National Library of Energy BETA

Sample records for manufactured products merchandise

  1. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  2. LED Product Development and Manufacturing R&D Roundtable Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Product Development and Manufacturing R&D Roundtable Summary LED Product Development and Manufacturing R&D Roundtable Summary PDF icon LED Product Dev and Mfg Roundtable ...

  3. Manufacturers of Noncompliant Products Agree to Civil Penalties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement ...

  4. Forest products: Fiber loading for paper manufacturing

    SciTech Connect (OSTI)

    1999-09-29

    Fact sheet on manufacturing filler during paper manufacturing written for the NICE3 Program. With its new fiber loading process, Voith Sulzer, Inc., is greatly improving the efficiency of paper production and recycling. Fiber loading produces precipitated calcium carbonate (PCC) filler in the pulp recycling process at costs below conventional means. Fiber loading allows papermakers to use as much filler, like PCC, as possible because it costs 80% less than fiber. In addition, increased filler and fines retention due to fiber loading reduces the quantity of greenhouse gas emissions, deinking sludge, and other waste while substantially lowering energy costs. Currently, the most efficient way to produce PCC as filler is to make it in a satellite plant adjacent to a paper mill. Satellite plants exist near large scale paper mills (producing 700 tons per day) because the demand at large mills justifies building a costly ($15 million, average) satellite plant. This new fiber loading process combines the PCC manufacturing technology used in a satellite plant with the pulp processing operations of a paper mill. It is 33% less expensive to augment an existing paper mill with fiber loading technology than to build a satellite plant for the same purpose. This technology is applicable to the manufacturing of all printing and writing paper, regardless of the size or capacity of the paper mill.

  5. Energy Report: U.S. Wind Energy Production and Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing ...

  6. Clean Energy Manufacturing Resources - Technology Full-Scale Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  7. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  8. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video

    Broader source: Energy.gov [DOE]

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  9. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  10. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  11. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Broader source: Energy.gov (indexed) [DOE]

    and create U.S. jobs by improving labor productivity in wind turbine blade construction. ... Certain components of wind turbine blades are naturally more suitable to domestic ...

  12. General Merchandise 50% Energy Savings Technical Support Document...

    Open Energy Info (EERE)

    Publication Year 2009 URL http:www.nrel.govdocsfy09osti46100.pdf Building Models General Merchandise 2009 TSD Chicago High Plug Load Baseline, General Merchandise 2009...

  13. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect (OSTI)

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  14. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  15. Energy Department Takes Major Steps to Increase U.S. Energy Productivity and Manufacturing

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced expansions of its Clean Energy Manufacturing Initiative in support of the American manufacturing sector and a new initiative to support President Obama’s goal of doubling energy productivity by 2030.

  16. Property Tax Abatement for Production and Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    Qualifying renewable energy manufacturing facilities are those that (1) produce materials, components or systems to convert solar, wind, geothermal, biomass, biogas or waste heat resources into...

  17. Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions

    Broader source: Energy.gov [DOE]

    The Department of Energy has settled civil penalty actions it initiated against nine companies for the manufacture and sale in the United States of products that fail to meet federal energy...

  18. Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record Highs | Department of Energy Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 8:00am Addthis WASHINGTON - The Energy Department released two new reports today showcasing record growth across the U.S. wind market -- increasing America's share of clean, renewable energy and supporting tens of thousands of jobs nationwide. According to these reports, the United States

  19. Commercial Building Partnership General Merchandise Energy Savings Overview

    SciTech Connect (OSTI)

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  20. General Merchandise 50% Energy Savings Technical Support Document

    SciTech Connect (OSTI)

    Hale, E.; Leach, M.; Hirsch, A.; Torcellini, P.

    2009-09-01

    This report documents technical analysis for medium-box general merchandise stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  1. Energy Report: U.S. Wind Energy Production and Manufacturing Surges,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting Jobs and Diversifying U.S. Energy Economy | Department of Energy Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy August 14, 2012 - 9:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released a new report today highlighting strong growth in the U.S. wind energy

  2. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect (OSTI)

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  3. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  4. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  5. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  6. Productivity genefits from new energy technology: A case study of a paint manufacturing company

    SciTech Connect (OSTI)

    Raghunathan, P.; Capehart, B.L.

    1997-06-01

    In many cases, implementing new energy efficiency technologies not only helps facilities reduce their energy costs, but it also creates greater profits by increasing productivity. These added benefits from productivity improvements can sometimes be greater than the energy cost savings, and can result in an attractive overall payback period for implementing the new technology. This paper presents a case study of productivity improvement at a paint manufacturing company as a result of implementing new energy efficiency technology. During an industrial energy assessment, it was noted that the company had experienced frequent failures of motor belts and sheaves on five paint mixers resulting in significant replacement costs and labor costs. In addition, a bigger loss was being suffered due to lost potential profit associated with the frequent work stoppages. The IAC recommendation was to install motor soft starters (also known as motor voltage controllers) on the five mixing machines. Installation of soft starters would have the following benefits: lower energy costs, lower replacement costs for transmission components, lower labor costs, and higher production levels and increased profits. The total annual benefits were estimated at $122,659, of which the benefits from increased productivity were nearly $67,000. The overall simple payback period for installing the soft starters was less than 2 months.

  7. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  8. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  9. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  10. Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

    Broader source: Energy.gov [DOE]

    The project objective is to develop a smart manufacturing (SM) Platform for two commercial test beds that can be scaled to manufacturing operations to catalyze low-cost commercialization of the...

  11. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance

    SciTech Connect (OSTI)

    Scholand, Michael; Dillon, Heather E.

    2012-05-01

    Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

  12. Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    Last spring, a 3D-printed replica Shelby Cobra, manufactured at Oak Ridge National Laboratory (ORNL), visited the U.S. Department of Energy (DOE) headquarters in Washington, DC. Now, DOE’s Wind...

  13. Introduction of a method for presenting health-based impacts of the emission from products, based on emission measurements of materials used in manufacturing of the products

    SciTech Connect (OSTI)

    Jrgensen, Rikke Bramming

    2013-11-15

    A method for presenting the health impact of emissions from furniture is introduced, which could be used in the context of environmental product declarations. The health impact is described by the negative indoor air quality potential, the carcinogenic potential, the mutagenic and reprotoxic potential, the allergenic potential, and the toxicological potential. An experimental study of emissions from four pieces of furniture is performed by testing both the materials used for production of the furniture and the complete piece of furniture, in order to compare the results gained by adding emissions of material with results gained from testing the finished piece of furniture. Calculating the emission from a product based on the emission from materials used in the manufacture of the product is a new idea. The relation between calculated results and measured results from the same products differ between the four pieces of furniture tested. Large differences between measured and calculated values are seen for leather products. More knowledge is needed to understand why these differences arise. Testing materials allows us to compare different suppliers of the same material. Four different foams and three different timber materials are tested, and the results vary between materials of the same type. If the manufacturer possesses this type of knowledge of the materials from the subcontractors it could be used as a selection criterion according to production of low emission products. -- Highlights: A method for presenting health impact of emissions is introduced. An experimental study of emissions from four pieces of furniture is performed. Health impact is calculated based on sum of contribution from the materials used. Calculated health impact is compared to health impact of the manufactured product. The results show that health impact could be useful in product development and for presentation in EPDs.

  14. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  15. NREL: Energy Systems Integration Facility - Manufacturing and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing and Material Diagnostics Manufacturing and material diagnostics help manufacturers of clean energy technologies scale up production to volumes that meet U.S....

  16. Application of emulsifiers in the manufacture of cast boosters and related products

    SciTech Connect (OSTI)

    Joginadham, C.; Shankar, P.S.; Gupta, A.N.

    1996-12-01

    Cast boosters made with pentaerythritol tetranitrate (PETN) and trinitro toluene (TNT) give high velocities of detonation and are sensitive to initiation even under high pressures. However, the manufacture of the same involves heating of TNT to its melting temperature and mixing of dry PETN in it. In the present work, wet PETN, TNT and water soluble nitrate salts were used for the manufacture of the boosters. The nitrate salt solution formed with the excess water available in wet PETN was emulsified with the aid of emulsifiers. The velocities of detonation of boosters with various percentages of water were determined. The data of explosive characters of these boosters were compared with normal pentolite cast boosters.

  17. Nakagawa Electric Machinery Manufacturer | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Nakagawa Electric Machinery Manufacturer Place: Saku, Nagano, Japan Product: A company engages in electrical equipment manufacture. Coordinates:...

  18. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    SciTech Connect (OSTI)

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  19. Process for manufacture of inertial confinement fusion targets and resulting product

    DOE Patents [OSTI]

    Masnari, Nino A.; Rensel, Walter B.; Robinson, Merrill G.; Solomon, David E.; Wise, Kensall D.; Wuttke, Gilbert H.

    1982-01-01

    An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

  20. Sustainable Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions ...

  1. Manufacturing Energy and Carbon Footprint - Sector: Forest Products (NAICS 321, 322), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    04 Nonprocess Losses 3,559 1,079 Steam Distribution Losses 300 94 Nonprocess Energy 2,381 Electricity Generation Steam Generation 3,559 80 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 256 1,738 338 Generation and Transmission Losses Generation and Transmission Losses 30 731 Onsite Generation 1,994 717 2,082 2,799 1,069 110 1,581 7.0 64.6 71.5 52.1 49.8 15.4 76.5 11.3 140 68.4 139.9 3.1 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu

  2. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  3. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  4. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and ...

  5. Intelligent Production Monitoring and Control based on Three Main Modules for Automated Manufacturing Cells in the Automotive Industry

    SciTech Connect (OSTI)

    Berger, Ulrich; Kretzschmann, Ralf; Algebra, A. Vargas Veronica

    2008-06-12

    The automotive industry is distinguished by regionalization and customization of products. As consequence, the diversity of products will increase while the lot sizes will decrease. Thus, more product types will be handled along the process chain and common production paradigms will fail. Although Rapid Manufacturing (RM) methodology will be used for producing small individual lot sizes, new solution for joining and assembling these components are needed. On the other hand, the non-availability of existing operational knowledge and the absence of dynamic and explicit knowledge retrieval minimize the achievement of on-demand capabilities. Thus, in this paper, an approach for an Intelligent Production System will be introduced. The concept is based on three interlinked main modules: a Technology Data Catalogue (TDC) based on an ontology system, an Automated Scheduling Processor (ASP) based on graph theory and a central Programmable Automation Controller (PAC) for real-time sensor/actor communication. The concept is being implemented in a laboratory set-up with several assembly and joining processes and will be experimentally validated in some research and development projects.

  6. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    Broader source: Energy.gov [DOE]

    This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

  7. Smart Manufacturing Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing Innovation Smart Manufacturing Innovation Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient, and competitive. Learn more about advanced manufacturing

  8. Miraial formerly Kakizaki Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Miraial (formerly Kakizaki Manufacturing) Place: Tokyo, Japan Zip: 171-0021 Product: Manufacturer of wafer handling products and other components...

  9. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  10. Compressed Air System Optimization Saves Energy and Improves Production at a Textile Manufacturing Mill (Peerless Division, Thomastown Mills, Inc.)

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the textile manufacturing mill project.

  11. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency

  12. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: ...

  13. Advanced Manufacturing Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE FY 2017 BUDGET AT-A-GLANCE The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. What We Do The Advanced Manufacturing Offce uses an integrated approach that relies on three

  14. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  15. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  16. Static Sankey Diagram Full Sector Manufacturing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    consumption across manufacturing subsectors. The U.S. Manufacturing diagram below shows the fuel, steam and electricity ... Applied energy (applied toward direct production or end use ...

  17. Bio Solutions Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Manufacturing Inc Jump to: navigation, search Name: Bio Solutions Manufacturing Inc Place: Las Vegas, Nevada Zip: 89103 Product: Waste-to-energy bioremediation developer....

  18. Leitner Shriram Manufacturing Ltd | Open Energy Information

    Open Energy Info (EERE)

    Manufacturing Ltd Jump to: navigation, search Name: Leitner Shriram Manufacturing Ltd Place: Chennai, Tamil Nadu, India Zip: 600095 Sector: Wind energy Product: Chennai-based JV...

  19. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  20. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE OPPORTUNITY OF CLEAN ENERGY MANUFACTURING By 2030, the global market for new energy generation technology is expected to reach $790B annually-an $11 trillion cumulative investment from 2013. Leveraging energy productivity and domestic energy resources in manufacturing represents important opportunities for U.S. manufacturers to enhance their global competitiveness by realizing lower energy costs. A focus on increased energy productivity will save manufacturers billions of dollars, grow the

  1. Hydroprocessing catalyst manufacture

    SciTech Connect (OSTI)

    Lostaglio, V.J.; Carruthers, J.D.

    1985-01-01

    Hydroprocessing catalysts for the oil-refining industry have undergone significant improvements since the oil shortages of the late 1970's. Spurred by the need for refiners to process heavy, sour feeds, catalyst manufacturers have developed technology to meet these changing demands. Current manufacturing techniques in the production of substrate and final catalyst are reviewed. New approach to the production of resid hydrotreatment catalysts are considered.

  2. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; Peter, William H.; Toops, Todd J.; Green, Jr., Johney Boyd

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  3. Strategies to Save 50% Site Energy in Grocery and General Merchandise Stores

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategies to Save 50% Site Energy in Grocery and General Merchandise Stores Adam Hirsch, Elaine Hale, and Matthew Leach Presented at the ACEEE Summer Study 2010 Pacific Grove, California August 15-20, 2010 Conference Paper NREL/CP-5500-48197 March 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a

  4. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge)

  5. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  6. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  7. Update On The Development, Testing, And Manufacture Of High Density LEU-Foil Targets For The Production Of Mo-99

    SciTech Connect (OSTI)

    Creasy, John T

    2015-05-12

    This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under the following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.

  8. Clean Energy Manufacturing Incentive Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  9. Slideshow: Innovation in the Manufacturing Sector

    Broader source: Energy.gov [DOE]

    Learn how advanced technologies are helping manufacturers reduce waste, increase productivity and become leaders in the clean energy economy.

  10. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  11. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laser-sintering) Optomec LENS MR-7 Sciaky EBAM 68 Non-metal additive manufacturing Powder bed FORMIGA P 110 PolyJet 3D ... Fused deposition modeling print technology MakerBot ...

  12. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  13. The President's Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the ...

  14. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect (OSTI)

    Fatemi, H.

    2012-07-01

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  15. additive manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  16. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  17. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  18. Summit Manufacturing: Case Closure (2010-SE-0303)

    Broader source: Energy.gov [DOE]

    DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

  19. KMC Controls Inc Kreuter Manufacturing Company | Open Energy...

    Open Energy Info (EERE)

    KMC Controls Inc Kreuter Manufacturing Company Jump to: navigation, search Name: KMC Controls, Inc. (Kreuter Manufacturing Company) Place: New Paris, Indiana Zip: IN 46553 Product:...

  20. Pihsiang Electric Vehicle Manufacturing Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name: Pihsiang Electric Vehicle Manufacturing Co Ltd Place: Taiwan Sector: Vehicles Product: Taiwan-based maker of...

  1. Taiwan Semiconductor Manufacturing Co Ltd TSMC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing Co Ltd TSMC Jump to: navigation, search Name: Taiwan Semiconductor Manufacturing Co Ltd (TSMC) Place: Hsinchu, Taiwan Zip: 300 Sector: Solar Product: Taiwan-based...

  2. Mingchuang Energy Manufacturing Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mingchuang Energy Manufacturing Co Ltd Jump to: navigation, search Name: Mingchuang Energy Manufacturing Co Ltd Place: China Sector: Wind energy Product: Chinese wind turbine...

  3. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  4. Indian Wind Turbine Manufacturers Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Turbine Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

  5. Iskra Wind Turbine Manufacturers Ltd | Open Energy Information

    Open Energy Info (EERE)

    Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name: Iskra Wind Turbine Manufacturers Ltd Place: Nottingham, United Kingdom Sector: Wind energy Product: Iskra...

  6. A.J. Rose Manufacturing Company | Open Energy Information

    Open Energy Info (EERE)

    search Name: A.J. Rose Manufacturing Company Address: 38000 Chester Road Place: Avon, OH Zip: 44011 Sector: Renewable Energy Product: Manufacturing Phone Number:...

  7. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  8. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  9. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  10. Solar Manufacturing Projects | Department of Energy

    Office of Environmental Management (EM)

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  11. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  12. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While many U.S. manufacturing operations utilize ... time across an entire production operation are rare in ... systems can be applied is in the management of waste heat. ...

  13. LightManufacturing | Open Energy Information

    Open Energy Info (EERE)

    greenhouse gas emissions resulting from rotational molding. 6 Unlike concentrated solar power firms which focus on utility-scale electric production 7 , LightManufacturing...

  14. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Manufacturing is how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Manufacturing is the lifeblood of the American economy -- providing jobs

  15. Private-Public Partnerships for U.S. Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiber Reinforced Polymer Composite Manufacturing Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing National Program Office www.manufacturing.gov U.S. Trade Balance of Advanced Technology 11% of U.S. GDP 12 million U.S. jobs * ~ half of U.S. Exports U.S. Trade Balance Advanced Technology Manufacturing Products ($ Billions) AMNPO Advanced Manufacturing National Program Office A White House chartered

  16. Video: Clean Energy Manufacturing Boosting U.S. Competitiveness

    Broader source: Energy.gov [DOE]

    Learn how clean energy manufacturing is changing the kinds of products we make and how they are built.

  17. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Innovating Clean Energy Technologies in Advanced Manufacturing September 2015 Quadrennial Technology Review 6 Innovating Clean Energy Technologies in Advanced Manufacturing Issues and RDD&D Opportunities  Manufacturing affects the way products are designed, fabricated, used, and disposed; hence, manufacturing technologies have energy impacts extending beyond the industrial sector.  Life-cycle analysis is essential to assess the total energy impact of a manufactured product. 

  18. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  19. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and ...

  20. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  1. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    ...sitesdefaultfilesmicrositesostppcast-advanced-manufacturing-june2011.pdf. Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Collaboration and ...

  2. Chapter 6 — Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This chapter examines the opportunities for improvements in energy and materials utilization within three spaces: individual manufacturing processes and unit operations; goods-producing facilities, including manufacturing business processes; and manufacturing supply chains and manufactured goods, including impacts from all phases of the product life cycle.

  3. Increasing U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia- tive (CEMI) is a U.S. Department of Energy (DOE)-wide commitment to innovation and breaking down market barriers in order to enhance U.S. manufacturing competitiveness while advancing the nation's energy goals. As a part of this initiative, DOE is committing resources across technol- ogy areas to catalyze clean energy manufacturing research and development (R&D), as well as to catalyze greater energy pro-ductivity in

  4. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  5. HPC4Mfg: Boosting American Competiveness in Clean Energy Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    industrial products and processes-including paper manufacturing, food drying, and 3D printing aerospace parts-with the goal of dramatically reducing production costs and ...

  6. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  7. Advanced Manufacturing Office FY 2017 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About Us » Advanced Manufacturing Office FY 2017 Budget At-A-Glance Advanced Manufacturing Office FY 2017 Budget At-A-Glance The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. AMO FY17

  8. Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy

  9. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect (OSTI)

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  10. Clean Energy Manufacturing Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Clean Energy Manufacturing Reports The Clean Energy Manufacturing Initiative develops competitiveness analysis and strategies that inform R&D investments and other efforts needed to address key barriers to growing U.S. clean energy manufacturing competitiveness. This unprecedented competitiveness analysis evaluates the costs of producing clean energy products in the U.S. compared to competitor nations to understand factory location decisions and identify key drivers to U.S. clean

  11. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  12. Working with SRNL - The Advanced Manufacturing Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/2016 SEARCH SRNL GO The Advanced Manufacturing Collaborative Academia Government Industry AMC Leadership Contact AMC Home SRNL Home Working with SRNL The Advanced Manufacturing Collaborative For over 50 years, the Savannah River National Laboratory (SRNL) has been providing the science behind nuclear chemical manufacturing at the Savannah River Site (SRS), a sprawling nuclear complex that was once part of our nation's Cold War. Time has changed the mission at SRS from nuclear production for

  13. WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Workshops » WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 The Advanced Manufacturing Office (AMO) held a workshop in Portland, Oregon on January 6-7, 2016. The topic of this 2 day workshop was Sustainable Manufacturing. This workshop included discussions featuring topics such as Developing and Using Alternative Feedstocks; Reduction of Waste in Manufacturing Processes; End of Life Product Management; Materials, Energy

  14. Energy Department Launches New Clean Energy Manufacturing Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy New Clean Energy Manufacturing Initiative Energy Department Launches New Clean Energy Manufacturing Initiative March 26, 2013 - 10:56am Addthis News Media Contact (202) 586-4940 OAK RIDGE - As part of the Obama Administration's commitment to revitalizing America's manufacturing sector, today the Energy Department launched the Clean Energy Manufacturing Initiative (CEMI), a new Department initiative focused on growing American manufacturing of clean energy products and

  15. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Outline * Big Picture on Manufacturing in US * Focus on Advanced Manufacturing * AMO Organization * Technical Assistance * R&D Facilities * R&D Projects * Goals for Meeting 3 Products invented here, now made

  16. Improving Manufacturing through Technology and Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Improving Manufacturing through Technology and Innovation Improving Manufacturing through Technology and Innovation June 20, 2016 - 11:12am Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient and competitive. | Advanced Manufacturing Office video. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy KEY FACTS Since February 2010, the U.S. manufacturing sector has added more than 800,000 jobs.

  17. Upcoming Webinar February 11: Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    On Tuesday, February 11, the Energy Department will present a live webinar on additive manufacturing to stimulate discussion in the hydrogen and fuel cell community on the application of additive manufacturing to prototyping and production.

  18. TekSun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    TekSun PV Manufacturing Inc Jump to: navigation, search Name: TekSun PV Manufacturing Inc Place: Austin, Texas Zip: 78701 Product: US-based installer of PV systems; rportedly...

  19. Minnesota Mining and Manufacturing Co 3M | Open Energy Information

    Open Energy Info (EERE)

    Mining and Manufacturing Co 3M Jump to: navigation, search Name: Minnesota Mining and Manufacturing Co (3M) Place: Saint Paul, Minnesota Zip: MN 55144-1000 Product: US-based...

  20. Tokyo Steel Manufacturing Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Tokyo Steel Manufacturing Co, Ltd Place: Japan Zip: 100-0013 Product: Tokyo Steel is involved in the manufacture and sale of steel...

  1. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  2. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  3. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Increasing U.S. Market Share in Solar Photovoltaic Manufacturing Close From 2000 to 2010, global shipments of solar cells and modules grew 53%, a wave that China and Taiwan rode to increase their combined market share from less than 2% to 54%. Meanwhile, U.S. market share

  4. Manufacturing Innovation Topics Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  5. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013. Fuel Cell Manufacturing (2.61 MB) ...

  6. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  7. The Economics of Big Area Addtiive Manufacturing

    SciTech Connect (OSTI)

    Post, Brian; Lloyd, Peter D; Lindahl, John; Lind, Randall F; Love, Lonnie J; Kunc, Vlastimil

    2016-01-01

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupled with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.

  8. Clean Energy Manufacturing Resources - Technology Prototyping | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  9. Manufacturing of Profiles for Lightweight Structures

    SciTech Connect (OSTI)

    Chatti, Sami; Kleiner, Matthias

    2007-04-07

    The paper shows some investigation results about the production of straight and curved lightweight profiles for lightweight structures and presents their benefits as well as their manufacturing potential for present and future lightweight construction. A strong emphasis is placed on the manufacturing of straight and bent profiles by means of sheet metal bending of innovative products, such as tailor rolled blanks and tailored tubes, and the manufacturing of straight and curved profiles by the innovative procedures curved profile extrusion and composite extrusion, developed at the Institute of Forming Technology and Lightweight Construction (IUL) of the University of Dortmund.

  10. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  11. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. The Advanced Manufacturing Partnership and the

  12. High Pressure Hydrogen Tank Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane®

  13. Investigation of structure and properties of the Nb rods manufactured by different deformation and heat treatment regimes in mass production conditions for the Nb{sub 3}Sn strands

    SciTech Connect (OSTI)

    Abdyukhanov, I. M.; Vorobieva, A. E.; Alekseev, M. V.; Mareev, K. A.; Dergunova, E. A.; Peredkova, T. N. [JSC Bochvar High-Technology Research Institute of Inorganic Materials, 5a Rogova St., Moscow, 123060 (Russian Federation); Shikov, A. K. [NRC Kurchatov Institute, 1 Akademika Kurchatova Sq., Moscow, 123182 (Russian Federation); Utkin, K. V.; Vorobieva, A. V.; Kharkovsky, D. N. [JSC Chepetsky Mechanical Plant, 7 Belova St., Glazov, 427620 (Russian Federation)

    2014-01-27

    From 2009 the mass production of the Nb{sub 3}Sn strands for ITER with the yield of several tens of tons per year operates at JSC Chepetsky Mechanical Plant (Glazov, Russia). In order to enhance the stability of output characteristics of the produced Nb{sub 3}Sn strands, to increase the Nb filaments dimensional homogeneity the manufacture regimes improvement of the used semiproducts such as Nb rods intended for the superconducting filaments formation in the finished strands has been carried out. In the work the investigations of the Nb rheological behavior, the influence of heat treatment in the wide temperature range from 700 to 1300 C on the predeformed Nb rods structure and mechanical properties have been performed. Different production routes of the Nb rods, including such operations like forging, extrusion and drawing combined with the recrystallization annealings, were used. Composite Nb{sub 3}Sn strands have been produced and their electrophysical properties have been tested. For the first time influence of the niobium rods manufacture regimes on the current carrying capacity of the industrial Nb{sub 3}Sn strands has been investigated.

  14. Clean Energy Manufacturing Initiative Current Activities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Current Activities Clean Energy Manufacturing Initiative Current Activities The Clean Energy Manufacturing Initiative (CEMI) takes concrete actions to build momentum around American innovation, growth, and competitiveness in clean energy manufacturing. Activity areas include technology research and development (R&D); new innovation models; competitiveness analysis; stakeholder engagement; and energy productivity technical assistance. Technology Research and Development Investment

  15. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  16. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For instance, the following parts have already been manufactured additively: 179 Structure parts for unmanned aircraft by SAAB Avitronics 15, 16; 180 Special tools for ...

  17. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  18. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  19. Upcoming Webinar February 11: Additive Manufacturing for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the hydrogen and fuel cell community on the application of additive manufacturing to prototyping and production. Presentations by Eaton and Nuvera will highlight Eaton's experience...

  20. Building a More Competitive American Manufacturing Industry with...

    Broader source: Energy.gov (indexed) [DOE]

    will be able to reinvent products that are at the foundation of our clean energy economy - many of which directly impact our daily lives. Wind turbine manufacturers could...

  1. Manufacturing R&D Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and ...

  2. National Alliance for Advanced Transportation Battery Cell Manufacture...

    Open Energy Info (EERE)

    Manufacture Product: US-based consortium formed to research, develop, and mass produce lithium ion batteries. References: National Alliance for Advanced Transportation Battery Cell...

  3. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    ... Products and Services, p8-11, Nov, Vienna, Austria. 12. Dehoff, R. (2011). ... Manufacturing Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office, ...

  4. Fuel Cell Technologies Manufacturing Research and Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Within the Office of Energy Efficiency and Renewable Energy (EERE), the Fuel Cell Technologies Office (FCTO) supports manufacturing research and development (R&D) activities to improve processes and reduce the cost of components and systems for hydrogen production, delivery, and storage over the

  5. Bandwidth Study U.S. Chemical Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Manufacturing Bandwidth Study U.S. Chemical Manufacturing Chemicals.jpg Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing

  6. Electrolyzer Manufacturing Progress and Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyzer Manufacturing Progress and Challenges Electrolyzer Manufacturing Progress and Challenges Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Electrolyzer Manufacturing Progress and Challenges (417.03 KB) More Documents & Publications Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Reversible Fuel Cells Workshop Summary Report Development of Reversible Fuel Cell

  7. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Manufacturing Photo of scientific equipment in laboratory setting. NREL's in-line diagnostics help industry identify defects in fuel cell components. This small-scale manufacturing line at NREL's Energy Systems Integration Facility can convey fuel cell component materials at speeds of 100 feet per minute. NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high-volume manufacturing processes to enable higher production volumes, increased reliability,

  8. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  9. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  10. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  11. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    SciTech Connect (OSTI)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  12. Driving Economic Growth: Advanced Technology Vehicles Manufacturing

    Broader source: Energy.gov [DOE]

    With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Loan Programs Office Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of manufacturing in the United States.

  13. Alternative Interconnect Manufacturing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lead Performer: Vadient Optics LLC - Eugene, OR DOE Total Funding: $150,000 Project Term: February 22, 2016 - November 21, 2016 Funding Type: SBIR PROJECT OBJECTIVE Vadient Optics proposes to develop and demonstrate a practical commercial manufacturing route for its flexible, low-cost additive manufacturing process used to efficiently fabricate complex and highly efficient light-extraction optics for a variety of SSL products. The proposed approach will allow inkjet-print fabrication of

  14. Leading manufacturers in the Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leading manufacturers in the Better Buildings, Better Plants Program are taking on bold commitments to improve energy efficiency across their operations. Building on President Obama's Better Buildings Initiative and the Administration's broader efforts to double energy productivity by 2030, the U.S. Department of Energy (DOE) works with manufacturers to set corporate-wide energy reduction goals, improve energy management, and track and report their progress. The industrial sector accounts for

  15. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  16. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  17. QTR Webinar: Chapter 8 - Industry and Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Chapter 8 - Industry and Manufacturing QTR Webinar: Chapter 8 - Industry and Manufacturing Background The U.S. industrial sector accounts for approximately one-third of the overall energy consumption and associated carbon emissions in the U.S. About four-fifths of end-use industrial energy is consumed by the manufacturing sub-sector, which produces goods ranging from fundamental commodities to sophisticated final-use products. Many of these products have a significant energy and carbon

  18. MECS 2006- Forest Products

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

  19. Lessons Learned During the Manufacture of the NCSX Modular Coils

    SciTech Connect (OSTI)

    James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

    2009-09-15

    The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

  20. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  1. Renewable Energy Manufacturing Program

    Broader source: Energy.gov [DOE]

    Note: The initial application deadline for the Renewable Energy Manufacturing Program is June 30, 2016. Applications will be accepted following that date only if there are remaining funds available...

  2. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  3. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  4. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  5. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to ... Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking ...

  6. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  7. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  8. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  9. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a ...

  10. Manufacturing Demonstration Facility Workshop Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing ...

  11. Towards automatic planning for manufacturing generative processes

    SciTech Connect (OSTI)

    CALTON,TERRI L.

    2000-05-24

    Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from the original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.

  12. DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Failure to Certify 116 Products | Department of Energy Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products January 28, 2010 - 1:49pm Addthis WASHINGTON DC - The Office of General Counsel has issued Notices of Proposed Civil Penalty to Zoe Industries, Altmans Products LLC, EZ-FLO International, and Watermark Designs, Ltd. for failing to

  13. Major manufacturing and mining investment projects

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This book lists manufacturing and mining investment projects with development costs of $5 million or more. Manufacturing projects are classified in accordance with the Australian Bureau of Statistics' Australian Standard Industrial Classification (ASIC) and mining projects by broad mineral categories. The book includes information on the nature of each project, its location and timing, the company of joint venture name, whether the investment is at a new site or at an existing site, the type of product, the value of the annual output, production, employment, past and future costs and the composition (structure and plant) of the investment.

  14. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect (OSTI)

    Eastwood, Eric

    2009-02-16

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  15. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    SciTech Connect (OSTI)

    Lowe, Terry C.

    2012-07-24

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  16. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect (OSTI)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  17. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  18. Sunforce Products | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Manufacturer and distributor of solar and wind power generation and battery charging products. References: Sunforce Products1 This article is a stub. You can...

  19. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry

  20. NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Manufacturing R&D Project Photo of blue solar cells being sorted in a production line. A woman works behind the protective glass in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers

  1. Vermont Manufacturing Plant Opens with Support from the Recovery Act |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The

  2. Advanced Manufacturing: Using Composites for Clean Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Manufacturing: Using Composites for Clean Energy Advanced Manufacturing: Using Composites for Clean Energy Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life. Below is the text version of the video above. The video opens with the title, "Advanced

  3. Wind Manufacturing and Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Wind Manufacturing and Supply Chain Wind Manufacturing and Supply Chain The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing capabilities. Its goals are to increase reliability while lowering production costs, and to promote an industry that can meet all demands domestically while competing in the global market. The Wind Program supports industry partnerships and targeted R&D investments that integrate new

  4. Drug development and manufacturing

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  5. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Violating Minimum Appliance Standards | Department of Energy Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 2:17pm Addthis Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat

  6. Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector The Process Energy Static Sankey diagram shows how energy is used directly for production by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan,

  7. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Violating Minimum Appliance Standards | Department of Energy Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air Conditioners Violating Minimum Appliance Standards June 3, 2010 - 12:00am Addthis Washington, DC - Today, the Department of Energy announced that three manufacturers -- Aspen Manufacturing, Inc., Summit Manufacturing, and Advanced Distributor Products -- must

  8. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing ...

  9. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Survey (MECS) Steel Analysis Brief Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers,

  10. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can be used in ultracapacitors, lithium-ion batteries, and advanced lead acid batteries. ... EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo ...

  11. Washington: Battery Manufacturer Brings Material Production Home

    Broader source: Energy.gov [DOE]

    EERE-supported company, EnerG2, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles.

  12. Alternative Energy Product Manufacturers Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The total amount of the credit is approved by the Taxation and Revenue Department and is not to exceed 5% of the taxpayer’s qualified expenditures. A qualified expenditure is the purchase of...

  13. Manufacturing Cost Levelization Model – A User’s Guide

    SciTech Connect (OSTI)

    Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine

    2015-08-01

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modules that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks

  14. Designing aluminum sealing glasses for manufacturability

    SciTech Connect (OSTI)

    Kovacic, L.; Crowder, S.V.; Brow, R.K.; Bencoe, D.N.

    1993-12-31

    Manufacturability issues involved in the development of new sealing glasses include tailoring glass compositions to meet material and component requirements and determining the optimum seal processing parameters. For each of these issues, statistical analysis can be used to shorten the time between concept and product in the development of what is essentially a new manufacturing technology. We use the development of our new family of phosphate-based glasses for aluminum/stainless steel and aluminum/CuBe hermetic sealing, the ALSG family, to illustrate the statistical approach.

  15. Manufacturing R&D for systems that will produce and distribute...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing R&D of PEM Fuel Cells Roadmap on Manufacturing R&D for the Hydrogen Economy 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell ...

  16. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Officer National Institute of Standards and Technology Carrie Houtman Senior Public Policy Manager Dow Chemical Overview * Advanced Manufacturing Activities * Advanced ...

  17. Advanced Manufacturing Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... sector Gap "Valley of Death" (Risk Spike) DOE Energy ... capability for the United States * Impactful: Has a ... or products: * Production rate * Processes established * ...

  18. National Electrical Manufacturers Association

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  19. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  20. Hydrogen Manufacturing R&D Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D Workshop Hydrogen Manufacturing R&D Workshop The U.S. Department of Energy, in collaboration with the U.S. Department of Commerce, sponsored a Manufacturing R&D for the Hydrogen Economy Workshop in Washington, DC, July 13-14, 2005. The workshop brought together key industry, university, and government representatives to develop a roadmap for manufacturing R&D for: (1) hydrogen production and delivery systems, (2) hydrogen storage systems, and (3) fuel cells that

  1. Manufactured Homes Tool

    Energy Science and Technology Software Center (OSTI)

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  2. Amped Up! Magazine, Vol. 2, No. 1: The Clean Energy Manufacturing Issue |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Amped Up! Magazine, Vol. 2, No. 1: The Clean Energy Manufacturing Issue Amped Up! Magazine, Vol. 2, No. 1: The Clean Energy Manufacturing Issue 3-D Printed Molds Hold Promise for Enhanced Wind Energy Manufacturing 3-D Printed Molds Hold Promise for Enhanced Wind Energy Manufacturing The Energy Department is exploring the production of wind energy blade molds through 3-D printing, which could reduce production time from about a year to six weeks. EERE Announces the Energy

  3. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  4. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  5. Means of manufacturing annular arrays

    DOE Patents [OSTI]

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  6. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect (OSTI)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  7. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, ...

  8. NREL: Energy Analysis - Manufacturing Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Publications "Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness" IEEE Journal of Photovoltaics Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry Economic Development Impact of 1,000 MW of Wind Energy in Texas Manufacturing Analysis With world-class manufacturing analysis capabilities, NREL analyzes clean energy industry trends; cost, price, and performance trends; market and

  9. Additive Manufacturing: Technology and Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing: Technology and Applications Natural Gas Infrastructure R&D and ... * Success in development and integration of multidisciplinary teams ...

  10. Energy 101: Clean Energy Manufacturing

    SciTech Connect (OSTI)

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  11. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  12. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  13. Forest Products

    Broader source: Energy.gov [DOE]

    Purchased energy remains the third largest manufacturing cost for the forest products industry–despite its extensive use of highly efficient co-generation technology. The industry has worked with...

  14. Tomoe Electric Manufacturing Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Tomoe Electric Manufacturing Co Ltd Place: Tokyo, Tokyo, Japan Zip: 140-0013 Product: Tomoe Electric MFG, a Tokyo-based electric vehicle provider, is...

  15. Leadership Perspectives: The Opportunity for Clean Energy Manufacturing

    Broader source: Energy.gov [DOE]

    There is a tremendous opportunity for the United States to manufacture clean energy and energy efficiency products. Leaders from U.S. industry and the U.S. Department of Energy (DOE) discuss the...

  16. GE's Digital Marketplace to Revolutionize Manufacturing | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Commons" - a global ecosystem for manufacturing businesses The Commons ... The project aims to build an expansive manufacturing ecosystem, with the goal of having ...

  17. Additive Manufacturing: Pursuing the Promise | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise More Documents...

  18. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  19. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  20. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy and Carbon Footprint All Manufacturing (NAICS 31-33) (120.28 KB) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum ...

  1. Solar Manufacturing Technology | Department of Energy

    Energy Savers [EERE]

    Technology to Market Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of ...

  2. About the Clean Energy Manufacturing Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Clean Energy Manufacturing Initiative About the Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy ...

  3. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf ...

  4. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy ...

  5. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  6. MANUFACTURED TO AIIM STANOAROS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    + .,+++_ _+++ +..++,+ + ++++_. _+ ,++p + +% ++ + +_++ +_,/x+'_ MANUFACTURED TO AIIM STANOAROS _ ..+ ++ BY APPLIED IMAGE, INC, _+ + .DK3E/NV/11482..139 DOE/NV/11..4_L2-139 National Emission Standards forHazardousAir Pollutant_ Submittal 993 Stuart B_.Black June 1994 Work Pe_ Under Contract No, DE-AC08-94NV11432 PreparedbY: Reynolds Electrical & EnglneerlngCo., Inc, Post Office Bo_(98521 Los Vegas. Nevada 89193-8521 MA,TER II_OT/lOg DFTItI,_ DOCUMENT f$ UNLIMITED TABLE OF CONTENTS List of

  7. Industrial Assessment Centers Small Manufacturers Reduce Energy & Increase

    Broader source: Energy.gov (indexed) [DOE]

    DOE/EE-1278 Industrial Assessment Centers Small Manufacturers Reduce Energy & Increase Productivity Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized

  8. Table B1. Pipe Manufacturer Compatibility with Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    B1. Pipe Manufacturer Compatibility with Ethanol Blends Manufacturer Product Model Ethanol Compatibility Piping-All Companies have UL 971 listing for E100 Advantage Earth Products Piping 1.5", 2", 3", 4" E0-E100 Brugg Piping FLEXWELL-HL, SECON-X, NITROFLEX, LPG E0-E100 Franklin Fueling Piping Franklin has third-party certified piping compatible with up to E85. Contact manufacturer for specific part numbers. E0-E85 OPW Piping FlexWorks, KPS, Pisces (discontinued) E0-E100 NOV

  9. Wind Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Facilities Wind Manufacturing Facilities Wind Manufacturing Facilities America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state

  10. Oak Ridge Centers for Manufacturing Technology - The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  11. Oak Ridge Centers for Manufacturing Technology ? The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  12. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Summary (372.05 KB) More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing ...

  13. Innovative Manufacturing Initiatives Recognition Day Agenda ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Manufacturing Initiatives Recognition Day Agenda imirecogitiondayagenda.pdf (76.67 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition ...

  14. Understanding Manufacturing Energy and Carbon Footprints, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding Manufacturing Energy and Carbon Footprints, October 2012 Understanding Manufacturing Energy and Carbon Footprints, October 2012 understandingenergyfootprints2012.p...

  15. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Initiative: Increasing American Competitiveness Through Innovation Clean ... Manufacturing Initiative (CEMI), a collaborative effort between the federal government, ...

  16. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  17. Semiconductor Manufacturing International Corp SMIC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing International Corp SMIC Jump to: navigation, search Name: Semiconductor Manufacturing International Corp (SMIC) Place: Shanghai, Shanghai Municipality, China Zip:...

  18. Plumbing Manufacturer's Institute Ex Parte Communication Regarding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department ...

  19. Sustainable manufacturing Workshop: Workshop Summary Report

    Energy Savers [EERE]

    AMO Workshop on Sustainable Manufacturing i | P a g e Table of Contents 1. Workshop ......... 6 Sustainable Manufacturing Technology Assessment ...

  20. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - ... mechanics of the Manufacturing Demonstration Facility (MDF) concept and the ...

  1. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  2. Improvement of microbead cracking catalyst manufacture

    SciTech Connect (OSTI)

    Mirskii, Ya.B.; Kosolapova, A.P.; Meged, N.F.

    1986-11-01

    In order to improve the manufacturing process for KMTsR microbead catalyst for use in new cracking units, the authors consider the method of increasing the content of aluminum oxide in its amorphous part. A microbead catalyst of zeolite, containing rare-earth elements of the KMTsR type was obtained by spray-drying a slurry prepared by mechanical dispersion of hydrogel beads, with the subsequent molding and processing operations the same as in the production of bead catalyst.

  3. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  4. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  5. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  6. Revolutionizing Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy

  7. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  8. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  9. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  10. Forest Products (2010 MECS)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014