacturing  

E-Print Network (OSTI)

Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a steam system demands the managerial expertise of a "Steam Champion," which will be described in this paper. Briefly, the steam champion is a facility professional who embodies the skills, leadership, and vision needed to maximize the effectiveness of a plant's steam system. Perhaps more importantly, the steam champion's definitive role is that of liaison between the manufacturer's boardroom and the plant floor. As such, the champion is able to translate the functional impacts of steam optimization into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills.

Russell, C.

2001-05-01T23:59:59.000Z

449

Representativeness of Wind Observations at Airports  

Science Conference Proceedings (OSTI)

Wind information for use at airports can be called representative if it provides an optimal estimate of wind variations to be expected over the runway. It is shown that a single anemometer at a nonideal but reasonable location will usually ...

J. Wieringa

1980-09-01T23:59:59.000Z

450

Success Stories (Postcard), Wind Powering America (WPA)  

DOE Green Energy (OSTI)

Wind Powering America shares best practices and lessons learned on the Wind Powering America website. This postcard is an outreach tool that provides a brief description of the success stories as well as the URL.

Not Available

2012-02-01T23:59:59.000Z

451

Deepwater Offshore Wind Technology Research Requirements (Poster)  

DOE Green Energy (OSTI)

A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

Musial, W.

2005-05-01T23:59:59.000Z

452

Deepwater Offshore Wind Technology Research Requirements (Poster)  

SciTech Connect

A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

Musial, W.

2005-05-01T23:59:59.000Z

453

2010 Cost of Wind Energy Review  

DOE Green Energy (OSTI)

This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

2012-04-01T23:59:59.000Z

454

Wind powering America: New Mexico  

DOE Green Energy (OSTI)

This fact sheet provides a brief description of the wind resources in New Mexico and the state's net metering and green power programs. The fact sheet also provides a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

455

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

456

New England Wind Forum: Historic Wind Development in New England: The Age  

Wind Powering America (EERE)

The Age of PURPA Spawns the "Wind Farm" The Age of PURPA Spawns the "Wind Farm" The sustained high cost of conventional fuels together with heightened environmental concerns about air pollution led in 1978 to federal legislation - known as PURPA, the Public Utility Regulatory Policies Act - that encouraged private, non-utility investment in generating power from renewable energy sources. At that time, the first small-scale wind turbines were being sold by domestic manufacturers. Wind Farm at Crotched Mountain, NH, 1978. Photo courtesy of the University of Massachusetts. Click on the photo to view a larger image. Wind Farm at Crotched Mountain, NH, 1978. Photo courtesy of the University of Massachusetts. Crotched Mountain In December 1980, U.S. Windpower installed the world's first wind farm, consisting of 20 wind turbines rated at 30 kilowatts each, on the shoulder of Crotched Mountain in southern New Hampshire. Like many firsts, it was a failure: The developer overestimated the wind resource, and the turbines frequently broke. U.S. Windpower, which later changed its name to Kenetech, subsequently developed wind farms in California, and after experiencing machine failure there too, improved its designs and became the world's largest turbine manufacturer and wind farm developer before succumbing to the weight of aggressive development efforts, serious technical problems with its newest turbines, and a weak U.S. market, ultimately filing for bankruptcy in 1996.

457

New England Wind Forum: Historic Wind Development in New England: An  

Wind Powering America (EERE)

An Industry in Transition An Industry in Transition Most early wind farm development in the United States took place in California because the state granted a 25% income tax credit for wind energy investment, utilities signed contracts for power at attractive prices, state-funded wind measurement studies documented good wind resources, and because the state government, utilities, and local investors encouraged development. From 1980 through 1985, the principal market for wind turbines was tax-motivated individuals. Changes in federal tax law, including expiration of the energy tax credit in 1985 and passage of the Tax Reform Act of 1986, removed the major tax incentives for investing in wind energy. Because energy tax credits were eliminated and deductions for losses from passive investments had been reduced, the number of new wind turbines installed dropped sharply over this period. Oil prices declined during the same period, so many manufacturers and developers went out of business or were consolidated into larger operations.

458

Wind for Schools Project Curriculum Brief (Fact Sheet), Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

Introduction Introduction The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding educa- tion to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institu- tions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more gradu- ate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initia-

459

Entegrity Wind Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Entegrity Wind Systems Inc Entegrity Wind Systems Inc Jump to: navigation, search Logo: Entegrity Wind Systems Inc Name Entegrity Wind Systems Inc Address 4855 Riverbend Rd Place Boulder, Colorado Zip 80301 Sector Wind energy Product Manufactures 50kW wind turbines Website http://www.entegritywind.com/ Coordinates 40.01627°, -105.234018° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01627,"lon":-105.234018,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Inox Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Inox Wind Ltd Inox Wind Ltd Jump to: navigation, search Name Inox Wind Ltd Place Noida, Uttar Pradesh, India Sector Wind energy Product Uttar Pradesh-based wind power project developer. Inox also holds the right to manufacture and sell AMSC Windtec 2MW wind turbines in India. Coordinates 28.56737°, 77.36779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.56737,"lon":77.36779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

INFOGRAPHIC: Offshore Wind Outlook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Outlook Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic resource could support up to 200,000 manufacturing, construction, operation and supply chain jobs across the country and drive over $70 billion in annual investments by 2030. Infographic by Sarah Gerrity. For more details, check out: New Reports Chart Offshore Wind’s Path Forward. According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic

462

Service/Product Provider  

NLE Websites -- All DOE Office Websites (Extended Search)

816 Maple St. 738 E. Gull Lake Dr. Three Rivers, MI 49093 Augusta, MI 49012 Business: Steam, air & hot water systems Business: Pharmaceutical manufacturing Tom Henry, Director of...

463

Service/Product Provider  

NLE Websites -- All DOE Office Websites (Extended Search)

Potato Processing Plants Integrated Paper Mills Juice Processing Plants Petroleum Refineries (Solomon-EII(tm) scoring system) Pharmaceutical Manufacturing Plants Pulp Mills Wet...

464

Danish Wind Turbine Owners Association | Open Energy Information  

Open Energy Info (EERE)

Owners Association Owners Association Jump to: navigation, search Name Danish Wind Turbine Owners' Association Place Aarhus C, Denmark Zip DK-8000 Sector Wind energy Product Danish Wind Turbine Ownersâ€(tm) Association is a non-profit, independent association overseeing wind turbine ownersâ€(tm) mutual interests regarding the authorities, political decision-makers, utilities and wind turbine manufacturers. References Danish Wind Turbine Owners' Association[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Danish Wind Turbine Owners' Association is a company located in Aarhus C, Denmark . References ↑ "Danish Wind Turbine Owners' Association" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Wind_Turbine_Owners_Association&oldid=344068

465

Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Mingyang Wind Power Technology Co Ltd Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name Guangdong Mingyang Wind Power Technology Co Ltd Place Zhongshan City, Guangdong Province, China Sector Wind energy Product Subsidiary of privately owned Guangdong Mingyang Electric that manufacturers 1.5MW wind turbines. References Guangdong Mingyang Wind Power Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guangdong Mingyang Wind Power Technology Co Ltd is a company located in Zhongshan City, Guangdong Province, China . References ↑ "Guangdong Mingyang Wind Power Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guangdong_Mingyang_Wind_Power_Technology_Co_Ltd&oldid=346230

466

TMA Global Wind Energy Systems | Open Energy Information  

Open Energy Info (EERE)

TMA Global Wind Energy Systems TMA Global Wind Energy Systems Jump to: navigation, search Name TMA Global Wind Energy Systems Place Cheyenne, Wyoming Zip 82001 Sector Wind energy Product Involved in the development, manufacture, and marketing of vertical axis wind energy turbines and hybrid energy systems. References TMA Global Wind Energy Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TMA Global Wind Energy Systems is a company located in Cheyenne, Wyoming . References ↑ "TMA Global Wind Energy Systems" Retrieved from "http://en.openei.org/w/index.php?title=TMA_Global_Wind_Energy_Systems&oldid=352301" Categories: Clean Energy Organizations Companies Organizations

467

Advanced Manufacturing Office: Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance on Twitter Bookmark Advanced Manufacturing Office: Technical Assistance on Google Bookmark Advanced Manufacturing Office: Technical Assistance on Delicious Rank...

468

Advanced Manufacturing Office: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Advanced Manufacturing Office: Financial Opportunities on Google Bookmark Advanced Manufacturing Office: Financial Opportunities on Delicious Rank...

469

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

470

Yaw dynamics of horizontal axis wind turbines  

DOE Green Energy (OSTI)

Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

1992-05-01T23:59:59.000Z

471

Manufacturing Extension Partnership Homepage  

Science Conference Proceedings (OSTI)

... efficient and powerful engine of innovation driving economic growth and job creation. ... to diversify into new industries such as wind energy and rail ...

2013-07-25T23:59:59.000Z

472

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

473

Wind powering America: America's wind power...a natural resource  

DOE Green Energy (OSTI)

The Wind Powering America Initiative is a regionally-based effort to increase the use of clean wind energy in the United States over the next two decades. The purpose of this brochure is to provide a brief description of the initiative, its goals, benefits, and strategy as well as a list of contacts for those interested in obtaining more information.

NONE

2000-04-04T23:59:59.000Z

474

Wind Powering America: America's Wind Power...A Natural Resource  

DOE Green Energy (OSTI)

The Wind Powering America Initiative is a regionally-based effort to increase the use of clean wind energy in the United States over the next two decades. The purpose of this brochure is to provide a brief description of the initiative, its goals, benefits, and strategy as well as a list of contacts for those interested in obtaining more information.

Dougherty, P.

2001-05-23T23:59:59.000Z

475

Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd | Open Energy  

Open Energy Info (EERE)

Jingye Bearing Manufacture for Rolling Mills Co Ltd Jingye Bearing Manufacture for Rolling Mills Co Ltd Jump to: navigation, search Name Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd Place Beijing Municipality, China Sector Wind energy Product Beijing-based wind turbine bearing maker. References Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd is a company located in Beijing Municipality, China . References ↑ "Beijing Jingye Bearing Manufacture for Rolling Mills Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Beijing_Jingye_Bearing_Manufacture_for_Rolling_Mills_Co_Ltd&oldid=342621

476

Cost of quality tradeoffs in manufacturing process and inspection strategy selection  

E-Print Network (OSTI)

In today's highly competitive markets manufacturers must provide high quality products to survive. Manufacturers can achieve higher levels of quality by changing their manufacturing process and/or by product inspection ...

Zaklouta, Hadi

2011-01-01T23:59:59.000Z

477

Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)  

DOE Green Energy (OSTI)

As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program's objectives, goals, approach, and results.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Miles, J.

2009-05-01T23:59:59.000Z

478

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

479

Wind Powering America Newsletter (Postcard)  

DOE Green Energy (OSTI)

Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. As part of Wind Powering America's outreach efforts, the team publishes a biweekly e-newsletter. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the a website page at which they can sign up for the e-newsletter.

Not Available

2012-08-01T23:59:59.000Z

480

Wind Industry Training for Our Military Veterans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans May 31, 2012 - 4:43pm Addthis Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Debbie Schultheis Technical Project Officer, Wind and Water Power Program

Note: This page contains sample records for the topic "manufacturers provide wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.