Sample records for manufacturer lg chem

  1. Li-Ion Battery Cell Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Corp. LG Chem Chemicals Electronics Comm.& Services *LG Chem *LG Hausys *LG Household & Health Care *LG Life Sciences *LG MMA *LG Electronics *LG Display *LG Innotek *Hiplaza...

  2. 2010 DOE, Li-Ion Battery Cell Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    otherwise restricted information" 2010 DOE, Li-Ion Battery Cell Manufacturing Kee Eun LG Chem Ltd.Compact Power Inc. Jun 8 th 2010 Project ID ARRAVT001 "This presentation does...

  3. Manufacturing

    Office of Environmental Management (EM)

    Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

  4. Gewone Differentiaalvergelijkingen Gerard L.G. Sleijpen

    E-Print Network [OSTI]

    Sleijpen, Gerard

    Universiteit Utrecht Utrecht, september 2001 #12;NUMERIEKE Gewone Differentiaalvergelijkingen Gerard L.G. Sleijpen Mathematisch Instituut Universiteit Utrecht Utrecht, september 2001 #12;Voorwoord We behandelen Instituut Universiteit Utrecht Utrecht, januari 1996 i #12;Inhoudsopgave Voorwoord i Inhoud ii Notaties en

  5. Gain saturation studies in LG-750 and LG-770 amplifier glass

    SciTech Connect (OSTI)

    Pennington, D.M.; Milam, D.; Eimerl, D.

    1997-03-10T23:59:59.000Z

    Experiments were performed on the 100-J class Optical Sciences Laser (OSL) at LLNL to characterize the saturation fluence and small-signal gain of a solid-state Nd:glass amplifier utilizing LG-750 and LG-770, an amplifier glass developed for the National Ignition Facility (NIF). These high quality measurements of gain saturation at NIF level fluences, i.e., 10-15 J/cm{sup 2}, provide essential parameters for the amplifier performance codes used to design NIF and future high power laser systems. The small-signal gain, saturation fluence and square-pulse distortion were measured as a function of input fluence and pulse length in platinum-free LG-750 and LG-770. The input fluence, output fluence, small-signal gain and passive losses were measured to allow calculation of the saturation fluence. Least square fits of the output vs. input fluence data using a Frantz-Nodvik model was used to obtain an average saturation fluence for each data set. Overall, gain saturation in LG-750 and LG-770 is comparable at long pulse lengths. For shorter pulse length, < 5 ns, LG-770 exhibits a stronger pulse length dependence than LG-750, possibly due to a longer terminal level lifetime. LG-770 also has a higher cross- section, which is reflected by its slightly higher extraction efficiency. 52 refs., 11 figs., 2 tabs.

  6. LG Electronics v. DOE - Defendants' Brief in Opposition to Plaintiff...

    Broader source: Energy.gov (indexed) [DOE]

    to a 2008 agreement whereby LG could temporarily continue to test certain fill tubes and ice ejection heaters for ENERGY STAR compliance while they are in the "off" rather than the...

  7. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

  8. Gewone Di#erentiaalvergelijkingen Gerard L.G. Sleijpen

    E-Print Network [OSTI]

    Sleijpen, Gerard

    Universiteit Utrecht Utrecht, september 2001 #12; NUMERIEKE Gewone Di#erentiaalvergelijkingen Gerard L.G. Sleijpen Mathematisch Instituut Universiteit Utrecht Utrecht, september 2001 #12; Voorwoord We behandelen Universiteit Utrecht Utrecht, januari 1996 i #12; Inhoudsopgave Voorwoord i Inhoud ii Notaties en conventies

  9. A high performance R-D readout circuitry for lg resolution microaccelerometers

    E-Print Network [OSTI]

    Akin, Tayfun

    A high performance R-D readout circuitry for lg resolution microaccelerometers _Ilker E. Ocak an adjustable sensitivity up to 8 V/g with a noise level of 4.8 lg/HHz in open-loop. Keywords Sigma precision accelerometers with micro-g (lg, g = 9.8 m/s2 ) resolution have many applications, including

  10. LG Dismisses Lawsuit against DOE over Energy Star Enforcement | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DCKickoffLDV HVACResearchof Energy LG

  11. LG: Order (2014-SE-15011) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DCKickoffLDV HVACResearchof4-SE-15011) LG:

  12. Broadband Lg Attenuation Modeling in the Middle East

    SciTech Connect (OSTI)

    Pasyanos, M E; Matzel, E M; Walter, W R; Rodgers, A J

    2008-08-21T23:59:59.000Z

    We present a broadband tomographic model of Lg attenuation in the Middle East derived from source- and site-corrected amplitudes. Absolute amplitude measurements are made on hand-selected and carefully windowed seismograms for tens of stations and thousands of crustal earthquakes resulting in excellent coverage of the region. A conjugate gradient method is used to tomographically invert the amplitude dataset of over 8000 paths over a 45{sup o} x 40{sup o} region of the Middle East. We solve for Q variation, as well as site and source terms, for a wide range of frequencies ranging from 0.5-10 Hz. We have modified the standard attenuation tomography technique to more explicitly define the earthquake source expression in terms of the seismic moment. This facilitates the use of the model to predict the expected amplitudes of new events, an important consideration for earthquake hazard or explosion monitoring applications. The attenuation results have a strong correlation to tectonics. Shields have low attenuation, while tectonic regions have high attenuation, with the highest attenuation at 1 Hz is found in eastern Turkey. The results also compare favorably to other studies in the region made using Lg propagation efficiency, Lg/Pg amplitude ratios and two-station methods. We tomographically invert the amplitude measurements for each frequency independently. In doing so, it appears the frequency-dependence of attenuation is not compatible with the power law representation of Q(f), an assumption that is often made.

  13. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect (OSTI)

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-03-31T23:59:59.000Z

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (?LGFCS?) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  14. LG: Proposed Penalty (2015-CE-14022) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DCKickoffLDV5-CE-14022) LG: Proposed Penalty

  15. LG to DOE General Counsel; Re:Request for Comment on Large Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clothes Washers LG response to DOE's request for information regarding alternative test procedures for large-capacity clothes washer models, December 7, 2010. After DOE...

  16. LG Electronics U.S.A. v. DOE, Stipulation of Voluntary Dismissal

    Broader source: Energy.gov [DOE]

    LG Electronics U.S.A., Inc. v. U.S. Dept. of Energy, Civil Action Number 1:09-cv-02297-JDB - LG voluntarily dismissed its claims against the DOE and agrees to remove the ENERGY STAR labels from various refrigerator-freezers.

  17. CHEM /8853 1 CHEM 8853, Spring,

    E-Print Network [OSTI]

    Sherrill, David

    semester biochemistry, one semester organic chemistry (CHEM 1315 or 2312) T-SQUARE PAGE (COURSE WEBSITECHEM /8853 1 CHEM 8853, Spring, Bioconjugate and Bioorthogonal Chemistry Syllabus COURSE MEETING expensive. You will be able to get through the course without purchasing either book. PREREQUISITES: one

  18. A RD micro accelerometer with 6 lg/HHz resolution and 130 dB dynamic range

    E-Print Network [OSTI]

    Akin, Tayfun

    A RD micro accelerometer with 6 lg/HHz resolution and 130 dB dynamic range Ugur So¨nmez · Haluk Ku,largeareaMEMSsensors.Theproposedsystem can achieve a minimum of 6.0 lg/HHz noise floor, 3.2 lg bias instability, and a maximum of 130 dB DR at 1 Hz. A FSR of ±20 g is reported for 6.2 lg/HHz noise floor. This range can be increased up to ±40 g

  19. This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys., 2012, 14, 675680 675 Cite this: Phys. Chem. Chem. Phys., 2012, 14, 675680

    E-Print Network [OSTI]

    Neumark, Daniel M.

    This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys., 2012, 14, 675­680 675 Cite this: Phys. Chem. Chem. Phys., 2012, 14, 675­680 Photodissociation of isobutene at 193 nm Gabriel M. P. Just

  20. If*|lg1JEDIlls ,,ft-o-aS.2

    E-Print Network [OSTI]

    »-H a3UW ·3USi «c« «"22"5"35» If*|lg1JEDIlls pV) 232 *2*& yuo = OW O5oc ,,ft-o-aS.2 F.O-a-- o :§>£ £1 2 (genetic code) Eukaryotes Sexual populations Animals, plants, fungi (cell differentiation) Colonies (non

  1. Irrtum und technische nderungen vorbehalten. 13.06.08 LG Electronics Deutschland GmbH Jakob-Kaiser-Str. 12, 47877 Willich

    E-Print Network [OSTI]

    Ott, Albrecht

    Irrtum und technische ?nderungen vorbehalten. 13.06.08 LG Electronics Deutschland GmbH Jakob TFT Monitor FLATRON L1942PM #12;Irrtum und technische ?nderungen vorbehalten. 13.06.08 LG Electronics

  2. Irrtum und technische nderungen vorbehalten. 14.01.08 LG Electronics Deutschland GmbH Jakob-Kaiser-Str. 12, 47877 Willich

    E-Print Network [OSTI]

    Ott, Albrecht

    Irrtum und technische ?nderungen vorbehalten. 14.01.08 LG Electronics Deutschland GmbH Jakob ?nderungen vorbehalten. 14.01.08 LG Electronics Deutschland GmbH Jakob-Kaiser-Str. 12, 47877 Willich Tel FLATRON F-Engine, LG welterster eigenentwickelter Bildoptimierungschip für noch klarere kontrastreichere

  3. Manufacturing technologies

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  4. Manufacturing technology

    SciTech Connect (OSTI)

    Blaedel, K.L.

    1997-02-01T23:59:59.000Z

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  5. Additive Manufacturing: Implications on Research and Manufacturing

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

  6. 147Chemistry Chemistry (Chem)

    E-Print Network [OSTI]

    Dresden, Gregory

    147Chemistry Chemistry (Chem) Bayly Foundation PROFESSORS FRANCE, PLEVA ASSOCIATE PROFESSORS ALty A student may complete only one of the majors listed in the Department of Chemistry. The major in chemistry leading to a Bachelor of Arts degree requires completion of 44 credits as follows: 1. Chemistry 111, 112

  7. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  8. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31T23:59:59.000Z

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  9. 2654 Phys. Chem. Chem. Phys., 2013, 15, 2654--2659 This journal is c the Owner Societies 2013 Cite this: Phys.Chem.Chem.Phys.,2013,

    E-Print Network [OSTI]

    Javey, Ali

    this: Phys.Chem.Chem.Phys.,2013, 15, 2654 Influence of catalyst choices on transport behaviors of In2654 Phys. Chem. Chem. Phys., 2013, 15, 2654--2659 This journal is c the Owner Societies 2013 Cite and controllable NW physical properties. The NW growths, including vapor­ liquid­solid (VLS) or vapor

  10. Purification of fire derived markers for lg scale isotope analysis C) using high performance liquid chromatography (HPLC)

    E-Print Network [OSTI]

    Gilli, Adrian

    Purification of fire derived markers for lg scale isotope analysis (d13 C, D14 C) using high successfully analyzed the 14 C content of individual benzene polycarboxy- lic acids with a sample size as small the expansion of isotopic BC studies to samples that have either been too small or strongly affected by non

  11. Atmos. Chem. Phys., 11, 16031619, 2011 www.atmos-chem-phys.net/11/1603/2011/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Atmos. Chem. Phys., 11, 1603­1619, 2011 www.atmos-chem-phys.net/11/1603/2011/ doi:10.5194/acp-11-1603

  12. Roadmap: Chemistry Chemistry -Bachelor of Science [AS-BS-CHEM-CHEM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Chemistry - Bachelor of Science [AS-BS-CHEM-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD for certification by the American Chemical Society CHEM 10060 General Chemistry I (4) and CHEM 10062 General

  13. Roadmap: Chemistry Chemistry -Bachelor of Science [AS-BS-CHEM-CHEM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Chemistry - Bachelor of Science [AS-BS-CHEM-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 2 | Last Updated: 17-May-12/LNHD for certification by the American Chemical Society CHEM 10060 General Chemistry I (4) and CHEM 10062 General

  14. Advanced Manufacturing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Better Buildings, Better Plants Clean Energy Manufacturing Initiative Combined Heat and Power Innovative Manufacturing Initiative National Network for Manufacturing Innovation...

  15. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    Computer simulation Facilities design Finite element analysis Green manufacturing Industrial materialsManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  16. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2008-01-01T23:59:59.000Z

    a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

  17. *, **LG, *** {kilmd55, sky6174, carecano}@ccl.snu.ac.kr, jsno@snu.ac.kr, habchung@hongik.ac.kr

    E-Print Network [OSTI]

    No, Jong-Seon

    National Univ., **LG Electronic, ***Hongik Univ. , (soft-decision-and-forward: SDF) . (signal-to-noise ratio: SNR) , . . [1] SDF (maximum-likelihood: ML) , [2] (pairwise error probability: PEP) . SDF SNR , . 1 . . 1 1 (source: S

  18. IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 1, JANUARY 2010 47 Flicker-Noise Improvement in 100-nm Lg Si0.50Ge0.50

    E-Print Network [OSTI]

    Yener, Aylin

    IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 1, JANUARY 2010 47 Flicker-Noise Improvement in 100-nm Lg Si0.50Ge0.50 Strained Quantum-Well Transistors Using Ultrathin Si Cap Layer Feng Li, Se-Hoon Lee compressively strained p-channel 100-nm Lg Si0.50Ge0.50 quantum-well FETs (QWFETs) with ultrathin Si (2 nm

  19. The Department of Energy's Management of the Award of a $150 Million Recovery Act Grant to LG Chem Michigan Inc., OAS-RA-13-10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe Allegations Regarding Prohibited

  20. Attenuation Tomography of Northern California and the Yellow Sea / Korean Peninsula from Coda-source Normalized and Direct Lg Amplitudes

    SciTech Connect (OSTI)

    Ford, S R; Dreger, D S; Phillips, W S; Walter, W R; Mayeda, K; Malagnini, L

    2008-07-16T23:59:59.000Z

    Inversions for regional attenuation (1/Q) of Lg are performed in two different regions. The path attenuation component of the Lg spectrum is isolated using the coda-source normalization method, which corrects the Lg spectral amplitude for the source using the stable, coda-derived source spectra. Tomographic images of Northern California agree well with one-dimensional (1-D) Lg Q estimated from five different methods. We note there is some tendency for tomographic smoothing to increase Q relative to targeted 1-D methods. For example in the San Francisco Bay Area, which contains high attenuation relative to the rest of it's region, Q is over-estimated by {approx}30. Coda-source normalized attenuation tomography is also carried out for the Yellow Sea/Korean Peninsula (YSKP) where output parameters (site, source, and path terms) are compared with those from the amplitude tomography method of Phillips et al. (2005) as well as a new method that ties the source term to the MDAC formulation (Walter and Taylor, 2001). The source terms show similar scatter between coda-source corrected and MDAC source perturbation methods, whereas the amplitude method has the greatest correlation with estimated true source magnitude. The coda-source better represents the source spectra compared to the estimated magnitude and could be the cause of the scatter. The similarity in the source terms between the coda-source and MDAC-linked methods shows that the latter method may approximate the effect of the former, and therefore could be useful in regions without coda-derived sources. The site terms from the MDAC-linked method correlate slightly with global Vs30 measurements. While the coda-source and amplitude ratio methods do not correlate with Vs30 measurements, they do correlate with one another, which provides confidence that the two methods are consistent. The path Q{sup -1} values are very similar between the coda-source and amplitude ratio methods except for small differences in the Da-xin-anling Mountains, in the northern YSKP. However there is one large difference between the MDAC-linked method and the others in the region near stations TJN and INCN, which point to site-effect as the cause for the difference.

  1. Atmos. Chem. Phys., 6, 20392056, 2006 www.atmos-chem-phys.net/6/2039/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Switzerland *now at: BKW FMB Energie AG, Switzerland Received: 13 July 2005 ­ Published in Atmos. Chem. Phys

  2. Courses: Chemistry (CHEM) Page 277Sonoma State University 2013-2014 Catalog Chemistry (CHEM)

    E-Print Network [OSTI]

    Ravikumar, B.

    Courses: Chemistry (CHEM) Page 277Sonoma State University 2013-2014 Catalog Chemistry (CHEM) CHeM nC SeLeCted topiCS (0) CHeM 102 CHeMiStry And SoCiety (3) Lecture, 2 hours; laboratory, 3 hours. An introductory course in chemistry for non-majors. Covers the basics of chemistry related to everyday life

  3. RRR Niobium Manufacturing Experience

    SciTech Connect (OSTI)

    Graham, Ronald A. [ATI Wah Chang, An Allegheny Technologies Company, Albany, Oregon 97321 (United States)

    2007-08-09T23:59:59.000Z

    ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

  4. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2008-01-01T23:59:59.000Z

    for implementing green manufacturing. Trans. of NAMRI/SME,the imple- mentation of green manufacturing, where a wedgemanufacturing scope of the assessment. While it is always important in the development of green

  5. Courses: Chemistry (CHEM) Page 271Sonoma State University 2011-2012 Catalog Chemistry (CHEM)

    E-Print Network [OSTI]

    Ravikumar, B.

    Courses: Chemistry (CHEM) Page 271Sonoma State University 2011-2012 Catalog Chemistry (CHEM) CheM 102 CheMiStry And SOCiety (3) Lecture, 2 hours; laboratory, 3 hours. An introductory course in chemistry for non- majors. Covers the basics of chemistry in an effort to better understand current

  6. Hollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients

    E-Print Network [OSTI]

    Perkins, Richard A.

    of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients MEP · MANUFACTURING EXTENSION PARTNERSHIP NationalInstituteofStandardsandTechnology March2013

  7. Enabling Manufacturing Research through Interoperability

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

    2009-01-01T23:59:59.000Z

    sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

  8. This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys., 2012, 14, 25012507 2501 Cite this: Phys. Chem. Chem. Phys., 2012, 14, 25012507

    E-Print Network [OSTI]

    Vertes, Akos

    /or droplets ejected by this high temperature high pressure process can be ionized for mass spectrometry this: Phys. Chem. Chem. Phys., 2012, 14, 2501­2507 Internal energy deposition and ion fragmentation by charged droplets from an electrospray. In order to gauge the internal energy introduced in this laser

  9. 1354 | Phys. Chem. Chem. Phys., 2014, 16, 1354--1365 This journal is the Owner Societies 2014 Cite this: Phys.Chem.Chem.Phys.,

    E-Print Network [OSTI]

    Yildiz, Bilge

    on the mechanical properties and stability of metal oxides, in analogy with hydrogen embrittlement in metals such as hydrogen embrittlement,1 hydrogen multicenter bonds,2 and the elusive hydrogen bond3 to name but a few Cite this: Phys.Chem.Chem.Phys., 2014, 16, 1354 Hydrogen defects in tetragonal ZrO2 studied using

  10. 1632 | Phys. Chem. Chem. Phys., 2014, 16, 1632--1638 This journal is the Owner Societies 2014 Cite this: Phys.Chem.Chem.Phys.,

    E-Print Network [OSTI]

    Cite this: Phys.Chem.Chem.Phys., 2014, 16, 1632 Comparison of hydrogen production and electrical power may present unique opportunities for energy production using RED are oxygen reduction, and hydro- gen intentionally used or optimized as a method for renewable hydrogen gas production. The potential for energy

  11. 16246 | Phys. Chem. Chem. Phys., 2014, 16, 16246--16254 This journal is the Owner Societies 2014 Cite this: Phys.Chem.Chem.Phys.,

    E-Print Network [OSTI]

    Thygesen, Kristian

    Cite this: Phys.Chem.Chem.Phys., 2014, 16, 16246 Optimizing porphyrins for dye sensitized solar cells-Lastraab and Kristian S. Thygesena In the search for sustainable energy sources, dye sensitized solar cells (DSSCs in 1991,1 dye sensitized solar cells (DSSCs)2 have been considered promising and cost-efficient candidates

  12. 20434 Phys. Chem. Chem. Phys., 2013, 15, 20434--20437 This journal is c the Owner Societies 2013 Cite this: Phys.Chem.Chem.Phys.,2013,

    E-Print Network [OSTI]

    Rogers, John A.

    , in most modules, solar cells are encapsulated with glass and/or plastic covers12 that absorb UV light Cite this: Phys.Chem.Chem.Phys.,2013, 15, 20434 Enhanced ultraviolet responses in thin-film InGaP solar into the visible range, with beneficial effects on the performance of solar cells, as demonstrated with thin

  13. Locating Chicago Manufacturing

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Renaissance Council, is among the nation's leading public high schools focused on manufac- turing area's econ- omy, including how important manufacturing is to that economy, which manufac- turing

  14. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing manufacturing industries and result in creative new products. Stronger, more corrosion-resistant and lower cost steel alloys are being developed and commercialized to...

  15. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  16. Acoustics by additive manufacturing:.

    E-Print Network [OSTI]

    Setaki, F.

    2012-01-01T23:59:59.000Z

    ??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance (more)

  17. SSL Manufacturing Roadmap

    Broader source: Energy.gov [DOE]

    Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

  18. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  19. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Boucherie, Richard J.

    MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 14, No. 4, Fall 2012, pp. 495­511 ISSN 1523 research directions, expanding upon the key points raised by Green [Green LV (2012) The vital role of operations analysis in improving healthcare delivery. Manufacturing Service Oper. Management 14

  20. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Soares, João Luís Cardoso

    ;Green and Soares: Note Manufacturing & Service Operations Management 9(1), pp. 54­61, © 2007 INFORMS 55MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 9, No. 1, Winter 2007, pp. 54­61 issn 1523-Dependent Waiting Time Probabilities in M t /M/s t Queuing Systems Linda V. Green Graduate School of Business

  1. Manufacturing Renaissance: Return of manufacturing to western countries.

    E-Print Network [OSTI]

    Kianian, Babak; Larsson, Tobias

    2013-01-01T23:59:59.000Z

    ??Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers (more)

  2. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deposition Manufacturing 201303127 Methods and Materials for Room Temperature Polymer Additive Manufacturing 201303140 Reactive Polymer Fused Deposition Manufacturing 201303151...

  3. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01T23:59:59.000Z

    issues in green design and manufacturing." ManufacturingFOR IMPLEMENTING GREEN MANUFACTURING David Dornfeld BerkeleyCalifornia KEYWORDS Green Manufacturing, Technology,

  4. MDF | Manufacturing Demonstration Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration...

  5. CIMplementation: Evaluating Manufacturing Automation

    E-Print Network [OSTI]

    Krakauer, J.

    management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

  6. Atmos. Chem. Phys., 9, 21132128, 2009 www.atmos-chem-phys.net/9/2113/2009/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Atmos. Chem. Phys., 9, 2113­2128, 2009 www.atmos-chem-phys.net/9/2113/2009/ © Author(s) 2009-averaged column ozone is destroyed by 2020, and 67% is destroyed by 2065 in comparison to 1980. Large ozone constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical

  7. Atmos. Chem. Phys., 9, 20212033, 2009 www.atmos-chem-phys.net/9/2021/2009/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Atmos. Chem. Phys., 9, 2021­2033, 2009 www.atmos-chem-phys.net/9/2021/2009/ © Author(s) 2009 ­ Published: 20 March 2009 Abstract. During the TORCH campaign a zero dimensional box model based in Europe by over 60 000 per year by 2020 (Bower et al., 2006). The hydroxyl (OH) radical is one of the most

  8. Atmos. Chem. Phys., 11, 27652786, 2011 www.atmos-chem-phys.net/11/2765/2011/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    above the level of zero net radiative heating, which is estimated to be 15 km in the tropics, the airAtmos. Chem. Phys., 11, 2765­2786, 2011 www.atmos-chem-phys.net/11/2765/2011/ doi:10.5194/acp-11 Continent region. The frequency distribution of high clouds from models and observations is calculated using

  9. Atmos. Chem. Phys., 7, 27652773, 2007 www.atmos-chem-phys.net/7/2765/2007/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Atmos. Chem. Phys., 7, 2765­2773, 2007 www.atmos-chem-phys.net/7/2765/2007/ © Author(s) 2007 that the qualitative conclusions of this study are not affected even by relatively large errors in the calculation varied widely. Predictions of theoretical studies have ranged from zero (corresponding to no nucleation

  10. Atmos. Chem. Phys., 12, 683691, 2012 www.atmos-chem-phys.net/12/683/2012/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    is usually defined by the level of zero net radiative heat- ing. Above this level air tends to riseAtmos. Chem. Phys., 12, 683­691, 2012 www.atmos-chem-phys.net/12/683/2012/ doi:10.5194/acp-12 measure- ments of CALIPSO and Aura/MLS we calculated the cor- relation of water vapor, ice water content

  11. Atmos. Chem. Phys., 13, 1208912106, 2013 www.atmos-chem-phys.net/13/12089/2013/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Atmos. Chem. Phys., 13, 12089­12106, 2013 www.atmos-chem-phys.net/13/12089/2013/ doi:10.5194/acp-13 product: (1) by intro- ducing a new methodology for the calculation of pure dust extinction from dust mixtures and (2) by applying an av- eraging scheme that includes zero extinction values for the nondust

  12. Atmos. Chem. Phys., 13, 54515472, 2013 www.atmos-chem-phys.net/13/5451/2013/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    .1­0.8 ppb, relative to a zero land-use change calculation, driven by increases (decreases) in surfaceAtmos. Chem. Phys., 13, 5451­5472, 2013 www.atmos-chem-phys.net/13/5451/2013/ doi:10.5194/acp-13

  13. Atmos. Chem. Phys., 11, 1176111775, 2011 www.atmos-chem-phys.net/11/11761/2011/

    E-Print Network [OSTI]

    Martin, Randall

    Atmos. Chem. Phys., 11, 11761­11775, 2011 www.atmos-chem-phys.net/11/11761/2011/ doi:10.5194/acp-11-11761-2011 © Author(s) 2011. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Novel application, Canada 3Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

  14. Roadmap: Chemistry Bachelor of Arts [AS-BA-CHEM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Bachelor of Arts [AS-BA-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 24-May-12/LNHD This roadmap One: [15 Credit Hours] CHEM 10060 General Chemistry I or CHEM 10960 Honors General Chemistry 4

  15. Roadmap: Chemistry Bachelor of Arts [AS-BA-CHEM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Bachelor of Arts [AS-BA-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 1-May-13/LNHD This roadmap One: [15 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM 10062 General Chemistry I

  16. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  17. ATS materials/manufacturing

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

    1997-11-01T23:59:59.000Z

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  18. L:LCB:lg

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATIONHEALXH: l ._I

  19. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  20. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    Trend and Forecast LG Electronics, October. http://TV model in 2007, and LG Electronics launched a 15-inch (two Korean manufacturers, LG Electronics and Samsung, also

  1. Additive Manufacturing for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  2. Atmos. Chem. Phys., 10, 999310002, 2010 www.atmos-chem-phys.net/10/9993/2010/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    2Aalto University School of Science and Technology, Espoo, Finland 3Lappeenranta University of Technology, Lappeenranta, Finland Received: 26 March 2010 ­ Published in Atmos. Chem. Phys. Discuss.: 6 May

  3. Atmos. Chem. Phys., 12, 33113331, 2012 www.atmos-chem-phys.net/12/3311/2012/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    of global mean age of stratospheric air for the 2002 to 2010 period G. P. Stiller1, T. von Clarmann1, F. Stiller (gabriele.stiller@kit.edu) Received: 28 July 2011 ­ Published in Atmos. Chem. Phys. Discuss.: 18

  4. Atmos. Chem. Phys., 11, 44114423, 2011 www.atmos-chem-phys.net/11/4411/2011/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    of Technology, Karlsruhe, Germany Received: 21 October 2010 ­ Published in Atmos. Chem. Phys. Discuss.: 4 of gases in clean air above the cloud, and humid conditions. There- fore the treatment of complex

  5. Atmos. Chem. Phys., 10, 37873801, 2010 www.atmos-chem-phys.net/10/3787/2010/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Institute of Technology (KIT), Germany Received: 7 August 2009 ­ Published in Atmos. Chem. Phys. Discuss.: 2 from IASI clearly show the influence of the Asian summer monsoon that brings clean air masses from

  6. Bolt Manufacture: Process Selection

    E-Print Network [OSTI]

    Colton, Jonathan S.

    file · Selective Laser Sintering (SLS) 3 D P i ti· 3-D Printing · Light Engineered Net Shaping (LENS Processes and Systems Prof. J.S. Colton © GIT 2009 20 #12;3D Printing Process (Soligen) ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 21 #12;3D Printing Head (Soligen)3D Printing

  7. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE

  8. Manufacturing Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWater ConservationDepartmentEnergy Manufacturing Energy6

  9. Manufacturing Tech Team | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Tech Team Manufacturing Tech Team Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy...

  10. Leveraging Manufacturing for a Sustainable Future

    E-Print Network [OSTI]

    Dornfeld, David

    2011-01-01T23:59:59.000Z

    for Implementing Green Manufacturing, NAMRI Trans. , 35,Strategies for Green Manufacturing, Proc. 4th CIRPAnd, in specific green manufacturing? This will depend on

  11. Sustainable Manufacturing Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    Strategies for Green Manufacturing, " Proceedings HighFH), Implementing green manufacturing, as the first stepASME, Evanston, IL, Green Manufacturing uk/sustainability/

  12. Appropriate use of Green Manufacturing Frameworks

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2010-01-01T23:59:59.000Z

    for Implementing Green Manufacturing, Trans. North AmericanAppropriate use of Green Manufacturing Frameworks C. Reich-for sustainable or green manufacturing systems and products,

  13. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    for implementing green manufacturing, Trans. North AmericaStrategies for Green Manufacturing, Proc. of the 4th CIRPAppropriate Use of Green Manufacturing Frameworks, Proc. of

  14. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    Operation Strategies for Green Manufacturing, Proceedings ofSymposium on Green Manufacturing and Applications (ISGMAfor implementing green manufacturing. Transactions of NAMRI/

  15. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

  16. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

  17. Leveraging Manufacturing for a Sustainable Future

    E-Print Network [OSTI]

    Dornfeld, David

    2011-01-01T23:59:59.000Z

    2010): Sustainable Manufacturing Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as the creation of manufacturing products that use materials and processes

  18. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    D. , Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

  19. Sustainable Manufacturing Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

  20. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    D. , Sustainable Manufacturing Greening Processes, Systemsorimpact low Most sustainable Increaseprocess efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

  1. Atmos. Chem. Phys., 8, 66656679, 2008 www.atmos-chem-phys.net/8/6665/2008/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Atmos. Chem. Phys., 8, 6665­6679, 2008 www.atmos-chem-phys.net/8/6665/2008/ © Author(s) 2008) for the organic aerosol. We find that the MAC is about 10.5 m2/g at 300 nm and falls close to zero at about 500 nm be considered as "radiatively correct", because when used in radiative transfer calculations, the calculated

  2. Atmos. Chem. Phys., 14, 75437557, 2014 www.atmos-chem-phys.net/14/7543/2014/

    E-Print Network [OSTI]

    Pierce, Jeffrey

    Atmos. Chem. Phys., 14, 7543­7557, 2014 www.atmos-chem-phys.net/14/7543/2014/ doi:10.5194/acp-14- ing from observed sea-ice retreat (aspect 1) was calculated as 0.1 W m-2 (Hudson, 2011; Flanner et al., 2011). This forcing was predicted by Hudson (2011) to increase to 0.3 W m-2 as- suming zero sea

  3. Atmos. Chem. Phys., 14, 1270112724, 2014 www.atmos-chem-phys.net/14/12701/2014/

    E-Print Network [OSTI]

    Pierce, Jeffrey

    Atmos. Chem. Phys., 14, 12701­12724, 2014 www.atmos-chem-phys.net/14/12701/2014/ doi:10.5194/acp-14-12701-2014 © Author(s) 2014. CC Attribution 3.0 License. Potential climate forcing of land use and land cover change D, Ithaca, New York, USA 2Land in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany

  4. Syllabus for Chem. 3700 Alternative Energy

    E-Print Network [OSTI]

    Houston, Paul L.

    Syllabus for Chem. 3700 Alternative Energy Class Meetings: Tuesdays and Thursdays popular alternative energy sources which are currently being used or developed to help relieve with the most popular alternate energy options. Due to the interdisciplinary nature of the topic, the course

  5. Air Quality Standards & ATOC/CHEM 5151

    E-Print Network [OSTI]

    Toohey, Darin W.

    1 Lecture 22 Air Quality Standards & Control ATOC/CHEM 5151 #12;2 Primary Pollutants Things to reduce air pollution emissions ­ Latest version ­ 1990 (original, 1963) ­ What is an "air pollutant that are directly emitted Nitrogen Oxides (NOx) Hydrocarbons (VOCs) Carbon Monoxide (CO) #12;3 Secondary Pollutants

  6. CHEM 4170, Medicinal Chemistry University of Missouri

    E-Print Network [OSTI]

    Gates, Kent. S.

    CHEM 4170, Medicinal Chemistry University of Missouri Computer Graphics Visualization of Proteins "pockets" or "clefts" on the surface of their macromolecular targets. A favorable free energy of binding the best way to visualize these structures is using computer graphics. In this assignment, we will use

  7. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    Perkins, Richard A.

    to process improvements to green manufacturing. MEP also works with partners at the state and federal levelsHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING to successfully commercialize federal technologies #12;The Manufacturing Extension Partnership

  8. Posted 10/18/11 MANUFACTURING ENGINEER

    E-Print Network [OSTI]

    Heller, Barbara

    manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

  9. Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

  10. Manufacturing Demonstration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL

  11. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  12. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

  13. Irradiation damage technology for manufacturable Josephson junctions

    E-Print Network [OSTI]

    Webb, Roger P.

    , UK d LG Electronics Institute of Technology, Seoul 137-724, South Korea Abstract We have shown of Electronics, Computing and Mathematics, University of Surrey, Guildford GU2 7XH, UK c University of Surrey Ion Beam Center, School of Electronics, Computing and Mathematics, University of Surrey, Guildford GU2 7XH

  14. LANL Researcher Roger Wiens Discusses ChemCam

    ScienceCinema (OSTI)

    Wiens, Roger

    2014-08-12T23:59:59.000Z

    Discussion of the ChemCam instrument on the Curiosity Rover that occurred during the NASA press conference prior to launch of the Mars Science Laboratory. The ChemCam instrument was developed by Los Alamos National Laboratory and the French Space Institute. Los Alamos National Laboratory researcher Roger Wiens discusses the instrument on this video. ChemCam uses a laser to "zap" features of the Martian landscape and then uses a spectrometer to gather information about the composition of the sample. ChemCam will help the Curiosity Rover determine whether Mars is or was habitable. The Rover is expected to touch down on the Red Planet on August 5, 2012.

  15. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  16. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  17. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Energy Savers [EERE]

    More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

  18. Manufacturing Spotlight: Boosting American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  19. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from industry to assess applicability of new technologies that can reduce manufacturing energy intensity or produce new, energy-efficient products. As part of the technology...

  20. Chemistry Major, Biological Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Biological Emphasis See www.chem.utah.edu for details or contact Professor Richard Ernst (ernst@chem.utah.edu; 801-581-8639) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225 General

  1. Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact Professor Richard Ernst (ernst@chem.utah.edu; 801-581-8639) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225 General

  2. Chemistry Major, Professional Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Professional Emphasis See www.chem.utah.edu for details or contact Professor Richard Ernst (ernst@chem.utah.edu; 801-581-8639) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225

  3. Chemistry Major, Business Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Business Emphasis See www.chem.utah.edu for details or contact Professor Richard Ernst (ernst@chem.utah.edu; 801-581-8639) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225 General

  4. ChemMatCARS Data Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ChemMatCARS is a high-brilliance national synchrotron x-ray facility dedicated primarily to static and dynamic condensed matter chemistry and materials science. The scientific focus of the facility includes the study of surface and interfacial properties of liquids and solids as well as their bulk structure at atomic, molecular and mesoscopic length scales with high spatial and energy resolution. Experimental techniques supported by the facility include: 1) Liquid Surface X-ray Scattering; 2) Solid Surface X-ray Scattering; 3) Time-Resolved Crystallography; 4) Micro-Crystal Diffraction; 5) Small and Wide-angle X-ray Scattering. The data archive referenced here contains data for various components along the beamline within the First Optics Enclosure and is intended to be input or parameter data. See the Science Nuggets at http://cars9.uchicago.edu/chemmat/pages/nuggets.html for leads to some of the research conducted at the ChemMatCARS beamline.

  5. Design for manufacturability Design verification

    E-Print Network [OSTI]

    Patel, Chintan

    ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

  6. Petrick Technology Trends Of Manufacturing

    E-Print Network [OSTI]

    #12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: that firms sophisticated modeling and simulation of both new products and production processes; that additive

  7. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Broader source: Energy.gov (indexed) [DOE]

    Alamgir - LG Chem Power (Co-PI) Geun-Chang Chung - LG Chem Other DOE National Labs - LBNL, ANL Partners Overview LGCPI 3 LGCPI Project Objectives Anode: To develop a 7001000...

  8. Course Syllabus: Chem W1A General Chemistry Course Information

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    Course Syllabus: Chem W1A General Chemistry Course Information Course Number Chemistry W1A Course) Themed Problems.3. Participation in the discussion forums.4. Chem W1A General Chemistry Syllabus https Syllabus https://elearning.berkeley.edu/AngelUploads/Content/2013SUC... 2 of 10 5/28/13 10:13 AM #12;We

  9. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

  10. Atmos. Chem. Phys., 3, 14611475, 2003 www.atmos-chem-phys.org/acp/3/1461/ Atmospheric

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Atmos. Chem. Phys., 3, 14611475, 2003 www.atmos-chem-phys.org/acp/3/1461/ Atmospheric Chemistry, L. Lange1, and J. Lelieveld1 1Max Planck Institute for Chemistry, Mainz, Germany 2German Weather (Andreae and Merlet, 2001). Increased use of gasoline and other hydrocarbon products has caused enhanced

  11. Atmos. Chem. Phys., 3, 18871902, 2003 www.atmos-chem-phys.org/acp/3/1887/ Atmospheric

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Atmos. Chem. Phys., 3, 1887­1902, 2003 www.atmos-chem-phys.org/acp/3/1887/ Atmospheric Chemistry, Germany 2Institute of Atmospheric Physic, DLR, Oberpfaffenhofen, D-82234 Wessling, Germany 3Max-platform field campaign to measure long-range transport of air-pollution and aerosols from South East Asia

  12. Master Document located at: W:\\fas\\fas-Quality Management System\\Quality Management System\\01 Quality System\\02 WORK INSTRUCTIONS\\3700-3899 Facilities Coordination\\3735 LG Plasma Televisions.doc

    E-Print Network [OSTI]

    Master Document located at: W:\\fas\\fas-Quality Management System\\Quality Management System\\01 for this process to complete. #12;Master Document located at: W:\\fas\\fas-Quality Management System\\Quality Management System\\01 Quality System\\02 WORK INSTRUCTIONS\\3700-3899 Facilities Coordination\\3735 LG Plasma

  13. Beryllium Manufacturing Processes

    SciTech Connect (OSTI)

    Goldberg, A

    2006-06-30T23:59:59.000Z

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

  14. Atmos. Chem. Phys., 4, 967987, 2004 www.atmos-chem-phys.org/acp/4/967/

    E-Print Network [OSTI]

    Boyer, Edmond

    ). Measure- ments were made continuously using a wet-annular denuder (WAD) in combination with a Steam-4-967 Atmospheric Chemistry and Physics Real-time measurements of ammonia, acidic trace gases and water Quality, 1755 ZG Petten, The Netherlands Received: 5 December 2003 ­ Published in Atmos. Chem. Phys

  15. Atmos. Chem. Phys., 11, 50455077, 2011 www.atmos-chem-phys.net/11/5045/2011/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    ), auroral zone medium and high energy electrons, solar proton events and galactic cosmic rays on the middle to the solar cycle in irradiance and ionizing particle precipitation K. Semeniuk1, V. I. Fomichev1, J. C. Mc¨a Geophysical Laboratory, University of Oulu, Oulu, Finland Received: 5 October 2010 ­ Published in Atmos. Chem

  16. Atmos. Chem. Phys., 4, 23932399, 2004 www.atmos-chem-phys.org/acp/4/2393/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    is a significant atmospheric trace gas in the context of greenhouse warming and climate change. The dominant sink mea- surement of Cl. However, the large kinetic isotope effect of Cl compared with OH produces a large its oxidation releases water vapour, which modifies both the radiative balance and stratospheric chem

  17. Atmos. Chem. Phys., 8, 44994516, 2008 www.atmos-chem-phys.net/8/4499/2008/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    , California, USA 3Saint Louis University, St. Louis, Missouri, USA 4Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Received: 18 April 2007 ­ Published in Atmos. Chem. Phys. Discuss.: 11 May in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time

  18. Atmos. Chem. Phys., 8, 19111924, 2008 www.atmos-chem-phys.net/8/1911/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    affects the chem- ical composition of the troposphere, and has profound eco- logical and climatic impacts, and to analyse the relation- ship between fire activity and the El Ni~no-Southern Os- cillation. This study fire dynamics were identified with cluster analysis, and in- terpreted based on their eco

  19. Atmos. Chem. Phys., 14, 77217739, 2014 www.atmos-chem-phys.net/14/7721/2014/

    E-Print Network [OSTI]

    Pierce, Jeffrey

    between climate change, global atmospheric chem- istry, and air pollution are noted in early climate, and chemistry­climate in- teractions that control the efficacy or residence time of pollutants. All-7721-2014 © Author(s) 2014. CC Attribution 3.0 License. Skill in forecasting extreme ozone pollution episodes

  20. Atmos. Chem. Phys., 9, 37773798, 2009 www.atmos-chem-phys.net/9/3777/2009/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    urban emissions and transport af- fect vegetation, human health, and regional climate (Borja- Aburto et and Physics Comparisons of WRF/Chem simulations in Mexico City with ground-based RAMA measurements during National Laboratory, Los Alamos, New Mexico, USA 3Department of Atmospheric Sciences, University

  1. Atmos. Chem. Phys., 8, 51135125, 2008 www.atmos-chem-phys.net/8/5113/2008/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    of the MILAGRO 2006 Campaign: Mexico City emissions and its transport and transformation, Atmos. Chem. Phys.: Chemistry and Transport of Pollution over the Gulf of Mexico and the Pacific: Spring 2006 INTEX-B Campaign and Physics Tropospheric ozone sources and wave activity over Mexico City and Houston during MILAGRO

  2. Atmos. Chem. Phys., 11, 1203712038, 2011 www.atmos-chem-phys.net/11/12037/2011/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    ­1008, 1999. Sandoval-Soto, L., Stanimirov, M., von Hobe, M., Schmitt, V., Valdes, J., Wild, A in Atmos. Chem. Phys., 10, 547­561, 2010 M. L. White, Y. Zhou, R. S. Russo, H. Mao, R. Talbot, R. K. Varner to: M. L. White (mwhite@necc.mass.edu) Published by Copernicus Publications on behalf of the European

  3. MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS

    E-Print Network [OSTI]

    Magee, Joseph W.

    MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

  4. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger [University of Arizona

    2014-12-17T23:59:59.000Z

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square a unique capability. The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  5. 3524 Chem. Commun., 2012, 48, 35243526 This journal is c The Royal Society of Chemistry 2012 Cite this: Chem. Commun., 2012, 48, 35243526

    E-Print Network [OSTI]

    3524 Chem. Commun., 2012, 48, 3524­3526 This journal is c The Royal Society of Chemistry 2012 Cite this: Chem. Commun., 2012, 48, 3524­3526 Tri-metallic deltahedral Zintl ions: experimental

  6. Opportunities and Challenges to Sustainable Manufacturing and CMP

    E-Print Network [OSTI]

    Dornfeld, David

    2009-01-01T23:59:59.000Z

    for Implementing Green Manufacturing, Trans. North AmericanBoyd, S. , LMAS Green Manufacturing Research Presentation,MANUFACTURING AND GREEN MANUFACTURING Sustainability is

  7. Additive Manufacturing Opportunities for Transportation | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Opportunities for Transportation Mar 13 2015 10:00 AM - 11:00 AM Lonnie Love, Manufacturing Systems Research Group Transportation Science Seminar Series...

  8. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

  9. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

  10. A Management Strategy for Additive Manufacturing:.

    E-Print Network [OSTI]

    Zahn, N.Z.

    2014-01-01T23:59:59.000Z

    ??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology. (more)

  11. National Electrical Manufacturers Association (NEMA) Response...

    Broader source: Energy.gov (indexed) [DOE]

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  12. Additive Manufacturing Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

  13. Welcome and Advanced Manufacturing Partnership (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

  14. Mechanical and Manufacturing Engineering Mechatronics Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

  15. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  16. Process systems engineering of continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Abel, Matthew J

    2010-01-01T23:59:59.000Z

    Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

  17. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

  18. Manufacturing System Design Framework Manual

    E-Print Network [OSTI]

    Vaughn, Amanda

    2002-01-01T23:59:59.000Z

    Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

  19. Wind Energy Manufacturing Tax Incentive

    Broader source: Energy.gov [DOE]

    With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

  20. ChemCam sends digital 'thumbs up'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant navalChemCam laser

  1. Uni Chem Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq. -Udhaya Energyfor LowUmpqua(RedirectedChem

  2. ARM - Campaign Instrument - wrf-chem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love to heartotdngovInstrumentswrf-chem Comments? We would love to

  3. PowerChem | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River EnergyCube Pvt Ltd PCPLRingPowerChem

  4. Designing a National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction NNMI principles Public NMMI Design Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material e.g. lightweight, low cost carbon fiber

  5. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lostand where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  6. Quiz II: Chemistry CHEM 213W McGill University

    E-Print Network [OSTI]

    Ronis, David M.

    Quiz II: Chemistry CHEM 213W McGill University INSTRUCTIONS 1. No books or notes are permitted. 2 #12;Quiz II -2- Chemistry CHEM 213W 1. (20%) a) Show that in a one component system. dH = CP dT + V(1 of 1 atm at -72. 2o C and 2 atm at -69. 1o C. Calculate the heat of sublimation of dry ice. March 13

  7. Manufacturing for the Hydrogen Economy Manufacturing Research & Development

    E-Print Network [OSTI]

    to coordinate and leverage the current federal efforts focused on manufacturability issues such as low-cost of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

  8. Manufacturing Innovation in the DOE

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007Naval Reactors' Cyber SecurityManufacturingManufacturing

  9. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013

    Broader source: Energy.gov [DOE]

    Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

  10. Manufacturing Energy and Carbon Footprints

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  11. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  12. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  13. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2012-05-22T23:59:59.000Z

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  14. Systems, Inc. Manufacturing Program Manager

    E-Print Network [OSTI]

    70819 #12;Advanced Energy Systems, Inc. Outline ·Introduction ·Accomplishments Phase I ·Technical Approach - Second Year ·Manufacturing Schedule Assessment -Top Level Phase II #12;Advanced Energy Systems Design and FEA of 5 cell RF Cavity, He Vessel, Power Coupler, & Cryostat -Interfaces to external piping

  15. Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 17 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

  16. Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 30 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

  17. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  18. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  19. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  20. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D Additive Manufacturing © Christopher B. Williams Electron Beam Melting Electron Beam Melting Direct Metal

  1. Mechanics and Design, Manufacturing Professor Hani Naguib

    E-Print Network [OSTI]

    Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials. Apple Canada(Se12), Revenue: $5,067,109 9. CGI Group(Se12), Revenue: $4,786,857 10. Siemens Canada(Se12

  2. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    using additive manufacturing in applications such as, but not limited to the net shape manufacture of) Promoting Well-Being, Finding Cures; (3) Building Communities, Expanding Opportunities; and (4) Harnessing

  3. Montana Manufacturing Center www.mtmanufacturingcenter.com

    E-Print Network [OSTI]

    Dyer, Bill

    Montana Manufacturing Center www.mtmanufacturingcenter.com University Technical Assistance Program and wellness industry. Commenting on the strategy, Chief Opera- tions Officer and Six Sigma Green Belt Brad achieve that. NLI offers premier manufacturing and laboratories services (www

  4. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01T23:59:59.000Z

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  5. Building Blocks for the Future of Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Future of Manufacturing Building Blocks for the Future of Manufacturing Scott Smith 2011.05.04 Even though we grew up on opposite sides of the world, my colleague...

  6. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

  7. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  8. Benefits and Barriers of Smart Manufacturing

    E-Print Network [OSTI]

    Trombley, D.; Rogers, E.

    2014-01-01T23:59:59.000Z

    Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

  9. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  10. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  11. Webinar: Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  12. Electromagnetic compatibility in semiconductor manufacturing

    SciTech Connect (OSTI)

    Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

    1995-12-31T23:59:59.000Z

    Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

  13. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M [Los Alamos National Laboratory

    2012-08-01T23:59:59.000Z

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  14. Advanced Manufacturing | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing

  15. Manufacturing Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctobertoPerspective

  16. Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013 Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

  17. Machine Tool Design and Operation Strategies for Green Manufacturing

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Operation Strategies for Green Manufacturing Nancy DIAZ 1 ,to implement green manufacturing in machining includingopportunities to green manufacturing exist at all levels of

  18. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    SWOT Anal- ysis for Green Manufacturing Strategy Selection,Yung, K. L. , 2010, Green Manufacturing Using IntegratedDornfeld, D. , 2013, Green Manufacturing: Fundamentals and

  19. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01T23:59:59.000Z

    how to think about green manufacturing and sustainability.for sustainable or green manufacturing is that it is not anthe implementation of green manufacturing, where a wedge

  20. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

  1. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Analysis May 2013 Additive Manufacturing in China: Aviationan overview of Chinas additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  2. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

  3. Contact Manufacturing Demonstration Facility Craig Blue, Ph.D...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov...

  4. LG Siltron | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformationparticipants < LEDSGP‎ |featuresLEEDLFGLG Siltron

  5. Low Temperature PEM Fuel Cell Manufacturing Needs

    E-Print Network [OSTI]

    Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

  6. Energy Manufacturing Matthew Realff and Steven Danyluk

    E-Print Network [OSTI]

    Das, Suman

    Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

  7. 8th Global Conference on Sustainable Manufacturing

    E-Print Network [OSTI]

    Berlin,Technische Universität

    manufacturing in the UAE · Potentials of renewables · Education for sustainability engineering · Green supply8th Global Conference on Sustainable Manufacturing Architecture for Sustainable Engineering for research institutes and industrial partners related to the area of sustainable manufacturing. It enables

  8. Additive manufacturing of metallic tracks on

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture

  9. e! Science News Semiconductor manufacturing technique holds

    E-Print Network [OSTI]

    Rogers, John A.

    arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cellse! Science News Semiconductor manufacturing technique holds promise for solar energy Published semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

  10. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI Big Area Additive Manufacturing Neutron Characterization for AM Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  11. Pseudomonas fluorescens -A robust manufacturing platform

    E-Print Network [OSTI]

    Lebendiker, Mario

    Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

  12. Manufacturing Research & Development for Systems that will

    E-Print Network [OSTI]

    focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

  13. EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING

    E-Print Network [OSTI]

    Boyer, Edmond

    will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

  14. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorageReviewFlow of

  15. NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop

    E-Print Network [OSTI]

    &D Workshop Fuel Cell Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cell (SOFC) Manufacturing Lines and driving down the cost of fuel cell manufacturing through automation. What are the key technical Membrane Electrode Assembly Manufacturing Hypothetical Fuel Cell Manufacturing Platforms August 11, 2011

  16. Research on advanced photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

    1991-11-01T23:59:59.000Z

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  17. Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL Low-Cost

  18. THE MASTER OF ENGINEERING IN MANUFACTURING ENGINEERING PROGRAM PLANNING SHEET

    E-Print Network [OSTI]

    for Manufacturing ME 526 Simulation of Physical Processes ME 535 Green Manufacturing METHE MASTER OF ENGINEERING IN MANUFACTURING ENGINEERING PROGRAM PLANNING SHEET be at the 500 level or above. 1. Core Manufacturing Requirement ­ 24 credits

  19. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30T23:59:59.000Z

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  20. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29T23:59:59.000Z

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  1. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24T23:59:59.000Z

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  2. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE Fuel

  3. Manufacturing Initiative | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail5,722,326ManhattanEnergyManufacturing

  4. ATOC 3500/CHEM 3151 -Week 10 Urban Pollution

    E-Print Network [OSTI]

    Toohey, Darin W.

    ATOC 3500/CHEM 3151 - Week 10 Urban Pollution Back to the troposphere (Chapters 3, 8 and 11) (Where #12;Health and welfare effects of air pollution (p 206-211) · Pollution episodes, Cause and effect relationships · Human body · Health effects of regulated pollutants · Personal air pollution (smoking) · Risk

  5. Chemistry Major and Minor www.chem.pitt.edu

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Chemistry Major and Minor www.chem.pitt.edu Revised: 10/2012 Chemistry is the most central disease, and processes to provide energy for societal needs. Chemistry plays an ever-increasing role design and ceramics. The bachelor's degree in chemistry consists of core courses in four primary areas

  6. Aquatic Chemistry Course Id: CHEM 605 (3 cr.)

    E-Print Network [OSTI]

    Wagner, Diane

    Aquatic Chemistry Fall 2010 Course Id: CHEM 605 (3 cr.) Lecture: TR 3:40-5:20pm, REIC 165 of this course is to introduce students to the concepts and models used in aquatic chemistry while providing-base chemistry, complexation, precipitation-dissolution and reduction-oxidation reactions. Student Learning

  7. School of Chemistry CHEM3100: Chemistry at a Molecular Level

    E-Print Network [OSTI]

    Rzepa, Henry S.

    School of Chemistry CHEM3100: Chemistry at a Molecular Level Tutorial Groups 2013/14 Name Programme Tutor Ahmed, Zacher Medicinal Chemistry Arif, Saboor Chemistry Bagnall, Samuel Chemistry Barbara, David Chemistry Beaumont, Nicholas Chemistry Quinn, Michael J Chemistry Bennett, Matthew Chemistry Booth, Natalie

  8. www.chem.pdx.edu Undergraduate Degrees Offered

    E-Print Network [OSTI]

    instrumentation, such as mass spectrometers, is available for chemical research. is includes a new high- resolution time-of-flight mass spectrometer as well as low- and high-field NMR spectrometers (400 & new 600CHEMISTRY www.chem.pdx.edu Undergraduate Degrees Offered: Bachelor of Arts in Chemistry

  9. Advanced Statistical Mechanics: CHEM 646 Problem Set 1

    E-Print Network [OSTI]

    Ronis, David M.

    is a function of position, show that dI() d = d r I() ( r) ( r). Inverting the question, suppose weAdvanced Statistical Mechanics: CHEM 646 Problem Set 1 1. At low densities, the generic pair distribution function can be approximated as (2) ( r1, r2) = 2 e- u12(r12) , where u12 is the pair potential

  10. Chem. Eng. 4E03/6E03 Page 1 CHEM. ENGINEERING 4E03/6E03: DIGITAL COMPUTER PROCESS CONTROL

    E-Print Network [OSTI]

    Thompson, Michael

    Chem. Eng. 4E03/6E03 Page 1 CHEM. ENGINEERING 4E03/6E03: DIGITAL COMPUTER PROCESS CONTROL COURSE: Digital Computer Process Control. Dynamic Models, Analysis Tools and Control Algorithms. Available-based), suitable for implementation on digital computers. Material covered will include continuous- and discrete

  11. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TX National Center for Manufacturing Sciences Ann Arbor, MI Nimbis Services McLean, VA Praxair Tonawanda, NY Rockwell Automation Milwaukee, WI For additional information, please...

  12. Manufacturing Ecosystems and Keystone Technologies (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    Culver, Special Assistant to Program Manager, Advanced Manufacturing Office (AMO) Kelly Visconti, AAAS Science & Technology Policy Fellow, AMO DR. LEO CHRISTODOULOU: I would...

  13. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Blue Team B (Washington II & III) - Manufacturing Process Technology Facilitators - Kelly Visconti and Steve Sikirica; Note taker - Theresa Miller Red Team (Madison Room) -...

  14. Manufacturing Demonstration Facility Workshop Videos | Department...

    Broader source: Energy.gov (indexed) [DOE]

    on March 12, 2012. Lauren Culver, Special Assistant to Program Manager, AMO, and Kelly Visconti, AAAS Science & Technology Policy Fellow, AMO, speaking at the Manufacturing...

  15. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and...

  16. Energy & Manufacturing Workforce Training Topics List - Version...

    Broader source: Energy.gov (indexed) [DOE]

    View this searchable list of the training programs in the areas of energy andor manufacturing. Information provided in this list includes: the subjects being taught, grantee,...

  17. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Definitions and Assumptions 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions This 13-page document defines key terms and details assumptions and...

  18. Oak Ridge National Laboratory Manufacturing Demonstration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

  19. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01T23:59:59.000Z

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  20. Supplemental Comments of the Plumbing Manufacturers Instititute...

    Broader source: Energy.gov (indexed) [DOE]

    Supplemental Comments of the Plumbing Manufacturers Instititute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016...

  1. Renewable Energy Manufacturing Tax Credit (South Carolina)

    Broader source: Energy.gov [DOE]

    South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015.

  2. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    KEYWORDS: Life Cycle Assessment, LCA, Green manufacturing,cycle phases, Life Cycle Assessment (LCA). The followingimpact. 2.2 Life Cycle Assessment (LCA) and Related Metrics

  3. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  4. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  5. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Environmental Management (EM)

    Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Characterization of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHSS)...

  6. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    infrastructure Education and training Policy EEREAMO Focus * Manufacturing in the US * GDP and employment enhancement * Energy efficiency and clean energy industry * Energy...

  7. Manufacturing Barriers to High Temperature PEM Commercialization...

    Broader source: Energy.gov (indexed) [DOE]

    Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011....

  8. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  9. Solar Manufacturing Incentive Grant (SMIG) Program

    Broader source: Energy.gov [DOE]

    Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

  10. Green Manufacturing Initiative Annual Report 2010

    E-Print Network [OSTI]

    de Doncker, Elise

    Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

  11. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  12. 2014 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

  13. Project Profile: Improved Large Aperture Collector Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasibility demonstrations focused in three main areas: an aggressive manufacturing optimization of the collector sub-structures for lower input material costs & mechanized...

  14. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American...

  15. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  16. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26T23:59:59.000Z

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  17. A Vehicle Manufacturers Perspective on Higher-Octane Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturers Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

  18. Atmos. Chem. Phys., 3, 291302, 2003 www.atmos-chem-phys.org/acp/3/291/ Atmospheric

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    @chemistry.uoc.gr) and climate change studies (IPCC, 2001). Radiative forc- ing of natural and anthropogenic aerosols exhibits July 2002 ­ Published in Atmos. Chem. Phys. Discuss.: 5 September 2002 Revised: 13 January 2003- pogenic emissions in the Turkey and Central Europe sectors, with black carbon (BC) and non

  19. Atmos. Chem. Phys., 3, 6772, 2003 www.atmos-chem-phys.org/acp/3/67/ Atmospheric

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    , Georgia Institute of Technology, Atlanta, Georgia, USA *present address: The Boston Consulting Group, Ludwigstra?e 21, D­80539 M¨unchen, Germany Received: 11 March 2002 ­ Published in Atmos. Chem. Phys. Discuss, CO metropolitan area as well as an additional interference occur- ring in clean conditions. However

  20. MANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED MANUFACTURING

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    and an additive process. Manufacturability indexes are calculated at the tool design stage, these indexes provide an accurate view of which areas of the tool will advantageously be machined or manufactured by an additiveMANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED

  1. LANL's ChemCam conducts first laser test over the weekend | National...

    National Nuclear Security Administration (NNSA)

    This composite image, with magnified insets, depicts the first laser test by the Chemistry and Camera, or ChemCam, instrument aboard NASA's Curiosity Mars rover. Image credit:...

  2. Composite Tube Trailer Design/Manufacturing Needs

    E-Print Network [OSTI]

    composite tube trailers and can, therefore, address issues with: ­ Design ­ Materials ­ Manufacturing in the system ­ Lower cost of carbon fiber ($/strength) ­ Identify material with lower net cost ($/strength) ­ Identify lower cost resin system (raw material & manufacture) ­ Reduce carbon fiber safety factor

  3. Biologically inspired mutual synchronization of manufacturing machines

    E-Print Network [OSTI]

    Armbruster, Dieter

    Biologically inspired mutual synchronization of manufacturing machines Erjen Lefeber,a,1 , Herman machine is developed. This control system is based on a synchronization mechanism of enzymes replacing of a single turnover cycle. In manufacturing, batch machines serve several jobs simultaneously, e.g., heat

  4. A Global Assessment of Manufacturing: Economic

    E-Print Network [OSTI]

    Gutowski, Timothy

    A Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions Keywords production, materials, closed loop, China, emerging economies Abstract We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon

  5. CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING

    E-Print Network [OSTI]

    Provancher, William

    CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers manufacturing, etc. Now that students have a background on Chemical Engineers, it is time for the activity. Blue frosting e. Green frosting f. Pink frosting g. Purple frosting h. Sprinkle sorting i. Sprinkle

  6. Manufacturing Thomas W. Eagar, Guest Editor

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Materials Manufacturing Thomas W. Eagar, Guest Editor The bth.n-ior of succl'ssful manufac- tunn;imos., tmironment for mate- nab manufacturing changes, so too does our mla~un ol mattrials performance~(vtr. as shown by Figure 1, there are senral additional dimensions to perfor- mann. In particular, successful

  7. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  8. Evaluating Energy Efficiency Improvements in Manufacturing Processes

    E-Print Network [OSTI]

    Boyer, Edmond

    and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

  9. Watfactory Virtual Manufacturing Process Varying Inputs

    E-Print Network [OSTI]

    Zhu, Mu

    with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

  10. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    : Manufacturing Energy and Carbon Footprint, derived from 2006 MECS #12;Management Structure and Project Execution, aqueous-based processes). Develop broadly applicable, manufacturing processes that reduce energy intensity-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  11. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  12. Simulation Model Driven Engineering for Manufacturing Cell

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation Model Driven Engineering for Manufacturing Cell Hironori Hibino1 , Toshihiro Inukai2 Abstract. In our research, the simulation model driven engineering for manufacturing cell (SMDE on the simulation model and to extend the range of control applications and simulation applications using the PC

  13. 7826 J. Am. Chem. SOC.1995,117, 7826-7827 Orbital Symmetry and the Photochemical Ring

    E-Print Network [OSTI]

    Leigh, William J.

    . Chem. SOC. 1987, 109, 6086. (2) Woodward, R. B.; Hoffmann, R. The conservation of orbital (3) Van der.; CRC Press, Inc.: Boca Raton, in press, and references cited therein. (13)Leigh, W. J. Can. J. Chem

  14. Atmos. Chem. Phys., 9, 88838888, 2009 www.atmos-chem-phys.net/9/8883/2009/

    E-Print Network [OSTI]

    identified the long range trans- port of pollution associated with Arctic Haze as well as ocean in the lifetime of volatile organic compounds (VOCs) including methane. In addition, summertime concentra- tions of anthropogenic activities in- cluding iron, steel, and ferro-alloy manufacturing; coal com- bustion; oil

  15. Minor in Chemistry 1. A Chemistry Minor is achieved by taking courses with a "CHEM" label. Biochemistry ("BCHM")

    E-Print Network [OSTI]

    New Hampshire, University of

    Minor in Chemistry 1. A Chemistry Minor is achieved by taking courses with a "CHEM" label. Biochemistry ("BCHM") courses do not count toward a Chemistry Minor. The following CHEM courses in Chemistry unless you have completed Physical Chemistry 1 (Chem 683) and the accompanying laboratory course

  16. Wang, Yuan-Fang 9 of 35 Recent Consulting Engagement and Research Collaboration

    E-Print Network [OSTI]

    Wang, Yuan-Fang

    - pression, and delivery, the USA research center of the Ko- rea Electronics giant LG (LG Research Center manufacturers to maximize the overall effi- ciency of their wafer and device testing processes 1998 LG Research

  17. Chem 115Sharpless Asymmetric Dihydroxylation ReactionMyers Ligands such as pyridine accelerate the osmylation of olefins (Criegee, R.; Marchand, B.;

    E-Print Network [OSTI]

    accelerate the osmylation of olefins (Criegee, R.; Marchand, B.; Wannowius, H. Liebigs Ann. Chem. 1942, 550

  18. Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future

    E-Print Network [OSTI]

    Brock, David

    Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

  19. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

  20. MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION

    E-Print Network [OSTI]

    Schumacher, Russ

    MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

  1. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    application of additive manufacturing in Chinas aviationAnalysis May 2013 Additive Manufacturing in China: Threats,an overview of Chinas additive manufacturing industry is

  2. Faculty Position in Ultra High Precision Robotics & Manufacturing

    E-Print Network [OSTI]

    Candea, George

    , manipulation and metrology systems targeting additive manufacturing; New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

  3. Anal. Chem. 1007, 59, 2747-2749 2747 ACKNOWLEDGMENT

    E-Print Network [OSTI]

    Zare, Richard N.

    -14-9;hexanophenone, 942-92-7. LITERATURE CITED (1) Armstrong, D. W.; Henry, S. J.; J . Llq. Chromafogr. 1080,3,657. (2) Armstrong, D. W. Sep. Purif. M e W s 1985, 74, 213. (3)Armstrong, D. W.; Nome. F. Anal. Chem, 107, 1073. (13) Armstrong, D. W.; Hinze, W. L.; Bui, K. H.; Singh, H. N. Anal. Lett. 1081, 74, 1659

  4. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema (OSTI)

    Wiens, Roger

    2014-08-12T23:59:59.000Z

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  5. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema (OSTI)

    LANL

    2009-09-01T23:59:59.000Z

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  6. University of California UC Berkeley Summer Sessions-CHEM N3AL

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    :978-0495829935); "Organic Chemistry Laboratory Notebook", by Steven F. Pedersen, Jesse H. Pedersen. Both books are available043013 University of California Berkeley UC Berkeley Summer Sessions- CHEM N3AL Organic Chemistry Help & Support: http://youtu.be/WNENaAAxRaY CHEM N3AL ­ Organic Chemistry Laboratory is hybrid course

  7. 1995 -2001 CAPA (Phys & Chem Depts) 2001 transition to LON-CAPA

    E-Print Network [OSTI]

    · 1995 - 2001 CAPA (Phys & Chem Depts) · 2001 transition to LON-CAPA · SFU IT Services maintains Enrolments #12;Large Class Management Issues: e.g. CHEM121 Fall 2013 · 850 students (many enrolment changes feedback to individual students. 1. Many changes in enrolment requires daily roster updates with management

  8. A Quantitative Study of the Impact of Additive Manufacturing in the Aircraft Spare Parts Supply Chain.

    E-Print Network [OSTI]

    Mokasdar, Abhiram S., M.S.

    2012-01-01T23:59:59.000Z

    ??Additive manufacturing is a promising manufacturing technology which is finding its way into mainstream manufacturing industry. As compared to conventional manufacturing it has a number (more)

  9. E-Print Network 3.0 - automated manufacturing systems Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by delighting the customers. IIMC Manufacturing Systems & Technology Manufacturing... in manufacturing, Awareness of green production and Big R in manufacturing IIT Automation &...

  10. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Energy Savers [EERE]

    Manufacturing in the Fuel Cells Industry Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Additive Manufacturing for Fuel Cells" held on...

  11. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    4: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn,...

  12. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  13. Manufacturing Metrology for c-Si Module Reliability/Durabiltiy...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Metrology for c-Si Module ReliabilityDurabiltiy Manufacturing Metrology for c-Si Module ReliabilityDurabiltiy Presented at the PV Module Reliability Workshop,...

  14. Join Us for the Clean Energy Manufacturing Initiative's Western...

    Energy Savers [EERE]

    resources, as well as best practices and cutting-edge technologies, to boost energy productivity across the entire U.S. manufacturing supply chain will make our manufacturing...

  15. Manufacturing R&D of PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell Systems for Transportation Applications Background Material for the Manufacturing R&D Workshop to be...

  16. Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalys...

  17. DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

    Energy Savers [EERE]

    Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

  18. Letter from Plumbing Manufacturers Institute to Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Letter from Plumbing Manufacturers Institute to Department of Energy re: Ex Parte Communication More Documents & Publications Supplemental Comments of the Plumbing Manufacturers...

  19. allergenic extract manufacturers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  20. Wind Program Manufacturing Research Advances Processes and Reduces...

    Energy Savers [EERE]

    Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

  1. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

  2. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

  3. Energy Department to Work with National Association of Manufacturers...

    Office of Environmental Management (EM)

    to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase...

  4. An exploration of materials and methods in manufacturing : shoreline membranes

    E-Print Network [OSTI]

    Chin, Ryan C. C., 1974-

    2000-01-01T23:59:59.000Z

    This thesis is an investigation into the design methodologies and ideologies of manufacturing processes specifically related to automotive design. The conceptualization, prototyping, testing, and manufacturing of cars is ...

  5. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Presentation slides from the joint Fuel Cell...

  6. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

  7. Proceedings from the Wind Manufacturing Workshop: Achieving 20...

    Office of Environmental Management (EM)

    Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind...

  8. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

  9. Upcoming Webinar February 11: Additive Manufacturing for Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    February 11: Additive Manufacturing for Fuel Cells Upcoming Webinar February 11: Additive Manufacturing for Fuel Cells February 6, 2014 - 12:00am Addthis On Tuesday, February 11,...

  10. Webinar: Additive Manufacturing for Fuel Cells | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Additive Manufacturing for Fuel Cells Webinar: Additive Manufacturing for Fuel Cells February 11, 2014 5:00PM to 6:00PM EST Online...

  11. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    focused on sustainable processes and systems. Despite recentto make their processes more sustainable, evaluating theirManufacturing Process Design for Sustainable Manufacturing,

  12. AMO Issues Request for Information on Clean Energy Manufacturing...

    Energy Savers [EERE]

    Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications AMO Issues Request for Information on Clean Energy Manufacturing Topics,...

  13. Purdue, GE Collaborate On Advanced Manufacturing | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the production side. For manufacturing operations the size of GE's, just a 1 percent improvement in manufacturing productivity would save 500 million." GE and Purdue have been...

  14. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

  15. Cycle to Cycle Manufacturing Process Control

    E-Print Network [OSTI]

    Hardt, David E.

    Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

  16. Sandia National Laboratories: Numerical Manufacturing And Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NuMAD (Numerical Manufacturing And Design) is an open-source software tool written in Matlab which simplifies the process of creating a three-dimensional model of a wind turbine...

  17. Steam System Improvements at a Manufacturing Plant

    E-Print Network [OSTI]

    Compher, J.; Morcom, B.

    BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

  18. Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards.

  19. Requirements & Status for Volume Fuel Cell Manufacturing

    E-Print Network [OSTI]

    Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July ­Eliminate components, parts and process steps ­Standardize core components across products ­Standardize non-core

  20. 4D printing : towards biomimetic additive manufacturing

    E-Print Network [OSTI]

    Tsai, Elizabeth Yinling

    2013-01-01T23:59:59.000Z

    Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

  1. Cost Effective Cooling Strategies for Manufacturing Facilities

    E-Print Network [OSTI]

    Kumar, R.

    there are many similarities. In addition to the above environmental conditions for the process/machines and workers, cost effective design of manufacturing facilities must also address maintainability, sanitation, durability, energy conservation and budgetary...

  2. Lane Electric Cooperative- Manufactured Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative offers customers an incentive for buying a new EnergyStar manufactured home. These properties must be within the eligible service area and must be a permanent residence....

  3. Energy-Efficient Appliance Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    '''''Note: This tax credit expired at the end of 2011. The American Taxpayer Relief Act of 2012 retroactively renewed this tax credit for certain appliances manufactured in 2012 and 2013. '''''

  4. Photographic lens manufacturing and production technologies

    E-Print Network [OSTI]

    Kubaczyk, Daniel Mark

    2011-01-01T23:59:59.000Z

    An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

  5. Analyzing sampling methodologies in semiconductor manufacturing

    E-Print Network [OSTI]

    Anthony, Richard M. (Richard Morgan), 1971-

    2004-01-01T23:59:59.000Z

    This thesis describes work completed during an internship assignment at Intel Corporation's process development and wafer fabrication manufacturing facility in Santa Clara, California. At the highest level, this work relates ...

  6. Advanced Manufacturing Partnership | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the...

  7. Clean Energy Technology Device Manufacturers' Credits (Delaware)

    Broader source: Energy.gov [DOE]

    Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

  8. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  9. Utilizing Daylighting Controls in a Manufacturing Facility

    E-Print Network [OSTI]

    Shrestha, S. S.; Maxwell, G. M.

    Utilizing Daylighting Controls in a Manufacturing Facility Som S. Shrestha Dr. Gregory M. Maxwell PhD Candidate Associate Professor som@iastate.edu gmaxwell@iastate.edu Iowa State University Ames, IA ABSTRACT Opportunities exist... to reduce artificial lighting in manufacturing facilities which have skylights and/or fenestration that provide sufficient quantities of daylight to the work space. Using photometric sensors to measure the illuminance in the space, artificial lights can...

  10. Energetic additive manufacturing process with feed wire

    DOE Patents [OSTI]

    Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

    2000-11-07T23:59:59.000Z

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  11. Manufacturing Demonstration Facilities Workshop, March 12, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09ManufacturingManufacturing

  12. MCM-C Multichip Module Manufacturing Guide

    SciTech Connect (OSTI)

    Blazek, R.J.; Kautz, D.R.; Galichia, J.V.

    2000-11-20T23:59:59.000Z

    Honeywell Federal Manufacturing & Technologies (FM&T) provides complete microcircuit capabilities from design layout through manufacturing and final electrical testing. Manufacturing and testing capabilities include design layout, electrical and mechanical computer simulation and modeling, circuit analysis, component analysis, network fabrication, microelectronic assembly, electrical tester design, electrical testing, materials analysis, and environmental evaluation. This document provides manufacturing guidelines for multichip module-ceramic (MCM-C) microcircuits. Figure 1 illustrates an example MCM-C configuration with the parts and processes that are available. The MCM-C technology is used to manufacture microcircuits for electronic systems that require increased performance, reduced volume, and higher density that cannot be achieved by the standard hybrid microcircuit or printed wiring board technologies. The guidelines focus on the manufacturability issues that must be considered for low-temperature cofired ceramic (LTCC) network fabrication and MCM assembly and the impact that process capabilities have on the overall MCM design layout and product yield. Prerequisites that are necessary to initiate the MCM design layout include electrical, mechanical, and environmental requirements. Customer design data can be accepted in many standard electronic file formats. Other requirements include schedule, quantity, cost, classification, and quality level. Design considerations include electrical, network, packaging, and producibility; and deliverables include finished product, drawings, documentation, and electronic files.

  13. 12. E. I. Solomon et al., Chem. Rev. 100, 235350 (2000). 13. V. S. Oganesyan, A. J. Thomson, J. Chem. Phys. 113,

    E-Print Network [OSTI]

    Napp, Nils

    12. E. I. Solomon et al., Chem. Rev. 100, 235­350 (2000). 13. V. S. Oganesyan, A. J. Thomson, J and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress

  14. Sporting Good Manufacturing Company: Optimal Manufacturing and Shipping Cost Through Linear Programming Models

    E-Print Network [OSTI]

    Malik, Ejaz

    2009-05-15T23:59:59.000Z

    Figure 15: Example Transshipment Model.............................................................................. 18 vi List of Principal Symbols and Nomenclature SGMC Sporting Good Manufacturing Company LP Linear Programming CEO Chief... Executive Officer COO Chief Operation Officer PKR Pakistani Rupees EMGT Engineering Management O.F. Objective Function A i No. of bats manufactured in factory i; where i = k, l BB i No. of Stumps manufactured in factory i; where i = k, l C i No...

  15. Small Manufacturer Strategic Decision Making Assistance Tool (SMSDM): a Case Study of a Small Oklahoma Manufacturer.

    E-Print Network [OSTI]

    Robertson, William D.

    2011-01-01T23:59:59.000Z

    ??The propose was to design an informative analytical tool for small Oklahoma manufacturing firms that would assist in their strategic planning and decision making processes. (more)

  16. Design and Evaluation of Novel High Capacity Cathode Materials...

    Broader source: Energy.gov (indexed) [DOE]

    Donghan Kim, Kate Ryan - APS, Argonne: Mali Balasubramanian (XAS), Yang Ren (XRD) - LBNL, Vince Battaglia - Industry: Envia Systems, BASF, Toda, LG Chem 2 3 Objectives ...

  17. Faculty Position in Multi-scale Manufacturing Technologies

    E-Print Network [OSTI]

    Psaltis, Demetri

    -precision additive manufacturing technologies; multi-scale micro-precision manufacturing; high throughput. Christian Enz Search Committee Chair E-mail: manufacturing-search@epfl.ch For additional information on EPFLFaculty Position in Multi-scale Manufacturing Technologies at the Ecole polytechnique fdrale de

  18. Accepted Manuscript Sustainable manufacturing: Evaluation and Modeling of

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    in additive manufacturing Florent Le Bourhisa Olivier Kerbrata Jean-Yves Hascoeta Pascal Mognola Accepted of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologies such as Direct Additive Laser Manufac- turing allow us to manufacture functional

  19. Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing!

    E-Print Network [OSTI]

    Das, Suman

    Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing! Prof. Shreyes Melkote, Manufacturing Research Center, Georgia Institute of Technology Photovoltaics (PV) will be part of the energy mix volume PV manufacturing, therefore to reduce manufacturing cost and accelerate PV use. ! q Silicon wafer

  20. Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering

    E-Print Network [OSTI]

    Salustri, Filippo A.

    to component dimension i CT total cost of manufacturing and quality Cpi capability index of last process, and quality, for the sake of achieving a minimal total cost and reducing lead-time. However, in existing workSimultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial

  1. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01T23:59:59.000Z

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  2. ChemCam all-women's operations day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant naval CharlesitMcIntoshChemCam

  3. ChemCam laser first analyses yield beautiful results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant navalChemCam laser first

  4. ChemCam is having a blast on Mars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In & Registration CheckChelseaChemCam Is

  5. KAT Chem GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCounty isJupiterJönköpingKACOKAT Chem

  6. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect (OSTI)

    Easoz, J.R.; Herlocher, R.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States))

    1991-12-01T23:59:59.000Z

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  7. Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1998-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

  8. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04T23:59:59.000Z

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  9. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28T23:59:59.000Z

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  10. REMEDIAT1NG AT MANUFACTURED GAS

    E-Print Network [OSTI]

    Peters, Catherine A.

    , comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas, and metals. Tar resid- uals were produced from the vola- tiIe component of bituminous coals in coal

  11. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01T23:59:59.000Z

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  12. Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing

    E-Print Network [OSTI]

    Marcus, Steven I.

    1 Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing Xiaodong Yao, Emmanuel on Control Applications in 2001. #12;2 Abstract Preventive Maintenance (PM) scheduling is a very challenging schedule with that of a baseline reference schedule are also presented. Index Terms preventive maintenance

  13. Pollution Prevention and Lean Manufacturing Paper # 360

    E-Print Network [OSTI]

    Pollution Prevention and Lean Manufacturing Paper # 360 Harry W. Edwards and Jason M. Jonkman, the CSU IAC promotes energy conservation, pollution prevention, and productivity improvement. During that generated a total of 467 assessment recommendations (ARs) with pollution prevention benefits. Such benefits

  14. Faculty of Engineering Industrial and Manufacturing

    E-Print Network [OSTI]

    Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

  15. Automatically Generating Plans for Manufacturing* Billy Harris

    E-Print Network [OSTI]

    Cook, Diane J.

    Automatically Generating Plans for Manufacturing* Billy Harris Diane J. Cook Frank Lewis§ January of action. ORGANIZATION LEVEL COORDINATION LEVEL EXECUTION LEVEL A B S T R A C T I O N P R E C I S I O N

  16. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01T23:59:59.000Z

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  17. Advanced Manufacturing: Using Composites for Clean Energy

    Broader source: Energy.gov [DOE]

    Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

  18. Manufacturing Fuel Pellets from Biomass Introduction

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Manufacturing Fuel Pellets from Biomass Introduction Wood pellets have increased tremendously pellet stoves or boilers over traditional wood-fired equipment due to their relative ease of use. As a result, the demand for fuel pellets has also grown quickly. However, wood is not the only suitable

  19. Manufacturability-Aware Physical Layout Optimizations

    E-Print Network [OSTI]

    Pan, David Z.

    design. To really bridge the gap between design and manufacturing, it is important to model and feed As VLSI technology continues to scale down to nanometer dimensions, the semiconductor industry is greatly reason is due to extensive usage of RET. The semiconductor industry is adopting the immersion lithography

  20. Montana Manufacturing Center www.mtmanufacturingcenter.com

    E-Print Network [OSTI]

    Dyer, Bill

    on. A Six Sigma project guided by a Field Engi- neer from the Montana Manufacturing Extension Center with Worrest serving as project lead and Six Sigma Coach. Reid considers Worrest a business coach and has used is much better, the company is carrying less inventory, and it is benefiting in other ways. Six Sigma

  1. Summit Manufacturing: Noncompliance Determination (2010-SE-0303)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards.

  2. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  3. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  4. http://chem.ps.uci.edu/~kieron/dft/book/ The ABC of DFT

    E-Print Network [OSTI]

    Burke, Kieron

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 II Basics 55 6 Density functional theory 57 6.1 One electron1 http://chem.ps.uci.edu/~kieron/dft/book/ The ABC of DFT Kieron Burke and friends Department.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 Functionals 27 2

  5. Photothermal nano-cavities for ultra-sensitive chem-bio detection

    E-Print Network [OSTI]

    Hu, Juejun

    Nano-cavity photothermal spectroscopy is a novel technique for ultra-sensitive chem-bio detection. We illustrate that through simultaneous localization of optical and thermal interactions in a planar nano-cavity, detection ...

  6. Top 10 Nano & Chem Eng TMVogel, updated Fall 2012 Top 10 Things UCSD Nanoengineering &

    E-Print Network [OSTI]

    Hampton, Randy

    Top 10 Nano & Chem Eng TMVogel, updated Fall 2012 Top 10 Things UCSD Nanoengineering & Chemical Engineering Researchers Need to Know http://libguides.ucsd.edu/nano http://libguides.ucsd.edu/chemeng http

  7. MinChem: A Prototype Petrologic Database for Hanford Site Sediments

    SciTech Connect (OSTI)

    Mackley, Rob D.; Last, George V.; Serkowski, John A.; Middleton, Lisa A.; Cantrell, Kirk J.

    2010-09-01T23:59:59.000Z

    A prototype petrologic database (MinChem) has been under continual development for several years. MinChem contains petrologic, mineralogical, and bulk-rock geochemical data for Hanford Site sediments collected over multiple decades. The database is in relational form and consists of a series of related tables modeled after the Hanford Environmental Information System HEIS (BHI 2002) structures. The HEIS-compatible tables were created in anticipation of eventual migration into HEIS, or some future form of HEIS (e.g. HEIS-GEO). There are currently a total of 13,129 results in MinChem from 521 samples collected at 381 different sampling sites. These data come from 19 different original source documents published and unpublished (e.g. letter reports) between 1976 and 2009. The data in MinChem consist of results from analytical methods such as optical and electron microscopy, x-ray diffraction, x-ray fluorescence, and electron probe microanalysis.

  8. Chem 115Lithium-Halogen ExchangeMyers RLi + R'X RX + R'Li

    E-Print Network [OSTI]

    Chem 115Lithium-Halogen ExchangeMyers RLi + R'X RX + R'Li Lithium-halogen exchange reactions are essentially inert. 2 t-BuLi t-BuI + RLi t-BuLi isobutene + isobutane + LiI Lithium-halogen exchange reactions, and lithium iodide. H OEtBr H H OEtLi H1.1 eq n-BuLi Et2O, !80 C Lau, K. S.; Schlosser, M. J. Org. Chem. 1978

  9. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

    Broader source: Energy.gov (indexed) [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

  10. Estimating the expected latency to failure due to manufacturing defects

    E-Print Network [OSTI]

    Dorsey, David Michael

    2004-09-30T23:59:59.000Z

    Manufacturers of digital circuits test their products to find defective parts so they are not sold to customers. Despite extensive testing, some of their products that are defective pass the testing process. To combat this problem, manufacturers...

  11. New urban manufacturing neo-industrial design in Louisville, Kentucky

    E-Print Network [OSTI]

    Rhie, Christopher

    2014-01-01T23:59:59.000Z

    American manufacturing is experiencing a modest renaissance. U.S. firms are choosing to re-shore manufacturing jobs not out of their sense of patriotism, but because it makes good business sense. The costs of transportation ...

  12. Flexibility in Aerospace and Automotive Component Manufacturing Systems

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Flexibility in Aerospace and Automotive Component Manufacturing Systems: Practice, Strategy Supervisor #12;2 #12;Flexibility in Aerospace and Automotive Component Manufacturing Systems: Practice Traditionally, parts fabrication in the aerospace and automotive industries has been associated with a number

  13. Springfield Utility Board- Super Good Cents Manufactured Homes Rebate Program

    Broader source: Energy.gov [DOE]

    The Springfield Utility Board offers a $600 incentive for the purchase of a Super Good Cents Manufactured Home. Super Good Cents Manufactured Homes offer improve comfort and efficiency. The...

  14. EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles April 18, 2013 - 12:00am Addthis The...

  15. Inbound freight consolidation for US manufacturers at China

    E-Print Network [OSTI]

    Fang, Yi, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

  16. Register Now for AMO's Workshop on Composite Manufacturing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  17. 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group...

    Broader source: Energy.gov (indexed) [DOE]

    7-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership This document is a...

  18. An Energy Conservation Program at a Large Cable Manufacturing Plant

    E-Print Network [OSTI]

    Reale, P. J.

    1983-01-01T23:59:59.000Z

    The Atlanta Works is the largest telephone cable manufacturing plant in the world plus the manufacturing center for fiber optic cable for the Western Electric Company and exemplifies how an effective energy conservation program can work...

  19. Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science [AT

  20. Event Registration Form International Good Manufacturing Practices Conference -#71683

    E-Print Network [OSTI]

    Arnold, Jonathan

    Event Registration Form International Good Manufacturing Practices Conference - #71683 03 No Total $______ Please specify any additional dietary restrictions or allergies-884-1419 -- Credit Card Only Mail: International Good Manufacturing Practices Conference #71683 The Georgia Center

  1. Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM) Mission Statement: The Center for Advanced Design and Manufacturing of Integrated Microfluidics will develop design tools microfluidics targeting costeffective, quick, and easy diagnosis of the environment, agriculture, and human

  2. DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps DOE Requires Manufacturer and Labeler to Cease Sale of Incandescent Reflector Lamps June 24, 2010 - 2:40pm...

  3. Manufacturing buildings in Massachusetts : the legacy and the future

    E-Print Network [OSTI]

    Traynor, Callie

    1983-01-01T23:59:59.000Z

    Manufacturing buildings are found in most towns and cities in Massachusetts. Standing in dominant isolation, or as part of an urban district, their presence is the built testimony to the role manufacturing played in so ...

  4. Fiber Reinforced Polymer Composite Manufacturing Workshop Save the Date

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Advanced Manufacturing Office plans to host a Fiber Reinforced Polymer Composite Manufacturing Workshop in the Washington D.C. area on Monday January 13, 2014.

  5. Lessons Learned During the Manufacture of the NCSX Modular Coils

    SciTech Connect (OSTI)

    James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

    2009-09-15T23:59:59.000Z

    The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

  6. Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices

    E-Print Network [OSTI]

    Hum, Philip W. (Philip Wing-Jung)

    2006-01-01T23:59:59.000Z

    Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for ...

  7. Commercial assessment of roll to roll manufacturing of electronic displays

    E-Print Network [OSTI]

    Randolph, Michael Aaron

    2006-01-01T23:59:59.000Z

    The cost of manufacturing electronic displays currently limits the range of applications and markets into which it is currently economically feasible to adopt displays. Roll-to-roll manufacturing has been identified by the ...

  8. New Request for Information (RFI) on Clean Energy Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    (RFI) on Clean Energy Manufacturing Topic Areas New Request for Information (RFI) on Clean Energy Manufacturing Topic Areas September 3, 2014 - 10:07am Addthis Save the Date -...

  9. Posted 5/10/12 Manufacturing /Process Engineer

    E-Print Network [OSTI]

    Heller, Barbara

    . Plymouth Tube Company is committed to providing products and services that meet or exceed customers to improve safety, quality, and manufacturing efficiency throughout the manufacturing area. Utilization, reduce cycle times, improve productivity, create and find capacity, improve process reliability

  10. pubs.acs.org/cm Published on Web 12/21/2009 r 2009 American Chemical Society 476 Chem. Mater. 2010, 22, 476481

    E-Print Network [OSTI]

    Qi, Limin

    , 391, 667. (4) Gordon, R.; Sinton, D.; Kavanagh, K.; Brolo, A. Acc. Chem. Res. 2008, 41, 1049. (5) Liao,

  11. Wellbore manufacturing processes for in situ heat treatment processes

    DOE Patents [OSTI]

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11T23:59:59.000Z

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  12. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells

    SciTech Connect (OSTI)

    Wheeler, D.; Sverdrup, G.

    2008-03-01T23:59:59.000Z

    In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

  13. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18T23:59:59.000Z

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  14. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Broader source: Energy.gov (indexed) [DOE]

    Definitions and Assumptions, October 2012 Manufacturing Energy and Carbon Footprint Definitions and Assumptions, October 2012 footprintsassumptionsdefinitions2012.pdf More...

  15. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect (OSTI)

    Duoss, Eric

    2014-05-28T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  16. Manufacturing development of low activation vanadium alloys

    SciTech Connect (OSTI)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01T23:59:59.000Z

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  17. Summary of decontamination cover manufacturing experience

    SciTech Connect (OSTI)

    Ulrich, G.B.; Berry, H.W.

    1995-02-01T23:59:59.000Z

    Decontamination cover forming cracks and vent cup assembly leaks through the decontamination covers were early manufacturing problems. The decontamination cover total manufacturing process yield was as low as 55%. Applicable tooling and procedures were examined. All manufacturing steps from foil fabrication to final assembly leak testing were considered as possible causes or contributing factors to these problems. The following principal changes were made to correct these problems: (1) the foil annealing temperature was reduced from 1375{degrees} to 1250{degrees}C, (2) the decontamination cover fabrication procedure (including visual inspection for surface imperfections and elimination of superfluous operations) was improved, (3) the postforming dye penetrant inspection procedure was revised for increased sensitivity, (4) a postforming (prewelding) 1250{degrees}C/1 h vacuum stress-relief operation was added, (5) a poststress relief (prewelding) decontamination cover piece-part leak test was implemented, (6) the hold-down fixture used during the decontamination cover-to-cup weld was modified, and concomitantly, and (7) the foil fabrication process was changed from the extruding and rolling of 63-mm-diam vacuum arc-remelted ingots (extrusion process) to the rolling of 19-mm-square arc-melted drop castings (drop cast process). Since these changes were incorporated, the decontamination cover total manufacturing process yield has been 91 %. Most importantly, more than 99% of the decontamination covers welded onto vent cup assemblies were acceptable. The drastic yield improvement is attributed primarily to the change in the foil annealing temperature from 1375{degrees} to 1250{degrees}C and secondarily to the improvements in the decontamination cover fabrication procedure.

  18. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema (OSTI)

    Duoss, Eric

    2014-05-30T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  19. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & Solutions HomeTeksun PV Manufacturing

  20. Advanced Manufacturing Office | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing Office

  1. Manufacturing Success Stories | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturing Research and

  2. A Markovian analysis of semiconductor manufacturing processes

    E-Print Network [OSTI]

    Schultz, Kent Eugene

    2012-06-07T23:59:59.000Z

    ) Karan L. Watson (Member) Martin A. Wortman (Member) ep Sastri (Member) o W. Howze (Head of Department) December 1991 ABSTRACT A Markovian Analysis of Semiconductor Manufacturing Processes. (December 1991) Kent Eugene Schultz, B. S. , Iowa... grateful to Dr. Martin Wortman, for his pa- tience and endless stream of examples to help me understand stochastic processes. I would also like to thank Dr. Tep Sastri for his patience and for always having a refer- ence available when I needed it...

  3. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09Manufacturing Demonstration

  4. Manufacturing Demonstration Facilities Workshop Agenda, March 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09Manufacturing

  5. Manufacturing Innovation Topics Workshop: Engineered Nanomaterials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE

  6. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWater ConservationDepartmentEnergy Manufacturing

  7. Manufacturing means jobs „ Mike Arms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing

  8. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    the environment and green manufacturing was so commonly ofmap directly onto green manufacturing practice. For example,48] Dornfeld D (2012) Green Manufacturing: Fundamentals and

  9. Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments

    E-Print Network [OSTI]

    Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

    2013-01-01T23:59:59.000Z

    of implementing lean and green manufacturing strategies on5,6]. Research in green manufacturing spans a variety ofof lean and/or green strategies in manufacturing systems.

  10. The role of lean manufacturing principles and strategic alternatives in achieving business goals

    E-Print Network [OSTI]

    Ramaswamy, Dhananjay

    2006-01-01T23:59:59.000Z

    Lean Manufacturing is widely accepted as a proven method to achieve operational excellence. Many manufacturers undertake lean manufacturing implementations as a strategy to improve competitiveness and realize business ...

  11. Comparing Environmental Impacts of Additive Manufacturing vs. Traditional Machining via Life-Cycle Assessment

    E-Print Network [OSTI]

    Faludi, Jeremy; Bayley, Cindy; Bhogal, Suraj; Iribarne, Myles

    2014-01-01T23:59:59.000Z

    Social Impacts of Additive Manufacturing vs CNC MachiningImpacts of Additive Manufacturing vs. Traditional Machiningcutting! Impacts of Additive Manufacturing in Literature

  12. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    different types of additive manufacturing technologies, suchbe used to model the additive manufacturing process as well.composite manufacturing and 3D printing, are additive. They

  13. Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling

    E-Print Network [OSTI]

    to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able associated with both the manufacture of carbon fibers themselves as well as their composites. Traditional

  14. Copyright 2009 200916 Sustainable Design and Manufacturing of Precast Infrastructure

    E-Print Network [OSTI]

    Lepech, Michael D.

    ­ Sustainable Design and Manufacturing of Precast Infrastructure CIFE TAC 2009 Research Tasks · Green ECC 200916 ­ Sustainable Design and Manufacturing of Precast Infrastructure CIFE TAC 2009 Green ECC MaterialsCopyright © 2009 200916 ­ Sustainable Design and Manufacturing of Precast Infrastructure CIFE TAC

  15. Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro-

    E-Print Network [OSTI]

    Lin, Xi

    and storage and green manufacturing. Professor of Mechanical Engineering and Material Science BostonUday Pal Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro- chemical for the commercialization of solid oxide fuel cells (SOFCs) are its high manufacturing and material costs expressed in terms

  16. MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES Authors: Olivier Kerbrat of the tool may advantageously be machined or manufactured by an additive process. Originality/value: Nowadays is proposed to combine additive and subtractive processes, for tooling design and manufacturing

  17. Journal of Mechanisms and Robotics Hybrid Deposition Manufacturing: Design

    E-Print Network [OSTI]

    Dollar, Aaron M.

    combines additive manufacturing (AM) processes such as FDM with material deposition and embedded components applications. Additive manufacturing techniques are used to print both permanent components and sacrificial, leveraging the benefits of additive manufacturing and expanding the range of design options for robotic

  18. Advanced Manufacturing Use Cases and Early Results in GENI Infrastructure

    E-Print Network [OSTI]

    Calyam, Prasad

    for controlling remote processes in manufacturing facilities. In addition, there is a need to suitably configureAdvanced Manufacturing Use Cases and Early Results in GENI Infrastructure Alex Berryman, Prasad to advanced manufacturing communities are exciting prospects due to the growth of the global marketplace

  19. Nano-Manufacturing While nanotechnology promises to revolutionize everything from

    E-Print Network [OSTI]

    Hill, Wendell T.

    Nano-Manufacturing While nanotechnology promises to revolutionize everything from energy production futuristic systems will remain science fiction without practical and scalable nano-manufacturing capabilities. Researchers at the University of Maryland's NanoCenter have the manufacturing capabilities needed for turning

  20. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, T.; Peeks, B.

    2013-11-01T23:59:59.000Z

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  1. Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  2. Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details. Chemistry, Materials Science and Engineering Emphasis Core courses, plus: MATH 2250 Differential Equations or contact Professor Richard Ernst (ernst@chem.utah.edu; 801-581-8639) Chemistry Core Courses (required

  3. ACS Div of Fuel Chem Preprints 44:4, 1016-1019 (August, 1999) KINETICS OF HIGH PRESSURE CHAR OXIDATION

    E-Print Network [OSTI]

    Fletcher, Thomas H.

    ACS Div of Fuel Chem Preprints 44:4, 1016-1019 (August, 1999) KINETICS OF HIGH PRESSURE CHAR) by devolatilizing Pittsburgh #8 coal at #12;ACS Div of Fuel Chem Preprints 44:4, 1016-1019 (August, 1999) high

  4. 4184 Chem. Commun., 2013, 49, 4184--4186 This journal is c The Royal Society of Chemistry 2013 Cite this: Chem. Commun., 2013,

    E-Print Network [OSTI]

    Greenaway, Alan

    to find a wider application. The thermoelectric efficiency of a material is given by a figure of merit; ZT this: Chem. Commun., 2013, 49, 4184 Enhanced thermoelectric performance in TiNiSn-based half-Heuslers R. A. Downie,a D. A. MacLaren,b R. I. Smithc and J. W. G. Bos*a Thermoelectric figures of merit, ZT > 0

  5. 4262 Chem. Commun., 2013, 49, 4262--4264 This journal is c The Royal Society of Chemistry 2013 Cite this: Chem. Commun., 2013,

    E-Print Network [OSTI]

    Greenaway, Alan

    allylic acetates). A recent notable related development was disclosed by Carreira et al. ­ an elegant Ir this: Chem. Commun., 2013, 49, 4262 Gold(I)-catalysed direct allylic etherification of unactivated alcohols Paul C. Young, Nina A. Schopf and Ai-Lan Lee* Direct allylic etherification of unactivated

  6. Method of manufacturing Josephson junction integrated circuits

    SciTech Connect (OSTI)

    Jillie Jr., D. W.; Smith, L. N.

    1985-02-12T23:59:59.000Z

    Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

  7. Advanced Methods for Manufacturing | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced ManufacturingMethods

  8. Secure Manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP.Secure Manufacturing

  9. Manufacturing Research and Development | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturing Research and Development

  10. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspenAudubon,983477°, -98.5721016°Manufacturing

  11. Method for manufacture of neutron absorbing articles

    SciTech Connect (OSTI)

    Owens, D.

    1980-07-22T23:59:59.000Z

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form.

  12. Manufacturing Innovation Topics Workshop | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007Naval Reactors' Cyber SecurityManufacturing

  13. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing -Administration

  14. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance PatentDepartment of Energy Manufacturing

  15. Starr Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.Stanly County,Manufacturing Inc Jump to:

  16. E-Print Network 3.0 - advanced manufacturing concepts Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies... process technologies, reliable measurements, and standards will advance PEM fuel cell manufacturing... and manufacturing ... Source: DOE Office of Energy...

  17. E-Print Network 3.0 - advanced manufacturing processes Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycle time. Investigate new manufacturing processes... advance the development and optimization of manufacturing processes. Mathematical models and modeling... on ......

  18. Understanding Life Cycle Social Impacts in Manufacturing: A processed-based approach

    E-Print Network [OSTI]

    Hutchins, Margot J.; Robinson, Stefanie L.; Dornfeld, David

    2013-01-01T23:59:59.000Z

    socially sustainable manufacturing processes, software toolsc t Developing sustainable products and processes is growingsustainable manufacturing systems and production processes

  19. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    composite manufacturing or 3D-printing. Based on the basecomposite manufacturing and 3D printing, are additive. They

  20. L.G. Christophorou | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & GraduatesReducing Dimensions: WiryL. G.

  1. LgCOOleS, Se*&,,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATIONHEALXH:LTS Plan WorkshopI9 I ;

  2. SUBJECT: MEMORANDUM DAu&!Lg)_)~Q-----__

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1%AU62SIhBCL:

  3. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30T23:59:59.000Z

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  4. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Kerns, John A. (Livermore, CA); Blaedel, Kenneth L. (Livermore, CA); Colella, Nicholas J. (Livermore, CA); Davis, Pete J. (Pleasanton, CA); Juntz, Robert S. (Hayward, CA)

    1998-01-01T23:59:59.000Z

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  5. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09T23:59:59.000Z

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  6. Abstract--The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing

    E-Print Network [OSTI]

    Mustakerov, Ivan

    plant problem. Different processing schedules variants for different technological restrictions were, so they must rely on innovative approaches in all aspects of manufacturing technology. As a result existing results in the literature focus on either a single machine or several identical machines [5

  7. ME 4171 Environmentally Conscious Design & Manufacturing (Bras) Assignment -Sheet Molding Compound Manufacture Pollution Prevention

    E-Print Network [OSTI]

    Compound Manufacture Pollution Prevention Sheet Molding Compound (SMC) is a fiberglass-resin compound options for pollution prevention specifically for this process. (10 points) #12; of styrene occurs at room temperature and atmospheric pressure from the paste or resin at all stages

  8. Graduate Programs in Industrial and Manufacturing Engineering The industrial and manufacturing (IME) department at WSU

    E-Print Network [OSTI]

    systems, ergonomics/human factors, or manufacturing systems engineering. In order to be admitted to the Ph. Ergonomics/Human Factors. Emphases include industrial ergonomics; bio-mechanics; human-machine systems; occupational safety and other industrial hygiene issues; and ergonomics and human factors issues in aviation

  9. Air pollution forecasting by coupled atmosphere-fire model WRF and SFIRE with WRF-Chem

    E-Print Network [OSTI]

    Kochanski, Adam K; Mandel, Jan; Clements, Craig B

    2013-01-01T23:59:59.000Z

    Atmospheric pollution regulations have emerged as a dominant obstacle to prescribed burns. Thus, forecasting the pollution caused by wildland fires has acquired high importance. WRF and SFIRE model wildland fire spread in a two-way interaction with the atmosphere. The surface heat flux from the fire causes strong updrafts, which in turn change the winds and affect the fire spread. Fire emissions, estimated from the burning organic matter, are inserted in every time step into WRF-Chem tracers at the lowest atmospheric layer. The buoyancy caused by the fire then naturally simulates plume dynamics, and the chemical transport in WRF-Chem provides a forecast of the pollution spread. We discuss the choice of wood burning models and compatible chemical transport models in WRF-Chem, and demonstrate the results on case studies.

  10. Role of the DAPIA in the manufactured housing process

    SciTech Connect (OSTI)

    Balistocky, S.; Lee, A.D.; Onisko, S.A.

    1986-02-01T23:59:59.000Z

    This paper describes the function of Design Approval Primary Inspection Agencies (DAPIAs) and provides some insights into the design approval process for manufacturing housing units. DAPIAs play a key role in assuring that the designs for manufactured housing units are in compliance with HUD's Manufactured Housing Constructing and Safety Standards. There are five DAPIAs performing plan checks and design reviews for the manufacturing operating in the Pacific Northwest region. The costs to a manufacturer for DAPIA services ranges from $100 to $250 to approve modifications to existing designs and $700 to $1200 to approve a totally new design. Each DAPIA indicated that they would be willing to work with BPA in some way to assist manufacturers produce units which can achieve MCS levels. They would be available for energy design consultation on an informal basis. In addition they would be willing to consider formal certifications of MCS designs if BPA develops evaluation criteria which they can apply.

  11. A new DFM approach to combine machining and additive manufacturing

    E-Print Network [OSTI]

    Kerbrat, Olivier; Hascot, Jean-Yves; 10.1016/j.compind.2011.04.003

    2011-01-01T23:59:59.000Z

    Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

  12. u.s. department of commerce national institute of standards and technology manufacturing extension partnership The National Institute of Standards and Technology's (NIST) Hollings Manufacturing Extension

    E-Print Network [OSTI]

    Magee, Joseph W.

    , from innovation strategies to process improvements to green manufacturing. MEP also works with partnersu.s. department of commerce · national institute of standards and technology · manufacturing extension partnership The National Institute of Standards and Technology's (NIST) Hollings Manufacturing

  13. Calibrating the ChemCam LIBS for carbonate minerals on Mars

    SciTech Connect (OSTI)

    Wiens, Roger C [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Ollila, Ann M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Lanza, Nina [Los Alamos National Laboratory; Newsom, Horton E [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  14. Showerhead Manufacturer Agrees to Civil Penalty to Resolve Enforcement...

    Broader source: Energy.gov (indexed) [DOE]

    announced today, the manufacturer also agreed to cease all sales within the United States of showerheads that violate the Department's water conservation standards. Addthis...

  15. Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modeling tools for enabling manufacturing-informed design. Graphic credit Third Wave Systems. accurate, easy-to-use, detailed physics- based process modeling tools to...

  16. Energy-Saving Homes, Buildings, and Manufacturing Success Stories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon Read more homes success stories Manufacturing February 4, 2015 Just Plain...

  17. Manufactured Home Energy Audit user`s manual

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

  18. airfoil manufacturing technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5:4, 333341, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Materials Science Websites Summary: microfabrication technologies to integrate mechanical...

  19. Manufacturing Metrology for c-Si Module Reliability/Durabiltiy

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Metrology for c-Si Module ReliabilityDurability Marianne P. Rodgers Marianne P. Rodgers Ashwani Kaul Kristopher O. Davis Neelkanth G. Dhere Hubert...

  20. Integrated Design and Manufacturing of Cost-Effective & Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Effective & Industrial-Scalable TEG for Vehicle Applications Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable TEG for Vehicle Applications...

  1. HIGH TEMPERATURE FUEL CELL (PHOSPHORIC ACID) MANUFACTURING R&D

    E-Print Network [OSTI]

    ­ Net-shaped separators Future process Trimming & Flow Channel Machining Continuous screw extruder Current process Low cost manufacturing concepts Continuously extrude graphite-polymer composite

  2. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    modeling method for photovoltaic cells. in Proc. IEEE 35thlosses in solar photovoltaic cell networks. Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

  3. Preliminary Fuel Cell Manufacturing R&D Topics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research topics subject to revision prior to a solicitation being issued May 18, 2007 FUEL CELL MANUFACTURING R & D Presently, Polymer Electrolyte Membrane (PEM) fuel cell stacks...

  4. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    process control charts (SPC) for product quality and processstatistical process control (SPC) charts. The concept is toMethods Univariate SPC for semiconductor manufacturing

  5. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Assessment Loan Guarantee to Solyndra, Inc. for Construction of A Photovoltaic Manufacturing Facility and Leasing of an Existing Commercial Facility in Fremont,...

  6. East Penn Manufacturing Keeps Moving Forward After 65 Years ...

    Broader source: Energy.gov (indexed) [DOE]

    to Accelerate the Manufacturing and Deployment of the Next Generation of U.S. Batteries and Electric Vehicles Sysco Deploys Hydrogen Powered Pallet Trucks Vehicle Battery Basics...

  7. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in conjunction with Montana Tech, determined the major fuel cell manufacturing cost drivers, gaps, and best practices. This document, which was produced by the collective...

  8. Crowdsourcing Wins Manufacturing Leadership 100 | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NY, May 22, 2013 - GE Global Research, the technology development arm of the General Electric Co. (NYSE: GE) today announced that it has won a prestigious Manufacturing Leadership...

  9. DOE Institutes Enforcement Action against 4 Showerhead Manufacturers...

    Office of Environmental Management (EM)

    to the Department of Energy that showerheads manufactured or distributed by these companies meet the applicable water conservation standard as required by the Energy Policy...

  10. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation arravt027apethomas2011p.pdf More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive...

  11. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries, April 2013 Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air,...

  12. Small Business Week 2011: Meyer Tool and Manufacturing provides...

    National Nuclear Security Administration (NNSA)

    Week 2011: Meyer Tool and Manufacturing provides NNSA with technical engineering, professional services | National Nuclear Security Administration Facebook Twitter Youtube Flickr...

  13. Clean Energy Manufacturing Initiative: Increasing American Competitiveness Through Innovation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department's Clean Energy Manufacturing Initiative is helping to boost American competitiveness, grow the economy and protect the environment.

  14. Solid-State Lighting Manufacturing Research and Development ...

    Broader source: Energy.gov (indexed) [DOE]

    to achieve cost reduction of solid-state lighting (SSL) for general illumination through improvements in manufacturing equipment, processes, or techniques. It is anticipated that...

  15. Resource Consumption in Additive Manufacturing with a PSS Approach.

    E-Print Network [OSTI]

    Nopparat, Nanond; Kianian, Babak; Thompson, Anthony

    2012-01-01T23:59:59.000Z

    ??Since the 1980s, additive manufacturing (AM) has gradually advanced from rapid prototyping applications towards fabricating end consumer products. Many small companies may prefer accessing AM (more)

  16. Development of a Process Planning Module for Metal Additive Manufacturing.

    E-Print Network [OSTI]

    Chernow, Eric

    2013-01-01T23:59:59.000Z

    ??Producing metallic parts using Laser Engineered Net Shaping (LENS) additive manufacturing allows for a wide range of flexibility and customization while reducing waste material compared (more)

  17. From Digital to Physical: Computational Aspects of 3D Manufacturing.

    E-Print Network [OSTI]

    Baecher, Moritz Niklaus

    2013-01-01T23:59:59.000Z

    ??The desktop publishing revolution of the 1980s is currently repeating itself in 3D, referred to as desktop manufacturing. Online services such as Shapeways have become (more)

  18. Letter Response from the Plumbing Manufacturers Institute (PMI...

    Broader source: Energy.gov (indexed) [DOE]

    Letter Response from the Plumbing Manufacturers Institute (PMI), Docket No. EERE-2010-BT-NOA-0016 - Notice of Availability of Interpretive Rule on the Applicability of Current...

  19. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Fiscal Year 2014 Budget Rollout - Energy Saving Homes, Buildings, and Manufacturing From Tragedy to Triumph - Resources for Rebuilding Green after Disaster,...

  20. DOE and Federal Energy and Manufacturing Workforce Programs and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance Community College and Career Training Grant Program (TAACCCT) Energy and Manufacturing Awards and Topics List CX-100070: Categorical Exclusion Determination...

  1. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Broader source: Energy.gov (indexed) [DOE]

    Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)...

  2. A Bold Goal: Boston Manufacturing R&D Workshop Video

    Broader source: Energy.gov [DOE]

    View the video from Jim Brodrick's opening presentation at the April 2011 DOE SSL Manufacturing R&D Workshop in Boston, Massachusetts.

  3. DOE - Office of Legacy Management -- Titanium Alloys Manufacturing...

    Office of Legacy Management (LM)

    Morgan to Roth; Shipment of Zr Tetrachloride; August 22, 1949 NY.41-8 - Letter; Johnson to Titanium Alloy Manufacturing Division (Attn.: Urban); Source Material License No....

  4. Energy-Saving Homes, Buildings, and Manufacturing Success Stories...

    Broader source: Energy.gov (indexed) [DOE]

    solutions for our nation's buildings and manufacturing supply lines mean large-scale energy and cost savings. Learn how EERE's investments in energy solutions for homes,...

  5. Center for Sustainable Industry and Manufacturing | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system design, development, testing, and evaluation. Major R&D areas include large scale additive manufacturing as well as closed loop control; energy efficient and mesoscale...

  6. Manufacturing R&D for the Hydrogen Economy Workshop Summary

    Broader source: Energy.gov (indexed) [DOE]

    High Priority * Develop manufacturing methods for high performance, low temperature heat exchangers * Develop reactant sensors for hydrogen (fuel cell system and vehicle) *...

  7. President Announces New Public-Private Manufacturing Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    a consortium of leading companies that includes some of the world's leading wide-bandgap semiconductor manufacturers, leading materials providers, and critical end-users such as...

  8. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Broader source: Energy.gov (indexed) [DOE]

    in Process Heating Systems Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with...

  9. DOE/EIA-0515(85) Energy Information Administration Manufacturing...

    U.S. Energy Information Administration (EIA) Indexed Site

    5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S,...

  10. Private-Public Partnerships for U.S. Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Large Manufacturing Companies Small & Medium Enterprise (SMEs) Start-ups Industry Network of IMIs 2013 State of the Union Announcement National Network for...

  11. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect (OSTI)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18T23:59:59.000Z

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energys National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  12. Fast, Low Cost Method for Manufacturing Porous Structures for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Fast, Low Cost Method for Manufacturing Porous Structures for Fuel Cells, Catalysts and Filtration...

  13. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  14. AMO Industry Day Workshop, February 25th, Targets Smart Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute...

  15. A hybrid genetic algorithm for manufacturing cell formation

    E-Print Network [OSTI]

    Jos F. Gonalves

    ... in cellular manufacturing is the formation of product families and machine cells. ... Computational experience with the algorithm on a set of group technology...

  16. Carbon fiber manufacturing via plasma technology

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  17. Improvements in manufacture of iridium alloy materials

    SciTech Connect (OSTI)

    Ohriner, E.K. (Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6083 (United States))

    1993-01-15T23:59:59.000Z

    Iridium alloys are used as fuel-cladding material in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyager 1 and 2, Galileo, and Ulysses spacecrafts. This hardware was fabricated from small, 500-g drop-cast ingots. Porosity in these ingots and the resulting defects in the rolled sheets caused rejection of about 30% of the product. An improved manufacturing process was developed with the goal of substantially reducing the level of defects in the rolled sheets. The ingot size is increased to 10 kg and is produced by vacuum arc remelting. In addition, the ingot is hot extruded prior to rolling. Since implementation of the process in 1989, the average rate of rejection of the product has been reduced to below 10%.

  18. Method for manufacturing whisker preforms and composites

    DOE Patents [OSTI]

    Lessing, P.A.

    1995-11-07T23:59:59.000Z

    A process is disclosed for manufacturing Si{sub 3}N{sub 4}/SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si{sub 3}N{sub 4} at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si{sub 3}N{sub 4}/SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  19. Method for manufacturing whisker preforms and composites

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A process for manufacturing Si.sub.3 N.sub.4 /SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si.sub.3 N.sub.4 at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si.sub.3 N.sub.4 /SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  20. Method of manufacturing nuclear fuel bundle spacers

    SciTech Connect (OSTI)

    White, D.W.; Muncy, D.G.; Schoenig, F.C. Jr.

    1989-09-26T23:59:59.000Z

    This patent describes a method of manufacturing nuclear fuel bundle spacers on an automated production line basis. It comprises: cutting elongated tubing stock into shorter tubular ferrules; checking the length of each ferrule and rejecting those ferrules of unacceptable lengths; cutting predetermined features in the sidewall of each ferrule; forming the sidewall of each ferrule to impart predetermined surface formations thereto; checking a critical dimension of each sidewall surface formation of each ferrule and rejecting those of unacceptable dimensions; assembling successive pairs of ferrules into subassemblies; assembling successive subassemblies into a spacer assembly fixture; assembling a peripheral band in the spacer assembly fixture; conjoining the ferrules to each other and to the peripheral band to create a structurally rigid, finished spacer; and providing a separate controller for automatically controlling and monitoring the performances of these steps.