National Library of Energy BETA

Sample records for manufacturer market shares

  1. Fact #678: June 6, 2011 Manufacturer Market Share of Hybrid Vehicles, 2010

    Broader source: Energy.gov [DOE]

    From a total of 274,210 hybrid vehicle sales in 2010, over two thirds (69%) were manufactured by the Toyota Motor Company. Ford and Honda together accounted for about a quarter of hybrid vehicle...

  2. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of ...

  3. How Changing Energy Markets Affect Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline.

  4. Shared Solar: Current Landscape, Market Potential, and the Impact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared Solar: Current Landscape, Market Potential, and the Impact of Federal Securities Regulation David Feldman, 1 Anna M. Brockway, 2 Elaine Ulrich, 2 and Robert Margolis 1 1...

  5. Solar Trackers Market - Global Industry Analysis, Size, Share...

    Open Energy Info (EERE)

    Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2010 - 2020 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture...

  6. NREL Report Estimates Market Potential of Shared Solar and Discusses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Estimates Market Potential of Shared Solar and Discusses Relevant Securities Regulations April 27, 2015 Analysis from the Energy Department's National Renewable Energy ...

  7. Marketing energy conservation options to Northwest manufactured home buyers. Revision 1

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

    1985-10-01

    Manufactured, or HUD-Code, homes comprise a growing share of the housing stock in the Northwest, as well as nationally. Their relatively low cost has made them especially attractive to lower income families, first-time home-buyers, and retired persons. The characteristics of manufactured home (MH) buyers, the unique energy consumption characteristics of the homes, and their increasing market share make this market an especially critical one for energy consumption and conservation planning in the Northwest. This study relies on extensive, existing survey data and new analyses to develop information that can potentially assist the design of a marketing plan to achieve energy conservation in new manufactured homes. This study has the objective of assisting BPA in the development of a regional approach in which numerous organizations and parties would participate to achieve conservation in new manufactured homes. A previous survey and information collected for this study from regional dealers and manufacturers provide an indication of the energy conservation options being sold to manufactured home buyers in the PNW. Manufacturers in the Northwest appear to sell homes that usually exceed the HUD thermal requirements. Manufacturers typically offer efficiency improvements in packages that include fixed improvements in insulation levels, glazing, and infiltration control. Wholesale costs of these packages range from about $100 to $1500. Typical packages include significant upgrades in floor insulation values with modest upgrades in ceilings and walls. This study identifies trends and impacts that a marketing plan should consider to adequately address the financial concerns of manufactured home buyers.

  8. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Increasing U.S. Market Share in Solar Photovoltaic Manufacturing Close From 2000 to 2010, global shipments of solar cells and modules grew 53%, a wave that China and Taiwan rode to increase their combined market share from less than 2% to 54%. Meanwhile, U.S. market share

  9. Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices

    Broader source: Energy.gov [DOE]

    Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and systems constraints on the viability of a mass market thermoelectric product are discussed

  10. Highway vehicle MPG and market shares report: Model year 1990

    SciTech Connect (OSTI)

    Williams, L.S. ); Hu, P.S. )

    1991-04-01

    This issue of Highway Vehicle MPG and Market Shares Report: Model Year 1990 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of new automobiles and light trucks. The estimates are made on a make and model basis (e.g., Chevrolet is a make and Corsica is a model), from model year 1976 to model year 1990. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on fuel economy changes to determine what caused the changes. The new automobile fleet experienced a fuel economy loss of 0.4 mpg from the previous model year, dropping to 27.6 mpg. This is the second consecutive decline in the fuel economy of new automobiles since model year 1983. The main reason for the fuel economy decline in automobiles was that the compact, midsize, and large size classes, which together claimed more than 75% of the new automobile market, each experienced fuel economy declines of 0.4 mpg or more. In contrast, the new light truck fleet showed an increase of 0.3 mpg from the previous year to a current mpg of 20.5. The fuel economy increase in light trucks was primarily due to the fact that the large pickup class, which represents 35.0% of the new 1990 light truck market experienced a gain of 0.7 mpg in its fuel economy. Overall, the sales-weighted fuel economy of the new light-duty vehicle fleet (automobiles and light trucks) dropped to 24.8 mpg in model year 1990, a reduction of 0.2 mpg from model year 1989. 9 refs., 29 figs., 55 tabs.

  11. Motor vehicle MPG and market shares report: model year 1984

    SciTech Connect (OSTI)

    Hu, P.S.; Holcomb, M.C.

    1985-01-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly MPG changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 16.6% from model year 1983. An even more striking increase was observed in the sales of light trucks: 30.5% from model year 1983. The 1984 model year experienced a gain of 0.23 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.59 mpg in fuel economy, from 20.50 mpg in model year 1983 to 19.91 mpg in model year 1984.

  12. Shared Solar. Current Landscape, Market Potential, and the Impact of Federal Securities Regulation

    SciTech Connect (OSTI)

    Feldman, David; Brockway, Anna M.; Ulrich, Elaine; Margolis, Robert

    2015-04-01

    This report provides a high-level overview of the current U.S. shared solar landscape and the impact that a given shared solar program’s structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  13. Shared Solar. Current Landscape, Market Potential, and the Impact of Federal Securities Regulation

    SciTech Connect (OSTI)

    Feldman, David; Brockway, Anna M.; Ulrich, Elaine; Margolis, Robert

    2015-04-07

    This report provides a high-level overview of the current U.S. shared solar landscape, the impact that a given shared solar program’s structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  14. Fact #802: November 4, 2013 Market Share by Transmission Type

    Broader source: Energy.gov [DOE]

    The variety of transmission technologies has increased as manufacturers seek more efficient ways of transferring power from the engine to the wheels of the vehicles. Automatic transmissions with...

  15. Global Mainframe As A Cloud Machine Market Size, Share, Growth...

    Open Energy Info (EERE)

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  16. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The sharp drop in car sales in 2011 was likely a result of the tsunami that occurred in Japan which constrained supplies of popular car models from Japanese manufacturers. Light ...

  17. Fact #703: November 28, 2011 Hybrid Vehicles Lose Market Share in 2010

    Broader source: Energy.gov [DOE]

    For the first time since hybrid vehicles entered the market, the share of hybrid registrations declined in 2010 – from 2.9% in 2009 to 2.6% in 2010. Reasons for this include the relatively lower...

  18. Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks

    Broader source: Energy.gov [DOE]

    The market share of new light trucks climbed steadily through the 1980's and most of the 1990's, much of it due to the rising popularity of the minivan and the sport utility vehicle. In 2004, light...

  19. Shared Solar: Current Landscape, Market Potential, and the Impact of Federal Securities Regulation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-27

    This presentation provides a high-level overview of the current U.S. shared solar landscape, the impact that a given shared solar program's structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  20. Light-duty vehicle mpg and market shares report, model year 1988

    SciTech Connect (OSTI)

    Hu, P.S.; Williams, L.S.; Beal, D.J.

    1989-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

  1. AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) seeks information on mid-Technology Readiness Level (TRL) research and development (R&D) needs, market challenges, supply chain challenges, and shared facility needs to address challenges associated with clean energy manufacturing.

  2. Manufacturing

    Energy Savers [EERE]

    Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems | Department of Energy Manufacturers in U.S. Energy Department's Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems Manufacturers in U.S. Energy Department's Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems September 30, 2015 - 9:03am Addthis NEWS MEDIA CONTACT (202) 586-4940

  3. Light-duty vehicle MPG (miles per gallon) and market shares report, Model year 1989

    SciTech Connect (OSTI)

    Williams, L.S. ); Hu, P.S. )

    1990-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1989 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis (e.g., Chevrolet is a make and Corsica is a model), from model year 1976 to model year 1989. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on fuel economy changes to determine what caused the changes. Both new automobile and new light truck fleets experienced fuel economy losses of 0.5 mpg from the previous model year, dropping to 28.0 mpg for automobiles and 20.2 mpg for light trucks. This is the first observed decline in fuel economy of new automobiles since model year 1983 and the largest decline since model year 1976. The main reason for the fuel economy decline in automobiles was that every automobile size class showed either losses or no change in their fuel economies. The fuel economy decline in light trucks was primarily due to the fact that two popular size classes, large pickup and small utility vehicle, both experienced losses in their fuel economies. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks) dropped to 25.0 mpg, a reduction of 0.5 mpg from model year 1988. 9 refs., 32 figs., 50 tabs.

  4. Handbook for Small-Scale Densified Biomass Fuel (Pellets) Manufacturing for Local Markets.

    SciTech Connect (OSTI)

    Folk, Richard L.; Govett, Robert L.

    1992-07-01

    Wood pellet manufacturing in the Intermountain West is a recently founded and rapidly expanding energy industry for small-scale producers. Within a three-year period, the total number of manufacturers in the region has increased from seven to twelve (Folk et al., 1988). Small-scale industry development is evolving because a supply of raw materials from small and some medium-sized primary and secondary wood processors that has been largely unused. For the residue producer considering pellet fuel manufacturing, the wastewood generated from primary products often carries a cost associated with residue disposal when methods at-e stockpiling, landfilling or incinerating. Regional processors use these methods for a variety of reasons, including the relatively small amounts of residue produced, residue form, mixed residue types, high transportation costs and lack of a local market, convenience and absence of regulation. Direct costs associated with residue disposal include the expenses required to own and operate residue handling equipment, costs for operating and maintaining a combustor and tipping fees charged to accept wood waste at public landfills. Economic and social costs related to environmental concerns may also be incurred to include local air and water quality degradation from open-air combustion and leachate movement into streams and drinking water.

  5. Motor vehicle mpg and market shares report: first six months of model year 1984

    SciTech Connect (OSTI)

    Hu, P.S.; Greene, D.L.; Till, L.E.

    1984-10-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the first six months of model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly mpg changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 21.8% from the first half of model year 1983. An even more striking increase was observed in the sales of light trucks: 42.2% from the first half of model year 1983. The first six months of model year 1984 experienced a gain of 0.21 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.83 mpg in fuel economy, from 20.52 mpg in model year 1983 to 19.69 mpg in the first half of model year 1984.

  6. Working with U.S. Manufacturers to Succeed in Global Markets (Poster)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    Poster created for the Advanced Manufacturing Office to be used at meetings, presentations, and exhibits. The Advanced Manufacturing Office (AMO) fosters advanced manufacturing innovation, facilitates public and private partnerships, and drives rapid deployment of technologies to help manufacturers: Save energy and money, Reduce environmental impacts, Enhance workforce development, and Improve national energy security and competitiveness throughout the supply chain.

  7. Update: US oil-import market. 1982 top 7 suppliers to US import market: how their shares changed since 1973

    SciTech Connect (OSTI)

    Not Available

    1983-03-09

    This issue updates the Energy Detente 7/09/82, which tracked US oil imports since the Arab Oil Embargo. Since then, the phrase oil glut became common even among cautious market analysts as many exporters, hard-pressed for petrodollars, produced much more than the market was prepared to absorb. To examine how the US import market has adjusted to this continued buyers market, the top seven suppliers of 1982 are tracked backwards through time. A graph shows the 1982 reversal of Mexico's and Saudi Arabia's positions in this market. The three main reasons for Mexico's strong present position in the US market are: crude costs and corresponding refined value; proximity to US refining centers; and strategic importance of Mexico's economic stability through oil sales. Interviews with various US refiners and other market observers confirm that these elements will persist during 1983, regardless of significant price cuts among OPEC and other producers. It is believed that the profitability of running heavy Maya crude in sophisticated plants will continue to look optimistic, and that Mexican crude sales to the Strategic Petroleum Reserve implies US government interest in Mexico's economic recovery, and in its stability in the light of civil wars being waged in Central America. This issue presents the Energy Detente (1) fuel price/tax series and (2) industrial fuel prices for March 1983 for countries of the Eastern Hemisphere. 6 figures, 8 tables.

  8. Silicon Ink for High-Efficiency Solar Cells Captures a Share of the Market (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    Fact sheet on 2011 R&D 100 Award winner Silicon Ink. Liquid silicon has arrived, and with it comes a power boost for solar cells and dramatic cost savings for cell manufacturers.

  9. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975–2012

    Broader source: Energy.gov [DOE]

    In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans and pickup trucks. Sport Utility Vehicles (SUVs) accounted for less than 2% of the market at that...

  10. Manufacturing Innovation Multi-Topic Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Multi-Topic Workshop Manufacturing Innovation Multi-Topic Workshop DOE's Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently

  11. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  12. AMO Issues Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications

    Broader source: Energy.gov [DOE]

    The AMO seeks information on mid-Technology Readiness Level R&D needs, market challenges, supply chain challenges, and shared facility needs addressing clean energy manufacturing topics, including the fuel cell and hydrogen sectors.

  13. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE OPPORTUNITY OF CLEAN ENERGY MANUFACTURING By 2030, the global market for new energy ... and domestic energy resources in manufacturing represents important opportunities for ...

  14. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  15. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Additive manufacturing, also know as 3D printing, has helped spark a creative manufacturing renaissance, allowing companies to create products in new ways while also reducing material waste, saving energy and shortening the time needed to bring products to market. Learn more about this game-changing technology. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families

  16. New Request for Information (RFI) on Clean Energy Manufacturing Topic Areas

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) seeks information on mid-Technology Readiness Level (TRL) research and development (R&D) needs, market challenges, supply chain challenges, and shared facility needs for clean energy manufacturing. This new Request for Information (RFI) is a follow-on to a recently completed RFI broadly covering advanced manufacturing. AMO would now like to know more about the challenges associated with advanced manufacturing technology which potentially could be overcome by pre-competitive collaboration as part of a Clean Energy Manufacturing Innovation Institute.

  17. SunShot Photovoltaic Manufacturing Initiative | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market SunShot Photovoltaic Manufacturing Initiative SunShot Photovoltaic Manufacturing Initiative The SunShot Photovoltaic Manufacturing Initiative (PVMI) invests ...

  18. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect (OSTI)

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  19. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  20. Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record Highs | Department of Energy Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 8:00am Addthis WASHINGTON - The Energy Department released two new reports today showcasing record growth across the U.S. wind market -- increasing America's share of clean, renewable energy and supporting tens of thousands of jobs nationwide. According to these reports, the United States

  1. NREL: Energy Analysis - Manufacturing Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Publications "Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness" IEEE Journal of Photovoltaics Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry Economic Development Impact of 1,000 MW of Wind Energy in Texas Manufacturing Analysis With world-class manufacturing analysis capabilities, NREL analyzes clean energy industry trends; cost, price, and performance trends; market and

  2. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  3. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  4. Resources at the State and Regional Level for Manufacturers ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources at the State and Regional Level for Manufacturers Manufacturers can use resources delivered by industrial energy efficiency programs in their area. AMO's cost-shared ...

  5. Solar Manufacturing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of innovative manufacturing technologies that can achieve a significant market impact in one to four years. Launched in September 2013, the SolarMat program is supporting five projects working in two topic areas: photovoltaics (PV) and concentrating solar power (CSP). Both topics focus on driving down the cost of manufacturing

  6. Sharing Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Data Sharing Data Data sharing naturally divides into three different categories: a single user accessing data from multiple platforms, multiple users accessing data from a single platform, or multiple users accessing data from multiple platforms. A Note About Security and Data Integrity Sharing data with other users must be done carefully. The chances for data loss increase as the number of users who can access the data increases. Permissions should be set to the minimum necessary to

  7. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing and national security To realize additive manufacturing's potential as a disruptive technology for Los Alamos National Laboratory's national security missions,...

  8. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart ...

  9. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturing innovation institute for next ... 70 million in non-federal cost-share, the institute will ... - ultimately helping to lower the cost of electricity and ...

  10. Laser Additive Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revolutionizing the Age-Old Rules of Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  11. Market Transformation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption of fuel cells in emerging markets expands the growth of green jobs, with new opportunities in manufacturing, fuel cell maintenance and support systems, and domestic ...

  12. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  13. EDX- Share and Share Alike

    Broader source: Energy.gov [DOE]

    At NETL, sharing energy technical knowledge and expertise just got a whole lot easier. The Laboratory’s Office of Research and Development has recently launched the Energy Data eXchange, or EDX, a knowledge-sharing network built to provide a single source for fossil energy-related datasets and the tools to use them.

  14. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  15. Buying market transformation -- A cautionary tale from the Northwest

    SciTech Connect (OSTI)

    Baylon, D.; Davis, B.; Hewes, T.

    1998-07-01

    Beginning in April 1992, Pacific Northwest utilities, the Bonneville Power Administration, and eighteen manufactured home (HUD-code) builders undertook a large-scale experiment. Manufacturers were paid acquisition payments (initially $2,500/home) to install better insulation and windows in new electrically-heated homes. This resulted in homes 60% more efficient than HUD regulations dictated. Initial production projections of 10,000 homes per year were easily exceeded, with 94% of the manufactured homes (55,000) built to these standards during the 3.5 year program. During the Manufactured Housing Acquisition Program (MAP), production and on-site installation standards improved significantly. Manufactured homes made inroads into new construction markets, accounting for about 30% of regional production of new housing and competing with low- to mid-priced site-built homes in some areas. The market was transformed. Or was it? Two years have passed since the incentives stopped and the participating manufacturers were left to fend for themselves. Since MAP ended, production of homes built to the higher BPA Super Good Cents (SGC) energy efficiency standards has dropped throughout the region. The state energy offices (SEOs) have maintained an SGC inspection and certification program for which manufacturers pay $30/home, which has helped energy-efficient manufactured homes retain market share in some localities. However, where local codes do not require strict levels of energy efficiency for new homes, saturation of energy-efficient manufactured homes has declined dramatically. This paper examines factors affecting market transformation since the cessation of direct incentives, including fuel choice issues and the effects of state codes on production, infrastructure and sitting levels.

  16. About Additive Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introducing Additive Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Introducing Additive Manufacturing at GE Global Research Prabhjot Singh, manager of the Additive Manufacturing Lab at GE Global Research, describes the technology used in his lab. You Might Also Like DirectWrite_V

  17. GE's Digital Marketplace to Revolutionize Manufacturing | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research GE's Digital Marketplace to Revolutionize Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE's Digital Marketplace to Revolutionize Manufacturing GE will lead an effort to create an online community for manufacturing collaboration and data analysis The open source project will build the

  18. Manufacturing Demonstration Facility Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Facility Workshop Manufacturing Demonstration Facility Workshop March 12, 2012 The Manufacturing Demonstration Facility Workshop (held in Chicago, IL, on March 12, 2012, and simultaneously broadcast as a webinar) invited stakeholders to discuss key foundational aspects of planning a series of Manufacturing Demonstration Facilities (MDFs). MDFs will create a collaborative, shared infrastructure around targeted technical areas that will develop, use, and promote energy efficient,

  19. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities » Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused

  20. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  1. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  2. Community and Shared Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community and Shared Solar Community and Shared Solar Community and Shared Solar As the solar energy market rapidly expands, more people are exploring the possibility of going solar. While not everyone is able to install panels on their roofs, due to unsuitable roof space, living in a large condo building, or renting living space, alternative business models like community solar and shared solar are gaining popularity and increasing access to clean solar energy. Community solar business models

  3. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  4. Partnering for Clean Energy Manufacturing Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Libby Wayman Director, Clean Energy Manufacturing Initiative Partnering for Clean Energy Manufacturing Competitiveness 2 Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Coordination of Clean Energy Manufacturing in EERE Coordination for: * Clean Energy Manufacturing Strategies

  5. Sustainable Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Principal Investigator (Presenter): Dr. Troy D. Marusich , CTO Washington, D.C. May 6-7, 2014 Third Wave Systems Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting ...

  6. Momentum Savings Market Research Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collected before with a larger market share than we had last year. Expect to see a market intelligence report in late April and a draft savings model available for comment on our...

  7. Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (AMO) | Department of Energy Day, Advanced Manufacturing Office (AMO) Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO) PDF icon imi_recogitionday_leo_june2012.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  8. Department of Defense led Institutes for Manufacturing Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of negotiations - Digital Manufacturing & Design Innovation (DMDI) Institute-Est. ... Mines & Technology Stony Creek Labs Stratasys, Inc. Strategic Marketing Innovations, Inc. ...

  9. Solid Lithium Ion Conducting Electrolytes Suitable for Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Ion Conducting Electrolytes Suitable for Manufacturing Processes Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThe lithium ...

  10. DOE High Performance Computing for Manufacturing (HPC4Mfg) Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DOE's national labs to use the labs' high-performance computing (HPC) systems to upgrade their manufacturing processes and bring new clean energy technologies to market. ...

  11. Articles about Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Articles about Manufacturing RSS Below are stories about manufacturing featured by the U.S. Department of Energy (DOE) Wind Program. September 17, 2015 Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures In the past, the wind energy industry has been relatively conservative in terms of data sharing, especially with the general public, which has inhibited the research community's efforts to identify and mitigate the premature failures of wind turbine

  12. Market Barriers to Solar in Michigan

    SciTech Connect (OSTI)

    Miller, E.; Nobler, E.; Wolf, C.; Doris, E.

    2012-08-01

    The solar industry in the United States is at a turning point; the cost of PV hardware has declined substantially in recent years, placing new attention on reducing the balance of system (BOS) costs of solar that now contribute to a growing percentage of installation expenses. How states address these costs through the creation of a favorable policy and regulatory environment is proving to be a critical determinant of a thriving statewide solar market. This report addresses the permitting and tax issues that may stimulate the solar market growth in Michigan. By making PV installations easier to complete through reduced BOS costs, Michigan would become a more attractive location for manufacturers and installers. As PV module costs decline and BOS costs make up a greater share of the cost of solar, action taken today on these issues will prove beneficial in the long term, providing Michigan an opportunity to establish a leadership position in the solar industry.

  13. Marketing Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Through the SunShot Initiative, the U.S. Department of Energy (DOE) works with manufacturers, communities, states, utilities, and other partners to enable the solar market by reducing non-hardware balance-of-system (BOS) costs, developing a skilled workforce, and eliminating market barriers to widespread adoption of solar technologies.

  14. Manufacturing Innovation Institute for Smart Manufacturing: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Controls, Platforms, and Modeling for Manufacturing | Department of Energy Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing September 23, 2015 - 2:38pm Addthis Posted Date: Sep 15, 2015 Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due

  15. additive manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  16. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  17. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on ...

  18. AMO Issues Request for Information on Clean Energy Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (R&D) needs, market challenges, supply chain challenges and shared facility needs in ... The AMM topic focuses on accelerating the development of new, high performance ...

  19. GE Innovation and Manufacturing in Europe | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation and Manufacturing in Europe Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Innovation and Manufacturing in Europe Click the image below to see how GE is at work across Europe to change the face of manufacturing. EU graphic You Might Also Like 2-2-5-v GE Unveils High-Tech Superhero, GENIUS MAN »

  20. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  1. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov [DOE]

    A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss manufacturing of composites. The workshop explored emerging FRP composite market applications in clean energy and barriers to the development and widespread commercial use of these lightweight, high-strength and high-stiffness materials. Improving the manufacturing speed and quality-and reducing their manufacturing costs-could accelerate their use in automotive, wind, compressed gas storage and other clean energy and industrial applications.

  2. Solar Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  3. Awardee Share Procedures

    Broader source: Energy.gov (indexed) [DOE]

    Share Procedures Procedures for Correctly Reporting Awardee Share on the FAADSFAADS Plus reporting screen in STRIPES To ensure proper reporting by DOE to USASpending.gov, you...

  4. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI has recently commercialized.

  5. Wind Energy Markets, 2. edition

    SciTech Connect (OSTI)

    2007-11-15

    The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

  6. Clean Energy Manufacturing Initiative Southeast Regional Summit

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) organizes regional summits around the country to expand its partnerships, share resources and successes, and refine its strategy to boost U.S. competitiveness in clean energy manufacturing. The CEMI Southeast Regional Summit, which will be held on July 9, 2015 at the Renaissance Atlanta Midtown Hotel in Atlanta, Georgia, is the third in this series.

  7. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  8. Final Report - Integrated Glass Coating Manufacturing Line | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrated Glass Coating Manufacturing Line Final Report - Integrated Glass Coating Manufacturing Line Awardee: Enki Technology Location: San Jose, CA Subprogram: Technology to Market Funding Program: Solar Manufacturing Technology 2 This project aims to enable US module manufacturers to coat glass with Enki's state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki's coating process in an integrated tool

  9. Motor vehicle MPG and market shares report. MPG and market share data system, model year 1983

    SciTech Connect (OSTI)

    Hu, P.S.; Roberts, G.F.

    1984-02-01

    Estimates of final model year 1983 new car and new light truck MPG are provided. ORNL has modified the procedure for calculating new car MPG. The new procedure takes into account the sales mix of engine size, engine type (gasoline or diesel), and transmission type within a nameplate (car line). For example, the new ORNL method takes into account that over 60 percent of the Chevettes in 1983 were the gasoline version (98 CID engine displacement) with a 3-speed automatic transmission. Also, the three diesel model types accounted for only about 1 percent of the Chevette sales. This new method estimated the Chevette MPG for 1983 to be 33.2, nearly 5 MPG lower than the estimate based on the old method. Since this report contains revised new car MPG estimates for every year, the fuel economy estimates in this report are not comparable to those in any previous ORNL report. The estimates of new light truck MPG have not been revised, however.

  10. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  11. Innovating to Change Paradigm of Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovating Around the Clock to Change the Paradigm of Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Innovating Around the Clock to Change the Paradigm of Manufacturing Christine M. Furstoss 2014.03.24 When you're part of a global company that operates multiple R&D sites around the world, the engine

  12. What Works Summit on Manufacturing Innovation | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Works Summit on Manufacturing Innovation Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) What Works Summit on Manufacturing Innovation Glen Merfeld 2012.02.20 Last week, GE held a four-day summit in Washington, D.C., focused on the long-term economic and industry growth of the United States. Discussion focused on

  13. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  14. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  15. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  16. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Edison system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  17. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Hopper system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  18. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  19. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  20. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  1. Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy

  2. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  3. 2013 Solid-State Lighting Manufacturing R&D Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Energy Efficiency and Renewable Energy, U.S. Department of Energy SSL Market Forecast Jed Dorsheimer, Canaccord Genuity LED Package Manufacturing Trends Iain Black, ...

  4. NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Manufacturing R&D Project Photo of blue solar cells being sorted in a production line. A woman works behind the protective glass in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers

  5. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer ...

  6. Berkeley Lab Shares

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addition to Berkeley Lab SHARES, which encompasses local charities that support science education and energy conservation, options may be found among the following organizations:...

  7. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include...

  8. Clean Energy Manufacturing Boosting U.S. Competitiveness

    SciTech Connect (OSTI)

    2015-09-14

    Clean energy manufacturing is booming in the United States. U.S. clean energy investment topped $51 billion in 2014 alone, and even more growth is expected in the $250 billion clean energy market worldwide in coming years. America has an important opportunity to continue growing clean energy manufacturing industries, along with the high quality jobs and stronger local economies that come with them.

  9. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  10. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  11. Wind Manufacturing and Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Manufacturing and Supply Chain Wind Manufacturing and Supply Chain The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing capabilities. Its goals are to increase reliability while lowering production costs, and to promote an industry that can meet all demands domestically while competing in the global market. The Wind Program supports industry partnerships and targeted R&D investments that integrate new designs, materials, and

  12. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy A Vehicle Manufacturer's Perspective on Higher-Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company PDF icon leone_biomass_2014.pdf More Documents & Publications Co-Optimization of Fuels and Vehicles A

  13. United States Industrial Motor Systems Market Opportunities Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition to serving DOE's program planning and evaluation needs, the Motor Systems Market Assessment is designed to be of value to manufacturers, distributors, engineers, and ...

  14. Manufacturing Innovation Topics Workshop

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  15. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A ... Volume 1, No.2 NRELDOE EERE QCMetrology Workshop - EERE Fuel Cell Technologies Office ...

  16. Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new reports today showcasing record growth across the U.S. wind market -- increasing America's share of clean, renewable energy and supporting tens of thousands of jobs nationwide. ...

  17. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce

    2013-02-22

    This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the nation’s landbased wind market.

  18. U.S. Offshore Wind Manufacturing and Supply Chain Development

    Broader source: Energy.gov [DOE]

    This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the nation’s land-based wind market.

  19. Chapter V: Improving Shared Transport Infrastructures

    Energy Savers [EERE]

    38 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter V: Improving Shared Transport Infrastructures QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 6-1 Chapter VI This chapter takes a broader look at the current energy trade and the continuing integration of energy markets and infrastructure in the North American region. Its discussion includes cross-border infrastructure with Canada and Mexico, impacts of climate

  20. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  1. Accelerating Spectrum Sharing Technologies

    SciTech Connect (OSTI)

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  2. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  3. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago ...

  4. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  5. Secure Information Sharing

    Energy Science and Technology Software Center (OSTI)

    2005-09-09

    We are develoing a peer-to-peer system to support secure, location independent information sharing in the scientific community. Once complete, this system will allow seamless and secure sharing of information between multiple collaborators. The owners of information will be able to control how the information is stored, managed. ano shared. In addition, users will have faster access to information updates within a collaboration. Groups collaborating on scientific experiments have a need to share information and data.more » This information and data is often represented in the form of files and database entries. In a typical scientific collaboration, there are many different locations where data would naturally be stored. This makes It difficult for collaborators to find and access the information they need. Our goal is to create a lightweight file-sharing system that makes it’easy for collaborators to find and use the data they need. This system must be easy-to-use, easy-to-administer, and secure. Our information-sharing tool uses group communication, in particular the InterGroup protocols, to reliably deliver each query to all of the current participants in a scalable manner, without having to discover all of their identities. We will use the Secure Group Layer (SGL) and Akenti to provide security to the participants of our environment, SGL will provide confldentiality, integrity, authenticity, and authorization enforcement for the InterGroup protocols and Akenti will provide access control to other resources.« less

  6. Government policy and market penetration opportunities for US renewable energy technology in India and Pakistan

    SciTech Connect (OSTI)

    Sathaye, J.; Weingart, J.M.

    1988-01-01

    Some US renewable energy industries are now looking abroad, especially to the rapidly developing Asia-Pacific region, in order to increase sales and expand markets. The developing world appears in principle to be an important market for renewable energy technologies. These international markets have proven extremely difficult to penetrate, and the US competitive position is threatened by strong, well-organized, government-supported competition from Japan and Western Europe. For example, US photovoltaic manufacturers held 80% of the world PV market in 1980; today their market share is down to 35%. Less developed countries (LDCs) present a potentially significant but highly elusive market for renewable energy technologies. This market may develop for three major reasons; the shortage of electricity supply and the high cost of grid extension to rural areas, the high cost of oil imports and the scarcity of light oil products, and the gradual replacement of traditional fuels with modern ones. The focus of this report is on the policies and attitudes of national and regional governments in India and Pakistan towards renewable energy technology and how these policies and attitudes affect the potential for penetration of these markets by US industry. We have attempted to provide some useful insight into the actual market environment in India and Pakistan rather than just report on official laws, regulations, and policies. The report also examines the economics of technologies in comparison with more traditional sources of energy. It concentrates primarily on technologies, such as photovoltaics and wind electric systems, that would benefit from foreign participation, but also identifies potential market opportunities for advanced solar desalination and other renewable energy technologies. 31 refs.

  7. Global Solar Trackers Market | OpenEI Community

    Open Energy Info (EERE)

    Global Solar Trackers Market Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  8. Solar Trackers Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Analysis Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  9. Solar Trackers Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Forecast Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  10. Solar Trackers Market Trends | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Trends Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  11. Solar Trackers Market Size | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Size Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  12. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  13. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    such as metrology and quality control standards, modeling and simulation tools ... the establishment of a robust, domestic hydrogen and fuel cell manufacturing industry. ...

  14. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  15. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three...

  16. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  17. EERE Market Impacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Impacts EERE Market Impacts Addthis RENEWABLE ELECTRICITY GENERATION SUCCESS STORIES 1 of 3 RENEWABLE ELECTRICITY GENERATION SUCCESS STORIES EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable technologies and encourage more widespread use of clean energy in the United States. ENERGY-SAVING HOMES, BUILDINGS, AND MANUFACTURING SUCCESS STORIES 2 of 3 ENERGY-SAVING HOMES, BUILDINGS, AND MANUFACTURING SUCCESS STORIES EERE's investments in

  18. U.S. Wind Energy Manufacturing & Supply Chain Cover Photo | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wind Energy Manufacturing & Supply Chain Cover Photo U.S. Wind Energy Manufacturing & Supply Chain Cover Photo Image icon GLWN Cover Photo.JPG More Documents & Publications U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis 2014 Offshore Wind Market & Economic Analysis Cover Photo Water Power For a Clean Energy Future Cover Photo

  19. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  20. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EEREs clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  1. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  2. Solar Trackers Market | OpenEI Community

    Open Energy Info (EERE)

    Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast,...

  3. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  4. Awardee Share in STRIPES

    Broader source: Energy.gov [DOE]

    A problem has been identified with completing the awardee share fields on the FAADS/FAADS Plus reporting screen in STRIPES. Data quality is an area of major focus especially for the data being sent to USASpending.gov as required by the Federal Funding and Transparency Act.

  5. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  6. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  7. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect (OSTI)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant availability and throughput capacity and to produce quality lightweight aggregate for use in commercial applications.

  8. Manufacturing Energy and Carbon Footprint

    Energy Savers [EERE]

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  9. Policy enabled information sharing system

    DOE Patents [OSTI]

    Jorgensen, Craig R.; Nelson, Brian D.; Ratheal, Steve W.

    2014-09-02

    A technique for dynamically sharing information includes executing a sharing policy indicating when to share a data object responsive to the occurrence of an event. The data object is created by formatting a data file to be shared with a receiving entity. The data object includes a file data portion and a sharing metadata portion. The data object is encrypted and then automatically transmitted to the receiving entity upon occurrence of the event. The sharing metadata portion includes metadata characterizing the data file and referenced in connection with the sharing policy to determine when to automatically transmit the data object to the receiving entity.

  10. Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These

  11. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative PDF icon b13_wayman_1-a.pdf More Documents & Publications Amped Up! Volume 1, No.2 NREL/DOE EERE QC/Metrology

  12. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. PDF icon The Advanced Manufacturing Partnership and

  13. Market Transformation

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  14. Renewable Energy Manufacturing Program

    Broader source: Energy.gov [DOE]

    Note: The initial application deadline for the Renewable Energy Manufacturing Program is June 30, 2016. Applications will be accepted following that date only if there are remaining funds available...

  15. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Buildings Use 40% of U.S. Energy Close Americans spend $400 billion annually to power homes and commercial buildings. An estimated $80 billion could be saved through energy efficiency. Close NREL's net-zero-energy Research Support Facility employs cutting-edge energy efficiency

  16. Additive Manufacturing Technology Assessment

    Energy Savers [EERE]

    of Energy Additive Manufacturing Meets the Critical Materials Shortage Additive Manufacturing Meets the Critical Materials Shortage April 9, 2014 - 11:15am Addthis Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames

  17. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  18. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  19. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  20. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to ... Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking ...

  1. Advanced Materials Manufacturing (AMM) Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 WELCOME & THANK YOU from your friendly support staff: Eric Miller, David Forrest, Fred Crowson, Jessica Savell... ...

  2. PROJECT PROFILE: California Center for Sustainable Energy (Solar Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways) | Department of Energy California Center for Sustainable Energy (Solar Market Pathways) PROJECT PROFILE: California Center for Sustainable Energy (Solar Market Pathways) Title: Virtual Net Metering Market Development Plan CCSE logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: San Diego, CA Amount Awarded: $712,269 Awardee Cost Share: $179,535 The Center for Sustainable Energy (CSE) is creating the Virtual Net Metering Market Development

  3. PROJECT PROFILE: Ecolibrium3 (Solar Market Pathways) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecolibrium3 (Solar Market Pathways) PROJECT PROFILE: Ecolibrium3 (Solar Market Pathways) Title: Local Energy Matters: Solar Market Development in Duluth, MN Ecolibrium3.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Duluth, MN Amount Awarded: $209,005 Awardee Cost Share: $52,266 Ecolibrium3's "Local Energy Matters" Solar Market Pathways project is working with state and local stakeholders to further develop residential rooftop, community, and

  4. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the ...

  5. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  6. Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting

    Broader source: Energy.gov [DOE]

    Lead Performer: OLEDWorks, LLC – Rochester, NYDOE Total Funding: $1,046,452Cost Share: $1,046,452Project Term: 10/1/2013 – 12/31/2015Funding Opportunity: SSL Manufacturing R&D Funding...

  7. Memorandum of Understanding between the U.S. Wind Turbine Manufacturer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 Memorandum of Understanding between ...

  8. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-12-03

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  9. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  10. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  11. Community Shared Solar: Expansions Underway in Solar America Communities

    Broader source: Energy.gov [DOE]

    Community shared solar is expanding rapidly as a model ownership structure for solar PV. By offering customers an option to purchase or lease part of a larger solar array instead of having to purchase the entire system, the model greatly expands participatory opportunities to a large new market segment of citizens and customers, with very low or no cost to local government.

  12. Motor vehicle MPG and market shares report: model year 1985

    SciTech Connect (OSTI)

    Hu, P.S.

    1986-02-01

    Sales of automobiles jumped dramatically from 10,211,058 units in model year 1984 to 10,968,515 units in model year 1985, an incease of 7.4%. Light trucks had an even more striking increase in sales, rising 17.2% from the previous model year. The sales-weighted fuel economy for the entire automobile fleet continued to climb in model year 1985, from 26.3 mpg in model year 1984 to 27.0 mpg in this model year. The sales-weighted fuel economies in light trucks have remained relatively constant since model year 1979. The trends of various vehicle characteristics from model year 1978 through 1985 are illustrated. 34 figs., 45 tabs.

  13. High Efficiency Microturbine Leads to Increased Market Share

    Broader source: Energy.gov [DOE]

    EERE-supported microturbine research and development for a device that increased electrical efficiency of the unit from about 17%-22% to 33%.

  14. High Efficiency Microturbine Leads to Increased Market Share...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of...

  15. Revitalizing Innovation in Michigan for Clean Energy Manufacturing

    Broader source: Energy.gov [DOE]

    To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Michigan is working hard to do it's share, diversifying manufacturing expertise beyond automobiles to become a leader in clean energy products.

  16. Advanced Methods for Manufacturing

    Energy Savers [EERE]

    R. Shane Johnson Deputy Assistant Secretary for Science and Technology Innovation (NE-4) December 11, 2015 Gateway for Accelerated Innovation in Nuclear GAIN 2 Accelerating Nuclear Tech to Market  Focus on technology commercialization * Coordinate internally with OTT, GC, contracting offices and others * Coordinate externally with utilities/other potential customers, reactor vendors, the research community, and NRC  Establish a nuclear "tech-to-market" technology accelerator

  17. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  18. Massachusetts Community Shared Solar Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Massachusetts community shared solar policy, and touches on key community shared solar models currently being utilized across the Commonwealth. Additionally, the webinar outlines key resources individuals and municipalities can use in order to pursue a community shared solar project.

  19. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  20. Market Transformation

    SciTech Connect (OSTI)

    2011-02-15

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  1. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  2. Energy Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    will show a lower growth trajectory Source: EIA, International Energy Outlook 2013 carbon dioxide emissions billion metric tons 6 CSIS | Energy Markets Outlook November 16,...

  3. Market Transformation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  4. Industrial-market opportunities for geothermal energy in Colorado. Special Publication 20

    SciTech Connect (OSTI)

    Coe, B.A.

    1982-04-01

    Geothermal sites in Colorado are listed. The potential industrial market for geothermal energy in Colorado is described for agriculture, manufacturing, and the tourism and travel industry.

  5. Manufacturing Innovation in the DOE

    Energy Savers [EERE]

    October 2012 | Department of Energy Definitions and Assumptions, October 2012 Manufacturing Energy and Carbon Footprint Definitions and Assumptions, October 2012 PDF icon footprints_assumptions_definitions_2012.pdf More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis

    References Manufacturing

  6. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  7. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  8. Drug development and manufacturing

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  9. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing ...

  10. Marketing and Market Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Transformation Marketing and Market Transformation Presents how going green will grow your business, as well as how programs can overcome appraisal challenges. PDF icon Marketing and Market Transformation Presentation More Documents & Publications Marketing and Market Transformation Working with the Real Estate Sector Trends in Real Estate and Energy Efficiency

  11. Market Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Through the SunShot Initiative, the U.S. Department of Energy (DOE) works with manufacturers, communities, states, utilities, and other partners to enable the solar market by reducing non-hardware balance-of-system (BOS) costs, developing a skilled workforce, and eliminating market barriers to widespread adoption of solar technologies. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  12. Critical materials research needed to secure U.S. manufacturing, officials say

    Broader source: Energy.gov [DOE]

    Energy Department officials said yesterday that developing alternatives to critical materials, like rare earth metals used in solar panels and wind turbines, is crucial to American manufacturing stability and can help the United States circumvent global market pressures.

  13. Report to the President: Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 2: Shared Infrastructure and Facilities Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the

  14. United States Industrial Motor Systems Market Opportunities Assessment:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary | Department of Energy Motor Systems Market Opportunities Assessment: Executive Summary United States Industrial Motor Systems Market Opportunities Assessment: Executive Summary In addition to serving DOE's program planning and evaluation needs, the Motor Systems Market Assessment is designed to be of value to manufacturers, distributors, engineers, and others int he supply channels for motor systems. PDF icon United States Industrial Motor Systems Market Opportunities

  15. 2014 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  16. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    engineering and mathematics (STEM) education ... manufacturing from university spinouts & licensing * ... * High school teaching and learning models must be adapted ...

  17. PHEV Market Introduction Workshop Summary Report

    SciTech Connect (OSTI)

    Weber, Adrienne M; Sikes, Karen R

    2009-03-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.

  18. National Electrical Manufacturers Association

    Energy Savers [EERE]

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  19. Manufactured Homes Tool

    Energy Science and Technology Software Center (OSTI)

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  20. Wind power manufacturing and supply chain summit USA.

    SciTech Connect (OSTI)

    Hill, Roger Ray

    2010-12-01

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  1. A Semantic Web Service and Simulation Framework to Intelligent Distributed Manufacturing

    SciTech Connect (OSTI)

    Son, Young Jun; Kulvatunyou, Boonserm; Cho, Hyunbo; Feng, Shaw

    2005-11-01

    To cope with today's fluctuating markets, a virtual enterprise (VE) concept can be employed to achieve the cooperation among independently operating enterprises. The success of VE depends on reliable interoperation among trading partners. This paper proposes a framework based on semantic web of manufacturing and simulation services to enable business and engineering collaborations between VE partners, particularly a design house and manufacturing suppliers.

  2. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  3. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  4. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Manufacturing at GE Global Research Click to email this to a friend (Opens in new ... Laser Manufacturing at GE Global Research Learn how laser sintering, an additive laser ...

  5. Market Studies

    Broader source: Energy.gov [DOE]

    This page contains links to lighting market characterization studies published by the U.S. Department of Energy, plus information on current studies under way. These studies are intended to present...

  6. Energy Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Markets November 16, 2015 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010 2014 biofuels geothermal solar wind waste hydroelectric wood 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010...

  7. Energy Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Markets October 22, 2015 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010 2014 biofuels geothermal solar wind waste hydroelectric wood 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010...

  8. Energy Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Markets October 29, 2015 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010 2014 biofuels geothermal solar wind waste hydroelectric wood 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010...

  9. Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 | Department of Energy between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 this Memorandum of Understanding (MOU), the U.S.

  10. Technology-to-Market Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology-to-Market Initiative Technology-to-Market Initiative ORNL Researchers Study Market Entry Challenges for Building Envelope Retrofit Product ORNL Researchers Study Market Entry Challenges for Building Envelope Retrofit Product Members of Oak Ridge National Laboratory's Lab-Corps pilot program team share their experiences evaluating the commercialization potential of a building envelope retrofit system. Read more Sensor Suitcase Sensor Suitcase The Sensor Suitcase is a turn-key hardware

  11. PROJECT PROFILE: Council of Independent Colleges in Virginia (Solar Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways) | Department of Energy Council of Independent Colleges in Virginia (Solar Market Pathways) PROJECT PROFILE: Council of Independent Colleges in Virginia (Solar Market Pathways) Title: A Solar Market Pathway for Independent Colleges in Virginia CICV logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Bedford, VA Amount Awarded: $807,563 Awardee Cost Share: $409,357 The Council of Independent Colleges in Virginia (CICV) is leading a Solar

  12. PROJECT PROFILE: Pace Energy and Climate Center (Solar Market Pathways) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pace Energy and Climate Center (Solar Market Pathways) PROJECT PROFILE: Pace Energy and Climate Center (Solar Market Pathways) Title: Northeast Solar Energy Market Coalition (NESEMC) Pace Logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: White Plains, NY Amount Awarded: $599,908 Awardee Cost Share: $150,000 The Pace Energy and Climate Center, in concert with a regional coalition of northeast solar photovoltaic business

  13. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: ...

  14. Energy 101: Clean Energy Manufacturing

    SciTech Connect (OSTI)

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  15. Revolutionizing Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering, and Mathematics -- education outreach at the Energy Department's ... National Network for Manufacturing Innovation pilot announcement. | Photo courtesy of ...

  16. Energy 101: Clean Energy Manufacturing

    Broader source: Energy.gov [DOE]

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  17. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  18. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  19. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon DOE's Advanced Manufacturing Office More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  20. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All Manufacturing MECS 2006 - All Manufacturing Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  1. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  2. Semantic Web for Manufacturing Web Services

    SciTech Connect (OSTI)

    Kulvatunyou, Boonserm; Ivezic, Nenad

    2002-06-01

    As markets become unexpectedly turbulent with a shortened product life cycle and a power shift towards buyers, the need for methods to rapidly and cost-effectively develop products, production facilities and supporting software is becoming urgent. The use of a virtual enterprise plays a vital role in surviving turbulent markets. However, its success requires reliable and large-scale interoperation among trading partners via a semantic web of trading partners' services whose properties, capabilities, and interfaces are encoded in an unambiguous as well as computer-understandable form. This paper demonstrates a promising approach to integration and interoperation between a design house and a manufacturer by developing semantic web services for business and engineering transactions. To this end, detailed activity and information flow diagrams are developed, in which the two trading partners exchange messages and documents. The properties and capabilities of the manufacturer sites are defined using DARPA Agent Markup Language (DAML) ontology definition language. The prototype development of semantic webs shows that enterprises can widely interoperate in an unambiguous and autonomous manner; hence, virtual enterprise is realizable at a low cost.

  3. All Manufacturing (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All Manufacturing (2010 MECS) All Manufacturing (2010 MECS) Manufacturing Energy and Carbon Footprint for All Manufacturing Sector (NAICS 31-33) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: June 2015 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing More Documents & Publications MECS 2006 - All Manufacturing Cement (2010 MECS) Chemicals (2010 MECS) Manufacturing Energy Sankey Diagrams Manufacturing

  4. Celebrate EV Everywhere by Sharing Your Electric Vehicle Story | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Celebrate EV Everywhere by Sharing Your Electric Vehicle Story Celebrate EV Everywhere by Sharing Your Electric Vehicle Story September 15, 2015 - 11:00am Addthis Explore this infographic to see how the Energy Department is revving up the electric vehicle market through the EV Everywhere Grand Challenge. | Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Explore this infographic to see how the Energy Department is revving up the

  5. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  6. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  7. Additive Manufacturing: Pursuing the Promise | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise More Documents...

  8. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  9. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  10. Secure Manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security...

  11. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Gasoline and Diesel Fuel Update (EIA)

    Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - ...

  12. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use ...

  13. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf ...

  14. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200C and non-hermetic packages at 250C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  15. Chapter 11. Fuel Economy: The Case for Market Failure

    SciTech Connect (OSTI)

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

  16. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    Broader source: Energy.gov [DOE]

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing , and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  17. Wind Manufacturing Facilities | Department of Energy

    Energy Savers [EERE]

    Manufacturing Facilities Wind Manufacturing Facilities Wind Manufacturing Facilities America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state

  18. Oak Ridge Centers for Manufacturing Technology - The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  19. Oak Ridge Centers for Manufacturing Technology ? The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  20. American Energy and Manufacturing Competitiveness Summit Introduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Description Introduction video for the American Energy and Manufacturing ... for the American Energy and Manufacturing Competetitiveness Summit Introduction video. ...

  1. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  2. Semiconductor Manufacturing International Corp SMIC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing International Corp SMIC Jump to: navigation, search Name: Semiconductor Manufacturing International Corp (SMIC) Place: Shanghai, Shanghai Municipality, China Zip:...

  3. Plumbing Manufacturer's Institute Ex Parte Communication Regarding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department ...

  4. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING ...

  5. Nakagawa Electric Machinery Manufacturer | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Nakagawa Electric Machinery Manufacturer Place: Saku, Nagano, Japan Product: A company engages in electrical equipment manufacture. Coordinates:...

  6. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon...

  7. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  8. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact ...

  9. Advanced Manufacturing Office Update, March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2015 Advanced Manufacturing Office Update, March 2015 March 30, 2015 - 3:13pm Addthis In This Issue Featured Articles Better Plants Welcomes New Partners from Diverse Sectors Better Plants Challenge Partners Share Energy-Saving Solutions Harbec Receives 2014 Environmental Excellence Award from New York State AMO and Industry News Heat Exchange Materials Research Advances Accomplishments Highlighted at Critical Materials Institute Annual Peer Review Benefits of Combined Heat and Power

  10. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  11. NREL: Energy Systems Integration - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Manufacturing capabilities at NREL support the production of components for fuel cells and electrochemical cells and the development of methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their production to meet national goals. Fuel cells cleanly and efficiently convert hydrogen into electricity through an electrochemical process. Fuel cells offer promise in a wide range of

  12. Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers

  13. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  14. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    the CM, the ASM contains two components. The first component is the mail portion, a probability sample of manufacturing establishments selected from the list of establishments...

  15. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  16. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  17. Electrolyzer Manufacturing Progress and Challenges

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  18. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  19. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified...

  20. Manufacturing Spotlight: Boosting American Competitiveness

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  1. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... projects that reduce the cost and risk of commercializing new technologies or ... manufacturing, data management, and operation of complex energy and communication systems. ...

  2. High Pressure Hydrogen Tank Manufacturing

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  3. Manufacturing Fuel Cell Manhattan Project

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  4. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce Duncan

    2013-02-22

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

  5. Energy Imbalance Market Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in CAISO Market Jim Price, Senior Advisor, Market Development & Analysis California ISO CAISO Public Market minimizes bid costs, while accounting for multiple transmission...

  6. Petroleum Marketing Annual Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Petrolem Reports Petroleum Marketing Annual Archives The Petroleum Marketing Annual was discontinued in 2010. Choose the year from the archive Petroleum Marketing Annual you wish...

  7. Building America Research-to-Market Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research » Building America Research-to-Market Process Building America Research-to-Market Process Read the Building America Research-to-Market Plan. The Building America Program conducts applied research, development, and deployment in residential buildings. Building America projects are led by U.S. Department of Energy (DOE) national laboratories and expert building science teams in partnership with leading industry players (e.g., builders, contractors, and manufacturers). Building America's

  8. Marketing and Market Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing and Market Transformation Presents how going green will grow your business, as ... Working with the Real Estate Sector Trends in Real Estate and Energy Efficiency

  9. WilderShares LLC | Open Energy Information

    Open Energy Info (EERE)

    WilderShares LLC Jump to: navigation, search Name: WilderShares LLC Place: Encinitas, California Zip: 92024 Product: WilderShares LLC, is a provider of indexes for the clean...

  10. Additive Manufacturing - Materials by Design - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Additive Manufacturing - Materials by Design Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing SummaryLivermore materials scientists and engineers are designing and building new materials that will open up new spaces on many Ashby material selection charts, such as those for stiffness and

  11. Community Shared Solar: Policy and Regulatory Considerations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 COMMUNITY SHARED SOLAR POLICY AND REGULATORY CONSIDERATIONS ABSTRACT Shared solar, also called community solar, is an increasingly popular business model for deploying ...

  12. ARM - Data Sharing and Distribution Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DocumentationData Sharing and Distribution Policy Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan ...

  13. Earth Share Oregon | Open Energy Information

    Open Energy Info (EERE)

    Share Oregon Jump to: navigation, search Name: Earth Share Oregon Address: 319 SW Washington Street Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Website:...

  14. Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resourses Management Division | Department of Energy SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division PDF icon Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division More Documents & Publications

  15. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test and alignment of trough or dish reflectors. • Ten full size (2.5 m2) cylindrically curved reflectors, molded in 950 seconds and measured with the laser test facility, show shape repeatability to 0.5 mrad rms. These replicas met the Phase I Go/No-Go targets for speed (1000 sec), accuracy (< 5 mrad) and reproducibility (< 2 mrad). • Our research and tests show that the hoped-for improvements in mirror reflectivity achievable with titania antisoil coatings are not very effective in dry climates and are therefore unlikely to be economically worthwhile, and that glass with iron in the Fe+3 state to achieve very low absorption cannot be made economically by the float process.

  16. PROJECT PROFILE: The Solar Foundation (Solar Market Pathways) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy The Solar Foundation (Solar Market Pathways) PROJECT PROFILE: The Solar Foundation (Solar Market Pathways) Title: Commercial Property Assessed Clean Energy for Tax- Exempt and Public Entities (CivicPACE) TSF logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Washington, DC Amount Awarded: $900,034 Awardee Cost Share: $315,260 The Solar Foundation, in partnership with Urban Ingenuity and Clean Energy Solutions, Inc., is working with state

  17. PROJECT PROFILE: City University of New York (Solar Market Pathways) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy University of New York (Solar Market Pathways) PROJECT PROFILE: City University of New York (Solar Market Pathways) Title: NYSolar Smart DG Hub - Resilient Solar Project CUNY logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: New York, New York Amount Awarded: $859,720 Awardee Cost Share: $314,669 The NYSolar Smart Distributed Generation (DG) Hub - Resilient Solar Project was created by the City University of New York (CUNY), in

  18. PROJECT PROFILE: Dominion Virginia Power (Solar Market Pathways) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dominion Virginia Power (Solar Market Pathways) PROJECT PROFILE: Dominion Virginia Power (Solar Market Pathways) Title: Virginia Solar Pathways Project Dominion logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Richmond, VA Amount Awarded: $2,430,682 Awardee Cost Share: $610,721 Virginia Electric and Power Company is leading a broad-based team that includes representatives from state government, research institutions,

  19. PROJECT PROFILE: Extensible Energy (Solar Market Pathways) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Extensible Energy (Solar Market Pathways) PROJECT PROFILE: Extensible Energy (Solar Market Pathways) Title: High-Value Integrated Community Solar Project Extensible Energy logo.jpg Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Lafayette, CA Amount Awarded: $800,000 Awardee Cost Share: $200,000 Under the High-Value Integrated Community Solar Project, Extensible Energy, LLC, is working with the Sacramento Municipal Utility District (SMUD), the

  20. PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Salt Lake City Corporation (Solar Market Pathways) PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) Title: Wasatch Solar Project WASATCH solar logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Salt Lake City, UT Amount Awarded: $600,000 Awardee Cost Share: $164,645 Salt Lake City and its partners are developing a comprehensive long-term solar deployment strategy, which includes an analysis of the value of

  1. PROJECT PROFILE: Vermont Energy Investment Corporation (Solar Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways) | Department of Energy Vermont Energy Investment Corporation (Solar Market Pathways) PROJECT PROFILE: Vermont Energy Investment Corporation (Solar Market Pathways) Title: Vermont Solar Development Plan VEIC Logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Burlington, VT Amount Awarded: $533,361 Awardee Cost Share: $141,456 The Vermont Energy Investment Corporation is conducting a broad stakeholder engagement process to examine how solar

  2. EERE Success Story-High Efficiency Microturbine Leads to Increased Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Share | Department of Energy High Efficiency Microturbine Leads to Increased Market Share EERE Success Story-High Efficiency Microturbine Leads to Increased Market Share April 18, 2013 - 12:00am Addthis Partnering with Capstone Turbine Corporation of Chatsworth, EERE supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of the unit from about 17%-22% to 33%, and it has

  3. Print-based Manufacturing of Integrated, Low Cost, High Performance SSL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Luminaires | Department of Energy Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Lead Performer: Eaton Corporation - Menomonee Falls, WI Partners: - Heraeus Materials Technology, LLC - Conshohocken, PA - Haiku Tech, Inc - Miami, FL - Eaton Cooper Lighting Innovation Center - Peachtree City, GA DOE Total Funding: $2,468,672 Cost Share: $2,468,676 Project Term: 9/15/2013 -

  4. Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows Lead Performer: Alcoa - Pittsburgh, PA DOE Funding: $1,123,838 Cost Share: $280,960 Project Term: October 2014 - September 2016 Funding Opportunity: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Project Objective Alcoa proposes to develop a novel sandwich-type foam

  5. Manufacturers' View on Benchmarking and Disclosure

    U.S. Energy Information Administration (EIA) Indexed Site

    Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax

  6. Manufacturing serendipity: Chicago Innovation Exchange enhancing regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax

  7. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  8. 2014 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary; Moore, Sheila A

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  9. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  10. 2014 Manufacturing Energy Consumption Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by ...

  11. Manufacturing means jobs ? Mike Arms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Means Jobs - Mike Arms Mike Arms and I usually meet and say hello at the East Tennessee Economic Council meetings each Friday morning at 7:30 a.m. This unique meeting...

  12. CFL Manufacturers: ENERGY STAR Letters

    Broader source: Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  13. Alternative Energy Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    The Alternative Energy Manufacturing Tax Credit is a nonrefundable tax credit for up to 100% of new state tax revenues (including state, corporate, sales, and withholding taxes) over the life of a...

  14. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers dramatically increase the energy efficiency of their operations and reduce costs. Each project will advance transformational technologies and materials that can benefit a broad cross-section of the domestic economy. This event created a platform for inter-agency and industry networking and also raised awareness among congressional staff and private investors.

  15. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Overview Advanced Manufacturing Office Overview PDF icon mw_rf_workshop_july2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  16. The President's Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation prepared by Dale Hall for the Roadmap Workshop on Manufacturing R&D for the ... Manufacturing National Program Office Roadmap on Manufacturing R&D for the Hydrogen ...

  17. Shared energy savings (SES) contracting

    SciTech Connect (OSTI)

    Aldridge, D.R. Jr.

    1995-11-01

    This paper discusses the use of a Shared Energy Savings (SES) contract as the procurement vehicle to provide, install, and maintain closed-loop ground-coupled heat pumps (CLGCHP`s) for 4,003 family-housing units at Fort Polk, Louisiana. In addition to the requirement relative to heat pumps, the contract allows the energy service company (ESCO) to propose additional projects needed to take full advantage of energy cost-saving opportunities that may exist at Fort Polk. The paper traces the development of the SES contract from feasibility study through development of the request for proposal (RFP) to contract award and implementation. In tracing this development, technical aspects of the project are set forth and various benefits inherent in SES contracting are indicated. The paper concludes that, due to the positive motivation inherent in the shared-savings, as well as partnering aspects of SES contracts, SES contracting is well suited to use as a procurement vehicle.

  18. shared Smart Grid Investment Grant

    Energy Savers [EERE]

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested about $7.9 billion in 99 cost- shared Smart Grid Investment Grant projects and about $1.6 billion in 32 Smart Grid Demonstration Program projects to modernize the electric grid, strengthen cyber security, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. The Smart Grid Experience: Applying Results,

  19. American Wind Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind...

  20. National Network for Manufacturing Innovation: A Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary Design The Federal investment in the National Network for ...

  1. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  2. National Electrical Manufacturers Association (NEMA) Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical ...

  3. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  4. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2008 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2008 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  5. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2010 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2010 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  6. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2009 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2009 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  7. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2006 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2006 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  8. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2007 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2007 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  9. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2011 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2011 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  10. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D ...

  11. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - Chicago, IL March 12, 2012 Objectives Introduce the manufacturing community to the U.S. DOE ...

  12. Understanding Manufacturing Energy and Carbon Footprints, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis MECS 2006 - Cement

  13. Oak Ridge Centers for Manufacturing Technology - Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact on the Semiconductor Industry, part 2 The Oak Ridge Centers for Manufacturing Technology in partnership with SEMATECH (Semiconductor Manufacturing TECHnology) had...

  14. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  15. Batteries - Materials Processing and Manufacturing Breakout session

    Broader source: Energy.gov (indexed) [DOE]

    the Other Technical Areas Being Discussed * Li metal manufacturing * Variability in cell manufacturing -intrinsic reduction and aging differences in pack? * Understanding of...

  16. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  17. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  18. Bio Solutions Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Manufacturing Inc Jump to: navigation, search Name: Bio Solutions Manufacturing Inc Place: Las Vegas, Nevada Zip: 89103 Product: Waste-to-energy bioremediation developer....

  19. DOE - Office of Legacy Management -- Manufacturing Laboratories...

    Office of Legacy Management (LM)

    Manufacturing Laboratories Inc - MA 0-04 FUSRAP Considered Sites Site: MANUFACTURING LABORATORIES, INC. (MA.0-04 ) Eliminated from further consideration under FUSRAP Designated...

  20. Chung Hsin Electric Machinery Manufacturing Corporation CHEM...

    Open Energy Info (EERE)

    Chung Hsin Electric Machinery Manufacturing Corporation CHEM Jump to: navigation, search Name: Chung Hsin Electric & Machinery Manufacturing Corporation (CHEM) Place: Taoyuan...

  1. Leitner Shriram Manufacturing Ltd | Open Energy Information

    Open Energy Info (EERE)

    Manufacturing Ltd Jump to: navigation, search Name: Leitner Shriram Manufacturing Ltd Place: Chennai, Tamil Nadu, India Zip: 600095 Sector: Wind energy Product: Chennai-based JV...

  2. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies....

  3. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  4. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  5. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ...

  6. Wind Energy & Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, will be delivered to wind farms across the United...

  7. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  8. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Energy Savers [EERE]

    Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air ...

  9. 2014 Manufacturing Energy and Carbon Footprints: Scope

    Energy Savers [EERE]

    Scope The energy and carbon footprint analysis examines fifteen individual manufacturing sectors that together consume 95% of U.S. manufacturing primary energy consumption and ...

  10. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast Regional Summit on July 9 in Atlanta, GA Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast Regional ...

  11. Additive Manufacturing Meets the Critical Materials Shortage

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department's Advanced Manufacturing Office is working to address potential shortages of critical materials through additive manufacturing, or 3D printing.

  12. Energy Intensity Indicators: Manufacturing Energy Intensity

    Broader source: Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data...

  13. Miraial formerly Kakizaki Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Miraial (formerly Kakizaki Manufacturing) Place: Tokyo, Japan Zip: 171-0021 Product: Manufacturer of wafer handling products and other components...

  14. Energy Department Invests in Innovative Manufacturing Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Innovative Manufacturing Technologies Energy Department Invests in Innovative Manufacturing Technologies June 13, 2012 - 12:00am Addthis The Energy Department announced on June...

  15. Manufacturing Institutes Exhibit American Innovation at Hannover...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Institutes Exhibit American Innovation at Hannover Messe Manufacturing Institutes Exhibit American Innovation at Hannover Messe April 25, 2016 - 4:30pm Addthis The ...

  16. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unit processes, smart manufacturing (SM) systems that ... A smart system that not only sought to recover waste heat, ... is based on current manufacturing and IT industry standards. ...

  17. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic ...

  18. The Fifth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 150 industry leaders from across the country, representing every link in the supply chain—chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment—gathered in Boston June 5–6, 2013, to share insights, ideas, and updates at the fifth annual Solid-State Lighting Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  19. The Third Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in Boston April 12–13, 2011, to share insights, ideas, and updates at the third annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  20. The Fourth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    Two hundred lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in San Jose, CA, June 13–14, 2012, to share insights, ideas, and updates at the fourth annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  1. The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 industry leaders from all corners of the supply chain – including chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment – gathered in San Jose, CA, April 21-22, 2010, to share insights, ideas, and updates at the second annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. This workshop is a key part of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  2. MHTool User's Guide - Software for Manufactured Housing Structural Design

    SciTech Connect (OSTI)

    W. D. Richins

    2005-07-01

    Since the late 1990s, the Department of Energy's Idaho National Laboratory (INL) has worked with the US Department of Housing and Urban Development (HUD), the Manufactured Housing Institute (MHI), the National Institute of Standards and Technology (NIST), the National Science Foundation (NSF), and an industry committee to measure the response of manufactured housing to both artificial and natural wind loads and to develop a computational desktop tool to optimize the structural performance of manufactured housing to HUD Code loads. MHTool is the result of an 8-year intensive testing and verification effort using single and double section homes. MHTool is the first fully integrated structural analysis software package specifically designed for manufactured housing. To use MHTool, industry design engineers will enter information (geometries, materials, connection types, etc.) describing the structure of a manufactured home, creating a base model. Windows, doors, and interior walls can be added to the initial design. Engineers will input the loads required by the HUD Code (wind, snow loads, interior live loads, etc.) and run an embedded finite element solver to find walls or connections where stresses are either excessive or very low. The designer could, for example, substitute a less expensive and easier to install connection in areas with very low stress, then re-run the analysis for verification. If forces and stresses are still within HUD Code requirements, construction costs would be saved without sacrificing quality. Manufacturers can easily change geometries or component properties to optimize designs of various floor plans then submit MHTool input and output in place of calculations for DAPIA review. No change in the regulatory process is anticipated. MHTool, while not yet complete, is now ready for demonstration. The pre-BETA version (Build-16) was displayed at the 2005 National Congress & Expo for Manufactured & Modular Housing. Additional base models and an extensive material library need to be developed. Output displays and listings will need to be expanded and model checking capability added. When completed, MHTool will ultimately lead to new manufactured housing designs that meet or exceed the HUD Code for quality, durability, and safety while reducing labor and materials. This will reduce cost and increase home ownership for the traditional manufactured housing market of first time or low-income buyers. MHTool uses the freeware solver Felt modified specifically for manufactured housing by researchers at Washington State University and INL. Input data, material properties, and results verification are based on full scale testing conducted by INL and others. See Section 7 for a collection of references.

  3. 2014 Offshore Wind Market & Economic Analysis Cover Photo | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 Offshore Wind Market & Economic Analysis Cover Photo 2014 Offshore Wind Market & Economic Analysis Cover Photo Image icon Navigant 2014 Offshore Wind Market and Economic Analysis.JPG More Documents & Publications U.S. Wind Energy Manufacturing & Supply Chain Cover Photo Offshore Wind Projects 2014 Offshore Wind Market and Economic Analysis Wind Program Home About the Program Research & Development WINDExchange Financial Opportunities Information Resources News

  4. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  5. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  6. Clean Energy Manufacturing Initiative Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Events Clean Energy Manufacturing Initiative Events

  7. Modeling the U.S. Rooftop Photovoltaics Market

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2010-09-01

    Global rooftop PV markets are growing rapidly, fueled by a combination of declining PV prices and several policy-based incentives. The future growth, and size, of the rooftop market is highly dependent on continued PV cost reductions, financing options, net metering policy, carbon prices and future incentives. Several PV market penetration models, sharing a similar structure and methodology, have been developed over the last decade to quantify the impacts of these factors on market growth. This study uses a geospatially rich, bottom-up, PV market penetration model--the Solar Deployment Systems (SolarDS) model developed by the National Renewable Energy Laboratory--to explore key market and policy-based drivers for residential and commercial rooftop PV markets. The identified drivers include a range of options from traditional incentives, to attractive customer financing options, to net metering and carbon policy.

  8. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  9. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    SciTech Connect (OSTI)

    Meyers, Steve; Franco, Victor; Lekov, Alex; Thompson, Lisa; Sturges, Andy

    2010-05-14

    Heat pump clothes dryers (HPCDs) can be as much as 50percent more energy-efficient than conventional electric resistance clothes dryers, and therefore have the potential to save substantial amounts of electricity. While not currently available in the U.S., there are manufacturers in Europe and Japan that produce units for those markets. Drawing on analysis conducted for the U.S. Department of Energy's (DOE) current rulemaking on amended standards for clothes dryers, this paper evaluates the cost-effectiveness of HPCDs in American homes, as well as the national impact analysis for different market share scenarios. In order to get an accurate measurement of real energy savings potential, the paper offers a new energy use calculation methodology that takes into account the most current data on clothes washer cycles, clothes dryer usage frequency, remaining moisture content, and load weight per cycle, which is very different from current test procedure values. Using the above methodology along with product cost estimates developed by DOE, the paper presents the results of a life-cycle cost analysis of the adoption of HPCDs in a representative sample of American homes. The results show that HPCDs have positive economic benefits only for households with high clothes dryer usage or for households with high electricity prices and moderately high utilization.

  10. Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2014-02-01

    The capital intensive nature of clean energy technologies suggests that manufacturing clean energy equipment has the potential to support state and local economic development efforts. However, manufacturing siting decisions tend to be complex and multi-variable decision processes that require in-depth knowledge of specific markets, the logistical requirements of a given technology, and insight into global clean tech trends. This presentation highlights the potential of manufacturing in supporting economic development opportunities while also providing examples of the financial considerations affecting manufacturing facility siting decisions for wind turbine blades and solar PV. The presentation also includes discussion of other more qualitative drivers of facility siting decisions as gleaned from NREL industry interviews and discusses strategies state and local policymakers may employee to bolster their chances of successfully attracting clean energy manufacturers to their localities.

  11. Researching NDE, Additive Manufacturing |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for GE Intern Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn ...

  12. Electric power equipment - Paraguay. Foreign market survey report

    SciTech Connect (OSTI)

    Ceuppens, H.D.

    1982-03-01

    The market research was undertaken to study the present and potential US share of the market in Paraguay for electric power equipment; to examine growth trends in Paraguayan end-user industries over the next few years; to identify specific project categories that offer the most promising export potential for US companies; and to provide basic data which will assist US suppliers in determining current and potential sales and marketing opportunities. The trade promotional and marketing techniques which are likely to succeed in Paraguay were also reviewed.

  13. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    able to participate--on a limited basis and, for the most part, as participants in pilot projects. There is no reason to believe that the restructuring of the electricity market...

  14. Petroleum Marketing Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics ...

  15. Petroleum Marketing Annual

    Gasoline and Diesel Fuel Update (EIA)

    PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . ...

  16. Petroleum Marketing Annual 1997

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    PDF 1.2MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . ...

  17. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 30 May 2016 Table 18. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 31 May 2016 Table 18. ...

  18. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | Petroleum Marketing Monthly 86 May 2016 Table 43. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 87 May 2016 Table 43. ...

  19. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 16 May 2016 Table 7. ... Report." U.S. Energy Information Administration | Petroleum Marketing Monthly 17 May 2016

  20. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 100 May 2016 Table ... U.S. Energy Information Administration | Petroleum Marketing Monthly 101 May 2016 Table ...

  1. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 20 May 2016 Table 9. ... Report." U.S. Energy Information Administration | Petroleum Marketing Monthly 21 May 2016

  2. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 6 May 2016 Table 3. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 8 May 2016 Table 4. ...

  3. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 104 May 2016 Table ... U.S. Energy Information Administration | Petroleum Marketing Monthly 105 May 2016 Table ...

  4. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | Petroleum Marketing Monthly 53 May 2016 Table 33. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 54 May 2016 Table 33. ...

  5. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 24 May 2016 Table 11. ... Report." U.S. Energy Information Administration | Petroleum Marketing Monthly 25 May 2016

  6. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume of Petroleum Products U.S. Energy Information Administration | Petroleum Marketing ... U.S. Energy Information Administration | Petroleum Marketing Monthly 58 May 2016 Table 39. ...

  7. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | Petroleum Marketing Monthly 49 May 2016 Table 32. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 50 May 2016 Table 32. ...

  8. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 18 May 2016 Table 8. ... Report." U.S. Energy Information Administration | Petroleum Marketing Monthly 19 May 2016

  9. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 78 May 2016 Table 41. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 79 May 2016 Table 41. ...

  10. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 58 May 2016 Table 39. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 59 May 2016 Table 39. ...

  11. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly vii May 2016 Table ... U.S. Energy Information Administration | Petroleum Marketing Monthly viii May 2016 Figure ...

  12. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    Prices of Petroleum Products U.S. Energy Information Administration | Petroleum Marketing ... U.S. Energy Information Administration | Petroleum Marketing Monthly 45 May 2016 Table 31. ...

  13. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | Petroleum Marketing Monthly 66 May 2016 Table 40. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 67 May 2016 Table 40. ...

  14. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 14 May 2016 Table 6. ... Report." U.S. Energy Information Administration | Petroleum Marketing Monthly 15 May 2016

  15. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration | Petroleum Marketing Monthly Table 45. Prime supplier sales ... U.S. Energy Information Administration | Petroleum Marketing Monthly 92 May 2016 Table 45. ...

  16. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | Petroleum Marketing Monthly 82 May 2016 Table 42. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 83 May 2016 Table 42. ...

  17. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 45 May 2016 Table 31. ... U.S. Energy Information Administration | Petroleum Marketing Monthly 46 May 2016 Table 31. ...

  18. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... U.S. Energy Information Administration | Petroleum Marketing Monthly 22 May 2016 Table 10. ... Report." U.S. Energy Information Administration | Petroleum Marketing Monthly 23 May 2016

  19. Petroleum Marketing Annual 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 2009 Released: August 6, 2010 Next Release Date: Discontinued find annual data in Petroleum Marketing Monthly Monthly price and volume statistics on...

  20. Market Transformation Fact Sheet

    Broader source: Energy.gov [DOE]

    This fact sheet describes the Fuel Cell Technologies Office's Market Transformation strategies and activities, which are aimed at accelerating early market adoption and advancing pre-competitive technologies.

  1. Northwest Energy Market Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northwest Energy Market Assessment Pages Northwest-Energy-Market-Assessment Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects &...

  2. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  3. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    SciTech Connect (OSTI)

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  4. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Broader source: Energy.gov [DOE]

    Agenda for the Manufacturing Demonstration Facilities Workshop on March 12, 2012 outlining objectives and times

  5. Method for manufacturing glass frit

    DOE Patents [OSTI]

    Budrick, Ronald G.; King, Frank T.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method of manufacturing a glass frit for use in the manufacture of uniform glass microspheres to serve as containers for laser fusion fuel to be exposed to laser energy which includes the formation of a glass gel which is then dried, pulverized, and very accurately sized to particles in a range of, for example, 125 to 149 micrometers. The particles contain an occluded material such as urea which expands when heated. The sized particles are washed, dried, and subjected to heat to control the moisture content prior to being introduced into a system to form microspheres.

  6. Free Share R D | Open Energy Information

    Open Energy Info (EERE)

    Share R D Jump to: navigation, search Name: Free Share R&D Place: Israel Sector: Solar, Wind energy Product: Developer of wind and solar generating systems in addition to being a a...

  7. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  8. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  9. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency » Manufacturing Success Stories Manufacturing Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing technologies and processes for more efficient energy management systems create big opportunities for energy savings and new jobs in manufacturing. Explore EERE's manufacturing success stories below. November 17, 2015 Manufacturing Success Stories EERE Success Story-ORNL Unveils 3D-Printed Home and Vehicle with the Unique

  10. White House Announces Eighth Manufacturing Innovation Institute |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy White House Announces Eighth Manufacturing Innovation Institute White House Announces Eighth Manufacturing Innovation Institute April 6, 2016 - 4:49pm Addthis On Thursday, April 1, the White House announced a new institute which will focus on revolutionary fibers and textile manufacturing. This new institute is the eighth manufacturing hub to be awarded as part of the National Network for Manufacturing Innovation (NNMI). Collectively, the federal government's commitment

  11. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and

  12. Explore Careers in Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Explore Careers in Manufacturing The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a

  13. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  14. Southeast Asia: `A robust market`

    SciTech Connect (OSTI)

    Pagano, S.S.

    1997-04-01

    Southeast Asia is emerging as a robust market for exploration and field development activities. While much of the worldwide attention is focused on lucrative deep water drilling and production in the U.S. Gulf of Mexico, Brazil, and West Africa, the burgeoning Pacific Rim region is very much in the spotlight. As the industry approaches the next century. Southeast Asia is a key growth area that will be the focus of extensive drilling and development. Regional licensing activity is buoyant as oil and gas companies continue to express interest in Southeast Asian opportunities. During 1996, about 75 new license awards were granted. This year, at least an equal number of licenses likely will be awarded to international major and independent oil companies. In the past five years, the number of production-sharing contracts and concessions awarded declined slightly as oil companies apparently opted to invest in other foreign markets. Brunei government officials plan to open offshore areas to licensing in 1997, including what may prove to be attractive deep water areas. Indonesia`s state oil company Pertamina will offer 26 offshore tracts under production-sharing and technical assistance contracts this year. Malaysia expects to attract international interest in some 30 blocks it will soon offer under production-sharing terms. Bangladesh expects to call for tenders for an unspecified number of concessions later this year. Nearby, bids were submitted earlier this year to the Australian government for rights to explore 38 offshore areas. Results are expected to be announced by mid-year.

  15. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    6 Number of companies expecting to introduce new solar new solar thermal collector products in 2010 Low-Temperature Collectors 4 Medium-Temperature Collectors 16 High-Temperature Collectors 11 Noncollector Components 12 Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." New Product Type Number of Companies Source: U.S. Energy Information Administration,

  16. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  17. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  18. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B.

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  19. Department of Energy Announces First Entry for Market- Driven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Commercial Air Conditioners Challenge | Department of Energy First Entry for Market- Driven High-Efficiency Commercial Air Conditioners Challenge Department of Energy Announces First Entry for Market- Driven High-Efficiency Commercial Air Conditioners Challenge October 4, 2011 - 12:02pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today announced that it has received the first official submission by a manufacturer to a voluntary challenge for a new

  20. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude oil prices U.S. Energy Information Administration | Petroleum Marketing Monthly 3 February 2016...

  1. Additive Manufacturing: Pursuing the Promise | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing: Pursuing the Promise Additive Manufacturing: Pursuing the Promise Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. PDF icon Additive Manufacturing: Pursuing the Promise More Documents & Publications QTR Webinar: Chapter 8 - Industry and Manufacturing WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  2. Advanced Manufacturing Office FY 2017 Budget At-A-Glance

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  3. Manufacturing

    Office of Environmental Management (EM)

    ... (waste and waste water management) and emerged 201 as a field in response to concern over widespread environmental quality degradation from water and air 202 pollution impacts. ...

  4. 2013 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary; Moore, Sheila A

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  5. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Energy Savers [EERE]

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David Danielson Assistant Secretary Energy Efficiency and Renewable Energy 9:20am - 9:50am Advanced Manufacturing Office Overview and Review of RFI Results Mark Johnson Director, Advanced Manufacturing Office 9:50am - 10:30am Panel Discussion: DOE Perspectives Mark Shuart, Advanced

  6. Case study of the regional manufacturers not participating in the manufactured housing RCDP (Residential Construction Demonstration Project)

    SciTech Connect (OSTI)

    Lee, A.D.; Baechler, M.C.

    1990-03-01

    To develop reliable alternatives for building energy-efficient homes, the Bonneville Power Administration (Bonneville) is conducting the Residential Construction Demonstration Project (RCDP). RCDP Cycle 2 is the subject of this report and involves manufactured housing (commonly called mobile homes) constructed to US Department of Housing and Urban Development (HUD) codes. The primary objectives of the RCDP include: develop conservation techniques and innovations, assess these techniques and innovations, and introduce exhibiting the potential to be cost-effective, reliable, and marketable. 1 ref., 1 tab.

  7. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    0 Geothermal heat pump domestic shipments by customer type, 2008 and 2009 (rated capacity in tons) Customer 2008 2009 Exporter - - Wholesale Distributor 184,869 173,065 Retail Distributor 1,256 10,463 Installer 160,084 154,321 End-User 413 840 U.S. Total 346,622 338,689 - = No data reported. Source: U.S. Energy Information Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  8. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    5 Companies involved in geothermal heat pump activities by type, 2008 and 2009 Type of Activity 2008 2009 Geothermal Heat Pump or System Design 17 17 Prototype Geothermal Heat Pump Development 12 13 Prototype Systems Geothermal Development 5 7 Wholesale Distribution 15 18 Retail Distribution 3 3 Installation 4 3 Manufacture of System Components 3 4 Source: U.S. Energy Information Administration (EIA), Form EIA-902, "Annual Geothermal

  9. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment Information 2008 2009 Complete Collector Systems Shipped 63,961 75,066 Thousand Square Feet 4,058 5,995 Percent of Total Shipments 24 43 Number of Companies 46 62 Revenue of Systems (Thousand Dollars) 47,523 159,085 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  10. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    9 Companies involved in solar thermal collector related activities by type, 2008 and 2009 Type of Activity 2008 2009 Collector or System Design 45 59 Prototype Collector Development 27 27 Prototype System Development 23 23 Wholesale Distribution 58 61 Retail Distribution 29 31 Installation 21 27 Noncollector System Component Manufacture 26 32 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  11. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    0 Soloar-related sales as a percentage of total company sales revenue, 2008 and 2009 2008 2009 90-100 49 56 50-89 9 7 10-49 7 12 Less than 10 9 13 U.S. Total 74 88 Percent of Total Sales Revenue Number of Companies Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  12. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  13. Additive Manufacturing: Technology and Applications

    Energy Savers [EERE]

    Lower energy intensity: These techniques save energy by eliminating production steps, using substantially less material, enabling reuse of by-products, and producing lighter products. Remanufacturing parts through advanced additive manufacturing and surface treatment processes can also return end-of-life products to as-new condition, 1 using only 2-25% of the energy required to make new parts. 2 * Less waste: Building objects up layer by layer, instead of traditional machining processes that

  14. Lubricants Market to Record 44,165.11 Kilo Tons Volume by 2020...

    Open Energy Info (EERE)

    over 50% of the global market share. Automotive oils sector is further segmented into hydraulic oil, engine oil, and gear oil. Improving GDP in developing nations such as India and...

  15. Current State of the Voluntary Renewable Energy Market (Presentation)

    SciTech Connect (OSTI)

    Heeter, J.

    2013-09-01

    This presentation highlights the status of the voluntary green power market in 2012. The voluntary green power market totaled more than 48 million MWh in 2012, with about 1.9 million customers participating. The supply continues to be dominated by wind, though solar is increasing its share of utility green pricing programs. Prices for voluntary renewable energy certificates (RECs) increased to above $1/MWh.

  16. DOE and MEEA Host Fourth Annual SSL Market Introduction Workshop

    Broader source: Energy.gov [DOE]

    More than 300 lighting industry leaders gathered in Chicago July 13–15, 2009, for the fourth annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by the U.S. Department of Energy (DOE) and the Midwest Energy Efficiency Alliance (MEEA). This annual workshop provides a focal point for government, industry, energy efficiency organizations, utilities, municipalities, designers, specifiers, retailers, distributors, and others to share updates and insights on the successful market introduction of high-quality, energy-efficient SSL solutions.

  17. National Manufacturing Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On October 2, the U.S. Department of Commerce's fourth annual Manufacturing Day will...

  18. QTR Webinar: Chapter 8- Industry and Manufacturing

    Broader source: Energy.gov [DOE]

    The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

  19. Imperial Manufacturing: Order (2013-CE-5322)

    Broader source: Energy.gov [DOE]

    DOE ordered Imperial Manufacturing, Inc. to pay a $8,000 civil penalty after finding Imperial Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  20. Clean Energy Manufacturing Incentive Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  1. AMO Hosted Workshop on Composite Manufacturing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  2. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  3. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  4. Summit Manufacturing: Case Closure (2010-SE-0303)

    Broader source: Energy.gov [DOE]

    DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

  5. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  6. Advanced Methods for Manufacturing Newslettter- Issue 3

    Broader source: Energy.gov [DOE]

    The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear Energy.

  7. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  8. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  9. Clean Energy Manufacturing Initiative: Technology Research and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Its Advanced Natural Gas Systems Manufacturing Initiative's R&D is helping U.S. manufacturers take advantage of this lower-priced fuel by modernizing the nations natural gas ...

  10. Energy & Manufacturing Workforce Training Topics List - Version...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) Energy & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) View this searchable list of ...

  11. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Broader source: Energy.gov [DOE]

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

  12. The economist`s view: Identifying market power in electric generation

    SciTech Connect (OSTI)

    Werden, G.J.

    1996-02-15

    When can regulators allow market pricing for wholesale power and still ensure competition in generation? In this article, an antitrust economist exhorts FERC to establish safe harbors based on market share. He comes to this conclusion based on the following basic tenets: (1) no firm or group of firms can possess substantial market power if industry demand for their product is highly elastic due to the availability of good substitutes, (2) the greater a competitor`s share of output in the competitive equilibrium, the greater its market power because its output share governs its share of benefits from output restriction, (3) a competitor`s market power grows as the supply of product offered by rivals becomes less price-restrictive, (4) owning resources not used in competitive equilibrium may enhance market power if those resources would become economical when market power was exercised, (5) the market power of a particular firm may vary over time as demand conditions vary, and (6) the smaller the difference between the price and the marginal cost at a particular resource, the greater the market power conferred on the owner, provided that the resource operates in the competitive equilibrium.

  13. Market Transformation (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Through the SunShot Initiative, the U.S. Department of Energy (DOE) works with manufacturers, communities, states, utilities, and other partners to enable the solar market by reducing non-hardware balance-of-system (BOS) costs, developing a skilled workforce, and eliminating market barriers to widespread adoption of solar technologies.

  14. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  15. Manufacturing Demonstration Facilities Workshop, March 12, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... public sectors) National PolicySecurity Objectives * ... Approach: * Provide manufacturers and product developers ... Plan * Financial Sustainability * Intellectual Property ...

  16. Clean Energy Manufacturing Analysis Center Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy offers a webinar to address clean energy manufacturing on April 5. Register today!

  17. Clean Energy Manufacturing Innovation Institute for Composite...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Fiber Reinforced Polymer Composite Manufacturing Workshop

  18. Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M The Energy Department intends to issue a Funding Opportunity Announcement for approximately $70 million entitled "Clean Energy Manufacturing Innovation Institute for Reducing EMbodied-energy And Decreasing

  19. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative AEMC Northeast Regional Summit AEMC Northeast Regional Summit On May 12, 2016, join Assistant Secretary Dr. Dave Danielson for an unforgettable dialogue on advances and obstacles in clean energy manufacturing in the northeast and across the nation. Read more Funding Opportunity: High-Performance Computing for Manufacturing Funding Opportunity: High-Performance Computing for Manufacturing The Energy Department announced up to $3 million in funding for

  20. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. DOE has supported the development of more than 250 energy-saving industrial technologies that have been commercialized since 1976. DOE is also working to create a network of Manufacturing Innovation Institutes, each of which will create collaborative communities to target a unique technology in advanced manufacturing.

  1. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Energy Savers [EERE]

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  2. Manufacturing Demonstration Facilities Workshop, March 12, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Demonstration Facilities Workshop, March 12, 2012 Manufacturing Demonstration Facilities Workshop, March 12, 2012 PDF icon mdf_workshop_presentation_march2012.pdf More Documents & Publications Manufacturing Demonstration Facility Workshop Microwave and Radio Frequency Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  3. Clean Energy Manufacturing Initiative Midwest Regional Summit:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Breakout Session Summary | Department of Energy Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary June 21, 2013 PDF icon Lightweighting Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer

  4. Shared Value in Utility and Efficiency Partnerships

    Broader source: Energy.gov [DOE]

    Residential Energy Efficiency Solutions Conference: Shared Value in Utility and Efficiency Partnerships, July 10, 2012. Presents four case studies highlighting partnerships between local utilities and energy efficiency programs.

  5. Shared Solar Projects Powering Households Throughout America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including shared solar View and download photographs, videos, graphics, and other multimedia related to solar technologies Subscribe to Office of Energy Efficiency and Renewable ...

  6. Share Your Clean Energy Economy Story

    Broader source: Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  7. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Energy Savers [EERE]

    MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge)

  8. Manufacturing Demonstration Facility Workshop Videos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing Office, and Mike Molnar, Chief Manufacturing Officer, National Institute of Standards & Technology, speaking at the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing Office speaking at the Manufacturing Demonstration Facility

  9. An overview of market power issues in today`s electricity industry

    SciTech Connect (OSTI)

    Guth, L.A.

    1998-07-01

    With the tendency for vertical disintegration of control and/or ownership of assets within the industry, however, properly defining the relevant product in horizontal competition at each stage of production, transmission, distribution, and marketing assumes increasing importance. There is every reason to expect that market power issues and antitrust concerns will arise in each of the five dimensions outlined above. In each case, the author believes the framework will continue to be properly measuring market shares and concentration for carefully defined product and geographic markets as a basis for making informed judgments about market power concerns. The modeling of industry demand, supply, and competitive interactions certainly helps to inform this process by testing the proper scopes of product and geographic markets and of the economic significance of productive assets in the market defined. Modeling should also help the screening process where the issue is possible market power in markets being restructured for retail competition.

  10. Semantic Web Service Framework to Intelligent Distributed Manufacturing

    SciTech Connect (OSTI)

    Kulvatunyou, Boonserm

    2005-12-01

    As markets become unexpectedly turbulent with a shortened product life cycle and a power shift towards buyers, the need for methods to develop products, production facilities, and supporting software rapidly and cost-effectively is becoming urgent. The use of a loosely integrated virtual enterprise based framework holds the potential of surviving changing market needs. However, its success requires reliable and large-scale interoperation among trading partners via a semantic web of trading partners services whose properties, capabilities, and interfaces are encoded in an unambiguous as well as computer-understandable form. This paper demonstrates a promising approach to integration and interoperation between a design house and a manufacturer that may or may not have prior relationship by developing semantic web services for business and engineering transactions. To this end, detailed activity and information flow diagrams are developed, in which the two trading partners exchange messages and documents. The properties and capabilities of the manufacturer sites are defined using DARPA Agent Markup Language (DAML) ontology definition language. The prototype development of semantic webs shows that enterprises can interoperate widely in an unambiguous and autonomous manner. This contributes towards the realization of virtual enterprises at a low cost.

  11. Clean Markets | Open Energy Information

    Open Energy Info (EERE)

    Markets Jump to: navigation, search Name: Clean Markets Place: Philadelphia, Pennsylvania Zip: 19118 Sector: Services Product: Philadelphia-based provider of market development...

  12. World Bio Markets

    Broader source: Energy.gov [DOE]

    Held in Amsterdam, Netherlands, the 10th anniversary World Bio Markets convened from March 1– 4, 2015.

  13. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  14. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    9 Distribution of U.S. geothermal heat pump imports by country of origin, 2008 and 2009 (rated capacity in tons) Asia China 86 250 100.00 Total 86 250 100.00 U.S. Total 86 250 100.00 Region/Country 2008 2009 Percent of U.S. Imports 2009 Note: Totals may not equal sum of components due to independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  15. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 2009 Wholesale Distributors 8,680 4,063 Retail Distributors 3,997 5,739 Exporters 368 346 Installers 948 939 End Users 723 1,134 U.S. Total 14,716 12,221 Customer Type Shipments Notes: Totals may not equal sum of components due to independent rounding. U.S. total includes territories. Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey

  16. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 (Btu per square foot per day) Low- High Temperature Temperature Liquid/air Parabolic Year Metallic and Nonmetallic Air ICS/Thermosi phon Flat-Plate (Pumped) Evaculated Tube Concentrator Paraboloic Dish/Trough 2009 1,139 971 913 981 973 2,196 1,262 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." Medium-Temperature Type Liquid

  17. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  18. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  19. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  20. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  1. United States Industrial Motor-Driven Systems Market Assessment: Charting a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Energy Savings for Industry | Department of Energy Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry This paper is an overview of the results of a market assessment commissioned by the DOE Motor Challenge program in 1995 to better understand the characteristics of the installed population of motor systems in the manufacturing

  2. The Market - Who Needs Heat Pump Water Heaters? (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Journal Article: The Market - Who Needs Heat Pump Water Heaters? Citation Details In-Document Search Title: The Market - Who Needs Heat Pump Water Heaters? Heat pump water heaters use less power than traditional ones, but they cost more. Does the investment make sense for you? for your neighbor? Well, it depends, and it's a question not only for consumers, but also for manufacturers, retailers and efficiency programs seeking to understand their markets, set prices and incentives, and

  3. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  4. Webtrends Archives by Fiscal Year - Advanced Manufacturing Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office Webtrends Archives by Fiscal Year - Advanced Manufacturing Office From the EERE Web Statistics Archive: Advanced Manufacturing Office, Webtrends ...

  5. $23.5 Million Investment in Innovative Manufacturing Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative 23.5 Million Investment in Innovative Manufacturing Projects ...

  6. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing" (DE-FOA-0001263). This is a Notice of...

  7. 1991 Manufacturing Consumption of Energy 1991 Executive Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy...

  8. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Manufacturing Energy Sankey Diagrams Manufacturing Energy Flows ...

  9. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Boundy, Robert Gary; Diegel, Susan W

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  10. Affordability and other factors affecting the purchase of energy-efficient manufactured homes

    SciTech Connect (OSTI)

    Hattrup, M.P.; Lee, A.D.; Sandahl, L.J.; Onisko, S.A.

    1993-06-01

    The Pacific Northwest Laboratory (PNL) and the Bonneville Power Administration (Bonneville) conducted this study to evaluate the manufactured home owner`s purchase decision process and to provide Bonneville with a better understanding of how consumers view a manufactured home`s affordability and energy efficiency. This study addresses manufactured homes built under the US Department of Housing and Urban Development (HUD) standards; these homes are sometimes referred to as HUD-code homes or mobile homes. Manufactured home owners in Idaho, Montana, Oregon, and Washington were included in this analysis. This report adds to the information presented in Sandahl et al. (1992), which discussed the practices of lenders, appraisers, and dealers -- all of whom play a key role in the manufactured home market due to the impact their practices have on the overall affordability of manufactured homes. This report focuses exclusively on the most important, and probably least understood, player -- the home buyer. The primary data were collected via a mail survey sent to 1,550 manufactured home owners in Idaho, Montana, Oregon, and Washington in late 1992. A 71% response rate was achieved; 1,106 usable responses were received. This study focuses on the Pacific Northwest but presents information that may be relevant to other parts of the country.

  11. Shared Solar Programs: Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    The third webinar in the Solar Technical Assistance Team (STAT) 2013 webinar series, this webinar provides an overview of issues related to shared solar, the critical elements of a program to make it successful, and examples of locations that have implemented a shared solar or community-based solar program.

  12. State Clean Energy Policies Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy Manufacturing

    SciTech Connect (OSTI)

    Lantz, E.; Oteri, F.; Tegen, S.; Doris, E.

    2010-02-01

    Future manufacturing of renewable energy equipment in the United States provides economic development opportunities for state and local communities. However, demand for the equipment is finite, and opportunities are limited. U.S. demand is estimated to drive total annual investments in renewable energy equipment to $14-$20 billion by 2030. Evidence from leading states in renewable energy manufacturing suggests that economic development strategies that target renewable energy sector needs by adapting existing policies attract renewable energy manufacturing more than strategies that create new policies. Literature suggests that the states that are most able to attract direct investment and promote sustained economic development can leverage diverse sets of durable assets--like human capital and modern infrastructure--as well as low barriers to market entry. State marketing strategies for acquiring renewable energy manufacturers are likely best served by an approach that: (1) is multi-faceted and long-term, (2) fits within existing broad-based economic development strategies, (3) includes specific components such as support for renewable energy markets and low barriers to renewable energy deployment, and (4) involves increased differentiation by leveraging existing assets when applicable.

  13. State Clean Energy Policies Analysis (SCEPA). State Policy and the Pursuit of Renewable Energy Manufacturing

    SciTech Connect (OSTI)

    Lantz, Eric; Oteri, Frank; Tegen, Suzanne; Doris, Elizabeth

    2010-02-01

    Future manufacturing of renewable energy equipment in the United States provides economic development opportunities for state and local communities. However, demand for the equipment is finite, and opportunities are limited. U.S. demand is estimated to drive total annual investments in renewable energy equipment to $14-$20 billion by 2030. Evidence from leading states in renewable energy manufacturing suggests that economic development strategies that target renewable energy sector needs by adapting existing policies attract renewable energy manufacturing more than strategies that create new policies. Literature suggests that the states that are most able to attract direct investment and promote sustained economic development can leverage diverse sets of durable assetslike human capital and modern infrastructureas well as low barriers to market entry. State marketing strategies for acquiring renewable energy manufacturers are likely best served by an approach that: (1) is multi-faceted and long-term, (2) fits within existing broad-based economic development strategies, (3) includes specific components such as support for renewable energy markets and low barriers to renewable energy deployment, and (4) involves increased differentiation by leveraging existing assets when applicable.

  14. Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.

  15. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture

    Office of Scientific and Technical Information (OSTI)

    of Customized Electric Vehicles (Technical Report) | SciTech Connect Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles Citation Details In-Document Search Title: Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local

  16. Additive manufacturing of hybrid circuits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  17. Performing an allreduce operation using shared memory

    SciTech Connect (OSTI)

    Archer, Charles J; Dozsa, Gabor; Ratterman, Joseph D; Smith, Brian E

    2014-06-10

    Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.

  18. Performing an allreduce operation using shared memory

    DOE Patents [OSTI]

    Archer, Charles J.; Dozsa, Gabor; Ratterman, Joseph D.; Smith, Brian E.

    2012-04-17

    Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.

  19. Market review - Market values summary/October market review/current market data

    SciTech Connect (OSTI)

    1995-11-01

    This article is the October 1995 uranium market summary. In this reporting period, there were four transactions in the natural uranium market, no activity in the spot UF6 market, no activity in the spot conversion market, and only a single activity in the enrichment services market. Spot uranium volume dropped sharply, and active uranium supply rose. The rise in demand, however, more than offset this increase. Unrestricted exchange prices rose slightly, as did the unrestricted UF6 value. All other prices remained steady.

  20. Report: Efficiency, Alternative Fuels to Impact Market Through 2040

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fuel efficiency improvements and increased use of alternative fuels, will shrink gasoline's share of the fuel market 14% by 2040, according to a new report based on analysis of the U.S. Energy Information Administration in its Annual Energy Outl

  1. PROJECT PROFILE: Institute for Sustainable Communities (Solar Market Pathways)

    Broader source: Energy.gov [DOE]

    As the National Coordinator for the SunShot Initiative’s Solar Market Pathways program, the Institute for Sustainable Communities (ISC) will create a learning network that enables communications, coordination and shared learning across the other 14 organizations in the program.

  2. 2008 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T.; DeCesaro, J.; Denholm, P.; Drury, E.; Frickel, M.; Hemmeline, C.; Mendelsohn, T.; Ong, S.; Pak, A.; Poole, L.; Peterman, C.; Schwabe, P.; Soni, A.; Speer, B.; Wiser, R.; Zuboy, J.; James, T.

    2010-01-01

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of this report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of production and demand by 2012. (9) Globally, about 13 GW of CSP was announced or proposed through 2015, based on forecasts made in mid-2009. Regional market shares for the 13 GW are about 51% in the United States, 33% in Spain, 8% in the Middle East and North Africa, and 8% in Australasia, Europe, and South Africa. Of the 6.5-GW project pipeline in the United States, 4.3 GW have power purchase agreements (PPAs). The PPAs comprise 41% parabolic trough, 40% power tower, and 19% dish-engine systems.

  3. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.

    2013-12-01

    This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

  4. Means of manufacturing annular arrays

    DOE Patents [OSTI]

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  5. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  6. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  7. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect (OSTI)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  8. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Definitions and Assumptions, October 2012 Manufacturing Energy and Carbon Footprint ... More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, ...

  9. Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing | Department of Energy Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing December 11, 2014 - 11:30am Addthis The purpose of this Notice of Intent is

  10. Sensorpedia: Information Sharing Across Autonomous Sensor Systems

    SciTech Connect (OSTI)

    Gorman, Bryan L; Resseguie, David R; Tomkins-Tinch, Christopher H

    2009-01-01

    The concept of adapting social media technologies is introduced as a means of achieving information sharing across autonomous sensor systems. Historical examples of interoperability as an underlying principle in loosely-coupled systems is compared and contrasted with corresponding tightly-coupled, integrated systems. Examples of ad hoc information sharing solutions based on Web 2.0 social networks, mashups, blogs, wikis, and data tags are presented and discussed. The underlying technologies of these solutions are isolated and defined, and Sensorpedia is presented as a formalized application for implementing sensor information sharing across large-scale enterprises with incompatible autonomous sensor systems.

  11. Shared address collectives using counter mechanisms

    DOE Patents [OSTI]

    Blocksome, Michael; Dozsa, Gabor; Gooding, Thomas M; Heidelberger, Philip; Kumar, Sameer; Mamidala, Amith R; Miller, Douglas

    2014-02-18

    A shared address space on a compute node stores data received from a network and data to transmit to the network. The shared address space includes an application buffer that can be directly operated upon by a plurality of processes, for instance, running on different cores on the compute node. A shared counter is used for one or more of signaling arrival of the data across the plurality of processes running on the compute node, signaling completion of an operation performed by one or more of the plurality of processes, obtaining reservation slots by one or more of the plurality of processes, or combinations thereof.

  12. Aerogel commercialization: Technology, markets and costs

    SciTech Connect (OSTI)

    Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T.

    1994-10-07

    Commercialization of aerogels has been slow due to several factors including cost and manufacturability issues. The technology itself is well enough developed as a result of work over the past decade by an international-community of researchers. Several extensive substantial markets appear to exist for aerogels as thermal and sound insulators, if production costs can keep prices in line with competing established materials. The authors discuss here the elements which they have identified as key cost drivers, and they give a prognosis for the evolution of the technology leading to reduced cost aerogel production.

  13. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  14. Petroleum Market Model of the National Energy Modeling System. Part 2

    SciTech Connect (OSTI)

    1997-12-18

    This report contains the following: Bibliography; Petroleum Market Model abstract; Data quality; Estimation methodologies (includes refinery investment recovery thresholds, gas plant models, chemical industry demand for methanol, estimation of refinery fixed costs, estimation of distribution costs, estimation of taxes gasoline specifications, estimation of gasoline market shares, estimation of low-sulfur diesel market shares, low-sulfur diesel specifications, estimation of regional conversion coefficients, estimation of SO{sub 2} allowance equations, unfinished oil imports methodology, product pipeline capacities and tariffs, cogeneration methodology, natural gas plant fuel consumption, and Alaskan crude oil exports); Matrix generator documentation; Historical data processing; and Biofuels supply submodule.

  15. Advanced Technology Vehicles Manufacturing Loan Program | Department of

    Energy Savers [EERE]

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter Energy

    Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles

  16. Leading manufacturers in the Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Novati Technologies, Inc. provides silicon- based nanotechnologymicroelectronics research and development and commercialization services with customers in markets such as MEMS, ...

  17. Project Profile: Improved Large Aperture Collector Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power » Project Profile: Improved Large Aperture Collector Manufacturing Project Profile: Improved Large Aperture Collector Manufacturing Abengoa logo -- This project is inactive -- Abengoa Solar, under the Solar Manufacturing Technology (SolarMat) program, will be investigating the use of an automotive-style high-rate fabrication and automated assembly techniques to achieve a substantial reduction in the deployment cost of their new SpaceTube

  18. Revitalizing American Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer

  19. Working with SRNL - The Advanced Manufacturing Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/2016 SEARCH SRNL GO The Advanced Manufacturing Collaborative Academia Government Industry AMC Leadership Contact AMC Home SRNL Home Working with SRNL The Advanced Manufacturing Collaborative For over 50 years, the Savannah River National Laboratory (SRNL) has been providing the science behind nuclear chemical manufacturing at the Savannah River Site (SRS), a sprawling nuclear complex that was once part of our nation's Cold War. Time has changed the mission at SRS from nuclear production for

  20. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials (AM) Workshop Our goal is to define opportunities and research gaps within additive manufacturing (AM) and to engage the broader scientific/engineering community to discuss future research directions. thumbnail of thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science