National Library of Energy BETA

Sample records for manufacturer market shares

  1. Fact #678: June 6, 2011 Manufacturer Market Share of Hybrid Vehicles, 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 8: June 6, 2011 Manufacturer Market Share of Hybrid Vehicles, 2010 Fact #678: June 6, 2011 Manufacturer Market Share of Hybrid Vehicles, 2010 From a total of 274,210 hybrid vehicle sales in 2010, over two thirds (69%) were manufactured by the Toyota Motor Company. Ford and Honda together accounted for about a quarter of hybrid vehicle sales while GM and Nissan together sold about 5%. Other manufacturers including Porsche, Mazda, Mercedes and BMW totaled less than 1% of

  2. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of ...

  3. How Changing Energy Markets Affect Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline.

  4. Fact #802: November 4, 2013 Market Share by Transmission Type | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: November 4, 2013 Market Share by Transmission Type Fact #802: November 4, 2013 Market Share by Transmission Type The variety of transmission technologies has increased as manufacturers seek more efficient ways of transferring power from the engine to the wheels of the vehicles. Automatic transmissions with lockup remain the dominant transmission type but Continuously Variable Transmissions (CVT) have seen greater use in recent years, accounting for about 10 percent of all

  5. Shared Solar: Current Landscape, Market Potential, and the Impact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared Solar: Current Landscape, Market Potential, and the Impact of Federal Securities Regulation David Feldman, 1 Anna M. Brockway, 2 Elaine Ulrich, 2 and Robert Margolis 1 1...

  6. NREL Report Estimates Market Potential of Shared Solar and Discusses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Estimates Market Potential of Shared Solar and Discusses Relevant Securities Regulations April 27, 2015 Analysis from the Energy Department's National Renewable Energy ...

  7. Solar Trackers Market - Global Industry Analysis, Size, Share...

    Open Energy Info (EERE)

    Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2010 - 2020 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture...

  8. Marketing energy conservation options to Northwest manufactured home buyers. Revision 1

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

    1985-10-01

    Manufactured, or HUD-Code, homes comprise a growing share of the housing stock in the Northwest, as well as nationally. Their relatively low cost has made them especially attractive to lower income families, first-time home-buyers, and retired persons. The characteristics of manufactured home (MH) buyers, the unique energy consumption characteristics of the homes, and their increasing market share make this market an especially critical one for energy consumption and conservation planning in the Northwest. This study relies on extensive, existing survey data and new analyses to develop information that can potentially assist the design of a marketing plan to achieve energy conservation in new manufactured homes. This study has the objective of assisting BPA in the development of a regional approach in which numerous organizations and parties would participate to achieve conservation in new manufactured homes. A previous survey and information collected for this study from regional dealers and manufacturers provide an indication of the energy conservation options being sold to manufactured home buyers in the PNW. Manufacturers in the Northwest appear to sell homes that usually exceed the HUD thermal requirements. Manufacturers typically offer efficiency improvements in packages that include fixed improvements in insulation levels, glazing, and infiltration control. Wholesale costs of these packages range from about $100 to $1500. Typical packages include significant upgrades in floor insulation values with modest upgrades in ceilings and walls. This study identifies trends and impacts that a marketing plan should consider to adequately address the financial concerns of manufactured home buyers.

  9. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Increasing U.S. Market Share in Solar Photovoltaic Manufacturing Close From 2000 to 2010, global shipments of solar cells and modules grew 53%, a wave that China and Taiwan rode to increase their combined market share from less than 2% to 54%. Meanwhile, U.S. market share

  10. Testing share & load growth in competitive residential gas markets

    SciTech Connect (OSTI)

    Lonshteyn, A.

    1998-02-15

    The residential market stands as the next frontier for natural gas unbundling. In California, Illinois, Maryland, Massachusetts, New Jersey, New York, Ohio, Pennsylvania and elsewhere, states have introduced pilot programs and other unbundling efforts to target residential gas consumers. These efforts are hardly surprising. The residential market, presently dominated by the regulated local distribution companies, appears lucrative. In 1995, the residential sector of the U.S. natural gas industry consumed 4,736 trillion Btu of natural gas or 32 percent of all natural gas delivered by LDCs in that year. U.S. residential consumers accounted for $28.7 billion or 59 percent of the gas utility industry`s total revenues. Nevertheless, despite all the enthusiasm industry representatives have recently expressed in trade publications and public forums, the creation of a competitive residential market may prove a very slow process. Marketers appear cautious in taking the responsibility of serving residential consumers, and for very good reasons. Gaining a sizable portion of this market requires substantial investment in mass marketing, development of name recognition, acquisition of appropriate technology and employment of skillful personnel. Moreover, residential customers do not behave rationally in a {open_quotes}neoclassical{close_quotes} economic sense. They react not only to a price but to several qualitative factors that have yet to be studied by LDCs and marketers. This article offers results from creating a software program and model that answer two basic questions: (1) What share of the residential natural gas market can be realistically captured by non-regulated suppliers? (2) Will residential unbundling increase total throughput for gas utilities? If so, by how much?

  11. Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and systems constraints on the viability of a mass market thermoelectric product are discussed

  12. Highway vehicle MPG and market shares report: Model year 1990

    SciTech Connect (OSTI)

    Williams, L.S. ); Hu, P.S. )

    1991-04-01

    This issue of Highway Vehicle MPG and Market Shares Report: Model Year 1990 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of new automobiles and light trucks. The estimates are made on a make and model basis (e.g., Chevrolet is a make and Corsica is a model), from model year 1976 to model year 1990. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on fuel economy changes to determine what caused the changes. The new automobile fleet experienced a fuel economy loss of 0.4 mpg from the previous model year, dropping to 27.6 mpg. This is the second consecutive decline in the fuel economy of new automobiles since model year 1983. The main reason for the fuel economy decline in automobiles was that the compact, midsize, and large size classes, which together claimed more than 75% of the new automobile market, each experienced fuel economy declines of 0.4 mpg or more. In contrast, the new light truck fleet showed an increase of 0.3 mpg from the previous year to a current mpg of 20.5. The fuel economy increase in light trucks was primarily due to the fact that the large pickup class, which represents 35.0% of the new 1990 light truck market experienced a gain of 0.7 mpg in its fuel economy. Overall, the sales-weighted fuel economy of the new light-duty vehicle fleet (automobiles and light trucks) dropped to 24.8 mpg in model year 1990, a reduction of 0.2 mpg from model year 1989. 9 refs., 29 figs., 55 tabs.

  13. Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: January 12, 2009 Market Share of New Cars vs. Light Trucks Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks The market share of new light trucks climbed steadily through the 1980's and most of the 1990's, much of it due to the rising popularity of the minivan and the sport utility vehicle. In 2004, light trucks outsold cars. In recent years, however, consumers have shifted purchasing preferences back toward cars. Market Share of Cars and Light

  14. Motor vehicle MPG and market shares report: model year 1984

    SciTech Connect (OSTI)

    Hu, P.S.; Holcomb, M.C.

    1985-01-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly MPG changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 16.6% from model year 1983. An even more striking increase was observed in the sales of light trucks: 30.5% from model year 1983. The 1984 model year experienced a gain of 0.23 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.59 mpg in fuel economy, from 20.50 mpg in model year 1983 to 19.91 mpg in model year 1984.

  15. Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Using the calculations of several economic indicators, this study quantitatively measures the market competition, manufacturing costs, and prices for different technologies in different facility...

  16. Shared Solar. Current Landscape, Market Potential, and the Impact of Federal Securities Regulation

    SciTech Connect (OSTI)

    Feldman, David; Brockway, Anna M.; Ulrich, Elaine; Margolis, Robert

    2015-04-07

    This report provides a high-level overview of the current U.S. shared solar landscape, the impact that a given shared solar program’s structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  17. Shared Solar. Current Landscape, Market Potential, and the Impact of Federal Securities Regulation

    SciTech Connect (OSTI)

    Feldman, David; Brockway, Anna M.; Ulrich, Elaine; Margolis, Robert

    2015-04-01

    This report provides a high-level overview of the current U.S. shared solar landscape and the impact that a given shared solar program’s structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  18. Global Mainframe As A Cloud Machine Market Size, Share, Growth...

    Open Energy Info (EERE)

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  19. Fact #703: November 28, 2011 Hybrid Vehicles Lose Market Share in 2010

    Broader source: Energy.gov [DOE]

    For the first time since hybrid vehicles entered the market, the share of hybrid registrations declined in 2010 – from 2.9% in 2009 to 2.6% in 2010. Reasons for this include the relatively lower...

  20. Marketing manufactured housing under the ''Super Good Cents'' Program

    SciTech Connect (OSTI)

    Mohler, B.L.; Smith, S.A.

    1986-01-01

    The objective of this study is to propose a strategy for including manufactured housing (MH) in Bonneville Power Administration's Super Good Cents (SGC) Program. This report presents information on the site-built SGC program, the characterization of MH consumers, the options for including MH in the SGC program, and the recommendations for including MHs in the SGC program. The purposed strategy for including MHs in the SGC program is designed to reduce risks to manufacturers and dealers, stimulate demand, and allow for maximum flexibility.

  1. Shared Solar: Current Landscape, Market Potential, and the Impact of Federal Securities Regulation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-27

    This presentation provides a high-level overview of the current U.S. shared solar landscape, the impact that a given shared solar program's structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  2. Light-duty vehicle mpg and market shares report, model year 1988

    SciTech Connect (OSTI)

    Hu, P.S.; Williams, L.S.; Beal, D.J.

    1989-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

  3. AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) seeks information on mid-Technology Readiness Level (TRL) research and development (R&D) needs, market challenges, supply chain challenges, and shared facility needs to address challenges associated with clean energy manufacturing.

  4. Heliostat Manufacturing for Near-Term Markets: Phase II Final Report

    SciTech Connect (OSTI)

    Energy Products Division: Science Applications International Corporation: Golden, Colorado

    1998-12-21

    This report describes a project by Science Applications International Corporation and its subcontractors Boeing/Rocketdyne and Bechtel Corp. to develop manufacturing technology for production of SAIC stretched membrane heliostats. The project consists of three phases, of which two are complete. This first phase had as its goals to identify and complete a detailed evaluation of manufacturing technology, process changes, and design enhancements to be pursued for near-term heliostat markets. In the second phase, the design of the SAIC stretched membrane heliostat was refined, manufacturing tooling for mirror facet and structural component fabrication was implemented, and four proof-of-concept/test heliostats were produced and installed in three locations. The proposed plan for Phase III calls for improvements in production tooling to enhance product quality and prepare increased production capacity. This project is part of the U.S. Department of Energy's Solar Manufacturing Technology Program (SolMaT).

  5. Fact #869: April 20, 2015 Gasoline Direct Injection Captures 38% Market Share in Just Seven Years from First Significant Use – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Gasoline Direct Injection Captures 38% Market Share in Just Seven Years from First Significant Use

  6. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  7. Light-duty vehicle MPG (miles per gallon) and market shares report, Model year 1989

    SciTech Connect (OSTI)

    Williams, L.S. ); Hu, P.S. )

    1990-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1989 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis (e.g., Chevrolet is a make and Corsica is a model), from model year 1976 to model year 1989. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on fuel economy changes to determine what caused the changes. Both new automobile and new light truck fleets experienced fuel economy losses of 0.5 mpg from the previous model year, dropping to 28.0 mpg for automobiles and 20.2 mpg for light trucks. This is the first observed decline in fuel economy of new automobiles since model year 1983 and the largest decline since model year 1976. The main reason for the fuel economy decline in automobiles was that every automobile size class showed either losses or no change in their fuel economies. The fuel economy decline in light trucks was primarily due to the fact that two popular size classes, large pickup and small utility vehicle, both experienced losses in their fuel economies. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks) dropped to 25.0 mpg, a reduction of 0.5 mpg from model year 1988. 9 refs., 32 figs., 50 tabs.

  8. Handbook for Small-Scale Densified Biomass Fuel (Pellets) Manufacturing for Local Markets.

    SciTech Connect (OSTI)

    Folk, Richard L.; Govett, Robert L.

    1992-07-01

    Wood pellet manufacturing in the Intermountain West is a recently founded and rapidly expanding energy industry for small-scale producers. Within a three-year period, the total number of manufacturers in the region has increased from seven to twelve (Folk et al., 1988). Small-scale industry development is evolving because a supply of raw materials from small and some medium-sized primary and secondary wood processors that has been largely unused. For the residue producer considering pellet fuel manufacturing, the wastewood generated from primary products often carries a cost associated with residue disposal when methods at-e stockpiling, landfilling or incinerating. Regional processors use these methods for a variety of reasons, including the relatively small amounts of residue produced, residue form, mixed residue types, high transportation costs and lack of a local market, convenience and absence of regulation. Direct costs associated with residue disposal include the expenses required to own and operate residue handling equipment, costs for operating and maintaining a combustor and tipping fees charged to accept wood waste at public landfills. Economic and social costs related to environmental concerns may also be incurred to include local air and water quality degradation from open-air combustion and leachate movement into streams and drinking water.

  9. Motor vehicle mpg and market shares report: first six months of model year 1984

    SciTech Connect (OSTI)

    Hu, P.S.; Greene, D.L.; Till, L.E.

    1984-10-01

    This issue of the publication reports the sales, market shares, estimated sales-weighted fuel economies, and other estimated sales-weighted vehicle characteristics of automobiles and light trucks for the first six months of model year 1984 and for the previous five model years. Comparisons and observations are made on the trends in these vehicles from one model year to the next. An improved methodology is used to allocate the yearly mpg changes among eight components, rather than the four reported in the previous reports. Sales of automobiles showed an increase of 21.8% from the first half of model year 1983. An even more striking increase was observed in the sales of light trucks: 42.2% from the first half of model year 1983. The first six months of model year 1984 experienced a gain of 0.21 mpg in sales-weighted automobile fuel economy. In contrast, light trucks experienced a loss of 0.83 mpg in fuel economy, from 20.52 mpg in model year 1983 to 19.69 mpg in the first half of model year 1984.

  10. Update: US oil-import market. 1982 top 7 suppliers to US import market: how their shares changed since 1973

    SciTech Connect (OSTI)

    Not Available

    1983-03-09

    This issue updates the Energy Detente 7/09/82, which tracked US oil imports since the Arab Oil Embargo. Since then, the phrase oil glut became common even among cautious market analysts as many exporters, hard-pressed for petrodollars, produced much more than the market was prepared to absorb. To examine how the US import market has adjusted to this continued buyers market, the top seven suppliers of 1982 are tracked backwards through time. A graph shows the 1982 reversal of Mexico's and Saudi Arabia's positions in this market. The three main reasons for Mexico's strong present position in the US market are: crude costs and corresponding refined value; proximity to US refining centers; and strategic importance of Mexico's economic stability through oil sales. Interviews with various US refiners and other market observers confirm that these elements will persist during 1983, regardless of significant price cuts among OPEC and other producers. It is believed that the profitability of running heavy Maya crude in sophisticated plants will continue to look optimistic, and that Mexican crude sales to the Strategic Petroleum Reserve implies US government interest in Mexico's economic recovery, and in its stability in the light of civil wars being waged in Central America. This issue presents the Energy Detente (1) fuel price/tax series and (2) industrial fuel prices for March 1983 for countries of the Eastern Hemisphere. 6 figures, 8 tables.

  11. Working with U.S. Manufacturers to Succeed in Global Markets (Poster)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    Poster created for the Advanced Manufacturing Office to be used at meetings, presentations, and exhibits. The Advanced Manufacturing Office (AMO) fosters advanced manufacturing innovation, facilitates public and private partnerships, and drives rapid deployment of technologies to help manufacturers: Save energy and money, Reduce environmental impacts, Enhance workforce development, and Improve national energy security and competitiveness throughout the supply chain.

  12. Marketing prospect and assessment for local manufacture of wind converters in Indonesia

    SciTech Connect (OSTI)

    Pakpahan, S.; Utami, N.S.

    1996-12-31

    Wind energy resources in Indonesia provide opportunities to improve the delivery of electricity consumption for small and medium scale applications particularly for rural and remote areas and will be developed as the part of national rural electrification programs. By proper selection of design, this kind of energy source has shown to be a technically proven and affordable means of providing electricity at those areas. The promotion of WECS technology have been initiated in Indonesia by establishing some pilot projects at selected areas while in commercialization efforts, several private companies are now being involved. Dissemination of WECS technology should be based on proper selection of WECS types including economic consideration and marketing programs; for obtaining this, manufacturing of some WECS components / parts have been initiating using available materials and components; while other components that`s still not producible in Indonesia will be produced by cooperation with industry. In addition, wind resource assessments will be extended sustainably in order to identify more potential areas and locations. 7 refs., 5 figs.

  13. Silicon Ink for High-Efficiency Solar Cells Captures a Share of the Market (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    Fact sheet on 2011 R&D 100 Award winner Silicon Ink. Liquid silicon has arrived, and with it comes a power boost for solar cells and dramatic cost savings for cell manufacturers.

  14. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975–2012

    Broader source: Energy.gov [DOE]

    In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans and pickup trucks. Sport Utility Vehicles (SUVs) accounted for less than 2% of the market at that...

  15. Manufacturing Innovation Multi-Topic Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Multi-Topic Workshop Manufacturing Innovation Multi-Topic Workshop DOE's Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently

  16. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  17. AMO Issues Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications

    Broader source: Energy.gov [DOE]

    The AMO seeks information on mid-Technology Readiness Level R&D needs, market challenges, supply chain challenges, and shared facility needs addressing clean energy manufacturing topics, including the fuel cell and hydrogen sectors.

  18. Solar Manufacturing Technology | Department of Energy

    Energy Savers [EERE]

    Technology to Market Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of ...

  19. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  20. New Request for Information (RFI) on Clean Energy Manufacturing Topic Areas

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) seeks information on mid-Technology Readiness Level (TRL) research and development (R&D) needs, market challenges, supply chain challenges, and shared facility needs for clean energy manufacturing. This new Request for Information (RFI) is a follow-on to a recently completed RFI broadly covering advanced manufacturing. AMO would now like to know more about the challenges associated with advanced manufacturing technology which potentially could be overcome by pre-competitive collaboration as part of a Clean Energy Manufacturing Innovation Institute.

  1. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect (OSTI)

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  2. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  3. Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record Highs | Department of Energy Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 8:00am Addthis WASHINGTON - The Energy Department released two new reports today showcasing record growth across the U.S. wind market -- increasing America's share of clean, renewable energy and supporting tens of thousands of jobs nationwide. According to these reports, the United States

  4. NREL: Energy Analysis - Manufacturing Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Publications "Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness" IEEE Journal of Photovoltaics Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry Economic Development Impact of 1,000 MW of Wind Energy in Texas Manufacturing Analysis With world-class manufacturing analysis capabilities, NREL analyzes clean energy industry trends; cost, price, and performance trends; market and

  5. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry

  6. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Laser Manufacturing at GE Global Research Learn how laser sintering, an additive laser manufacturing process practiced at GE Global Research, makes parts from metal powder. You Might Also Like Munich_interior_V 10 Years ON: From

  7. Sustainable Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions ...

  8. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  9. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  10. Resources at the State and Regional Level for Manufacturers ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources at the State and Regional Level for Manufacturers Manufacturers can use resources delivered by industrial energy efficiency programs in their area. AMO's cost-shared ...

  11. Distributed Wind Market Applications

    SciTech Connect (OSTI)

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

  12. Sharing Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Data Sharing Data Data sharing naturally divides into three different categories: a single user accessing data from multiple platforms, multiple users accessing data from a single platform, or multiple users accessing data from multiple platforms. A Note About Security and Data Integrity Sharing data with other users must be done carefully. The chances for data loss increase as the number of users who can access the data increases. Permissions should be set to the minimum necessary to

  13. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assumptions | Department of Energy Definitions and Assumptions 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions This 13-page document defines key terms and details assumptions and references used in the Manufacturing Energy and Carbon Footprints (2010 MECS) Definitions and Assumptions for the Manufacturing Energy and Carbon Footprints (MECS 2010) (512.92 KB) More Documents & Publications U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis MECS

  14. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE OPPORTUNITY OF CLEAN ENERGY MANUFACTURING By 2030, the global market for new energy generation technology is expected to reach $790B annually-an $11 trillion cumulative investment from 2013. Leveraging energy productivity and domestic energy resources in manufacturing represents important opportunities for U.S. manufacturers to enhance their global competitiveness by realizing lower energy costs. A focus on increased energy productivity will save manufacturers billions of dollars, grow the

  15. Manufacturing Energy and Carbon Footprints Scope

    Broader source: Energy.gov (indexed) [DOE]

    with the objective of capturing the bulk share of energy consumption and carbon emissions. ... Energy consumption and emissions for all manufacturing sectors within NAICS 31 - 33 are ...

  16. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: ...

  17. Final Report- Integrated Glass Coating Manufacturing Line

    Broader source: Energy.gov [DOE]

    Awardee: Enki TechnologyLocation: San Jose, CASubprogram: Technology to MarketFunding Program: Solar Manufacturing Technology 2

  18. Final Report - Improved Large Aperture Collector Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report - Improved Large Aperture Collector Manufacturing Awardee: Abengoa Solar Location: Lakewood, CO Subprogram: Concentrating Solar Power, Technology to Market Funding ...

  19. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  20. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  1. Buying market transformation -- A cautionary tale from the Northwest

    SciTech Connect (OSTI)

    Baylon, D.; Davis, B.; Hewes, T.

    1998-07-01

    Beginning in April 1992, Pacific Northwest utilities, the Bonneville Power Administration, and eighteen manufactured home (HUD-code) builders undertook a large-scale experiment. Manufacturers were paid acquisition payments (initially $2,500/home) to install better insulation and windows in new electrically-heated homes. This resulted in homes 60% more efficient than HUD regulations dictated. Initial production projections of 10,000 homes per year were easily exceeded, with 94% of the manufactured homes (55,000) built to these standards during the 3.5 year program. During the Manufactured Housing Acquisition Program (MAP), production and on-site installation standards improved significantly. Manufactured homes made inroads into new construction markets, accounting for about 30% of regional production of new housing and competing with low- to mid-priced site-built homes in some areas. The market was transformed. Or was it? Two years have passed since the incentives stopped and the participating manufacturers were left to fend for themselves. Since MAP ended, production of homes built to the higher BPA Super Good Cents (SGC) energy efficiency standards has dropped throughout the region. The state energy offices (SEOs) have maintained an SGC inspection and certification program for which manufacturers pay $30/home, which has helped energy-efficient manufactured homes retain market share in some localities. However, where local codes do not require strict levels of energy efficiency for new homes, saturation of energy-efficient manufactured homes has declined dramatically. This paper examines factors affecting market transformation since the cessation of direct incentives, including fuel choice issues and the effects of state codes on production, infrastructure and sitting levels.

  2. About Additive Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introducing Additive Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Introducing Additive Manufacturing at GE Global Research Prabhjot Singh, manager of the Additive Manufacturing Lab at GE Global Research, describes the technology used in his lab. You Might Also Like DirectWrite_V

  3. Laser Additive Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revolutionizing the Age-Old Rules of Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Revolutionizing the Age-Old Rules of Manufacturing Learn how additive manufacturing, a 3D-printing technology, frees engineers to design the perfect jet engine. You Might Also Like IMG_0475 Innovation 24/7: We're Always

  4. GE's Digital Marketplace to Revolutionize Manufacturing | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research GE's Digital Marketplace to Revolutionize Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE's Digital Marketplace to Revolutionize Manufacturing GE will lead an effort to create an online community for manufacturing collaboration and data analysis The open source project will build the

  5. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  6. Community and Shared Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community and Shared Solar Community and Shared Solar Community and Shared Solar As the solar energy market rapidly expands, more people are exploring the possibility of going solar. While not everyone is able to install panels on their roofs, due to unsuitable roof space, living in a large condo building, or renting living space, alternative business models like community solar and shared solar are gaining popularity and increasing access to clean solar energy. Community solar business models

  7. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  8. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  9. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  10. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laser-sintering) Optomec LENS MR-7 Sciaky EBAM 68 Non-metal additive manufacturing Powder bed FORMIGA P 110 PolyJet 3D ... Fused deposition modeling print technology MakerBot ...

  11. Celebrating Clean Energy Manufacturing in the Big Apple | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Celebrating Clean Energy Manufacturing in the Big Apple Celebrating Clean Energy Manufacturing in the Big Apple June 15, 2016 - 10:51am Addthis Dr. Mark Johnson (left), Director of the Energy Department’s Advanced Manufacturing Office, moderates a panel on shared infrastructure and innovation ecosystems. Dr. Mark Johnson (left), Director of the Energy Department's Advanced Manufacturing Office, moderates a panel on shared infrastructure and innovation ecosystems. Dr. Dave

  12. SunShot Photovoltaic Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » SunShot Photovoltaic Manufacturing Initiative SunShot Photovoltaic Manufacturing Initiative The SunShot Photovoltaic Manufacturing Initiative (PVMI) invests in manufacturing-focused research projects that strengthen the competitiveness of the U.S. PV module industry and supply chain. PVMI funding also establishes manufacturing development facilities that provide infrastructure for demonstrating, testing, optimizing, and manufacturing new technologies with reduced capital

  13. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  14. The President's Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the ...

  15. Brilliant Factories Could Revolutionize Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brilliant Factories Could Revolutionize Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Brilliant Factories Could Revolutionize Manufacturing GE Global Research's Stephan Biller talks about the benefits that could be realized by making factories brilliant. The GE Store is our name for the company's

  16. Momentum Savings Market Research Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collected before with a larger market share than we had last year. Expect to see a market intelligence report in late April and a draft savings model available for comment on our...

  17. Increasing U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia- tive (CEMI) is a U.S. Department of Energy (DOE)-wide commitment to innovation and breaking down market barriers in order to enhance U.S. manufacturing competitiveness while advancing the nation's energy goals. As a part of this initiative, DOE is committing resources across technol- ogy areas to catalyze clean energy manufacturing research and development (R&D), as well as to catalyze greater energy pro-ductivity in

  18. additive manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  19. Market Barriers to Solar in Michigan

    SciTech Connect (OSTI)

    Miller, E.; Nobler, E.; Wolf, C.; Doris, E.

    2012-08-01

    The solar industry in the United States is at a turning point; the cost of PV hardware has declined substantially in recent years, placing new attention on reducing the balance of system (BOS) costs of solar that now contribute to a growing percentage of installation expenses. How states address these costs through the creation of a favorable policy and regulatory environment is proving to be a critical determinant of a thriving statewide solar market. This report addresses the permitting and tax issues that may stimulate the solar market growth in Michigan. By making PV installations easier to complete through reduced BOS costs, Michigan would become a more attractive location for manufacturers and installers. As PV module costs decline and BOS costs make up a greater share of the cost of solar, action taken today on these issues will prove beneficial in the long term, providing Michigan an opportunity to establish a leadership position in the solar industry.

  20. Marketing Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Through the SunShot Initiative, the U.S. Department of Energy (DOE) works with manufacturers, communities, states, utilities, and other partners to enable the solar market by reducing non-hardware balance-of-system (BOS) costs, developing a skilled workforce, and eliminating market barriers to widespread adoption of solar technologies.

  1. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  2. GE Innovation and Manufacturing in Europe | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation and Manufacturing in Europe Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Innovation and Manufacturing in Europe Click the image below to see how GE is at work across Europe to change the face of manufacturing. EU graphic You Might Also Like 2-2-5-v GE Unveils High-Tech Superhero, GENIUS MAN »

  3. Bringing a Digital Mindset to Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bringing a Digital Mindset to Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Bringing a Digital Mindset to Manufacturing The digital age will provide manufacturing insights that will save money and transform how we work across supply chains. By Christine M. Furstoss Technology Director, Materials &

  4. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  5. Awardee Share Procedures

    Broader source: Energy.gov (indexed) [DOE]

    Share Procedures Procedures for Correctly Reporting Awardee Share on the FAADSFAADS Plus reporting screen in STRIPES To ensure proper reporting by DOE to USASpending.gov, you...

  6. Solar Manufacturing Projects | Department of Energy

    Office of Environmental Management (EM)

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  7. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov [DOE]

    A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss manufacturing of composites. The workshop explored emerging FRP composite market applications in clean energy and barriers to the development and widespread commercial use of these lightweight, high-strength and high-stiffness materials. Improving the manufacturing speed and quality-and reducing their manufacturing costs-could accelerate their use in automotive, wind, compressed gas storage and other clean energy and industrial applications.

  8. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Manufacturing is how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Manufacturing is the lifeblood of the American economy -- providing jobs

  9. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  10. Clean Energy Manufacturing Initiative Southeast Regional Summit

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) organizes regional summits around the country to expand its partnerships, share resources and successes, and refine its strategy to boost U.S. competitiveness in clean energy manufacturing. The CEMI Southeast Regional Summit, which will be held on July 9, 2015 at the Renaissance Atlanta Midtown Hotel in Atlanta, Georgia, is the third in this series.

  11. Wind Energy Markets, 2. edition

    SciTech Connect (OSTI)

    2007-11-15

    The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

  12. Motor vehicle MPG and market shares report. MPG and market share data system, model year 1983

    SciTech Connect (OSTI)

    Hu, P.S.; Roberts, G.F.

    1984-02-01

    Estimates of final model year 1983 new car and new light truck MPG are provided. ORNL has modified the procedure for calculating new car MPG. The new procedure takes into account the sales mix of engine size, engine type (gasoline or diesel), and transmission type within a nameplate (car line). For example, the new ORNL method takes into account that over 60 percent of the Chevettes in 1983 were the gasoline version (98 CID engine displacement) with a 3-speed automatic transmission. Also, the three diesel model types accounted for only about 1 percent of the Chevette sales. This new method estimated the Chevette MPG for 1983 to be 33.2, nearly 5 MPG lower than the estimate based on the old method. Since this report contains revised new car MPG estimates for every year, the fuel economy estimates in this report are not comparable to those in any previous ORNL report. The estimates of new light truck MPG have not been revised, however.

  13. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Edison system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  14. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Hopper system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  15. Innovating to Change Paradigm of Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovating Around the Clock to Change the Paradigm of Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Innovating Around the Clock to Change the Paradigm of Manufacturing Christine M. Furstoss 2014.03.24 When you're part of a global company that operates multiple R&D sites around the world, the engine

  16. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  17. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and ...

  18. Composite Tube Trailer Design/Manufacturing Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Tube Trailer Design/Manufacturing Needs Norman L. Newhouse, Ph.D., P.E. Lincoln Composites, Inc. August 11-12, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview * Lincoln Composites has, with support from DOE, built composite tube trailers and can, therefore, address issues with: - Design - Materials - Manufacturing - Testing - Approvals 2 Objectives * Meet market needs for cost effective, light weight, bulk transport of

  19. Ten Years of Manufacturing R and D in PVMaT -- Technical Accomplishmen...

    Office of Scientific and Technical Information (OSTI)

    The Photovoltaic Manufacturing Technology Project has been conducting cost-shared R and D with industry for ten years. Objectives of this project are to improve photovoltaic ...

  20. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  1. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  2. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  3. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    ...sitesdefaultfilesmicrositesostppcast-advanced-manufacturing-june2011.pdf. Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Collaboration and ...

  4. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  5. U.S. Wind Energy Manufacturing & Supply Chain Cover Photo | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wind Energy Manufacturing & Supply Chain Cover Photo U.S. Wind Energy Manufacturing & Supply Chain Cover Photo GLWN Cover Photo.JPG (67.35 KB) More Documents & Publications U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis 2014 Offshore Wind Market & Economic Analysis Cover Photo Testing, Manufacturing, and Component Development Projects

  6. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  7. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  8. Gain Sharing.PDF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (not first class) on international flights (business class ... pilot programs that include "GAIN SHARING" principles. ... ATTN: Customer Relations If you wish to discuss this report ...

  9. Berkeley Lab Shares

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addition to Berkeley Lab SHARES, which encompasses local charities that support science education and energy conservation, options may be found among the following organizations:...

  10. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include...

  11. Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy

  12. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the

  13. NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Manufacturing R&D Project Photo of blue solar cells being sorted in a production line. A woman works behind the protective glass in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers

  14. Clean Energy Manufacturing Boosting U.S. Competitiveness

    SciTech Connect (OSTI)

    2015-09-14

    Clean energy manufacturing is booming in the United States. U.S. clean energy investment topped $51 billion in 2014 alone, and even more growth is expected in the $250 billion clean energy market worldwide in coming years. America has an important opportunity to continue growing clean energy manufacturing industries, along with the high quality jobs and stronger local economies that come with them.

  15. Wind Manufacturing and Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Wind Manufacturing and Supply Chain Wind Manufacturing and Supply Chain The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing capabilities. Its goals are to increase reliability while lowering production costs, and to promote an industry that can meet all demands domestically while competing in the global market. The Wind Program supports industry partnerships and targeted R&D investments that integrate new

  16. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  17. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  18. Manufacturing Innovation Topics Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  19. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013. Fuel Cell Manufacturing (2.61 MB) ...

  20. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  1. Accelerating Spectrum Sharing Technologies

    SciTech Connect (OSTI)

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  2. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  3. Chapter V: Improving Shared Transport Infrastructures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -38 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter V: Improving Shared Transport Infrastructures QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 6-1 Chapter VI This chapter takes a broader look at the current energy trade and the continuing integration of energy markets and infrastructure in the North American region. Its discussion includes cross-border infrastructure with Canada and Mexico, impacts of

  4. Secure Information Sharing

    Energy Science and Technology Software Center (OSTI)

    2005-09-09

    We are develoing a peer-to-peer system to support secure, location independent information sharing in the scientific community. Once complete, this system will allow seamless and secure sharing of information between multiple collaborators. The owners of information will be able to control how the information is stored, managed. ano shared. In addition, users will have faster access to information updates within a collaboration. Groups collaborating on scientific experiments have a need to share information and data.more » This information and data is often represented in the form of files and database entries. In a typical scientific collaboration, there are many different locations where data would naturally be stored. This makes It difficult for collaborators to find and access the information they need. Our goal is to create a lightweight file-sharing system that makes it’easy for collaborators to find and use the data they need. This system must be easy-to-use, easy-to-administer, and secure. Our information-sharing tool uses group communication, in particular the InterGroup protocols, to reliably deliver each query to all of the current participants in a scalable manner, without having to discover all of their identities. We will use the Secure Group Layer (SGL) and Akenti to provide security to the participants of our environment, SGL will provide confldentiality, integrity, authenticity, and authorization enforcement for the InterGroup protocols and Akenti will provide access control to other resources.« less

  5. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce

    2013-02-22

    This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the nation’s landbased wind market.

  6. New Composites Recycling Partnership Leverages AMO's Shared Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure | Department of Energy Composites Recycling Partnership Leverages AMO's Shared Innovation Infrastructure New Composites Recycling Partnership Leverages AMO's Shared Innovation Infrastructure July 7, 2016 - 10:30am Addthis (Front L-R): Dr. Mark Johnson, Director of the Department of Energy’s Advanced Manufacturing Office; Dr. Luke Robins, President, Peninsula College; Dr. Craig Blue, IACMI CEO; Robert Larsen, CRTC CEO; (Back L-R): Colleen McAleer, Port of Port Angeles

  7. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  8. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. The Advanced Manufacturing Partnership and the

  9. Government policy and market penetration opportunities for US renewable energy technology in India and Pakistan

    SciTech Connect (OSTI)

    Sathaye, J.; Weingart, J.M.

    1988-01-01

    Some US renewable energy industries are now looking abroad, especially to the rapidly developing Asia-Pacific region, in order to increase sales and expand markets. The developing world appears in principle to be an important market for renewable energy technologies. These international markets have proven extremely difficult to penetrate, and the US competitive position is threatened by strong, well-organized, government-supported competition from Japan and Western Europe. For example, US photovoltaic manufacturers held 80% of the world PV market in 1980; today their market share is down to 35%. Less developed countries (LDCs) present a potentially significant but highly elusive market for renewable energy technologies. This market may develop for three major reasons; the shortage of electricity supply and the high cost of grid extension to rural areas, the high cost of oil imports and the scarcity of light oil products, and the gradual replacement of traditional fuels with modern ones. The focus of this report is on the policies and attitudes of national and regional governments in India and Pakistan towards renewable energy technology and how these policies and attitudes affect the potential for penetration of these markets by US industry. We have attempted to provide some useful insight into the actual market environment in India and Pakistan rather than just report on official laws, regulations, and policies. The report also examines the economics of technologies in comparison with more traditional sources of energy. It concentrates primarily on technologies, such as photovoltaics and wind electric systems, that would benefit from foreign participation, but also identifies potential market opportunities for advanced solar desalination and other renewable energy technologies. 31 refs.

  10. Global Solar Trackers Market | OpenEI Community

    Open Energy Info (EERE)

    Global Solar Trackers Market Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  11. Solar Trackers Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Analysis Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  12. Solar Trackers Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Forecast Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  13. Solar Trackers Market Trends | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Trends Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  14. Solar Trackers Market Size | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Size Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  15. Report on Toyota/Prius Motor Design and Manufacturing Assessment

    SciTech Connect (OSTI)

    Hsu, J.S.

    2004-07-28

    In today's hybrid vehicle market the Toyota Prius drive system is currently considered the leader in electrical, mechanical, and manufacturing innovations. It is significant that in today's marketplace Toyota is able to manufacture and sell the vehicle for a profit. This project's objective is to analyze and study the Prius drive system to understand the design and manufacturing mechanisms Toyota utilized to achieved their performance and cost goals. During the course of this research effort ORNL has dissected both the 2003 and 2004 Toyota/Prius drive motors. This study is focused primarily on motor design considerations and an assessment of manufacturing issues.

  16. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  17. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  18. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For instance, the following parts have already been manufactured additively: 179 Structure parts for unmanned aircraft by SAAB Avitronics 15, 16; 180 Special tools for ...

  19. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  20. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  1. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and ...

  2. Awardee Share in STRIPES

    Broader source: Energy.gov [DOE]

    A problem has been identified with completing the awardee share fields on the FAADS/FAADS Plus reporting screen in STRIPES. Data quality is an area of major focus especially for the data being sent to USASpending.gov as required by the Federal Funding and Transparency Act.

  3. EERE Market Impacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Market Impacts EERE Market Impacts Addthis RENEWABLE ELECTRICITY GENERATION SUCCESS STORIES 1 of 3 RENEWABLE ELECTRICITY GENERATION SUCCESS STORIES EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable technologies and encourage more widespread use of clean energy in the United States. ENERGY-SAVING HOMES, BUILDINGS, AND MANUFACTURING SUCCESS STORIES 2 of 3 ENERGY-SAVING HOMES, BUILDINGS, AND MANUFACTURING SUCCESS STORIES EERE's

  4. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  5. VOC compliance on the ball: Aluminum can manufacturer rolls to California VOC compliance

    SciTech Connect (OSTI)

    Gay, R.

    1997-07-01

    Since entering the North American beverage can market in 1969, Ball Corp., has increased its market share at a pace more than double the growth of the market itself. In addition to holding numerous patented advancements in can-making technology, Ball prides itself as an environmentally responsible company. When Ball decided to increase production capacity in its Fairfield, California, plant, the challenge was to produce more cans, while still complying with the state`s stringent air emissions regulations. As with other aluminum can manufacturing facilities, Ball`s coating and curing operations generate volatile organic compounds (VOCs). Ball`s permit from the state of California allows only limited amounts of VOC discharges into the atmosphere. With proposed increases in production capacities, however, the Bay Area`s Air Quality Management District--a local US EPA authority--required Ball to incinerate far more VOCs than the existing recuperative abatement system could handle. According to California regulations, facilities that wish to increase VOC emissions must install some type of VOC-control system or provide technological offsets. This regulatory pressure led Ball to seek a solution that would not only comply with emissions regulations, but would not compromise the company`s production process. Ball engineers selected a regenerative thermal oxidizer (RTO) for the Fairfield, Calif., plant. Considering the success Ball has encountered in previous experiences with this type of oxidation unit, the company immediately selected an RTO instead of catalytic oxidizers or other types of pollution control equipment.

  6. Policy enabled information sharing system

    DOE Patents [OSTI]

    Jorgensen, Craig R.; Nelson, Brian D.; Ratheal, Steve W.

    2014-09-02

    A technique for dynamically sharing information includes executing a sharing policy indicating when to share a data object responsive to the occurrence of an event. The data object is created by formatting a data file to be shared with a receiving entity. The data object includes a file data portion and a sharing metadata portion. The data object is encrypted and then automatically transmitted to the receiving entity upon occurrence of the event. The sharing metadata portion includes metadata characterizing the data file and referenced in connection with the sharing policy to determine when to automatically transmit the data object to the receiving entity.

  7. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  8. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Somberg, H. )

    1991-11-01

    This report describes existing integrated processes for solar cell manufacturing and lists as the primary opportunity for improvement the following areas: low-cost silicon sheets with improved characteristics; improved large-scale and automated solar cell processes that can lead to cell efficiencies in the range of 14% (encapsulated) for direct-cast wafers; improved handling and lamination of large-area modules for the emerging utility market. The proposed solutions can lead to finished module costs on the order of $1.55 per square meter or a selling price of less than $2.00/Watt. The problems that may be considered generic to the industry and that have been addressed in this work are as follows: gettering and passivation of silicon wafers; spray-on passivation layers; dual antireflection coatings; ink-jet printing of metallizations; and automated handling of large-area modules and associated vertical lamination. 14 refs.

  9. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  10. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  11. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  12. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect (OSTI)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant

  13. PROJECT PROFILE: Additively Manufactured Photovoltaic Inverter (SuNLaMP) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Additively Manufactured Photovoltaic Inverter (SuNLaMP) PROJECT PROFILE: Additively Manufactured Photovoltaic Inverter (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $4,478,288 Awardee Cost Share: $60,000 Integrating hundreds of gigawatts of photovoltaic (PV) solar power onto our country's electric grid requires transformative power conversion system designs that

  14. Solar Trackers Market | OpenEI Community

    Open Energy Info (EERE)

    Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast,...

  15. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  16. Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These

  17. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  18. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  19. Renewable Energy Manufacturing Program

    Broader source: Energy.gov [DOE]

    Note: The initial application deadline for the Renewable Energy Manufacturing Program is June 30, 2016. Applications will be accepted following that date only if there are remaining funds available...

  20. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  1. Hydroprocessing catalyst manufacture

    SciTech Connect (OSTI)

    Lostaglio, V.J.; Carruthers, J.D.

    1985-01-01

    Hydroprocessing catalysts for the oil-refining industry have undergone significant improvements since the oil shortages of the late 1970's. Spurred by the need for refiners to process heavy, sour feeds, catalyst manufacturers have developed technology to meet these changing demands. Current manufacturing techniques in the production of substrate and final catalyst are reviewed. New approach to the production of resid hydrotreatment catalysts are considered.

  2. An Update on Advanced Battery Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29

  3. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  4. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  5. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to ... Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking ...

  6. Marketing and Market Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing and Market Transformation Marketing and Market Transformation Presents how going green will grow your business, as well as how programs can overcome appraisal challenges. ...

  7. Market Transformation

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  8. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a ...

  9. Manufacturing Demonstration Facility Workshop Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing ...

  10. Massachusetts Community Shared Solar Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Massachusetts community shared solar policy, and touches on key community shared solar models currently being utilized across the Commonwealth. Additionally, the webinar outlines key resources individuals and municipalities can use in order to pursue a community shared solar project.

  11. Community Shared Solar: Expansions Underway in Solar America Communities

    Broader source: Energy.gov [DOE]

    Community shared solar is expanding rapidly as a model ownership structure for solar PV. By offering customers an option to purchase or lease part of a larger solar array instead of having to purchase the entire system, the model greatly expands participatory opportunities to a large new market segment of citizens and customers, with very low or no cost to local government.

  12. PROJECT PROFILE: California Center for Sustainable Energy (Solar Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways) | Department of Energy California Center for Sustainable Energy (Solar Market Pathways) PROJECT PROFILE: California Center for Sustainable Energy (Solar Market Pathways) Title: Virtual Net Metering Market Development Plan CCSE logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: San Diego, CA Amount Awarded: $712,269 Awardee Cost Share: $179,535 The Center for Sustainable Energy (CSE) is creating the Virtual Net Metering Market Development

  13. PROJECT PROFILE: Ecolibrium3 (Solar Market Pathways) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecolibrium3 (Solar Market Pathways) PROJECT PROFILE: Ecolibrium3 (Solar Market Pathways) Title: Local Energy Matters: Solar Market Development in Duluth, MN Ecolibrium3.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Duluth, MN Amount Awarded: $209,005 Awardee Cost Share: $52,266 Ecolibrium3's "Local Energy Matters" Solar Market Pathways project is working with state and local stakeholders to further develop residential rooftop, community, and

  14. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  15. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  16. High Efficiency Microturbine Leads to Increased Market Share

    Broader source: Energy.gov [DOE]

    EERE-supported microturbine research and development for a device that increased electrical efficiency of the unit from about 17%-22% to 33%.

  17. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1.6% 1981 13.6% 82.8% 2.3% 1.3% 1982 14.8% 80.3% 3.2% 1.6% 1983 15.8% 77.6% 3.7% 2.8% 1984 14.5% 76.2% 4.8% 4.4% 1985 14.4% 74.7% 5.9% 5.1% 1986 16.5% 71.6% 6.8% 5.1% 1987 14.4% ...

  18. Motor vehicle MPG and market shares report: model year 1985

    SciTech Connect (OSTI)

    Hu, P.S.

    1986-02-01

    Sales of automobiles jumped dramatically from 10,211,058 units in model year 1984 to 10,968,515 units in model year 1985, an incease of 7.4%. Light trucks had an even more striking increase in sales, rising 17.2% from the previous model year. The sales-weighted fuel economy for the entire automobile fleet continued to climb in model year 1985, from 26.3 mpg in model year 1984 to 27.0 mpg in this model year. The sales-weighted fuel economies in light trucks have remained relatively constant since model year 1979. The trends of various vehicle characteristics from model year 1978 through 1985 are illustrated. 34 figs., 45 tabs.

  19. High Efficiency Microturbine Leads to Increased Market Share...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of...

  20. Manufacturing and Scale Up Challenges: Cell Components, Membranes, & Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M Confidential. 1 28 April 2014 . All Rights Reserved. © 3M Electrolytic Hydrogen Production Workshop DOE Fuel Cell Technologies Office hosted by: NREL, Golden, Colorado Feb. 27th and 28th, 2014. "Manufacturing and Scale Up Challenges: Cell Components, Membranes, & Catalysts". by Krzysztof A. Lewinski, 3M 3M Confidential. 2 28 April 2014 . All Rights Reserved. © 3M Greatest Challenges and Opportunities:  PEM electrolyzer market at an early stage;  Market development gaining

  1. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  2. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  3. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-12-03

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  4. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  5. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  6. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  7. Industrial-market opportunities for geothermal energy in Colorado. Special Publication 20

    SciTech Connect (OSTI)

    Coe, B.A.

    1982-04-01

    Geothermal sites in Colorado are listed. The potential industrial market for geothermal energy in Colorado is described for agriculture, manufacturing, and the tourism and travel industry.

  8. Drug development and manufacturing

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  9. Market Transformation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  10. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  11. Energy Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    will show a lower growth trajectory Source: EIA, International Energy Outlook 2013 carbon dioxide emissions billion metric tons 6 CSIS | Energy Markets Outlook November 16,...

  12. Market Transformation

    SciTech Connect (OSTI)

    2011-02-15

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  13. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  14. Critical materials research needed to secure U.S. manufacturing, officials say

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Department officials said yesterday that developing alternatives to critical materials, like rare earth metals used in solar panels and wind turbines, is crucial to American manufacturing stability and can help the United States circumvent global market pressures.

  15. New CEMAC Report Examines Global Dynamics of Energy Manufacturing

    Broader source: Energy.gov [DOE]

    The Clean Energy Manufacturing Analysis Center’s (CEMAC) first annual Research Highlights report, a compilation of exciting findings from its set of studies released in 2015, offers fresh insights on key challenges and opportunities in the rapidly growing global market for clean energy technologies.

  16. United States Industrial Motor Systems Market Opportunities Assessment:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary | Department of Energy Motor Systems Market Opportunities Assessment: Executive Summary United States Industrial Motor Systems Market Opportunities Assessment: Executive Summary In addition to serving DOE's program planning and evaluation needs, the Motor Systems Market Assessment is designed to be of value to manufacturers, distributors, engineers, and others int he supply channels for motor systems. United States Industrial Motor Systems Market Opportunities Assessment:

  17. Market Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Through the SunShot Initiative, the U.S. Department of Energy (DOE) works with manufacturers, communities, states, utilities, and other partners to enable the solar market by reducing non-hardware balance-of-system (BOS) costs, developing a skilled workforce, and eliminating market barriers to widespread adoption of solar technologies. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  18. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  19. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Officer National Institute of Standards and Technology Carrie Houtman Senior Public Policy Manager Dow Chemical Overview * Advanced Manufacturing Activities * Advanced ...

  20. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  1. National Electrical Manufacturers Association

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  2. Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 | Department of Energy between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 this Memorandum of Understanding (MOU), the U.S.

  3. A Semantic Web Service and Simulation Framework to Intelligent Distributed Manufacturing

    SciTech Connect (OSTI)

    Son, Young Jun; Kulvatunyou, Boonserm; Cho, Hyunbo; Feng, Shaw

    2005-11-01

    To cope with today's fluctuating markets, a virtual enterprise (VE) concept can be employed to achieve the cooperation among independently operating enterprises. The success of VE depends on reliable interoperation among trading partners. This paper proposes a framework based on semantic web of manufacturing and simulation services to enable business and engineering collaborations between VE partners, particularly a design house and manufacturing suppliers.

  4. 2014 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  5. Wind power manufacturing and supply chain summit USA.

    SciTech Connect (OSTI)

    Hill, Roger Ray

    2010-12-01

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  6. Manufactured Homes Tool

    Energy Science and Technology Software Center (OSTI)

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  7. U.S. Offshore Wind Manufacturing and Supply Chain Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the

  8. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  9. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  10. PHEV Market Introduction Workshop Summary Report

    SciTech Connect (OSTI)

    Weber, Adrienne M; Sikes, Karen R

    2009-03-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.

  11. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, ...

  12. Additive Manufacturing: Technology and Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing: Technology and Applications Natural Gas Infrastructure R&D and ... * Success in development and integration of multidisciplinary teams ...

  13. Energy 101: Clean Energy Manufacturing

    SciTech Connect (OSTI)

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  14. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  15. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  16. PROJECT PROFILE: Council of Independent Colleges in Virginia (Solar Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways) | Department of Energy Council of Independent Colleges in Virginia (Solar Market Pathways) PROJECT PROFILE: Council of Independent Colleges in Virginia (Solar Market Pathways) Title: A Solar Market Pathway for Independent Colleges in Virginia CICV logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Bedford, VA Amount Awarded: $807,563 Awardee Cost Share: $409,357 The Council of Independent Colleges in Virginia (CICV) is leading a Solar

  17. Semantic Web for Manufacturing Web Services

    SciTech Connect (OSTI)

    Kulvatunyou, Boonserm; Ivezic, Nenad

    2002-06-01

    As markets become unexpectedly turbulent with a shortened product life cycle and a power shift towards buyers, the need for methods to rapidly and cost-effectively develop products, production facilities and supporting software is becoming urgent. The use of a virtual enterprise plays a vital role in surviving turbulent markets. However, its success requires reliable and large-scale interoperation among trading partners via a semantic web of trading partners' services whose properties, capabilities, and interfaces are encoded in an unambiguous as well as computer-understandable form. This paper demonstrates a promising approach to integration and interoperation between a design house and a manufacturer by developing semantic web services for business and engineering transactions. To this end, detailed activity and information flow diagrams are developed, in which the two trading partners exchange messages and documents. The properties and capabilities of the manufacturer sites are defined using DARPA Agent Markup Language (DAML) ontology definition language. The prototype development of semantic webs shows that enterprises can widely interoperate in an unambiguous and autonomous manner; hence, virtual enterprise is realizable at a low cost.

  18. Energy Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Markets November 16, 2015 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010 2014 biofuels geothermal solar wind waste hydroelectric wood 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010...

  19. Energy Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Markets October 22, 2015 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010 2014 biofuels geothermal solar wind waste hydroelectric wood 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010...

  20. Energy Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Markets October 29, 2015 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010 2014 biofuels geothermal solar wind waste hydroelectric wood 0 2 4 6 8 10 1990 1994 1998 2002 2006 2010...

  1. GE's Digital Marketplace to Revolutionize Manufacturing | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Commons" - a global ecosystem for manufacturing businesses The Commons ... The project aims to build an expansive manufacturing ecosystem, with the goal of having ...

  2. Additive Manufacturing: Pursuing the Promise | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise More Documents...

  3. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  4. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  5. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  6. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy and Carbon Footprint All Manufacturing (NAICS 31-33) (120.28 KB) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum ...

  7. NREL: Energy Systems Integration Facility - Manufacturing and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing and Material Diagnostics Manufacturing and material diagnostics help manufacturers of clean energy technologies scale up production to volumes that meet U.S....

  8. About the Clean Energy Manufacturing Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Clean Energy Manufacturing Initiative About the Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy ...

  9. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf ...

  10. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy ...

  11. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  12. MANUFACTURED TO AIIM STANOAROS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    + .,+++_ _+++ +..++,+ + ++++_. _+ ,++p + +% ++ + +_++ +_,/x+'_ MANUFACTURED TO AIIM STANOAROS _ ..+ ++ BY APPLIED IMAGE, INC, _+ + .DK3E/NV/11482..139 DOE/NV/11..4_L2-139 National Emission Standards forHazardousAir Pollutant_ Submittal 993 Stuart B_.Black June 1994 Work Pe_ Under Contract No, DE-AC08-94NV11432 PreparedbY: Reynolds Electrical & EnglneerlngCo., Inc, Post Office Bo_(98521 Los Vegas. Nevada 89193-8521 MA,TER II_OT/lOg DFTItI,_ DOCUMENT f$ UNLIMITED TABLE OF CONTENTS List of

  13. Microsoft Word - Turbine Manufactures MOU FINAL_5-31-08_.doc | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Turbine Manufactures MOU FINAL_5-31-08_.doc Microsoft Word - Turbine Manufactures MOU FINAL_5-31-08_.doc Microsoft Word - Turbine Manufactures MOU FINAL_5-31-08_.doc (65.18 KB) More Documents & Publications Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 Linkages from DOE's Wind Energy Program to Commercial Renewable Power Generation DOE Wind Energy

  14. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  15. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    Broader source: Energy.gov [DOE]

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing , and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  16. Wind Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Facilities Wind Manufacturing Facilities Wind Manufacturing Facilities America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state

  17. Smart Manufacturing Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing Innovation Smart Manufacturing Innovation Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient, and competitive. Learn more about advanced manufacturing

  18. Chapter 11. Fuel Economy: The Case for Market Failure

    SciTech Connect (OSTI)

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

  19. Oak Ridge Centers for Manufacturing Technology - The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  20. Oak Ridge Centers for Manufacturing Technology ? The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  1. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Summary (372.05 KB) More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing ...

  2. Innovative Manufacturing Initiatives Recognition Day Agenda ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Manufacturing Initiatives Recognition Day Agenda imirecogitiondayagenda.pdf (76.67 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition ...

  3. Understanding Manufacturing Energy and Carbon Footprints, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding Manufacturing Energy and Carbon Footprints, October 2012 Understanding Manufacturing Energy and Carbon Footprints, October 2012 understandingenergyfootprints2012.p...

  4. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Initiative: Increasing American Competitiveness Through Innovation Clean ... Manufacturing Initiative (CEMI), a collaborative effort between the federal government, ...

  5. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  6. Semiconductor Manufacturing International Corp SMIC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing International Corp SMIC Jump to: navigation, search Name: Semiconductor Manufacturing International Corp (SMIC) Place: Shanghai, Shanghai Municipality, China Zip:...

  7. Nakagawa Electric Machinery Manufacturer | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Nakagawa Electric Machinery Manufacturer Place: Saku, Nagano, Japan Product: A company engages in electrical equipment manufacture. Coordinates:...

  8. Plumbing Manufacturer's Institute Ex Parte Communication Regarding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department ...

  9. Sustainable manufacturing Workshop: Workshop Summary Report

    Energy Savers [EERE]

    AMO Workshop on Sustainable Manufacturing i | P a g e Table of Contents 1. Workshop ......... 6 Sustainable Manufacturing Technology Assessment ...

  10. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - ... mechanics of the Manufacturing Demonstration Facility (MDF) concept and the ...