National Library of Energy BETA

Sample records for manufacturer trojan type

  1. Trojan Horses of Race

    E-Print Network [OSTI]

    Kang, Jerry

    2007-01-01

    viruses. A type of computer virus, a Trojan Horse installsis not a mere computer vulnerable to viruses. It is a direct

  2. ICSI trojan

    E-Print Network [OSTI]

    Paxson, Vern

    : . . . . trojan IP FinSpyRCS Hacking Team. "" (C&C) #12;servers . 1/6/1123. "" : ( ".)" . iplogger.org . " " Hacking Team . " " " " " [ "2

  3. Hardware Trojan Attacks: Threat Analysis and

    E-Print Network [OSTI]

    Bhunia, Swarup

    . The nomenclature is derived from a mythological incident attributed to the ancient Greeks in the Trojan war, where a wooden horse was gifted to the Trojan army who took it into their city walls without realizing that the enemy (Greek) soldiers were hidden inside the hollow horse. The seemingly trustworthy horse

  4. Modeling and Analysis of Two-Part Type Manufacturing Systems

    E-Print Network [OSTI]

    Jang, Young Jae

    This paper presents a model and analysis of a synchronous tandem flow line that produces different part types on unreliable machines. The machines operate according to a static priority rule, operating on the highest ...

  5. Distortion effects in Trojan Horse applications

    SciTech Connect (OSTI)

    Pizzone, R. G.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; Irgaziev, B.; Bertulani, C. A.; Spitaleri, C.

    2012-11-20

    Deuteron induced quasi-free scattering and reactions have been extensively investigated in the past few decades. This was done not only for nuclear structure and processes study but also for the important astrophysical implication (Trojan Horse Method, THM). In particular the width of the neutron momentum distribution in deuteron will be studied as a function of the transferred momentum. The same will be done for other nuclides of possible use as Trojan Horse particles. Trojan horse method applications will also be discussed because the momentum distribution of the spectator particle inside the Trojan horse nucleus is a necessary input for this method. The impact of the width (FWHM) variation on the extraction of the astrophysical S(E)-factor is discussed.

  6. A Novel Technique for Improving Hardware Trojan Detection and Reducing Trojan Activation Time

    E-Print Network [OSTI]

    Plusquellic, James

    to disclose Trojan impact on design characteristics beyond process and environmental variations. Trojan,tehrani}@engr.uconn.edu Jim Plusquellic ECE Department University of New Mexico jimp@ece.unm.edu Abstract-- Fabless by nets with low transition probabilities to lessen its impact on circuit side-channel signals

  7. A framework for modelling trojans and computer virus infection

    E-Print Network [OSTI]

    Cairns, Paul

    A framework for modelling trojans and computer virus infection Harold Thimbleby1 , Stuart Anderson2 world, including the possibility of Trojan Horse programs and computer viruses, as simply a finite realisation of a Turing Machine. We consider the actions of Trojan Horses and viruses in real computer systems

  8. HARDWARE TROJANS: Data Leakage Using General

    E-Print Network [OSTI]

    Huss, Sorin A.

    devices have at least one LED. These LEDs of various colors are used with the power switch of yourHARDWARE TROJANS: Data Leakage Using General Purpose LEDs Technical Report - TUD-CS-2010.2. LED Drive Settings 12 3.3. Detection & Assessment 13 4............ Analog Detector Design 14 4

  9. Earth's Trojan Asteroid Martin Connors1,2

    E-Print Network [OSTI]

    Wiegert, Paul

    1 Earth's Trojan Asteroid Martin Connors1,2 , Paul Wiegert3 & Christian Veillet4 It was realized-orbiting with Jupiter2 , Mars3 , and Neptune4 . They have not hitherto been found associated with Earth5 , where of an infrared satellite for possible Earth Trojans, producing the candidate 2010 TK7. We subsequently made

  10. WISE/NEOWISE Observations of the Jovian Trojan Population: Taxonomy

    E-Print Network [OSTI]

    Grav, Tommy; Bauer, James M; Masiero, Joe R; Nugent, Carrie R

    2012-01-01

    We present updated/new thermal model fits for 478 Jovian Trojan asteroids observed with the Wide-field Infrared Survey Explorer (WISE). Using the fact that the two shortest bands used by WISE, centered on 3.4 and $4.6\\mu$m, are dominated by reflected light, we derive albedos of a significant fraction of these objects in these bands. While the visible albedos of both the C-, P- and D-type asteroids are strikingly similar, the WISE data reveal that the albedo at $3.4\\mu$m is different between C-/P- and D-types. The albedo at 3.4$\\mu$m can be thus be used to classify the objects, with C-/P-types having values less than 10%, and D-types have values larger than 10%. Classifying all objects larger than 50km shows that the D-type objects dominate both the leading cloud ($L_4$), with a fraction of 84%, and trailing cloud ($L_5$), with a fraction of 71-80%. The two clouds thus have very similar taxonomic distribution for these large objects, but the leading cloud has a larger number of of these large objects, $L_4/L_5...

  11. 1 The Petro Problem The Petro Chemical Corporation manufactures two types of chemicals, I and II. One ton

    E-Print Network [OSTI]

    Lee, Carl

    in precise but "non-mathematical" language. 1 #12;2 Lieberknecht Problem The Lieberknecht family operates' Us Problem The Radios 'R' Us electronics company has a contract to deliv1 The Petro Problem The Petro Chemical Corporation manufactures two types of chemicals, I and II

  12. Taxonomy of asteroid families among the Jupiter Trojans: Comparison between spectroscopic data and the Sloan Digital Sky Survey colors

    E-Print Network [OSTI]

    F. Roig; A. O. Ribeiro; R. Gil-Hutton

    2007-12-01

    We present a comparative analysis of the spectral slope and color distributions of Jupiter Trojans, with particular attention to asteroid families. We use a sample of data from the Moving Object Catalogue of the Sloan Digital Sky Survey, together with spectra obtained from several surveys. A first sample of 349 observations, corresponding to 250 Trojan asteroids, were extracted from the Sloan Digital Sky Survey, and we also extracted from the literature a second sample of 91 spectra, corresponding to 71 Trojans. The spectral slopes were computed by means of a least-squares fit to a straight line of the fluxes obtained from the Sloan observations in the first sample, and of the rebinned spectra in the second sample. In both cases the reflectance fluxes/spectra were renormalized to 1 at 6230 $\\textrm{\\AA}$. We found that the distribution of spectral slopes among Trojan asteroids shows a bimodality. About 2/3 of the objects have reddish slopes compatible with D-type asteroids, while the remaining bodies show less reddish colors compatible with the P-type and C-type classifications. The members of asteroid families also show a bimodal distribution with a very slight predominance of D-type asteroids, but the background is clearly dominated by the D-types. The L4 and L5 swarms show different distributions of spectral slopes, and bimodality is only observed in L4. These differences can be attributed to the asteroid families since the backgraound asteroids show the same slope distribtuions in both swarms. The analysis of individual families indicates that the families in L5 are taxonomically homogeneous, but in L4 they show a mixture of taxonomic types. We discuss a few scenarios that might help to interpret these results.

  13. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

  14. MANUFACTURING ENGINEERING Manufacturing engineering

    E-Print Network [OSTI]

    MANUFACTURING ENGINEERING Manufacturing engineering transforms raw materials, parts, and operations, following a well- organized plan for each activity. Manufacturing engineering involves designing assuring a competitive level of productivity. The manufacturing engineering curriculum at WSU focuses

  15. Mechanically stable, high-aspect-ratio, multifilar, wound, ribbon-type conductor and method for manufacturing same

    DOE Patents [OSTI]

    Cottingham, J.G.

    1982-03-15

    A mechanically stable, wound, multifilar, ribbon-type conductor is described having a cross-sectional aspect ratio which may be greater than 12:1, comprising a plurality of conductive strands wound to form a flattened helix containing a plastic strip into which the strands have been pressed so as to form a bond between the strip and the strands. The bond mechanically stabilizes the conductor under tension, preventing it from collapsing into a tubular configuration. In preferred embodiments the plastic strip may be polytetrafluoroethylene, and the conductive strands may be formed from a superconductive material. Conductors in accordance with the present invention may be manufactured by winding a plurality of conductive strands around a hollow mandrel; the cross-section of a hollow mandrel; the cross-section of the mandrel continuously varying from substnatially circular to a high aspect ratio elipse while maintaining a constant circumference. The wound conductive strands are drawn from the mandrel as a multifilar helix while simultaneously a plastic strip is fed through the hollow mandrel so that it is contained within the helix as it is withdrawn from the mandrel. The helical conductor is then compressed into a ribbon-like form and the strands are bonded to the plastic strip by a combination of heat and pressure.

  16. THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS

    SciTech Connect (OSTI)

    Sheppard, Scott S.; Trujillo, Chadwick A.

    2010-11-10

    We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

  17. Papyrus Manufacture

    E-Print Network [OSTI]

    Leach, Bridget

    2009-01-01

    British Museum, London. Papyrus Manufacture, Leach, UEE 2009AINES Short Citation: Leach 2009, Papyrus Manufacture. UEE.Bridget, 2009, Papyrus Manufacture. In Willeke Wendrich (

  18. THE PUZZLING MUTUAL ORBIT OF THE BINARY TROJAN ASTEROID (624) HEKTOR

    SciTech Connect (OSTI)

    Marchis, F.; Cuk, M.; Durech, J.; Castillo-Rogez, J.; Vachier, F.; Berthier, J.; Wong, M. H.; Kalas, P.; Duchene, G.; Van Dam, M. A.; Hamanowa, H.; Viikinkoski, M.

    2014-03-10

    Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W. M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req = 125 km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.

  19. Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per

    E-Print Network [OSTI]

    Phillips, David

    Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

  20. The differing magnitude distributions of the two Jupiter Trojan color populations

    SciTech Connect (OSTI)

    Wong, Ian; Brown, Michael E.; Emery, Joshua P.

    2014-12-01

    The Jupiter Trojans are a significant population of minor bodies in the middle solar system that have garnered substantial interest in recent years. Several spectroscopic studies of these objects have revealed notable bimodalities with respect to near-infrared spectra, infrared albedo, and color, which suggest the existence of two distinct groups among the Trojan population. In this paper, we analyze the magnitude distributions of these two groups, which we refer to as the red and less red color populations. By compiling spectral and photometric data from several previous works, we show that the observed bimodalities are self-consistent and categorize 221 of the 842 Trojans with absolute magnitudes in the range H<12.3 into the two color populations. We demonstrate that the magnitude distributions of the two color populations are distinct to a high confidence level (>95%) and fit them individually to a broken power law, with special attention given to evaluating and correcting for incompleteness in the Trojan catalog as well as incompleteness in our categorization of objects. A comparison of the best-fit curves shows that the faint-end power-law slopes are markedly different for the two color populations, which indicates that the red and less red Trojans likely formed in different locations. We propose a few hypotheses for the origin and evolution of the Trojan population based on the analyzed data.

  1. Big bang nucleosynthesis revisited via Trojan Horse method measurements

    SciTech Connect (OSTI)

    Pizzone, R. G.; Spartá, R.; Spitaleri, C.; La Cognata, M.; Tumino, A. [INFN—Laboratori Nazionali del Sud, Via Santa Sofia 62, I-95123 Catania (Italy); Bertulani, C. A.; Lalmansingh, J. [Department of Physics and Astronomy, Texas A and M University, Commerce, TX 75025 (United States); Lamia, L. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via Santa Sofia 64, I-95123 Catania (Italy); Mukhamedzhanov, A., E-mail: rgpizzone@lns.infn.it [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States)

    2014-05-10

    Nuclear reaction rates are among the most important input for understanding primordial nucleosynthesis and, therefore, for a quantitative description of the early universe. An up-to-date compilation of direct cross-sections of {sup 2}H(d, p){sup 3}H, {sup 2}H(d, n){sup 3}He, {sup 7}Li(p, ?){sup 4}He, and {sup 3}He(d, p){sup 4}He reactions is given. These are among the most uncertain cross-sections used and input for big bang nucleosynthesis calculations. Their measurements through the Trojan Horse method are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the {sup 2}H, {sup 3,4}He, and {sup 7}Li primordial abundances, which are then compared with observations.

  2. The orbit of 2010 TK7. Possible regions of stability for other Earth Trojan asteroids

    E-Print Network [OSTI]

    Rudolf Dvorak; Christoph Lhotka; Liyong Zhou

    2012-02-08

    Recently the first Earth Trojan has been observed (Mainzer et al., ApJ 731) and found to be on an interesting orbit close to the Lagrange point L4 (Connors et al., Nature 475). In the present study we therefore perform a detailed investigation on the stability of its orbit and moreover extend the study to give an idea of the probability to find additional Earth-Trojans. Our results are derived using different approaches: a) we derive an analytical mapping in the spatial elliptic restricted three-body problem to find the phase space structure of the dynamical problem. We explore the stability of the asteroid in the context of the phase space geometry, including the indirect influence of the additional planets of our Solar system. b) We use precise numerical methods to integrate the orbit forward and backward in time in different dynamical models. Based on a set of 400 clone orbits we derive the probability of capture and escape of the Earth Trojan asteroids 2010 TK7. c) To this end we perform an extensive numerical investigation of the stability region of the Earth's Lagrangian points. We present a detailed parameter study in the regime of possible stable tadpole and horseshoe orbits of additional Earth-Trojans, i.e. with respect to the semi-major axes and inclinations of thousands of fictitious Trojans. All three approaches underline that the Earth Trojan asteroid 2010 TK7 finds himself in an unstable region on the edge of a stable zone; additional Earth-Trojan asteroids may be found in this regime of stability.

  3. Practical security bounds against the Trojan-horse attack in quantum key distribution

    E-Print Network [OSTI]

    Marco Lucamarini; Iris Choi; Martin B. Ward; James F. Dynes; Zhiliang Yuan; Andrew J. Shields

    2015-06-05

    In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive optical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows us quantify the system security and relate it to the specification of the optical elements. The analysis is supported by the experimental characterization of reflectivity and transmission of the optical components most relevant to security.

  4. Practical security bounds against the Trojan-horse attack in quantum key distribution

    E-Print Network [OSTI]

    Marco Lucamarini; Iris Choi; Martin B. Ward; James F. Dynes; Zhiliang Yuan; Andrew J. Shields

    2015-08-03

    In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive optical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows us quantify the system security and relate it to the specification of the optical elements. The analysis is supported by the experimental characterization, within the operation regime, of reflectivity and transmission of the optical components most relevant to security.

  5. Yarkovsky-Driven Spreading of the Eureka Family of Mars Trojans Matija Cuk1

    E-Print Network [OSTI]

    Yarkovsky-Driven Spreading of the Eureka Family of Mars Trojans Matija ´Cuk1 , Apostolos A orbital grouping that was affected by a negative acceleration (i.e. one against the orbital motion above about 25 (Murray and Dermott, 1999). In our Solar System, only Jupiter, Neptune and Mars are known

  6. Experimental study to explore the $\\rm ^8Be$ induced nuclear reaction via the Trojan Horse Method

    E-Print Network [OSTI]

    Wen Qun-Gang; Li Cheng-Bo; Zhou Shu-Hua; Bakhadir Irgaziev; Fu Yuan-Yong; Claudio Spitaleri; Marco La Cognata; Zhou Jing; Meng Qiu-Ying; Livio Lamia; Marcello Lattuada

    2014-12-30

    To explore a possible indirect method for $\\rm ^8Be$ induced astrophysical reactions, the $\\rm ^9Be=({}^8Be+\\it n)$ cluster structure was studied via the Trojan Horse Method. It is the first time to study a super short life nucleus $\\rm ^8Be$ via the Trojan Horse Method, and it is the first time to make a valid test for $l=1$ Trojan-horse nucleus. The $\\rm ^9Be$ nucleus is assumed to have a ($\\rm {}^8Be+\\it n$) cluster structure and used as the Trojan-horse nucleus. The $\\rm ^8Be$ nucleus acts as a participant, while the neutron is a spectator to the virtual $\\rm ^8Be +{\\it d}\\rightarrow \\alpha + {}^6Li$ reaction via a suitable 3-body reaction $\\rm ^9Be +{\\it d}\\rightarrow \\alpha + {}^6Li +\\it n$. The experimental neutron momentum distribution inside $\\rm ^9Be$ was reconstructed. The agreement between experimental and theoretical momentum distribution indicates that there should be a ($\\rm {}^8Be+\\it n$) cluster structure inside $\\rm ^9Be$. Therefor the experimental study of $\\rm ^8Be$ induced reactions, for example the experimental measurement of the $\\rm ^8Be +\\alpha \\rightarrow {}^{12}C$ reaction proceeding through the Hoyle state, is possible.

  7. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.

  8. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01

    different types of additive manufacturing technologies, suchbe used to model the additive manufacturing process as well.composite manufacturing and 3D printing, are additive. They

  9. Manufacturing industry challenges and responses to EU, California, and other product-targeted environmental regulations

    E-Print Network [OSTI]

    Kirschner, Michael

    2008-01-01

    PRELIMINARY DRAFT Manufacturing industry challenges andChemicals vs. Products Manufacturing industry’s purpose isindustry deals with manufacturing and other types of waste

  10. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  11. Observation of Two New L4 Neptune Trojans in the Dark Energy Survey Supernova Fields

    E-Print Network [OSTI]

    Gerdes, D W; Bernstein, G M; Sako, M; Adams, F; Goldstein, D; Kessler, R; Abbott, T; Abdalla, F B; Allam, S; Benoit-Lévy, A; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Cunha, C E; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Dietrich, J P; Doel, P; Eifler, T F; Neto, A Fausti; Flaugher, B; Frieman, J; Gaztanaga, E; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Maia, M A G; March, M; Martini, P; Miller, C J; Miquel, R; Nichol, R C; Nord, B; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Sanchez, E; Santiago, B; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarlé, G; Thaler, J; Walker, A R; Wester, W; Zhang, Y

    2015-01-01

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO$_{441}$ and 2014 QP$_{441}$ were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter-American Observatory. Both are in high-inclination orbits (18.8$^{\\circ}$ and 19.4$^{\\circ}$ respectively). With an eccentricity of 0.104, 2014 QO$_{441}$ has the most eccentric orbit of the eleven known stable Neptune Trojans. Here we describe the search procedure and investigate the objects' long-term dynamical stability and physical properties.

  12. Observation of Two New L4 Neptune Trojans in the Dark Energy Survey Supernova Fields

    SciTech Connect (OSTI)

    Gerdes, D. W.

    2015-07-18

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO441 and 2014 QP441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8° and 19.4° respectively). Furthermore, with an eccentricity of 0.104, 2014 QO441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigate the objects' long-term dynamical stability and physical properties.

  13. Provably Complete Hardware Trojan Detection Using Test Point Insertion

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    Koushanfar Miodrag Potkonjak Computer Science Department University of California, Los Angeles Los Angeles, the Intellectual Property (IP) providers, and the manufacturing plants are different entities, exposing the ICs or to redistribute to lists, requires prior specific permission and/or a fee. IEEE/ACM International Conference

  14. 2011 HM{sub 102}: DISCOVERY OF A HIGH-INCLINATION L5 NEPTUNE TROJAN IN THE SEARCH FOR A POST-PLUTO NEW HORIZONS TARGET

    SciTech Connect (OSTI)

    Parker, Alex H.; Holman, Matthew J.; McLeod, Brian A.; Buie, Marc W.; Borncamp, David M.; Spencer, John R.; Stern, S. Alan; Osip, David J.; Gwyn, Stephen D. J.; Fabbro, Sebastian; Kavelaars, J. J.; Benecchi, Susan D.; Sheppard, Scott S.; Binzel, Richard P.; DeMeo, Francesca E.; Fuentes, Cesar I.; Trilling, David E.; Gay, Pamela L.; Petit, Jean-Marc; Tholen, David J.; and others

    2013-04-15

    We present the discovery of a long-term stable L5 (trailing) Neptune Trojan in data acquired to search for candidate trans-Neptunian objects for the New Horizons spacecraft to fly by during an extended post-Pluto mission. This Neptune Trojan, 2011 HM{sub 102}, has the highest inclination (29. Degree-Sign 4) of any known member of this population. It is intrinsically brighter than any single L5 Jupiter Trojan at H{sub V} {approx} 8.18. We have determined its gri colors (a first for any L5 Neptune Trojan), which we find to be similar to the moderately red colors of the L4 Neptune Trojans, suggesting similar surface properties for members of both Trojan clouds. We also present colors derived from archival data for two L4 Neptune Trojans (2006 RJ{sub 103} and 2007 VL{sub 305}), better refining the overall color distribution of the population. In this document we describe the discovery circumstances, our physical characterization of 2011 HM{sub 102}, and this object's implications for the Neptune Trojan population overall. Finally, we discuss the prospects for detecting 2011 HM{sub 102} from the New Horizons spacecraft during its close approach in mid- to late-2013.

  15. Additive Manufacturing: Implications on Research and Manufacturing

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

  16. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  17. Catalina Island Soapstone Manufacture

    E-Print Network [OSTI]

    Wlodarski, Robert J

    1979-01-01

    Catalina Island Soapstone Manufacture ROBERT J. WLODARSKIsome artifact of native manufacture. That stone is a "hard"Peabody Museum. Method and Manufacture of Several Articles

  18. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2008-01-01

    for implementing green manufacturing”. Trans. of NAMRI/SME,on: Environmentally Benign Manufacturing (EBM). Tech. rep. ,towards sustainable manufacturing”. Proceedings of the In-

  19. Magnet Cable Manufacturing

    E-Print Network [OSTI]

    Royet, J.M.

    2011-01-01

    J. Royet, "Magnet Cable Manufacturing", oral presentation atDivision Magnet Cable Manufacturing J. Royet October 1990J I Magnet Cable Manufacturing* John Royet Accelerator &

  20. MAGNET CABLE MANUFACTURING

    E-Print Network [OSTI]

    Royet, J.

    2010-01-01

    76SFOOO98. MAGNET CABLE MANUFACTURING John Royet Lawrenceused in this cable manufacturing are made of superconductingapplied during manufacturing. 2.2 Twist The composite

  1. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David A.

    2008-01-01

    S. , 2008. “Carbon emissions and ces(tm) in manufacturing”.CIRP Annals - Manufacturing Technology, 57, pp. 17–20.ventional tool and die manufacturing”. Journal of Cleaner

  2. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  3. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Energy Savers [EERE]

    SMART technologies can transform American manufacturing, enabling businesses to manufacture more while using less energy and spending less. For more information, see the full...

  4. 2001 QR$_{322}$ - an update on Neptune's first unstable Trojan companion

    E-Print Network [OSTI]

    Horner, Jonathan

    2016-01-01

    The Neptune Trojans are the most recent addition to the panoply of Solar system small body populations. The orbit of the first discovered member, 2001 QR$_{322}$, was investigated shortly after its discovery, based on early observations of the object, and it was found to be dynamically stable on timescales comparable to the age of the Solar system. As further observations were obtained of the object over the following years, the best-fit solution for its orbit changed. We therefore carried out a new study of 2001 QR$_{322}$'s orbit in 2010, finding that it lay on the boundary between dynamically stable and unstable regions in Neptune's Trojan cloud, and concluding that further observations were needed to determine the true stability of the object's orbit. Here we follow up on that earlier work, and present the preliminary results of a dynamical study using an updated fit to 2001 QR$_{322}$'s orbit. Despite the improved precision with which the orbit of 2001 QR$_{322}$ is known, we find that the best-fit solut...

  5. COMPOSITES AND MANUFACTURED PRODUCTS MANUFACTURING PARTICLEBOARD

    E-Print Network [OSTI]

    COMPOSITES AND MANUFACTURED PRODUCTS MANUFACTURING PARTICLEBOARD FROM EASTERN REDCEDAR SALl redcedar (Juniperus i~ir#jnirmrrL.) in a whole-tree chipping process to manufacture a commercial sin- gle foundtobecomparableto those of commercial particleboards manufactured from different species. Panel properties

  6. Investigating the ?Trojan Horse? Mechanism of Yersinia pestis Virulence

    SciTech Connect (OSTI)

    McCutchen-Maloney, S L; Fitch, J P

    2005-02-08

    Yersinia pestis, the etiological agent of plague, is a Gram-negative, highly communicable, enteric bacterium that has been responsible for three historic plague pandemics. Currently, several thousand cases of plague are reported worldwide annually, and Y. pestis remains a considerable threat from a biodefense perspective. Y. pestis infection can manifest in three forms: bubonic, septicemic, and pneumonic plague. Of these three forms, pneumonic plague has the highest fatality rate ({approx}100% if left untreated), the shortest intervention time ({approx}24 hours), and is highly contagious. Currently, there are no rapid, widely available vaccines for plague and though plague may be treated with antibiotics, the emergence of both naturally occurring and potentially engineered antibiotic resistant strains makes the search for more effective therapies and vaccines for plague of pressing concern. The virulence mechanism of this deadly bacterium involves induction of a Type III secretion system, a syringe-like apparatus that facilitates the injection of virulence factors, termed Yersinia outer membrane proteins (Yops), into the host cell. These virulence factors inhibit phagocytosis and cytokine secretion, and trigger apoptosis of the host cell. Y. pestis virulence factors and the Type III secretion system are induced thermally, when the bacterium enters the mammalian host from the flea vector, and through host cell contact (or conditions of low Ca{sup 2+} in vitro). Apart from the temperature increase from 26 C to 37 C and host cell contact (or low Ca{sup 2+} conditions), other molecular mechanisms that influence virulence induction in Y. pestis are largely uncharacterized. This project focused on characterizing two novel mechanisms that regulate virulence factor induction in Y. pestis, immunoglobulin G (IgG) binding and quorum sensing, using a real-time reporter system to monitor induction of virulence. Incorporating a better understanding of the mechanisms of virulence and pathogenicity into detection systems, may allow us to anticipate both natural and engineered evolution of infectious diseases while laying the foundation for next-generation detection of biothreat agents.

  7. Bolt Manufacture: Process Selection

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Bolt Manufacture: Process Selection ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 1 #12;How would you make a bolt? ME 6222: Manufacturing Processes and Systems Prof. J: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 3 #12;Possible Manufacturing Methodsg for Metal

  8. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program...

  9. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14 The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) held a Smart Manufacturing Industry Day on February 25, 2015, at the Georgia Tech Hotel and...

  10. Risk analysis of Trojan-horse attacks on practical quantum key distribution systems

    E-Print Network [OSTI]

    Nitin Jain; Birgit Stiller; Imran Khan; Vadim Makarov; Christoph Marquardt; Gerd Leuchs

    2014-12-19

    An eavesdropper Eve may probe a quantum key distribution (QKD) system by sending a bright pulse from the quantum channel into the system and analyzing the back-reflected pulses. Such Trojan-horse attacks can breach the security of the QKD system if appropriate safeguards are not installed or if they can be fooled by Eve. We present a risk analysis of such attacks based on extensive spectral measurements, such as transmittance, reflectivity, and detection sensitivity of some critical components used in typical QKD systems. Our results indicate the existence of wavelength regimes where the attacker gains considerable advantage as compared to launching an attack at 1550 nm. We also propose countermeasures to reduce the risk of such attacks.

  11. Electrolyzer Manufacturing Progress and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Torrance, Director of Manufacturing DOE Manufacturing Workshop 81211 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack...

  12. Sandia Energy - Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Supply Chain Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Manufacturing Supply Chain Manufacturing Supply...

  13. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01

    lean practices in industry. Lean manufacturing is de?ned bythe second type of lean manufacturing, Comau [29] recentlyLean and green production in?uences at the facility level Green manufacturing

  14. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  15. RESEARCH GROUP MANUFACTURING

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    RESEARCH GROUP MANUFACTURING ADDITIVE www.lboro.ac.uk/amrg PhD Studentships in Additive by the Additive Manufacturing Research Group is based around a family of processes comprising of adding layers Additive Manufacturing Research Group in the Wolfson School of Mechanical & Manufacturing Engineering

  16. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  17. Fuel Tank Manufacturing, Testing, Field Performance, and Certification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance CNG and Hydrogen Tank Safety, R&D, and Testing Type 4 Tank Testing, Certification and Field...

  18. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    SciTech Connect (OSTI)

    Cognata, M. La; Pizzone, R. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gulino, M.; Tumino, A. [Kore University, Enna, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  19. Mechanical, Industrial & Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Mechanical, Industrial & Manufacturing Engineering (MIME) COLLEGE OF ENGINEERING FY2013 Oregon graduate degrees (MS, MEng, PhD) in mechanical engineering, industrial engineering, and materials science. We offer bachelor's degrees in mechanical, industrial, manufacturing, and energy systems engineering

  20. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  1. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  2. Promoting Advanced Manufacturing Clusters in

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Promoting Advanced Manufacturing Clusters in Tennessee1 1 This report is supported, Economic Development Administration; and the Manufacturing Extension Partnership Program, National.........................................................................................................................1 Context: Trends in Tennessee Manufacturing

  3. Enabling Manufacturing Research through Interoperability

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

    2009-01-01

    IMECE2004. Dornfeld, D. , Lee, D, Manufacturing, Springer.Precision future manufacturing," J. Int. Manuf, 11, pp.Merchant, M. E. , 1961, "The manufacturing system concept in

  4. Energy Use in Nanoscale Manufacturing

    E-Print Network [OSTI]

    Zhang, Teresa; Boyd, Sarah; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01

    on Semiconductor Manufacturing, vol. 17, pp. 554–561, 2004.intensity of computer manufacturing: Hybrid assessmentand Integrated NAno-Manufacturing ( SINAM ). Any opinions, ?

  5. Review: Manufacturing National Park Nature

    E-Print Network [OSTI]

    Mason, Fred

    2012-01-01

    Review: Manufacturing National Park Nature: Photography,Canada Cronin, J. Keri. Manufacturing National Park Nature:J. Keri Cronin’s book Manufacturing National Park Nature

  6. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    to the manufacturing sector in Western Michigan. In addition to serving as director of the MRC, Dr. Patten is alsoManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  7. International Crystal Manufacturing

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    International Crystal Manufacturing CRYSTAL OSCILLATOR AND FILTER PRODUCTS International Crystal Manufacturing, Inc. P.O. Box 26330 · Oklahoma City, OK 73126-0330 · Phone (405) 236-3741 Fax (405) 235@icmfg.com #12;2 International Crystal Manufacturing, Inc. P.O. Box 26330 · Oklahoma City, OK 73126-0330 · Phone

  8. 112 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 1, JANUARY 2012 A Novel Technique for Improving Hardware Trojan

    E-Print Network [OSTI]

    Plusquellic, James

    about tampering with inserting hardware Trojans in an integrated circuit supply chain in recent years in integrated circuit (IC) market due to eco- nomical profit, with limiting the control of customer over IC112 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 1, JANUARY 2012

  9. Astrophysical S(E) factor of the (15)N(p, alpha)(12)C reaction at sub-Coulomb energies via the Trojan horse method 

    E-Print Network [OSTI]

    La Cognata, M.; Romano, S.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Tumino, A.; Tribble, Robert E.; Fu, Changbo; Goldberg, V. Z.; Mukhamedzhanov, A. M.; Schmidt, D.; Tabacaru, G.; Trache, L.; Irgaziev, B. F.

    2007-01-01

    The low-energy bare-nucleus cross section for (15)N(p, alpha)(12)C is extracted by means of the Trojan horse method applied to the (2)H((15)N,alpha(12)C)n reaction at E(beam) = 60 MeV. For the first time we applied the ...

  10. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing dedicated energy crops and their advantage in a consolidated bioprocessing system.

  11. New measurement of the d(d,p)t reaction at astrophysical energies via the Trojan-horse method

    E-Print Network [OSTI]

    Chengbo Li; Qungang Wen; Yuanyong Fu; Jing Zhou; Shuhua Zhou; Qiuying Meng; C. Spitaleri; A. Tumino; R. G. Pizzone; L. Lamia

    2015-05-27

    The study of d(d,p)t reaction is very important for the nucleosynthesis in both standard Big Bang and stellar evolution, as well as for the future fusion reactors planning of energy production. The d(d,p)t bare nucleus astrophysical S(E) factor has been measured indirectly at energies from about 400 keV down to several keV by means of the Trojan horse method applied to the quasi-free process $\\rm {}^2H({}^6Li,pt){}^4He$ induced at a lithium beam energy of 9.5 MeV, which is closer to the zero quasi-free energy point. An accurate analysis leads to the determination of the $\\rm S_{bare}(0)=56.7 \\pm 2.0 keV \\cdot b$ and of the corresponding electron screening potential $\\rm U_e = 13.2 \\pm 4.3 eV$. In addition, this work gives an updated test for the Trojan horse nucleus invariance comparing with previous indirect investigations using $\\rm {}^3He=(d+p)$ breakup.

  12. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  13. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  14. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Manufacturing New materials drive the development of innovative products. Building upon a rich history in materials science, ORNL is discovering and developing...

  15. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  16. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  17. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  18. Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

    E-Print Network [OSTI]

    applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood in additive manufacturing or carbon fiber and composites. #12;MDF: Technology Collaborations for USManufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

  19. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Petroleum and Coal Products Manufacturing Chemical Manufacturing & Plastics and Rubber Products Manufacturing Nonmetallic Mineral Product Manufacturing Primary...

  20. From "Smart Manufacturing" to "Manufacturing Smart" Manufacturing as a core enabler of the Internet of Things

    E-Print Network [OSTI]

    Das, Suman

    Page | 1 From "Smart Manufacturing" to "Manufacturing Smart" Manufacturing as a core enabler in the United States (see the announcement of the Advanced Manufacturing Partnership Steering Committee "2 manufacturing on economic growth and competitiveness. It has been recently suggested that "a network of sensors

  1. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  2. Manufacturing-aware physical design techniques

    E-Print Network [OSTI]

    Sharma, Puneet

    2007-01-01

    C. Design for Manufacturing . . . . . . . . . . .for Microelectronic Manufacturing, 2006, pp. 61560T-1 –for Microelectronic Manufacturing, vol. 5042, 2003, pp. 99–

  3. Honda: North American Manufacturing Facilities | Department of...

    Office of Environmental Management (EM)

    Honda: North American Manufacturing Facilities Honda: North American Manufacturing Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents &...

  4. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  5. Arnold Schwarzenegger RESEARCH ON MANUFACTURING

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor RESEARCH ON MANUFACTURING QUADRUPLE-JUNCTION SOLAR CELLS Prepared ON MANUFACTURING QUADRUPLE-JUNCTION SOLAR CELLS EISG AWARDEE Chemical Engineering Department University Efficiency · Renewable Energ

  6. HPC4Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Deborah May, Lawrence Livermore National Laboratory U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 LLNL-PRES-792637 This work was...

  7. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges atEnergy ManufacturingThe Office

  8. 4. Manufacturing Isovolumes Michael Bailey

    E-Print Network [OSTI]

    Bailey, Mike

    4. Manufacturing Isovolumes Michael Bailey 4.1 Introduction Displaying a single isosurface provides and then manufactures them, providing a non-volatile display of several isosurfaces. The inspiration for this idea, tetrahedralization produces more information than is necessary for prototype manufacturing. Prototype manufacturing

  9. Environmentally conscious manufacturing integrated demonstration. Final report

    SciTech Connect (OSTI)

    Gentry, D.E.

    1993-07-01

    The objective of the Environmentally Conscious Manufacturing Integrated Demonstration was to show that several of the individually developed materials and processes to reduce hazardous materials and waste could be successfully used on a single assembly. A methodology was developed that could be used on any product to plan the approach to eliminating hazardous materials. Sample units of an existing design electronic unit were fabricated applying this methodology and substituting nonhazardous materials and processes. The results of this project show that total waste can be drastically reduced by at least an order of magnitude and hazardous material and waste can be essentially eliminated in the manufacture of this type of electronic devices.

  10. Dynamic scheduling of manufacturing systems with setups and random disruptions

    E-Print Network [OSTI]

    Tubilla Kuri, Fernando

    2011-01-01

    Manufacturing systems are often composed of machines that can produce a variety of items but that most undergo time-consuming (and possibly costly) setups when switching between product types. Scheduling these setups ...

  11. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  12. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  13. for Industry Manufacturing

    E-Print Network [OSTI]

    helps to reduce risk and accelerate the development and deployment of innovative energy-efficient Energy Research Nation's broadest portfolio of energy generation and efficiency programs ScienceA National Resource for Industry Manufacturing Demonstration Facility #12;As the nation's premier

  14. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Chiang, Wei-yu Kevin

    an upstream firm, as a result of charging a wholesale price above the marginal cost, induces its intermediary Dynamics and Channel Efficiency in Durable Product Pricing and Distribution Wei-yu Kevin Chiang College the single-period vertical price interaction in a manufacturer­retailer dyad to a multi- period setting

  15. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  16. Manufacturing cell formation with production data using neural networks R. Sudhakara Pandian, S.S. Mahapatra *

    E-Print Network [OSTI]

    Rucci, Michele

    Manufacturing cell formation with production data using neural networks R. Sudhakara Pandian, S Exceptional elements a b s t r a c t Batch type production strategies need adoption of cellular manufacturing (CM) in order to improve oper- ational effectiveness by reducing manufacturing lead time and costs

  17. ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2009

    E-Print Network [OSTI]

    Colton, Jonathan S.

    ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 1 Deformation Processing & Forging Introduction ver. 1 #12;ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 3 Types of deformation

  18. Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per

    E-Print Network [OSTI]

    Phillips, David

    by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1 $70 Gas 2 $60 Gas 3 $50 Oil Purchase Price per barrel Crude 1 $45 Gas 2 $25 Gas 3 $20 Sunco can

  19. Design for manufacturability Design verification

    E-Print Network [OSTI]

    Patel, Chintan

    ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

  20. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  1. Embedding Sustainability into Manufacturing Organizations 

    E-Print Network [OSTI]

    Tutterow, V.

    2014-01-01

    will be reviewed, also. This paper has an emphasis on smaller manufacturers, and will discuss how large manufacturers can engage the smaller companies within their global supply chains in both energy management and sustainability....

  2. Axiomatic Deisgn of Manufacturing Systems

    E-Print Network [OSTI]

    Cochran, David

    This paper introduces the use of axiomatic design in the design of manufacturing systems. The two primary functional requirements of any manufacturing system are developed. These functional requirements are then used to ...

  3. Design and Manufacture of a Laparoscopic Telesurgical and Telementoring Robot Manipulator

    E-Print Network [OSTI]

    Prince, Stephen William

    2012-01-01

    Manufacture Case Studies . . . . . . .Engineering & Manufacture Design . . . . . . . . . . .6 Manufacture of the

  4. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing:...

  5. Manufacturing Research and Development | Department of Energy

    Office of Environmental Management (EM)

    Manufacturing Research and Development Manufacturing Research and Development The Fuel Cell Technologies Office's manufacturing research and development (R&D) activity improves...

  6. Smart Manufacturing Innovation Institute: Overview, Goals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing Innovation Institute: Overview, Goals and Activities AMO Industry Day February 25, 2015 Isaac Chan Advanced Manufacturing Office www.manufacturing.energy.gov 2...

  7. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

  8. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01

    Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

  9. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  10. Additive manufacturing capabilities expanding | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive manufacturing capabilities expanding January 01, 2013 Large-scale polymer additive manufacturing equipment located at the Manufacturing Demonstration Facility. Additive...

  11. Tennessee's Manufacturing Sector Before and After the

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Tennessee's Manufacturing Sector Before and After the Great Recession Prepared by Matthew N. Murray....................................................................................................................................... 1 Manufacturing in the Post Great Recession Era............................................................................... 2 Manufacturing Employment Trends

  12. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01

    optimisation in manufacturing," International Journal ofEnergy Requirements for Manufacturing Processes," in 13thenergy consumption of manufacturing processes: a case of

  13. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    Environmentally benign manufacturing: Trends in Europe,USA” Trans. ASME, J. Manufacturing Science and Engineering,and Computer Integrated Manufacturing, 15, pp. 257-270.

  14. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01

    International Chemnitz Manufacturing Colloquium Prof. R.mittels Sustainable Manufacturing - Greening Processes,Annals - Dornfeld, D. A and its Manufacturing University of

  15. Precision Manufacturing Process Monitoring with Acoustic Emission

    E-Print Network [OSTI]

    Lee, D. E.; Hwang, I.; Valente, C. M. O.; Oliviera, J. F.G.; Dornfeld, D. A.

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  16. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01

    reduction technology in manufacturing – A selective reviewD. , Sustainable Manufacturing – Greening Processes, SystemsStrategies for Green Manufacturing, Proceedings of the 4th

  17. Appropriate use of Green Manufacturing Frameworks

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2010-01-01

    Wedges for Implementing Green Manufacturing,” Trans.North American Manufacturing Research Institute, vol. 35,A. (2008), “Metrics for Manufacturing Sustainability,” Proc.

  18. Precision Manufacturing Process Monitoring With Acoustic Emission

    E-Print Network [OSTI]

    Lee, D.E.; Huang, Inkil; Valente, Carlos M. O.; Oliveira, J. F.; Dornfeld, David

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  19. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    Environmentally benign manufacturing: Trends in Europe,USA” Trans. ASME, J. Manufacturing Science and Engineering,Design and Inverse Manufacturing, Tokyo, Japan. Krishnan,

  20. Leveraging Manufacturing for a Sustainable Future

    E-Print Network [OSTI]

    Dornfeld, David

    2011-01-01

    for Implementing Green Manufacturing”, NAMRI Trans. , 35,issue is whether or not manufacturing can rightfully claimreal products through manufacturing. So, for sure, the role

  1. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01

    reduction technology in manufacturing – A selective reviewContribution of Labor to Manufacturing Energy Use,” Proc. ofResearch in Sustainable Manufacturing,” Proc. of the ASME

  2. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  3. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  4. Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive

  5. This Material Copyrighted By Its Respective Manufacturer This Material Copyrighted By Its Respective Manufacturer

    E-Print Network [OSTI]

    Lanterman, Aaron

    This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12

  6. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

  7. Posted 10/18/11 MANUFACTURING ENGINEER

    E-Print Network [OSTI]

    Heller, Barbara

    manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

  8. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy...

  9. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Environmental Management (EM)

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures...

  10. Clean Energy Manufacturing Innovation Institute for Composite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composite Materials And Structures Webinar Clean Energy Manufacturing Innovation Institute for Composite Materials And...

  11. Manufacturing Energy and Carbon Footprint References | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    References Manufacturing Energy and Carbon Footprint References footprintreferences.pdf More Documents & Publications 2010 Manufacturing Energy and Carbon Footprints: References...

  12. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  13. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Performance, Market and Manufacturing Constraints relevant to the...

  14. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Broader source: Energy.gov (indexed) [DOE]

    Lightweighting Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing...

  15. CIMplementation™: Evaluating Manufacturing Automation 

    E-Print Network [OSTI]

    Krakauer, J.

    1985-01-01

    into two parts. CAM hardware inciudes machine tools with programmable controllers and on -board feedback devi ces for qua 1ity con~ ro 1 of cutting tools and workpieces. Automatrd assembly machines, despite their high degree of speci ali zed app 1i... the machines running. Manufacturing managers should examine their operation and their specific competences before apP 3 0aching CIM CIM is not for every one. (Gold and Gerwin a recommend guidelines for determining the degree of fit between CIM ;", and a...

  16. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  17. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  18. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management ChallengesManufacturing R&D The Manufacturing

  19. Manufacturing Spotlight: Boosting American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  20. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  1. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. This opportunity will provide selected participants access to ORNL's...

  2. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  3. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01

    Planning: The Design/Manufacture Interface, Butterworth-Optimization of Product Manufacture in a Flexibleplanning stage for product manufacture, i.e. machine tool

  4. Variability assessment and mitigation in advanced VLSI manufacturing through design-manufacturing co-optimization

    E-Print Network [OSTI]

    Jeong, Kwangok

    2011-01-01

    Design-Manufacturing Co-Optimization . . . . . . .Design-Aware Manufacturing Process Optimization . . 5.15.1.4 Overall Manufacturing Cost Comparison Chapter 5 vi

  5. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    bottom-line efficiencies through the employment of lean manufacturing techniques and other productivityHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

  6. Out of Bounds Additive Manufacturing Christopher

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

  7. A Three Dimensional System Approach for Environmentally Sustainable Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhai, Qiang; Dornfield, David

    2012-01-01

    adapted to various manufacturing systems and technologies. ABusiness Development in Manufacturing SMEs. Proceedings ofand Visions towards Sustainable Manufacturing. CIRP Annals –

  8. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01

    ability Principles into Manufacturing/Mechanical Engineeringdefine Sustainable Manufacturing? ,” International Trade7: Air Quality in Manufacturing,” Environmentally Conscious

  9. Risk management practices in global manufacturing investment

    E-Print Network [OSTI]

    Kumar, Mukesh

    2010-07-06

    This thesis explores risk management practices in global manufacturing investment. It reflects the growing internationalisation of manufacturing and the increasing complexity and fragmentation of manufacturing systems. Issues of risk management have...

  10. Precision Manufacturing Process Monitoring With Acoustic Emission

    E-Print Network [OSTI]

    Lee, D.E.; Huang, Inkil; Valente, Carlos M. O.; Oliveira, J. F.; Dornfeld, David

    2006-01-01

    of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 9.of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 15. (of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 17. (

  11. Precision Manufacturing Process Monitoring with Acoustic Emission

    E-Print Network [OSTI]

    Lee, D. E.; Hwang, I.; Valente, C. M. O.; Oliviera, J. F.G.; Dornfeld, D. A.

    2006-01-01

    of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 9.of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 15. (of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 17. (

  12. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David...

  13. Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning (MRP)

    E-Print Network [OSTI]

    Cook, Diane J.

    Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning an ordinary planner into a manufacturing system by showing that the assembly trees used by manufacturers can into a set of matrices used by the manufacturing system. This allows manufacturers to continue to use

  14. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  15. CMP Modeling as a part of Design for Manufacturing

    E-Print Network [OSTI]

    Tripathi, Shantanu; Monvoisin, Adrien; Dornfeld, David; Doyle, F M

    2007-01-01

    IEEE Trans. Semiconductor Manufacturing, 232 (2002) [4] J.J.a part of Design for Manufacturing Shantanu Tripathi, Adrienenabling Design for Manufacturing (DfM) and Manufacturing

  16. Study of the {sup 17}O(n,?){sup 14}C reaction: Extension of the Trojan Horse Method to neutron induced reactions

    SciTech Connect (OSTI)

    Guardo, G. L.; Lamia, L.; Spitaleri, C.; Cherubini, S.; Rapisarda, G. G.; Sergi, M. L. [INFN - Laboratori Nazionali del Sud, Catania, Italy and Department of Physics and Astronomy, University of Catania, Catania (Italy); Gulino, M. [INFN - Laboratori Nazionali del Sud, Catania, Italy and University of Enna (Italy); Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; Boer, R. de; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; OBrien, S.; Roberson, D.; Tan, W.; Wiescher, M. [Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN (United States); and others

    2014-05-02

    The experimental study of the {sup 17}O(n,?){sup 14}C reaction has been performed in the energy range 0-350 keV. This reaction could play an important role in explaining heavy elements (s-process) nucleosynthesis in various astrophysical scenario. To overcome the practical problems arising from the neutrons production, a new application of the Trojan Horse Method has been recently suggested. In more details, the {sup 17}O(n,?){sup 14}C reaction has been studied using the quasi-free {sup 2}H({sup 17}O,?{sup 14}C){sup 1}H reaction, induced at an energy of 43.5 MeV. The measurement allows one to investigate the ?=3, 75 keV resonance (E*=8.125 MeV, J{sup ?}=5{sup ?}), absent in the available direct measurements because of centrifugal suppression effects.

  17. Rapid Deposition Technology Holds the Key for the World's Largest Solar Manufacturer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Thanks in part to years of collaboration with the National Renewable Energy Laboratory (NREL), a manufacturer of thin-film solar modules has grown from a small garage-type operation to become the world's largest manufacturer of solar modules. First Solar, Inc. now manufactures cadmium telluride (CdTe) solar modules throughout the world, but it began in Ohio as a small company called Solar Cells, Inc.

  18. Force Modulation System for Vehicle Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Vehicle Manufacturing Force Modulation System for Vehicle Manufacturing Novel Technology Enables Energy-Efficient Production of High-Strength Steel Automotive Parts...

  19. Mechanical and Manufacturing Engineering Mechatronics Engineering Minor

    E-Print Network [OSTI]

    Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

  20. Energy Intensity Indicators: Manufacturing Energy Intensity

    Broader source: Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the 3-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data include...

  1. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    Integration issues in green design and manufacturing."schematic of the green elements of design and manufacturing1. SCHEMATIC OF “GREEN” ELEMENTS OF DESIGN AND PRODUCTION,

  2. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Cement (2010 MECS)...

  3. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Footprint All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) Plastics and Rubber Products (2010 MECS) MECS 2006 - Alumina and Aluminum...

  4. 2014 Manufacturing Energy and Carbon Footprints: Scope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries in the Paper Manufacturing subsector make pulp, paper, or converted paper products. The manufacturing of these products is grouped together because they...

  5. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  6. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnered with other agencies to launch a pilot Manufacturing Innovation Institute on additive manufacturing in Youngstown, Ohio. Following this pilot, the Energy Department...

  7. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials Workshop Our goal is to define opportunities and research gaps within...

  8. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  9. Process systems engineering of continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Abel, Matthew J

    2010-01-01

    Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

  10. National Electrical Manufacturers Association (NEMA) Response...

    Office of Environmental Management (EM)

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  11. Additive Manufacturing Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

  12. New Sensor Network Technology Increases Manufacturing Efficiency...

    Office of Environmental Management (EM)

    Sensor Network Technology Increases Manufacturing Efficiency New Sensor Network Technology Increases Manufacturing Efficiency April 11, 2013 - 12:00am Addthis EERE supported Eaton...

  13. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Fiber Composites: Retting, Preform Manufacture & Molding Natural Fiber Composites: Retting, Preform Manufacture & Molding 2009 DOE Hydrogen Program and Vehicle Technologies...

  14. Low Temperature PEM Fuel Cell Manufacturing Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    methods. Identify gaps in MEA manufacturing technology: How much better can we do? Note: Cost reductions realized from both material price reduction and manufacturing yield...

  15. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  16. Solid electrolyte material manufacturable by polymer processing...

    Office of Scientific and Technical Information (OSTI)

    Patent: Solid electrolyte material manufacturable by polymer processing methods Citation Details In-Document Search Title: Solid electrolyte material manufacturable by polymer...

  17. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  18. Manufacturing Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges atEnergyPerspective Manufacturing

  19. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  20. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 6, JUNE 2012 1049 Scalable Hardware Trojan Diagnosis

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    of HTs and intrinsic process variation (PV) in IC design, detecting and locating HTs is challenging detection and diagnosis approaches, side channel analysis has been widely adopted because of its low in and pending technologies, process variation (PV) [8] is inevitable due to the nature of the IC manufacturing

  1. Declaration of Concentration in Manufacturing Engineering

    E-Print Network [OSTI]

    Lin, Xi

    .0 * In addition to the courses listed above, the Manufacturing Engineering Concentration requires a ManufacturingDeclaration of Concentration in Manufacturing Engineering Return completed form to ENG in Manufacturing Engineering should complete this form, obtain the signature of their Faculty Advisor below

  2. Layered Manufacturing Sara McMains

    E-Print Network [OSTI]

    McMains, Sara

    Grossman) #12;LM vs. Conventional Manufacturing · Subtractive · Net shape · Additive #12;Conventional · Molding · Casting #12;Conventional Manufacturing · Additive ­ Combine complex sub-units ­ E.g. · WeldingLayered Manufacturing Sara McMains #12;Layered Manufacturing (LM) a.k.a. Solid Freeform Fabrication

  3. Designing a National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

  4. Systematically Manufacturing Success Stanley B. Gershwin

    E-Print Network [OSTI]

    Gershwin, Stanley B.

    Systematically Manufacturing Success Stanley B. Gershwin Industrial Automation Days 2007 Innovation;Manufacturing Systems Engineering · Manufacturing Systems Engineering (MSE) is a rigorous, vigorous, rapidly on the HP case below. Copyright c 2007 Stanley B. Gershwin. All rights reserved. 2 #12;Manufacturing Systems

  5. Disc Manufacturing, Inc. A QUIXOTE COMPANY

    E-Print Network [OSTI]

    Gupta, Varun

    Disc Manufacturing, Inc. A QUIXOTE COMPANY Introduction to ISO 9660, what it is, how it is implemented, and how it has been extended. Clayton Summers Copyright © 1993 by Disc Manufacturing, Inc. All rights reserved. #12;WHO IS DMI? Disc Manufacturing, Inc. (DMI) manufactures all compact disc formats (i

  6. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  7. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  8. Energy Analysis and Diagnostics Data Analysis From Industrial Energy Assessments for Manufacturing Industries 

    E-Print Network [OSTI]

    Gopalakrishnan, B.; Plummer, R. W.; Srinath, S.; Meffe, C. M.; Ipe, J. J.; Veena, R.

    1997-01-01

    m fil o N (") QFORSIC32 Figure 6. Energy consumption for SIC 32 SIC 35 type of industry, which is associated with machinery manufacture. This is probably due to the need for adequate lighting for precision inspection and the possibility...

  9. Strengthening Sustainable Manufacturing in The White House, Environmental Protection Agency

    E-Print Network [OSTI]

    manufacturing. Topics of discussion will include sustainable manufacturing, lean manufacturing, workforce issuesStrengthening Sustainable Manufacturing in Indiana The White House, Environmental Protection Agency to participate in an event with Matt Bogoshian, to discuss Sustainable Manufacturing, which was featured

  10. Power Quality from the Manufacturer’s Standpoint 

    E-Print Network [OSTI]

    McEachern, A.

    1989-01-01

    Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

  11. Manufacturing Energy and Carbon Footprints 

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  12. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  13. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  14. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  15. Petrick Technology Trends Of Manufacturing

    E-Print Network [OSTI]

    production increased productivity during the Industrial Revolution when it replaced workers performing manufacturing will become commercially competitive across a wide range of industries and will support the use been revolutionizing industrial sectors for more than 200 years. We have seen the way mechanized

  16. MHTool User's Guide - Software for Manufactured Housing Structural Design

    SciTech Connect (OSTI)

    W. D. Richins

    2005-07-01

    Since the late 1990s, the Department of Energy's Idaho National Laboratory (INL) has worked with the US Department of Housing and Urban Development (HUD), the Manufactured Housing Institute (MHI), the National Institute of Standards and Technology (NIST), the National Science Foundation (NSF), and an industry committee to measure the response of manufactured housing to both artificial and natural wind loads and to develop a computational desktop tool to optimize the structural performance of manufactured housing to HUD Code loads. MHTool is the result of an 8-year intensive testing and verification effort using single and double section homes. MHTool is the first fully integrated structural analysis software package specifically designed for manufactured housing. To use MHTool, industry design engineers will enter information (geometries, materials, connection types, etc.) describing the structure of a manufactured home, creating a base model. Windows, doors, and interior walls can be added to the initial design. Engineers will input the loads required by the HUD Code (wind, snow loads, interior live loads, etc.) and run an embedded finite element solver to find walls or connections where stresses are either excessive or very low. The designer could, for example, substitute a less expensive and easier to install connection in areas with very low stress, then re-run the analysis for verification. If forces and stresses are still within HUD Code requirements, construction costs would be saved without sacrificing quality. Manufacturers can easily change geometries or component properties to optimize designs of various floor plans then submit MHTool input and output in place of calculations for DAPIA review. No change in the regulatory process is anticipated. MHTool, while not yet complete, is now ready for demonstration. The pre-BETA version (Build-16) was displayed at the 2005 National Congress & Expo for Manufactured & Modular Housing. Additional base models and an extensive material library need to be developed. Output displays and listings will need to be expanded and model checking capability added. When completed, MHTool will ultimately lead to new manufactured housing designs that meet or exceed the HUD Code for quality, durability, and safety while reducing labor and materials. This will reduce cost and increase home ownership for the traditional manufactured housing market of first time or low-income buyers. MHTool uses the freeware solver Felt modified specifically for manufactured housing by researchers at Washington State University and INL. Input data, material properties, and results verification are based on full scale testing conducted by INL and others. See Section 7 for a collection of references.

  17. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  18. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

  19. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    material geometry: ­ Thin walls ­ Angled trusses ­ Small channels · What is our answer? ­ 3DP of metal? · Preliminary results - characteristic cellular material geometry: ­ Thin walls ­ Angled trusses ­ Small Cellular Material Manufacturing Stochastic Cellular Material Manufacturing (Hydro / Alcan / Combal Process

  20. Benefits and Barriers of Smart Manufacturing 

    E-Print Network [OSTI]

    Trombley, D.; Rogers, E.

    2014-01-01

    Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

  1. Creation and sustainment of manufacturing technology roadmaps

    E-Print Network [OSTI]

    Grillon, Louis S

    2012-01-01

    Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

  2. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  3. Manufacturing Planning and Control Stephen C. Graves

    E-Print Network [OSTI]

    Graves, Stephen C.

    1 Manufacturing Planning and Control Stephen C. Graves Massachusetts Institute of Technology November 1999 Manufacturing planning and control entails the acquisition and allocation of limited, planning and control problems are inherently optimization problems, where the objective is to develop

  4. Department of Manufacturing & Construction Engineering Technology (MCET)

    E-Print Network [OSTI]

    Hamburger, Peter

    Department of Manufacturing & Construction Engineering Technology (MCET) Position title professional/industrial experience and teaching experience are desired. Additional expectations include, and community is also required. Description of the department: The Department of Manufacturing & Construction

  5. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright © 2011 Versa Power Systems. All Rights

  6. INFORMATION SYSTEMS SUPPORT FOR MANUFACTURING PROCESSES

    E-Print Network [OSTI]

    activities. The feature overlapping of production planning and quality control between both systems raises and distribution (Merrit1999) and have extend their scope to support quality control and production tracking: Manufacturing Enterprises, Enterprise Resource Planning, Manufacturing Execution Systems, Discrete Processes

  7. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  8. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical...

  9. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Overview mwrfworkshopjuly2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop...

  10. Webinar: Additive Manufacturing for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  11. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID 200701983, 200802088) 200701972 Manufacturing Biodiesel from...

  12. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFICE Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart...

  13. $23.5 Million Investment in Innovative Manufacturing Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative 23.5 Million Investment in Innovative Manufacturing Projects...

  14. AMO Industry Day Workshop, February 25th, Targets Smart Manufacturing...

    Office of Environmental Management (EM)

    for Manufacturing, it is a network data-driven process that combines innovative automation and advanced sensing and control. Smart Manufacturing can integrate manufacturing...

  15. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01

    shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

  16. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    Analysis May 2013 Additive Manufacturing in China: Aviationan overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  17. Essays on the Performance of Manufacturing Firms in Developing Countries

    E-Print Network [OSTI]

    Eifert, Benjamin Patrick

    2010-01-01

    highly-successful lean manufacturing system of production (adopted the Japanese lean manufacturing technology beginningthe experience f rom Lean manufacturing i s t he col lective

  18. Machine Tool Design and Operation Strategies for Green Manufacturing

    E-Print Network [OSTI]

    2010-01-01

    machine tool during its manufacture and use, respectively.calculator” related to part manufacture which allowed thecycle, such as its manufacture, are neglected. Furthermore,

  19. Wind Manufacturing and Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Supply Chain Wind Manufacturing and Supply Chain The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing...

  20. Opportunities and Challenges to Sustainable Manufacturing and CMP

    E-Print Network [OSTI]

    Dornfeld, David

    2009-01-01

    The Case for Manufacturing,” European Commission,Wedges for Implementing Green Manufacturing,” Trans.North American Manufacturing Research Institute, 2007, vol.

  1. Vehicle Manufacturing Futures in Transportation Life-cycle Assessment

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2011-01-01

    transportation vehicle manufacturing results are developedBERKELEY Vehicle Manufacturing Futures in TransportationAugust 2011 Vehicle Manufacturing Futures in Transportation

  2. Design and Manufacturing for Cleanability in High Performance Cutting

    E-Print Network [OSTI]

    Avila, Miguel C.; Reich-Weiser, Corinne; Dornfeld, David; McMains, Sara

    2006-01-01

    Kalpakjian, S. ; Manufacturing Processes for EngineeringDesign and Manufacturing for Cleanability in Highpriority in conventional manufacturing processes, due to the

  3. CMP Modeling as a part of Design for Manufacturing

    E-Print Network [OSTI]

    Shantanu Tripathi; Adrien Monvoisin; Fiona Doyle; Dornfeld, David

    2007-01-01

    and the Laboratory for Manufacturing and Sustainability (IEEE Trans. Semiconductor Manufacturing, 232 (2002) [4] J.J.a part of Design for Manufacturing Shantanu Tripathi, Adrien

  4. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place: San Bruno, California Zip:...

  5. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    Analysis May 2013 Additive Manufacturing in China: Aviationof China’s additive manufacturing industry was presented. Inroles in addi- tive manufacturing (AM) development and

  6. Precision Manufacturing of Imprint Rolls for the Roller Imprinting Process

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David A; Kim, Chang-Ju

    2008-01-01

    Fugl, J. ; “ ;Precision Manufacturing Methods of Inserts forD. E. ; Precision Manufacturing, 1 st Edition; Springer. [In: CIRP Annals – Manufacturing Technology; pp. 73-76. [

  7. Machine Tool Design and Operation Strategies for Green Manufacturing

    E-Print Network [OSTI]

    2010-01-01

    E. , 2007, Precision Manufacturing, Springer, New York, pp.Environment, CIRP Annals - Manufacturing Technology, Vol.Environment, CIRP Annals - Manufacturing Technology, Vol.

  8. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    application of additive manufacturing in China’s aviationAnalysis May 2013 Additive Manufacturing in China: Threats,of China’s additive manufacturing industry is presented,

  9. Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris Yingchun; David Dornfeld

    2010-01-01

    and the Environment. Journal of Manufacturing Science andthe Environmental Impact of Manufacturing and Sustainabilityfor Microelectronics Manufacturing Chris Y. Yuan e-mail:

  10. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    maps in semiconductor manufacturing. ” Pattern Recognit.Third ISMI Symposium on Manufacturing Effectiveness. Austin,thickness in semiconductor manufacturing. In Proceedings of

  11. First application of the Trojan Horse Method with a Radioactive Ion Beam: study of the $^{18}$F($p,?$)$^{15}$O}} reaction at astrophysical energies

    E-Print Network [OSTI]

    S. Cherubini; M. Gulino; C. Spitaleri; G. G. Rapisarda; M. La Cognata; L. Lamia; R. G. Pizzone; S. Romano; S. Kubono; H. Yamaguchi; S. Hayakawa; Y. Wakabayashi; N. Iwasa; S. Kato; T. Komatsubara; T. Teranishi; A. Coc; N. de Séréville; F. Hammache; G. Kiss; S. Bishop; D. N. Binh

    2015-05-04

    Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Trojan Horse Method is applied for the first time to a radioactive ion beam induced reaction studying the $^{18}$F($p,{\\alpha}$)$^{15}$O process at low energies relevant to astrophysics via the three body reaction $^{2}$H($^{18}$F,${\\alpha}^{15}$O)n. The knowledge of the $^{18}$F($p, {\\alpha}$)$^{15}$O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in $^{19}$Ne and possibly interference effects among them. The results reported in Literature are not satisfactory and new investigations of the $^{18}$F($p,{\\alpha}$)$^{15}$O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astrophysical S-factor has been extracted considering also interference effects

  12. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  13. Energy Manufacturing Matthew Realff and Steven Danyluk

    E-Print Network [OSTI]

    Das, Suman

    Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

  14. e! Science News Semiconductor manufacturing technique holds

    E-Print Network [OSTI]

    Rogers, John A.

    e! Science News Semiconductor manufacturing technique holds promise for solar energy PublishedSemiconductor manufacturing technique holds promise for solar energy | e! Science News 5/26/2010http semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

  15. Mechanics and Design, Manufacturing Professor Hani Naguib

    E-Print Network [OSTI]

    Sun, Yu

    Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials Mechatronics Robotics Assembly Quality Management Raw Materials Fundamental ManagementAutomation #12;U n i v eMechanics and Design, Manufacturing Professor Hani Naguib #12;U n i v e r s i t y o f T o r o n t o

  16. Pseudomonas fluorescens -A robust manufacturing platform

    E-Print Network [OSTI]

    Lebendiker, Mario

    Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

  17. Additive manufacturing of metallic tracks on

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

  18. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  19. Manufacturability-Aware Physical Layout Optimizations

    E-Print Network [OSTI]

    Pan, David Z.

    Manufacturability-Aware Physical Layout Optimizations David Z. Pan and Martin D. F. Wong Dept VLSI design is greatly challenged by the growing interdependency between manufacturing and design. Existing approaches in design for manufacturability (DFM) are still mostly post design, rather than during

  20. Polymer PPolymer P ME 4210: Manufactur

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Polymer PPolymer P verver ME 4210: Manufactur Prof. J.S. ProcessingProcessing r. 1r. 1 ring Processes and Engineering Colton © GIT 2009 1 #12;ExtruExtru ME 4210: Manufactur Prof. J.S. uderuder ring Processes and Engineering Colton © GIT 2009 2 #12;E t dExtruder ME 4210: Manufactur Prof. J.S. d dir and die

  1. EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING

    E-Print Network [OSTI]

    Boyer, Edmond

    will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

  2. MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS

    E-Print Network [OSTI]

    Wu, David

    MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS S. DAVID WU Lehigh University, Bethlehem research directions and opportunities in manufacturing logistics based on recommendations from an NSF in manufacturing logistics by the physical entities (systems) involved, the level-of-abstraction, the focus

  3. Manufacturing

    Office of Environmental Management (EM)

    1 - 100 per ton of CO2e based on emissions in 2009. The range is partly to do discount rate 458 assumptions and partly due to assumptions about future events. Without emissions...

  4. Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy ThisSites | DepartmentRebate Program

  5. IEM5303/4323-Manufacturing Systems Design: High Volume Manufacturing Systems

    E-Print Network [OSTI]

    Bukkapatnam, Satish T.S.

    -time quality and asset management in high-volume manufacturing operations elicit student interests to pursue/CAM Technology for High-Volume Manufacturing: Control Hierarchy and Elements Process Planning and NumericalIEM5303/4323-Manufacturing Systems Design: High Volume Manufacturing Systems Schedule: 2-3:30 TR

  6. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  7. Manufacturing Demonstration Facility Low-Cost Carbon Fiber Available to US Manufacturers

    E-Print Network [OSTI]

    commercialization and manufacturing barriers and realize the strength and energy saving benefits of these new

  8. Oak Ridge Centers for Manufacturing Technology - The Manufacturing Skills Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe Manufacturing Skills

  9. A framework for training workers in contemporary manufacturing environments

    E-Print Network [OSTI]

    Kaber, David B.

    A framework for training workers in contemporary manufacturing environments ARUNKUMAR PENNATHUR MCMULKIN and DILEEP SULE Abstract. Manufacturing experiments with full automation for manufacturing. It is now widely accepted that humans are vital to efficient and effective operation of manufacturing

  10. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  11. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01

    64] USEPA, 2003, “Lean Manufacturing and the Environment:use the benefits of lean manufacturing principles to improve

  12. A Three Dimensional System Approach for Environmentally Sustainable Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhai, Qiang; Dornfield, David

    2012-01-01

    determining the sustainability performance of manufacturingcan improve the sustainability performance of manufacturing.for measuring sustainability performance of a manufacturing

  13. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for...

  14. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials Advanced Manufacturing Office Advanced Manufacturing Office Battery and Supercapacitors: A technology capable of transforming many industries including vehicles systems...

  15. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  16. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  17. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  18. Additive Manufacturing: Technology and Applications

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FAL 99-01 More5,AchievingSeptemberAdditive Manufacturing:

  19. Notice Type: Presolicitation

    E-Print Network [OSTI]

    -- Fabricated Metal Product Manufacturing/332996 -- Fabricated Pipe and Pipe Fitting Manufacturing Synopsis Materials. (Microsoft IE required). Additional specifications and opening and closing dates will appear

  20. Notice Type: Presolicitation

    E-Print Network [OSTI]

    NAICS Code: 332 -- Fabricated Metal Product Manufacturing/332322 -- Sheet Metal Work Manufacturing Storage Container. (Microsoft IE required). Additional specifications and opening and closing dates

  1. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  2. The Results (Lessons Learned) of More than 110 Energy Audits for Manufacturers by the Louisiana Industrial Assessment Center 

    E-Print Network [OSTI]

    Kozman, T.; Davies, T.; Reynolds, C.; O'Quin, R.; DaCosta, J.; Galti, T.; Pechon, C.; Stutes, K.

    2005-01-01

    and conducted its first industrial energy assessment in December 2000. In this paper we present the results of this energy assessment and those of 112 more through August 2004. By industrial type, these assessments were for: Oilfield Equipment Manufacturing (23...

  3. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  4. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office. The project focused on three major aspects of the lithium ion (Li-ion) battery manufacturing process: reducing process time for battery formation and...

  5. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Fiber Composites: Retting, Preform Manufacture & Molding FY 2008 Progress Report for Lightweighting Materials - 8. Polymer Composites Research and Development FY 2009...

  6. Supplemental Comments of the Plumbing Manufacturers Instititute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016 Supplemental Comments of the Plumbing Manufacturers Instititute Regarding the...

  7. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will create collaborative communities to target a unique technology in advanced manufacturing. DOE's industrial technical assistance efforts are critical to the deployment of...

  8. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    for the Manufacturing Energy and Carbon Footprints (MECS 2010) More Documents & Publications Cement (2010 MECS) Fabricated Metals (2010 MECS) Glass and Glass Products (2010 MECS)...

  9. Manufacturing Barriers to High Temperature PEM Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve cost 992011 10 Manufacturing Barriers BASF is interested in mass markets for fuel cells Market forces appear to favor distributed generation - combined heat and...

  10. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  11. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01

    Precision Manufacturing, LCA, Machining, SustainabilityNOMENCLATURE API = CMOS = GWP = LCA = LCI = Mfg = MRR = RoHSLife Cycle Assessment (LCA). The following sections will

  12. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01

    Life Cycle Assessment, LCA, Green manufacturing, Leveraging,= Global warming potential LCA = Life Cycle Assessment LCI =Life Cycle Assessment (LCA). The following sections will

  13. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy Manufacturing Technologies: e.g. melding, joining, welding Virtual, model- driven library: e.g. foundries, chemicals Process control metrology Two pathways through the...

  14. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    COMPOUNDS In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...

  15. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    Beam Melting In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...

  16. Solid State Lighting LED Manufacturing Roundtable Summary

    SciTech Connect (OSTI)

    None

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  17. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  18. Green Manufacturing Initiative Annual Report 2010

    E-Print Network [OSTI]

    de Doncker, Elise

    Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

  19. Manufacturing Process for OLED Integrated Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and an additional 3 months has also been granted. The planned spend from subcontractor Solvay is being redirected to alternate in-house anode manufacturing process development....

  20. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy intensity and efficiently direct energy to forming the product. Examples include additive manufacturing, selective heating, and out-of-the-autoclave composite...

  1. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis An error occurred. Try...

  2. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  3. Natural Fiber Composites: Retting, Preform Manufacture & Molding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retting, Preform Manufacture & Molding (Start:06.22.07) PI: Jim Holbery Presenter: Mark Smith Pacific Northwest National Laboratory Wednesday, February 27, 2008 This presentation...

  4. Energy & Manufacturing Workforce Training Topics List - Version...

    Office of Environmental Management (EM)

    areas of energy andor manufacturing. Information provided in this list includes: the subjects being taught, grantee, project title, and state. In some cases the list also shows...

  5. Tank Manufacturing, Testing, Deployment and Field Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing, Testing, Field Performance, and Certification International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings CNG and Hydrogen Tank Safety, R&D, and Testing...

  6. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Energy Savers [EERE]

    FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards...

  7. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  8. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Broader source: Energy.gov (indexed) [DOE]

    Process, and Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop WORKSHOP: MATERIALS FOR HARSH SERVICE CONDITIONS -...

  9. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect (OSTI)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  10. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  11. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  12. Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning (MRP)

    E-Print Network [OSTI]

    Cook, Diane J.

    -time controller. The controller uses four matrices: Fv and Sv describe ordering constraints between plan by allowing limited production capacity Inputs to Control System Researchers studying issues in intelligentCombining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning

  13. A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

  14. High Pressure Hydrogen Tank Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards - DOT FMVSS 304 (Mandatory requirement for on-board fuel tanks) - NGV - 2007 (Established industry standard for on-board fuel tanks, over 40,000 Type IV...

  15. Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain

    E-Print Network [OSTI]

    Aydin, Goker

    Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain Goker Aydin rebates and retail pricing. The demand uncertainty is multiplicative, and the expected demand depends on the effective (retail) price of the product. A retailer rebate goes from the manufacturer to the retailer

  16. MANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED MANUFACTURING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and an additive process. Manufacturability indexes are calculated at the tool design stage, these indexes provide an accurate view of which areas of the tool will advantageously be machined or manufactured by an additiveMANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED

  17. SUBMITTED TO THE SPECIAL ISSUE OF IEEE TRANS. ON SEMICONDUCTOR MANUFACTURING 1 Simulation of Semiconductor Manufacturing

    E-Print Network [OSTI]

    SUBMITTED TO THE SPECIAL ISSUE OF IEEE TRANS. ON SEMICONDUCTOR MANUFACTURING 1 Simulation of Semiconductor Manufacturing Supply-Chain Systems with DEVS, MPC, and KIB Dongping Huang, Hessam Sarjoughian1 manufacturing supply-chain systems can be described using a combination of Discrete EVent System Specification

  18. Clean Energy Manufacturing Analysis Center (CEMAC)

    SciTech Connect (OSTI)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  19. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Mechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major program. This minor builds on the fundamentals provided by a basis in mechanical engineering and adds

  20. Evaluating Energy Efficiency Improvements in Manufacturing Processes

    E-Print Network [OSTI]

    Boyer, Edmond

    and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

  1. Manufacturing Thomas W. Eagar, Guest Editor

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Materials Manufacturing Thomas W. Eagar, Guest Editor The bt·h.n-ior of succl'ssful manufac- tunn;imos., t·m·ironment for mate- nab manufacturing changes, so too does our ml·a~un· ol matt·rials performance~·(·vt·r. as shown by Figure 1, there are sen·ral additional dimensions to perfor- mann·. In particular, successful

  2. Fluids Review ME 6222: Manufacturing Processes and

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Gate Cope D Parting Line Gate Drag Casting ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 11 #12;Manufacturing - Ex. 1-2g · You wish to pour the metal so that you do not entrain below 20 000 are OK in casting· values below 20,000 are OK in casting ­ Bernoulli's equation Contin it

  3. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  4. Big Efficieny for Small Manufacturing 

    E-Print Network [OSTI]

    Trombley, D.

    2014-01-01

    stream_source_info ESL-IE-14-05-10.pdf.txt stream_content_type text/plain stream_size 6203 Content-Encoding UTF-8 stream_name ESL-IE-14-05-10.pdf.txt Content-Type text/plain; charset=UTF-8 Big Efficiency for Small... and corporate memberships • Research and technical assistance • Data on real world experiences, best practices • Policies advancing market transformation/market development • Education and Advocacy • Conferences, publications • National, state and local ESL...

  5. Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future

    E-Print Network [OSTI]

    Brock, David

    Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

  6. Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Workshop: A Summary of Research Directions

    E-Print Network [OSTI]

    Wu, David

    Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Louis A. Martin-Vega Lehigh University Abstract: A workshop sponsored by NSF on Manufacturing Logistics for Manufacturing Logistics was defined. In this paper, we summarize future research directions in manufacturing

  7. DESIGN AND FABRICATION OF A ROLLER IMPRINTING DEVICE FOR MICROFLUIDIC DEVICE MANUFACTURING

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Jayanathan, Stephen; Helu, Moneer; Dornfeld, David

    2008-01-01

    micromachining”. CIRP Annals - Manufacturing Technology, 55(of the Laboratory for Manufacturing and Sustainability (the 2008 International Manufacturing Science And Engineering

  8. "Human Health Impact Characterization of Toxic Chemicals for Sustainable Design and Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01

    Sustainable Design and Manufacturing Chris Y. Yuan, Davidsustainable design and manufacturing. Human health impactfor sustainable design and manufacturing, streamlined and

  9. Adaptive Integrated Manufacturing Enterprises: Information Technology for the Next Decade

    E-Print Network [OSTI]

    Hsu, Cheng

    Adaptive Integrated Manufacturing Enterprises: Information Technology for the Next Decade Cheng Hsu for Manufacturing Productivity and Technology Transfer. #12;Abstract A new vision effecting adaptiveness Manufacturing Enterprises (AIME). It focuses on four major problems: (1) Management of multiple systems

  10. MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION

    E-Print Network [OSTI]

    Connors, Daniel A.

    MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

  11. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01

    application of additive manufacturing in China’s aviationAnalysis May 2013 Additive Manufacturing in China: Threats,an overview of China’s additive manufacturing industry is

  12. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Advanced Manufacturing Of Office fice Manufacturing is vital to the U.S. economy * 11% of U.S. GDP * 57% of U.S. Exports * 12 million U.S. jobs * Nearly 20% of the...

  13. Advanced Manufacturing Office in DOE Multimaterial Joining Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 -20 -40 -60 -80 -100 Advanced Manufacturing Office Manufacturing is vital to the U.S. economy * 57% of U.S. Exports * Nearly 20% of the worlds manufactured value added * 11% of...

  14. Faculty Position in Ultra High Precision Robotics & Manufacturing

    E-Print Network [OSTI]

    Candea, George

    , manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

  15. Oregon State University School of Mechanical, Industrial, and Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Industrial and Manufacturing Engineering Graduate Programs, Policies, and Procedures Manual Effective September 2014 School of Mechanical, Industrial, and Manufacturing Engineering 204 Rogers Hall Oregon State University Corvallis

  16. Constructing and managing complex virtual worlds for manufacturing

    E-Print Network [OSTI]

    Bowden, Richard

    Constructing and managing complex virtual worlds for manufacturing applications Zhengxu Zhao School and holds great potentials especially in computerised manufacturing applications. Technical problems however manufacturing environments. The paper presents a method of managing virtual worlds, attempting to provide

  17. Oregon State University School of Mechanical, Industrial, and Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Industrial and Manufacturing Engineering Graduate Programs, Policies, and Procedures Manual Effective September 2013 School of Mechanical, Industrial, and Manufacturing Engineering 204 Rogers Hall Oregon State University Corvallis

  18. Bandwidth Study U.S. Pulp and Paper Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pulp and Paper Manufacturing Bandwidth Study U.S. Pulp and Paper Manufacturing Pulp-Paper.jpg Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational...

  19. The Specificity of Manufacturing in Marx's Economic Though

    E-Print Network [OSTI]

    Tregenna, Fiona

    , spill-over effects, and intersectoral linkages are considered particularly strong in manufacturing, rendering overall productivity growth endogenous to growth in dynamic manufacturing sectors. This means that expanding the manufacturing sector would...

  20. Realizing the PRomise of Innovative Materials and Manufacturing

    E-Print Network [OSTI]

    Post, Wilfred M.

    performance, multifunctionality, and lower overall manufacturing costs. Not only does additive manufacturingRealizing the PRomise of Innovative Materials and Manufacturing Technologies to Make Next · Investigating alternate low-cost feedstock materials · Increasing performance enhancements for materials

  1. Manufacturing of Profiles for Lightweight Structures

    SciTech Connect (OSTI)

    Chatti, Sami; Kleiner, Matthias

    2007-04-07

    The paper shows some investigation results about the production of straight and curved lightweight profiles for lightweight structures and presents their benefits as well as their manufacturing potential for present and future lightweight construction. A strong emphasis is placed on the manufacturing of straight and bent profiles by means of sheet metal bending of innovative products, such as tailor rolled blanks and tailored tubes, and the manufacturing of straight and curved profiles by the innovative procedures curved profile extrusion and composite extrusion, developed at the Institute of Forming Technology and Lightweight Construction (IUL) of the University of Dortmund.

  2. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  3. New Request for Information (RFI) on Clean Energy Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the cross-cutting and specific manufacturing challenges as well as the underlying motivation for the formation of a manufacturing innovation institute, consistent with the...

  4. Request for Information (RFI): Clean Energy Manufacturing Topics...

    Broader source: Energy.gov (indexed) [DOE]

    as specific manufacturing challenges that if addressed could provide the underlying motivation for the formation of a manufacturing innovation institute, consistent with the...

  5. 2.852 Manufacturing Systems Analysis, Spring 2004

    E-Print Network [OSTI]

    Gershwin, Stanley

    This course deals with the following topics: Models of manufacturing systems, including transfer lines and flexible manufacturing systems; Calculation of performance measures, including throughput, in-process inventory, ...

  6. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  7. DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

    Energy Savers [EERE]

    Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

  8. Energy Department to Work with National Association of Manufacturers...

    Energy Savers [EERE]

    Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to...

  9. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  10. Functionally Graded Materials for Manufacturing Tools and Dies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Functionally Graded Materials for Manufacturing Tools and Dies Functionally Graded Materials for Manufacturing Tools and Dies New Material Processes Improve the Performance and...

  11. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...

    Office of Environmental Management (EM)

    8: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA March 2, 2009 EA-1638: Final...

  12. EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project...

    Office of Environmental Management (EM)

    7: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI February 1, 2010...

  13. Celebrating Two Years of Building America's Clean Energy Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Years of Building America's Clean Energy Manufacturing Future Celebrating Two Years of Building America's Clean Energy Manufacturing Future March 27, 2015 - 3:23pm Addthis An...

  14. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Download presentation...

  15. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric...

  16. Low Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Part of a 100 million...

  17. Low-Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management This presentation, which...

  18. DOE Offers Support for Innovative Manufacturing Plant That Will...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Support for Innovative Manufacturing Plant That Will Produce High Quality Solar Silicon at Low Cost DOE Offers Support for Innovative Manufacturing Plant That Will Produce...

  19. Energy Department Announces $2 Million to Support Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces 2 Million to Support Manufacturing of Taller Wind Turbine Towers Energy Department Announces 2 Million to Support Manufacturing of Taller Wind Turbine...

  20. An Overview of Polymer Additive Manufacturing Technologies Peterson...

    Office of Scientific and Technical Information (OSTI)

    of Polymer Additive Manufacturing Technologies Peterson, Dominic S. Los Alamos National Laboratory Los Alamos National Laboratory Materials Science(36) Additive Manufacturing...

  1. Title: Investigation of extraterrestrial construction processes using Additive Manufacturing techniques

    E-Print Network [OSTI]

    Anand, Mahesh

    Title: Investigation of extraterrestrial construction processes using Additive Manufacturing: · To investigate the strengths and weaknesses of existing Additive Manufacturing (AM) processes relevant to lunar

  2. Letter from Plumbing Manufacturers Institute to Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Letter from Plumbing Manufacturers Institute to Department of Energy re: Ex Parte Communication More Documents & Publications Supplemental Comments of the Plumbing Manufacturers...

  3. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems of...

  4. AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA

    Broader source: Energy.gov [DOE]

    AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.

  5. Wind Program Manufacturing Research Advances Processes and Reduces...

    Energy Savers [EERE]

    Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

  6. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01

    improving the sustainability performance of manufacturingThus, sustainability necessitates the need for a performancethe performance of manufacturing from a sustainability

  7. Join Us for the Clean Energy Manufacturing Initiative's Western...

    Office of Environmental Management (EM)

    Energy Manufacturing Initiative's Western Regional Summit March 25, 2014 - 1:45pm Addthis Additive manufacturing is just one of several technologies that are being advanced by the...

  8. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  9. Save the Date: DOE EERE AMO Workshop to Discuss Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Save the Date: DOE EERE AMO Workshop to Discuss Manufacturing Process Intensification Innovation Topic Save the Date: DOE EERE AMO Workshop to Discuss Manufacturing Process...

  10. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Broader source: Energy.gov (indexed) [DOE]

    Strategy * Collaborative Ideas Collaboration toward: * Common goal to collectively increase U.S. manufacturing competitiveness 17 Clean Energy Manufacturing Initiative - DOE...

  11. President Announces New Public-Private Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute Energy Department Awards 22 Million to Support Next Generation Electric Machines for Manufacturing...

  12. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms, and Modeling for Manufacturing Notice of Intent (NOI): Next Generation of Electric Machines AMO to Issue FOA for New Innovation Institute on Smart Manufacturing...

  13. Design for manufacturability with regular fabrics in digital integrated circuits

    E-Print Network [OSTI]

    Gazor, Mehdi (Seyed Mehdi)

    2005-01-01

    Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

  14. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid...

    Office of Scientific and Technical Information (OSTI)

    Rapid Manufacture of Customized Electric Vehicles This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted...

  15. Energy Department Launches New Clean Energy Manufacturing Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    manufacturers." The announcement was made at the ribbon cutting of the Department's Carbon Fiber Technology Facility in Oak Ridge, Tennessee, a new advanced manufacturing...

  16. An exploration of materials and methods in manufacturing : shoreline membranes

    E-Print Network [OSTI]

    Chin, Ryan C. C., 1974-

    2000-01-01

    This thesis is an investigation into the design methodologies and ideologies of manufacturing processes specifically related to automotive design. The conceptualization, prototyping, testing, and manufacturing of cars is ...

  17. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

  18. Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: May 11, 2009 Automotive Manufacturing Employment Declining Fact 570: May 11, 2009 Automotive Manufacturing Employment Declining The number of people employed by automotive...

  19. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...

    Office of Environmental Management (EM)

    3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

  20. Manufacturing of Protected Lithium Electrodes for Advanced Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Batteries PolyPlus Battery Company - Berkeley, CA A...

  1. Microsoft Word - Honda_north amercian manufacturing facilities...

    Office of Environmental Management (EM)

    HONDA Submitted by: Ed Cohen Date: October 22, 2008 HONDA NORTH AMERICAN MANUFACTURING FACILITIES U.S. Department of Energy Advanced Technology Vehicle Manufacturing Loan Program 1...

  2. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile...

  3. Fiber Reinforced Polymer Composite Manufacturing - RFI Part 2...

    Broader source: Energy.gov (indexed) [DOE]

    6 More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA-0000980: Summary of...

  4. Private-Public Partnerships for U.S. Advanced Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing National Program Office...

  5. Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA...

    Broader source: Energy.gov (indexed) [DOE]

    80 More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Fiber Reinforced Polymer Composite Manufacturing - RFI Part 2 DE-FOA-0001056: Summary of...

  6. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Webinar Slides More Documents & Publications QTR Webinar: Chapter 8 - Industry and Manufacturing AMO Peer Review, May 6-7, 2014 Fiber Reinforced Polymer Composite Manufacturing...

  7. The Importance of Carbon Fiber to Polymer Additive Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    The Importance of Carbon Fiber to Polymer Additive Manufacturing Citation Details In-Document Search Title: The Importance of Carbon Fiber to Polymer Additive Manufacturing...

  8. Building Blocks for the Future of Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Tumblr (Opens in new window) Building Blocks for the Future of Manufacturing Scott Smith 2011.05.04 An error occurred. Try watching this video on www.youtube.com, or enable...

  9. Level schedule implementation in unstable manufacturing environments

    E-Print Network [OSTI]

    López de Haro, Santiago

    2008-01-01

    American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

  10. Solid-State Lighting Manufacturing Workshop

    Broader source: Energy.gov [DOE]

    Nearly 200 lighting industry leaders, chip makers, fixture and component manufacturers, and others gathered in Fairfax, Virginia, on April 21 and 22, 2009, for the first-ever DOE Solid-State...

  11. 4D printing : towards biomimetic additive manufacturing

    E-Print Network [OSTI]

    Tsai, Elizabeth Yinling

    2013-01-01

    Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

  12. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  13. Diagnosing spatial variation patterns in manufacturing processes 

    E-Print Network [OSTI]

    Lee, Ho Young

    2004-09-30

    This dissertation discusses a method that will aid in diagnosing the root causes of product and process variability in complex manufacturing processes when large quantities of multivariate in-process measurement data are available. As in any data...

  14. Factory Models for Manufacturing Systems Engineering

    E-Print Network [OSTI]

    Gershwin, Stanley B.

    We review MIT research in manufacturing systems engineering, and we describe current and possible future research activities in this area. This includes advances in decomposition techniques, optimization, token-based control ...

  15. Slideshow: Innovation in the Manufacturing Sector | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce...

  16. MIT SEMINAR SERIES IN MANUFACTURING AND PRODUCTIVITY

    E-Print Network [OSTI]

    Brock, David

    .M. Tuesday, November 15 _______________________________ Mechatronics in Samsung Electronics Today and Tomorrow Dr. Ji Oh Song Executive Vice President & General Manager Mechatronics & Manufacturing Technology Center Samsung Electronics Co., Ltd. Mechatronics refers to a multi-disciplinary engineering field

  17. Energy Efficient Manufactured Homes Incentive Tax Credit

    Broader source: Energy.gov [DOE]

    To qualify for the nonrefundable $750 tax credit, an individual must purchase either: 1) a manufactured home that meets or exceeds the U.S. Environmental Protection Agency's and the U.S....

  18. Energy Department Supports Manufacturing Day | Department of...

    Energy Savers [EERE]

    he is discussing technologies such as additive manufacturing, better known as 3D-printing, an energy-efficient technology with potential to change the way we think about...

  19. Cost modeling for monoclonal antibody manufacturing

    E-Print Network [OSTI]

    Simpson, Christina M. (Christina Margaret)

    2011-01-01

    The Novartis BioPharmOps division is responsible for manufacturing large molecule products, including monoclonal antibodies, for late stage clinical trials and commercial sales. The BioPharmOps site in Huningue, France is ...

  20. Innovative Manufacturing Initiatives Recognition Day Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Manufacturing Initiatives Recognition Day June 20, 2012 The Embassy Row Hotel - 2015 Massachusetts Ave, NW 9:00-9:05am Welcome - Dr. Leo Christodoulou, DOE AMO Program...

  1. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awards 1.8 Million to Develop Wind Turbine Blades to Access Better Wind Resources and Reduce Costs President Obama Awards 2.3 Billion for New Clean-Tech Manufacturing Jobs...

  2. Understanding Manufacturing Energy Use Through Statistical Analysis 

    E-Print Network [OSTI]

    Kissock, J. K.; Seryak, J.

    2004-01-01

    Energy in manufacturing facilities is used for direct production of goods, space conditioning, and general facility support such as lighting. This paper presents a methodology for statistically analyzing plant energy use in terms of these major end...

  3. Renewable Energy Tax Credit for Manufacturers (Personal)

    Broader source: Energy.gov [DOE]

    SB 1484 of 2014 provides a tax credit for new renewable energy systems that produce energy for self-consumption and are used primarily for manufacturing. HB 2670 of 2015 expanded this credit to i...

  4. Lane Electric Cooperative- Manufactured Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative offers its customers an incentive for buying a new, permanent residence, EnergyStar manufactured home within service area. Qualifying customers may receive up to $500 if...

  5. GE's Digital Marketplace to Revolutionize Manufacturing | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an open online space for companies to collaborate and transform how they design and manufacture their products in the future NISKAYUNA, NY, June 2, 2015 - GE (NYSE:GE), a leading...

  6. Pend Oreille PUD- Manufactured Home Rebate Program

    Broader source: Energy.gov [DOE]

    Pend Oreille PUD offers cash incentives up to $800 to residential customers who purchase a qualifying energy-efficient manufactured home. Homes must meet Energy Star certification to qualify. All...

  7. Analyzing sampling methodologies in semiconductor manufacturing

    E-Print Network [OSTI]

    Anthony, Richard M. (Richard Morgan), 1971-

    2004-01-01

    This thesis describes work completed during an internship assignment at Intel Corporation's process development and wafer fabrication manufacturing facility in Santa Clara, California. At the highest level, this work relates ...

  8. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  9. A Markovian analysis of semiconductor manufacturing processes 

    E-Print Network [OSTI]

    Schultz, Kent Eugene

    1991-01-01

    CHAPTER I INTRODUCTION Manufacturing process control is necessary to achieve and maintain high quality man- ufactured product. Semiconductor fabrication process control has generally taken the form of mean value based methods. This research analyzes...

  10. Renewable Energy Tax Credit for Manufacturers (Corporate)

    Broader source: Energy.gov [DOE]

    SB 1484 of 2014 provides a tax credit for new renewable energy systems that produce energy for self-consumption and are used primarily for manufacturing. HB 2670 of 2015 expanded this credit to i...

  11. Energetic additive manufacturing process with feed wire

    DOE Patents [OSTI]

    Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  12. Clean Energy Manufacturing Initiative Southeast Regional Summit

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) organizes regional summits around the country to expand its partnerships, share resources and successes, and refine its strategy to boost U.S. competitiveness in clean energy manufacturing. The CEMI Southeast Regional Summit, which will be held on July 9, 2015 at the Renaissance Atlanta Midtown Hotel in Atlanta, Georgia, is the third in this series.

  13. The Capital Intensity of Photovoltaics Manufacturing

    SciTech Connect (OSTI)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  14. Manufacturing Demonstration Facilities Workshop, March 12, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges at theNavalSolarofforManufacturing

  15. All Manufacturing Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  16. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  17. Simulation of Manufacturing and Service Systems (E005740) Valid in the academic year 2014-2015

    E-Print Network [OSTI]

    Fiems, Dieter

    Credits 6.0 Teaching languages Keywords Position of the course (nominal values; actual values may depend Methodology: · Types of simulation · Generating random sequences · Monte Carlo estimation · Discrete event able to capture a realistic manufacturing, production, logistic,services process · or system

  18. Notice Type: Presolicitation

    E-Print Network [OSTI]

    : 334 -- Computer and Electronic Product Manufacturing/334515 -- Instrument Manufacturing for Measuring-SMU and 1 each Ultra-Fast I-V Module P/N: 4225-PMU. (Microsoft IE required). Additional specifications

  19. Notice Type: Presolicitation

    E-Print Network [OSTI]

    -- Computer and Electronic Product Manufacturing/334515 -- Instrument Manufacturing for Measuring and Testing Polarization P/N: WS-AA-2000S-ZZ-H. (Microsoft IE required). Additional specifications and opening and closing

  20. Manufacturing Energy and Carbon Footprint Definitions and Assumptions, October 2012

    Broader source: Energy.gov [DOE]

    Definitions of parameters and table of assumptions for the Manufacturing Energy and Carbon Footprint

  1. Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing!

    E-Print Network [OSTI]

    Das, Suman

    volume PV manufacturing, therefore to reduce manufacturing cost and accelerate PV use. ! q Silicon waferIntroduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing! Prof. Shreyes Melkote, Manufacturing Research Center, Georgia Institute of Technology Photovoltaics (PV) will be part of the energy mix

  2. Webtrends Archives by Fiscal Year — Advanced Manufacturing Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Advanced Manufacturing Office, Webtrends archives by fiscal year.

  3. Stability of a `Signal Kanban' Manufacturing Thomas I. Seidman

    E-Print Network [OSTI]

    Rathinam, Muruhan

    ' is an important production control technique used in ``just­in­time'' manufacturing or ``lean manufacturing'' [1Stability of a `Signal Kanban' Manufacturing System Thomas I. Seidman Department of Mathematics@math.umbc.edui Lawrence E. Holloway Center for Robotics and Manufacturing Systems University of Kentucky Lexington

  4. Accepted Manuscript Sustainable manufacturing: Evaluation and Modeling of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in additive manufacturing Florent Le Bourhisa · Olivier Kerbrata Jean-Yves Hascoeta · Pascal Mognola Accepted of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologies such as Direct Additive Laser Manufac- turing allow us to manufacture functional

  5. Faculty Position in Multi-scale Manufacturing Technologies

    E-Print Network [OSTI]

    Psaltis, Demetri

    -precision additive manufacturing technologies; · multi-scale micro-precision manufacturing; · high throughput. Christian Enz Search Committee Chair E-mail: manufacturing-search@epfl.ch For additional information on EPFLFaculty Position in Multi-scale Manufacturing Technologies at the Ecole polytechnique fédérale de

  6. Design and Manufacturing for Cleanability in High Performance Cutting

    E-Print Network [OSTI]

    Avila, Miguel C.; Reich-Weiser, Corinne; Dornfeld, David; McMains, Sara

    2006-01-01

    control, & optimization of cleanability through limited adjustments to existing manufacturing processes

  7. Design for manufacturing: application of collaborative multidisciplinary decision making methodology

    E-Print Network [OSTI]

    Seepersad, Carolyn Conner

    EO 1623 Design for manufacturing: application of collaborative multidisciplinary decision making-963-6900/912-966-7910. #12;Abstract Design for manufacturing is often difficult for mechanical parts since significant manufacturing knowledge is required to adjust part designs for manufacturability. The traditional trial

  8. Cellular Metals Manufacturing** By Haydn N. G. Wadley*

    E-Print Network [OSTI]

    Wadley, Haydn

    Cellular Metals Manufacturing** By Haydn N. G. Wadley* 1. Manufacturing Methods Overview As the engineering applications of cellular metals grows, many methods for their manufacture are being developed.[1 manufacturing methods. Those with high relative density, r/ rs >0.5 (where r is the cellular metals density

  9. Manufacturing Engineering The research activities of the Manufacturing Engineering group are concerned with the

    E-Print Network [OSTI]

    Calgary, University of

    Planning and Control. Research in this area focuses on understanding the tradeoffs and improving of this research is to develop insights into the performance improvement of complex production systems. l Intelligent Manufacturing Systems. Use of advanced computing techniques in manufacturing. l Production

  10. All Manufacturing Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  11. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  12. Using optimization and lean principles to design work cells and make capital purchase decisions for hole drilling operations in turbine airfoil manufacturing

    E-Print Network [OSTI]

    Neal, Thomas E. (Thomas Eugene)

    2006-01-01

    Classical manufacturing work cells have machines to perform each operation in the process, the number of each type of machine being chosen so that all machines would be equally busy. Although design of work cells for ...

  13. Design and Implementation of a Virtual Information System for Agile Manufacturing

    E-Print Network [OSTI]

    Nagi, Rakesh

    Design and Implementation of a Virtual Information System for Agile Manufacturing Liugen Song and implementation of an agile manufacturing information system integrating manufacturing databases dispersed information consistent. Keywords: Agile Manufacturing Information Systems, Manufacturing Database Integration

  14. Clean Energy Manufacturing Initiative Southeast Regional Summit

    Broader source: Energy.gov [DOE]

    Registration is now open for the Clean Energy Manufacturing Initiative’s (CEMI) Southeast Regional Summit! The all-day conference, hosted by the U.S. Department of Energy (DOE), will take place on July 9 in Atlanta, Georgia, at the Renaissance Atlanta Midtown Hotel. The Southeast Regional Summit will bring together leaders from industry, academia, and government to focus on competitiveness and innovation in clean energy manufacturing throughout the southeastern United States. The Summit is the third in a series organized around the country, and will convene key stakeholders to:

  15. Blood Types

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2007-03-14

    Sox spent a hundred mil to acquire pitcher Daisuke Matsuzaka; they probably weren't even aware that he is a Type O and that they make the best bankers, politicians and... you guessed it... professional baseball players. #ceas #hacker #japan #tsutsuien...

  16. Deconstructing Energy Use in Microelectronics Manufacturing: An

    E-Print Network [OSTI]

    Gutowski, Timothy

    are quite energy intensive to manufacture on the basis of energy required per mass of material processed MEMS fabrication facility to examine the consequence of process rate on the energy intensity, intercon- nectivity and communication, and massive data processing and storage, semiconductors have powered

  17. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  18. Microwave heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B.

    2007-01-09

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  19. Pollution Prevention and Lean Manufacturing Paper # 360

    E-Print Network [OSTI]

    Pollution Prevention and Lean Manufacturing Paper # 360 Harry W. Edwards and Jason M. Jonkman, the CSU IAC promotes energy conservation, pollution prevention, and productivity improvement. During that generated a total of 467 assessment recommendations (ARs) with pollution prevention benefits. Such benefits

  20. Montana Manufacturing Center www.mtmanufacturingcenter.com

    E-Print Network [OSTI]

    Dyer, Bill

    on. A Six Sigma project guided by a Field Engi- neer from the Montana Manufacturing Extension Center with Worrest serving as project lead and Six Sigma Coach. Reid considers Worrest a business coach and has used is much better, the company is carrying less inventory, and it is benefiting in other ways. Six Sigma

  1. Faculty of Engineering Industrial and Manufacturing

    E-Print Network [OSTI]

    Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

  2. CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING

    E-Print Network [OSTI]

    Provancher, William

    CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

  3. Optimal Average Cost Manufacturing Flow Controllers

    E-Print Network [OSTI]

    Veatch, Michael H.

    policy the differ- ential cost is C1 on attractive control switching boundaries. Index Terms Average costOptimal Average Cost Manufacturing Flow Controllers: Convexity and Differentiability Michael H and differentiability of the differential cost function are investigated. It is proven that under an optimal control

  4. REMEDIAT1NG AT MANUFACTURED GAS

    E-Print Network [OSTI]

    Peters, Catherine A.

    , comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas carbonization, from the resi- due of gasifying oils in oil gas pro- cesses, and from the cracking of en- riching

  5. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  6. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  7. Underground Manufacturing Facility, Sterling, Virginia. Final report

    SciTech Connect (OSTI)

    Barlow, R.M.

    1981-09-25

    The author set out to build an earth-sheltered light manufacturing plant (to produce expanded polystyrene insulation) and also an earth-sheltered passive solar residence. Results are presented of waterproofing, thermal monitoring, and life cycle study on the plant. It is concluded that the added cost of providing a support for carrying the earth deadload far outweighs the energy savings. (DLC)

  8. Manufacturing Fuel Pellets from Biomass Introduction

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Manufacturing Fuel Pellets from Biomass Introduction Wood pellets have increased tremendously pellet stoves or boilers over traditional wood-fired equipment due to their relative ease of use. As a result, the demand for fuel pellets has also grown quickly. However, wood is not the only suitable

  9. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  10. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  11. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  12. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  13. Manufacture of Macroporous Calcium Hydroxyapatite Bioceramics

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Manufacture of Macroporous Calcium Hydroxyapatite Bioceramics N. OzguÈ r Engin and A. CuÈ neyt Tas* Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06531, Turkey, and mixed this slip with a 4% solu- tion of hydrogen peroxide (H2O2) to produce porous alumina and zirconia

  14. Manufacturing Demonstration Facility Oak Ridge National

    E-Print Network [OSTI]

    Post, Wilfred M.

    processes. These technologies can reduce energy intensity, lower carbon emissions, create lower-cost and stress relief · Low-TemperatureMaterialsSynthesis:lower energy and processing costs through biosynthe customization, improved performance, multifunc- tionality, and lower overall manufacturing costs. logo font

  15. A Global Assessment of Manufacturing: Economic

    E-Print Network [OSTI]

    Gutowski, Timothy

    Tools and Production Technology, Technische Universit¨at, Braunschweig D-38106, Germany Annu. RevA Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions, and the Potential for Energy Efficiency and Materials Recycling Timothy G. Gutowski,1 Julian M. Allwood,3 Christoph

  16. Gate-Level Characterization: Foundations and Hardware Security Applications

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    Security Keywords Gate-level characterization, thermal conditioning, hardware Trojan horse, manufacturing leakage energy, ever increasing sub- strate noise, profound and intrinsic manufacturing variabil- ity (MV rights management. However, GLC is challenging due to the existence of manufacturing variability (MV

  17. MSME in Manufacturing Research is conducted in the analytical and numerical tools for Design and Manufacturing

    E-Print Network [OSTI]

    Feeny, Brian

    Boltzmann method, computational electrodynamics, computational mechanics, heat transfer and flow phenomena Sciences. Graduate Course and Research Topics (Profs. Ki, Kwon, Loos and Pourboghrat) Manufacturing Mechanical behavior of materials, plasticity, constitutive modeling, advanced materials, characterization

  18. MSME in Manufacturing Research is conducted in the analytical and numerical tools for Design and Manufacturing

    E-Print Network [OSTI]

    Feeny, Brian

    method, computational electrodynamics, computational mechanics, heat transfer and flow phenomena Sciences. Graduate Course and Research Topics (Profs. Kwon and Loos) Manufacturing Processes Laser of materials, plasticity, constitutive modeling, advanced materials, characterization and testing

  19. Sporting Good Manufacturing Company: Optimal Manufacturing and Shipping Cost Through Linear Programming Models

    E-Print Network [OSTI]

    Malik, Ejaz

    2009-05-15

    total manufacturing capacity. Data regarding the factory workers, machines, warehouse staff, and scheduling were not relevant and, therefore, were not considered in the creation of the linear programming model. All of the basic steps of generating a...

  20. Derived Types What Are Derived Types?

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Derived Types #12;What Are Derived Types? As usual, a hybrid of two, unrelated concepts C++, Python orientation comes in #12;Simple Derived Types TYPE Wheel INTEGER :: spokes REAL :: diameter, width CHARACTER(LEN=15) :: material END TYPE Wheel That defines a derived type Wheel Using derived types needs a special

  1. Derived Types What Are Derived Types?

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Derived Types #12;What Are Derived Types? As usual, a hybrid of two, unrelated concepts C object orientation comes in This course will only describe the former. #12;Simple Derived Types TYPE That defines a derived type Wheel Using derived types needs a special syntax TYPE(Wheel) :: w1 #12;More

  2. Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab May 24, 2012 - 10:54am Addthis...

  3. Modeling Capacity Reservation in High-Tech Manufacturing

    E-Print Network [OSTI]

    Wu, David

    by rapid innovation and volatile demands. Capacity reservation provides a risk sharing mechanism, manufacturers are confronted with capital intensive facilities and highly skilled labor, operating under long. Physical expansion of manufacturing capacity involves enormous risk. This involves building new facil

  4. An Energy Conservation Program at a Large Cable Manufacturing Plant 

    E-Print Network [OSTI]

    Reale, P. J.

    1983-01-01

    The Atlanta Works is the largest telephone cable manufacturing plant in the world plus the manufacturing center for fiber optic cable for the Western Electric Company and exemplifies how an effective energy conservation program can work...

  5. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of DOE Hydrogen and Fuel Cell Manufacturing R&D activities (N. Garland, DOE) 9:20 DOE's Industrial Technologies Program Manufacturing Activities (L. Christodoulou, DOE) 9:30...

  6. Manufacturing buildings in Massachusetts : the legacy and the future

    E-Print Network [OSTI]

    Traynor, Callie

    1983-01-01

    Manufacturing buildings are found in most towns and cities in Massachusetts. Standing in dominant isolation, or as part of an urban district, their presence is the built testimony to the role manufacturing played in so ...

  7. Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices

    E-Print Network [OSTI]

    Hum, Philip W. (Philip Wing-Jung)

    2006-01-01

    Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for ...

  8. Solar startup to manufacture in Milwaukee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar startup to manufacture in Milwaukee Solar startup to manufacture in Milwaukee August 10, 2010 - 10:00am Addthis Helios USA will build photovoltaic modules such as these this...

  9. Hydrogen and Fuel Cell Manufacturing R&D Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Manufacturing R&D Workshop Hydrogen and Fuel Cell Manufacturing R&D Workshop The National Renewable Energy Laboratory (NREL) hosted a Hydrogen and Fuel Cell...

  10. New urban manufacturing neo-industrial design in Louisville, Kentucky

    E-Print Network [OSTI]

    Rhie, Christopher

    2014-01-01

    American manufacturing is experiencing a modest renaissance. U.S. firms are choosing to re-shore manufacturing jobs not out of their sense of patriotism, but because it makes good business sense. The costs of transportation ...

  11. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Sustainable Manufacturing of Low-Cost Nanoparticles Chad Duty, Ph.D. Technical Lead Additive Manufacturing Roll-to-Roll Processing June 26, 2012 2 Managed by UT-Battelle for...

  12. Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM) Mission Statement: The Center for Advanced Design and Manufacturing of Integrated Microfluidics will develop design tools microfluidics targeting costeffective, quick, and easy diagnosis of the environment, agriculture, and human

  13. Inbound freight consolidation for US manufacturers at China

    E-Print Network [OSTI]

    Fang, Yi, M. Eng. Massachusetts Institute of Technology

    2006-01-01

    In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

  14. Energy Report: U.S. Wind Energy Production and Manufacturing...

    Energy Savers [EERE]

    Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing...

  15. A Web-Based Curriculum Development on Nontraditional Manufacturing with

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    and drilling. Recent developments in MEMS and rapid prototyping manufacturing (RPM) would be impossible without and diversity of NTM has posed more challenges than education in conventional manufacturing processes. Teaching

  16. Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT

  17. Event Registration Form International Good Manufacturing Practices Conference -#71683

    E-Print Network [OSTI]

    Arnold, Jonathan

    Event Registration Form International Good Manufacturing Practices Conference - #71683 03 No Total $______ Please specify any additional dietary restrictions or allergies-884-1419 -- Credit Card Only Mail: International Good Manufacturing Practices Conference ­ #71683 The Georgia Center

  18. East Penn Manufacturing Keeps Moving Forward After 65 Years

    Broader source: Energy.gov [DOE]

    How East Penn Manufacturing went from a small business, founded by a father and son just after the close of World War II, to an expanding manufacturer of advanced batteries for hybrid electric vehicles.

  19. Analysis of energy use and carbon emissions from automobile manufacturing

    E-Print Network [OSTI]

    Raykar, Sumant (Sumant Shreechandra)

    2015-01-01

    In this thesis, we study the energy use and emissions arising from automobile manufacturing. The automobile manufacturing sector is the 11th largest industrial sector globally in terms of energy use and emissions. The IPCC ...

  20. Flexibility in Aerospace and Automotive Component Manufacturing Systems

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Flexibility in Aerospace and Automotive Component Manufacturing Systems: Practice, Strategy Supervisor #12;2 #12;Flexibility in Aerospace and Automotive Component Manufacturing Systems: Practice Traditionally, parts fabrication in the aerospace and automotive industries has been associated with a number

  1. Webinar: Overview of the Clean Energy Manufacturing Analysis Center

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Manufacturing Initiative, the U.S. Department of Energy recently launched the Clean Energy Manufacturing Analysis Center (CEMAC). CEMAC is a collaboration across the...

  2. Fiber Reinforced Polymer Composite Manufacturing Workshop “Save the Date”

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Advanced Manufacturing Office plans to host a Fiber Reinforced Polymer Composite Manufacturing Workshop in the Washington D.C. area on Monday January 13, 2014.

  3. Type: Renewal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy TwoEvent at the Pu Facility,Type IV COPV1

  4. Vehicle Manufacturing Futures in Transportation Life-cycle Assessment

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2011-01-01

    of the Consortium on Green Design and Manufacturing.Mellon University’s Green Design Initiative. [Facanha and

  5. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  6. Center for Sustainable Industry and Manufacturing | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration with core research focused on advanced materials, battery manufacturing, robotics and automation, nanomanufacturing, separations technologies, and combined heat and...

  7. Wellbore manufacturing processes for in situ heat treatment processes

    DOE Patents [OSTI]

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  8. Innovative Manufacturing Initiative Recognition Day- Final Participant Listing

    Broader source: Energy.gov [DOE]

    Participant listing for Innovative Manufacturing Initiative Recognition Day held in Washington, D.C. on June 20, 2012

  9. Solid-State Lighting (SSL) Manufacturing Workshops Report

    SciTech Connect (OSTI)

    none,

    2009-10-01

    The final report from the U.S. Department of Energy 2009 Solid-State Lighting Manufacturing Workshops.

  10. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells

    SciTech Connect (OSTI)

    Wheeler, D.; Sverdrup, G.

    2008-03-01

    In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

  11. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Definitions and Assumptions, October 2012 Manufacturing Energy and Carbon Footprint Definitions and Assumptions, October 2012 footprintsassumptionsdefinitions2012.pdf More...

  12. Comparing Environmental Impacts of Additive Manufacturing vs. Traditional Machining via Life-Cycle Assessment

    E-Print Network [OSTI]

    Faludi, Jeremy; Bayley, Cindy; Bhogal, Suraj; Iribarne, Myles

    2014-01-01

    Impacts of Additive Manufacturing vs. Traditional Machiningcutting! Impacts of Additive Manufacturing in LiteratureSocial Impacts of Additive Manufacturing vs CNC Machining

  13. Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments

    E-Print Network [OSTI]

    Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

    2013-01-01

    of implementing lean and green manufacturing strategies onapplying lean methods in manufacturing, i.e. , illustratingof lean and green practices in a manufacturing facility can

  14. The role of lean manufacturing principles and strategic alternatives in achieving business goals

    E-Print Network [OSTI]

    Ramaswamy, Dhananjay

    2006-01-01

    Lean Manufacturing is widely accepted as a proven method to achieve operational excellence. Many manufacturers undertake lean manufacturing implementations as a strategy to improve competitiveness and realize business ...

  15. Petroglyph Manufacture by Indirect Percussion: The Potential Occurrence of Tools and Debitage in Datable Context

    E-Print Network [OSTI]

    Keyser, James D.; Rabiega, Greer

    1999-01-01

    and K. Nissen 1978 The Manufacture of Petroglyphs: Addi-abraders (or Petroglyph Manufacture by possibly pigment ^requires Petroglyph manufacture probably often in- at least

  16. Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01

    air usage patterns in automotive manufacturing. ” Journal ofAND ECONOMIC COSTS OF AUTOMOTIVE MANUFACTURING THROUGH ANBerkeley Berkeley, CA KEYWORDS Automotive Manufacturing,

  17. A Decision-Based Analysis of Compressed Air Usage Patterns in Automotive Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhang, Teresa; Rangarajan, Arvind; Dornfeld, David; Ziemba, Bill; Whitbeck, Rod

    2006-01-01

    Air Usage Patterns in Automotive Manufacturing Chris Y. Yuanper vehicle built from automotive manufacturing facilities,2004). Compressed Air in Automotive Manufacturing Compressed

  18. The Future of Manufacturing Takes Shape: 3D Printed Car on Display...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funding support from the Energy Department's Advanced Manufacturing Office-to print the car chassis using a new manufacturing machine called Big Area Additive Manufacturing or...

  19. A Schematic Method for Sustainable Material Selection of Toxic Chemicals in Design and Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris Yingchun; David Dornfeld

    2010-01-01

    the Environmental Impact of Manufacturing and SustainabilityChemicals in Design and Manufacturing From Human HealthChemicals in Design and Manufacturing Toxic chemicals used

  20. The Impact Of Trade Liberalization And Information Technology On India's Manufacturing Sector

    E-Print Network [OSTI]

    Sharma, Shruti

    2013-01-01

    Technology and Productivity in Indian Manufacturing 4.14.2.2 Manufacturing and IT inof IT in Indian Manufacturing . . . . . . . . 4.3 Data and

  1. A Decision-Based Analysis of Compressed Air Usage Patterns in Automotive Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhang, Teresa; Rangarajan, Arvind; Dornfeld, David; Ziemba, Bill; Whitbeck, Rod

    2006-01-01

    in semicon- ductor manufacturing. ” PhD thesis. Berkeley,Journal of Manufacturing Systems SystemsJournal of Manufacturing Vol. 25/No. 4 25/No. 4 Vol. A

  2. Strategies for Burr Minimization and Cleanability in Aerospace and Automotive Manufacturing

    E-Print Network [OSTI]

    Avila, Miguel C.; Gardner, Joel D.; Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01

    Formation,” J. of Manufacturing Science and Engineering,Trans. North American Manufacturing Research Institute ,Statistics,” SME J. Manufacturing Systems, Vol 20, No. 2,

  3. Strategies for Burr Minimization and Cleanability in Aerospace and Automotive Manufacturing

    E-Print Network [OSTI]

    Ávila, Miguel C.; Gardner, Joel D.; Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01

    Trans. North American Manufacturing Research Institute ,Laboratory for Manufacturing and Sustainability UC BerkeleyAerospace and Automotive Manufacturing Author: Avila, Miguel

  4. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01

    of Computer Integrated Manufacturing 24 (7), pp. 593-609. ,CAPP for integrated manufacturing,”, Int. J. Comput. Integr.control in a holonic manufacturing environment”, J. Appl.

  5. A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing

    E-Print Network [OSTI]

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Dornfeld, David

    2008-01-01

    Aspects in Semiconductor Manufacturing. Proceed- ings of thefrom semiconductor manufacturing processes. EHS AssessmentM. Energy in chemical manufacturing processes: Gate-to-gate

  6. Impact of the manufacturing phase on the life cycle of machined products

    E-Print Network [OSTI]

    Diaz, Nancy; Helu, Moneer; Ninomiya, Kevin; Dornfeld, David

    2012-01-01

    Tool Use in Various Manufacturing Environments, IEEE Intl.in Support of Sustainable Manufacturing, Proceedings of theBased Sustainable Manufacturing System Design, in:

  7. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01

    Administration. 2002. Manufacturing Energy ConsumptionEnergy Savings in Manufacturing Plants Ernst Worrell TanaEnergy Savings in Manufacturing Plants Ernst Worrell, Tana

  8. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema (OSTI)

    Duoss, Eric

    2014-05-30

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  9. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect (OSTI)

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  10. DOE's Hydrogen and Fuel Cells Technologies Manufacturing

    E-Print Network [OSTI]

    enable durable, high-performance MEAs · Modeling of mechanical stress and heat / water management.S Department of Energy NREL H2/FC Manufacturing R&D Workshop Washington, D.C. August 11-12, 2011 #12;· Goal performance by 200 mA/cm2 at 0.4 V by improving the membrane/anode interface through direct coating W. L. Gore

  11. Starr Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:SpillDavid,EnergybyBiomassManufacturing Inc Jump

  12. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges at theNavalSolarof EnergyFlow

  13. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges at theNavalSolaroffor

  14. Manufacturing Demonstration Facilities Workshop, March 12, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges at

  15. Explore Careers in Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program Management »EricExploration andManufacturing

  16. Manufacturing means jobs „ Mike Arms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport)PriceHistoricEnergy Efficiency » Manufacturing

  17. HIGH TEMPERATURE FUEL CELL (PHOSPHORIC ACID) MANUFACTURING R&D

    E-Print Network [OSTI]

    SYSTEM Power plant cost #12;Current manufacturing cost reduction initiatives at UTC Power #12;PAFC operations 14% reduction Cost savings: 34% Current design New design #12;PAFC MANUFACTURING R&D Automated challenge Manufacturing Cost reduction opportunities Summary #12;PAFC SYSTEM OVERVIEW Overview Heaters

  18. Department of Mechanical Engineering MASTER OF SCIENCE IN MANUFACTURING ENGINEERING

    E-Print Network [OSTI]

    Lin, Xi

    _____________________________ C. Manufacturing Management D. Engineered Materials ENG ME 502/MN 505 Intellectual Assets ENG ME for Microelectronics (T) ENG ME 525 Technology Ventures ENG ME/MS/MN 535 Green Manufacturing (T) ENG ME/MN 583 Product ______________________________ B. Manufacturing Operations Management GSM AC 710 Financial and Managerial Accounting

  19. Journal of Manufacturing Processes Vol. 9/No. 1

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    laser thermal forming, is a flexible rapid prototyping and low-vol- ume manufacturing process that usesJournal of Manufacturing Processes Vol. 9/No. 1 2007 1 Journal of Manufacturing Processes Vol. 9/No. 1 2007 Energy-Level Effects on the Deformation Mechanism in Microscale Laser Peen Forming Youneng

  20. Articial Intelligence for Engineering, Design, Analysis and Manufacturing

    E-Print Network [OSTI]

    Fox, Mark S.

    ://journals.cambridge.org/AIE Additional services for Articial Intelligence for Engineering, Design, Analysis and Manufacturing: EmailArticial Intelligence for Engineering, Design, Analysis and Manufacturing http Intelligence for Engineering, Design, Analysis and Manufacturing / Volume 11 / Issue 04 / September 1997, pp