Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

2

Additive Manufacturing for Large Products.  

E-Print Network (OSTI)

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the… (more)

Leirvĺg, Roar Nelissen

2013-01-01T23:59:59.000Z

3

Climate VISION: Private Sector Initiatives: Chemical Manufacturing...  

Office of Scientific and Technical Information (OSTI)

Contact Us CHEMICAL MANUFACTURING Letters of IntentAgreements Work Plans GHG Information Energy Footprints Industry Analysis Briefs Resources & Links Industry Associations...

4

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to

5

Plastic Product Manufacturing (NAICS 3261)  

Science Conference Proceedings (OSTI)

The U.S. plastics product manufacturing industry (NAICS 3261), which consists of more than 12,000 firms with combined annual revenues of about $170 billion, is one of the ten largest manufacturing industries in the country in terms of sales. A large amount of electricity is consumed by the plastics products industry, with more than half of their usage going to machine drives; therefore, it is with motors and drives that the greatest opportunities for energy savings lie. Several electric technology option...

2012-01-31T23:59:59.000Z

6

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Technical Information Publications Case Studies CD-ROMs Publications The following publications are available for download as Adobe PDF documents. Download Acrobat Reader. Chemicals Annual Report (PDF 509 KB) This report provides a summary of activities and R&D projects in fiscal year 2004. Order the Annual Report from the ITP Clearinghouse at 1-800-862-2086. Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. Chemical Bandwidth Study Analyzes Energy Savings Opportunities ITP's Chemicals portfolio works with the chemical industry to develop energy-efficient technologies. Read this report (PDF 1.16 MB)

7

Climate VISION: Private Sector Initiatives: Chemical Manufacturing  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements American Chemistry Council (ACC), representing 85% of the chemical industry production in the U.S., has agreed American Chemistry Council Logo to an overall greenhouse gas intensity reduction target of 18% by 2012 from 1990 levels. ACC will measure progress based on data collected directly from its members. ACC also pledges to support the search for new products and pursue innovations that help other industries and sectors achieve the President's goal. Activities include increased production efficiencies, promoting coal gasification technology, increasing bio-based processes, and, most importantly, developing efficiency-enabling products for use in other sectors, such as appliance transportation and construction. The following documents are available for download as Adobe PDF documents.

8

Climate VISION: Private Sector Initiatives: Chemical Manufacturing...  

Office of Scientific and Technical Information (OSTI)

with American Chemistry Council to develop a technology strategy. Council for Chemical Research Vision2020 partner. American Institute for Chemical Engineers Vision2020...

9

Supply chain network optimization : low volume industrial chemical product  

E-Print Network (OSTI)

The chemical industry is a highly competitive and low margin industry. Chemical transportation faces stringent safety regulations meaning that Cost-To-Serve (C2S), costs associated with products net flow from manufacturers ...

Dacha, Fred (Frederick Omondi)

2013-01-01T23:59:59.000Z

10

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways U.S. chemical producers recognize that energy efficiency offers a competitive edge in world markets. In 1996 the U.S. industry entered into partnership with ITP to work toward shared goals. Since then, the Chemical Industry of the Future partnership has been feeding the technology pipeline so that U.S. chemical producers will have the technologies they need to achieve their long-term economic, energy, and environmental goals. The DOE's Industries of the Future process helps entire industries articulate their long-term goals and publish them in a unified vision for the future. To achieve that vision, industry leaders jointly define detailed R&D agendas known as roadmaps. ITP relies on roadmap-defined priorities to target cost-shared solicitations and guide development of a

11

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs DOE Chemical Industry of the Future The DOE Chemical Industry of the Future program is a set of collaborative R&D partnerships between DOE Industrial Technologies Program and industry to maximize technology investments. Texas Industries of the Future The Texas Industries of the Future program facilitates the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations within your state, please refer to the DOE Office of Energy Efficiency and Renewable Energy State Specific Information website.

12

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Full-Scale Production Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Design Production and Manufacturing Process Advanced Research Projects Agency: Tech-to-Market Resources - general tech-to-market (T2M) resources. DOE Advanced Manufacturing Office: Manufacturing Demonstration Facility - a collaborative manufacturing community that works to provide real data to

13

Energy Report: U.S. Wind Energy Production and Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing...

14

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Energy Management Expertise Energy Management Expertise Pumping System Assessment Tool Qualification PSAT helps users assess energy savings opportunities in pumping systems, relying on field measurements of flow rate, head, and either motor power or current to perform the assessment. AIRMaster+ Qualification AirMaster+ provides comprehensive information on assessing compressed AirMaster+ air systems, including modeling, existing and future system upgrades, and savings and effectiveness of energy efficiency measures. Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey process heating equipment and identify the most energy-intensive equipment and to perform energy (heat) balances on furnaces to identify and reduce non-productive energy use.

15

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

16

Establishing Greener Products and Manufacturing Processes  

E-Print Network (OSTI)

energy monitoring of machine tools,” CIRP Annals - Manufacturing INTERNATIONAL JOURNAL OF PRECISION ENGINEERING

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

17

Property Tax Abatement for Production and Manufacturing Facilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abatement for Production and Manufacturing Facilities Abatement for Production and Manufacturing Facilities Property Tax Abatement for Production and Manufacturing Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Program Info Start Date 5/25/2007 State Montana Program Type Industry Recruitment/Support Rebate Amount 50% tax abatement Provider Montana Department of Revenue In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable energy research and

18

Lean manufacturing in a semiconductor environment : production leveling  

E-Print Network (OSTI)

Intel Corporation's Fab17 located at Hudson, MA underwent a large scale manufacturing ramp-up, increasing its production volume by over 50%. As a result of this manufacturing ramp-up, the factory is faced with various ...

Subramanian, Nima

2007-01-01T23:59:59.000Z

19

Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

20

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alignment strategies for drug product process development and manufacturing  

E-Print Network (OSTI)

The transfer of information between the drug product development and manufacturing organizations is fundamental to drug product commercialization. This information is used to characterize the product-process interaction ...

Garvin, Christopher John

2012-01-01T23:59:59.000Z

22

DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS  

SciTech Connect

Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

M. M. Wu

2005-02-01T23:59:59.000Z

23

Session J: Processing and Product Manufacturing  

Science Conference Proceedings (OSTI)

Design and Manufacture of Fluidized Bed Reactor in Pilot Scale for Multiple ...... for the U.S. Department of Energy's National Nuclear Security Administration ...

24

Solder technology in the manufacturing of electronic products  

SciTech Connect

The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

Vianco, P.T.

1993-08-01T23:59:59.000Z

25

Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturers of Noncompliant Products Agree to Civil Penalties to Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions July 1, 2013 - 11:17am Addthis The Department of Energy has settled civil penalty actions it initiated against nine companies for the manufacture and sale in the United States of products that fail to meet federal energy conservation standards. The covered consumer products and commercial/industrial equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased all sales within the United States of the products that violated federal energy conservation standards.

26

Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers of Noncompliant Products Agree to Civil Penalties to Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve Enforcement Actions July 1, 2013 - 11:17am Addthis The Department of Energy has settled civil penalty actions it initiated against nine companies for the manufacture and sale in the United States of products that fail to meet federal energy conservation standards. The covered consumer products and commercial/industrial equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased all sales within the United States of the products that violated federal energy conservation standards.

27

Survey of Alternative Feedstocks for Commodity Chemical Manufacturing  

Science Conference Proceedings (OSTI)

The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

2008-02-01T23:59:59.000Z

28

International photovoltaic products and manufacturers directory, 1995  

DOE Green Energy (OSTI)

This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

1995-11-01T23:59:59.000Z

29

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: Results  

Office of Scientific and Technical Information (OSTI)

Results Results Between 1990 and 2006, our greenhouse gas emissions fell dramatically. Greenhouse gas emissions excluding indirect (or embedded) carbon dioxide emissions from purchased electricity, fell 12.5% in absolute terms between 1990 and 2006, a reduction that would have exceeded the Kyoto Protocol target for the U.S. (7%) and the EU (8%). During the same period, chemical industry production rose 41%. As a result, GHG emissions intensity improved 38%. Indirect greenhouse gas emissions from purchased electricity, fell 7% between 1990 and 2006, a level that matches the Kyoto Protocol target for the U.S. (7%). During the same period, chemical industry production rose 41%. As a result, GHG emissions intensity improved 34%. Chemical Industry Greenhouse Gas Intensity Trends

30

Rapid replenishment at a consumer product goods manufacturer  

E-Print Network (OSTI)

Increasing supply chain velocity has adverse consequences for consumer product goods manufacturers, but creates value and flexibility for retail stores. This thesis outlines a case study of a rapid replenishment pilot ...

Becker, Deborah Eugenia

2007-01-01T23:59:59.000Z

31

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network (OSTI)

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

32

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: GHG  

Office of Scientific and Technical Information (OSTI)

Industry Analysis Briefs Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

33

Energy Impacts of Productivity Improvements in Manufacturing  

E-Print Network (OSTI)

The complexity of industrial processes and the need to consider the interaction of various systems has led in many cases to the maturing of the “energy audit” in to a more sophisticated “industrial assessment.” The assessment team typically looks for potential improvements in energy use in concert with examination of waste streams and potential productivity improvements. The benefits of this new approach are substantial in particular with respect to productivity improvements. Such projects are much easier to interest management in than waste or pure energy ones. In many cases they may also require smaller capital investments as many of the projects involve changes in practices and procedures. In a large number of cases, the impact of productivity projects on energy use in the plant are ignored or underestimated. This is unfortunate as the appropriate tracking of energy impacts would lower implementation payback times and potentially lead to greenhouse gas reduction credits. This paper examines how energy impacts are currently tracked in productivity projects and suggests two techniques for dramatically improving the accuracy of these estimates. Experiences from the DOE Industrial Assessment Center program are used as well as data from the programs publicly available database. It is shown that in many of the recommended productivity improvements there is an associated absolute reduction in energy use. For example, it is common to recommend the elimination of steps in a process by improving quality control etc. Savings are tracked in terms of time and manpower, but the elimination of parts of the process normally results in a reduction in energy consumption. Often, this reduction is underreported. Also very common, however, is that case where a productivity recommendation leads to an increase of total energy use. For example better management of process equipment will lead to greater load factors. Handled incorrectly this can lead to a negative energy impact which could result in increased paybacks and misleading indications about energy efficiency. Analysis shows that even when there is an increase in energy use, the amount of energy per product unit goes down, making a process demonstrably more energy efficient. Arguments are presented why using an Energy Intensity Metric is critical in properly accounting for energy impact of productivity on plant energy use. We present a concept called Virtual Reduction in Operating Time and show how it can be used to improve accounting for energy impacts.

Mitrovic, B.; Muller, M. R.

2002-04-01T23:59:59.000Z

34

Formulating Detergents and Personal Care ProductsChapter 12 Manufacturing Process  

Science Conference Proceedings (OSTI)

Formulating Detergents and Personal Care Products Chapter 12 Manufacturing Process Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of Chapter 12 Manufacturing Process from

35

MANUFACTURING  

Science Conference Proceedings (OSTI)

... Energy Efficiency in Buildings: Solid State Climate Control ... TE materials is green job creation, as Table ... can provide 21,454 US jobs in manufacturing ...

2011-08-01T23:59:59.000Z

36

Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

37

Model-based dummy feature placement for oxide chemical-mechanical polishing manufacturability  

Science Conference Proceedings (OSTI)

Chemical-mechanical polishing (CMP) is an enabling technique used in deep-submicron VLSI manufacturing to achieve uniformity in long range oxide planarization [1]. Post-CMP oxide topography is highly related to local spatial pattern density in layout. ...

Ruiqi Tian; D. F. Wong; Robert Boone

2000-06-01T23:59:59.000Z

38

Air Products Chemicals Inc | Open Energy Information  

Open Energy Info (EERE)

Air Products Chemicals Inc Air Products Chemicals Inc Jump to: navigation, search Name Air Products & Chemicals Inc Place Allentown, Pennsylvania Zip 18195 Sector Hydro, Hydrogen, Services Product A global supplier of merchant hydrogen with a portfolio of products, services and solutions providing gases, performance materials and chemical intermediates. References Air Products & Chemicals Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Air Products & Chemicals Inc is a company located in Allentown, Pennsylvania . References ↑ "Air Products & Chemicals Inc" Retrieved from "http://en.openei.org/w/index.php?title=Air_Products_Chemicals_Inc&oldid=341937

39

Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6,...

40

Climate VISION: Private Sector Initiatives: Chemical Manufacturing - Plant  

Office of Scientific and Technical Information (OSTI)

Plant Assessments Plant Assessments Plant-Wide Assessments Plant-wide assessments are one way to work with the DOE Industrial Technologies Program—most companies realize a minimum of $1 million in annual energy savings after just one assessment. Plants are selected through a competitive solicitation process, and agree to a minimum 50% cost-share for implementing the assessment. An industry-defined team conducts an on-site analysis of total energy use and identifies opportunities to save energy in your overall operations and in motor, steam, compressed air, and process heating systems. The recommendations could include implementing emerging technologies that would be particularly effective in your operation. These emerging technologies, although on the forefront of industrial manufacturing, are successful and commercially

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: GHG  

Office of Scientific and Technical Information (OSTI)

Energy Footprints Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of energy helps to pinpoint areas of energy intensity and characterize the unique energy needs of individual industries. On the supply side, the footprints provide details on the energy purchased from utilities (electricity, fossil fuels), energy generated onsite, and excess energy transported to the local grid. On the demand side, the footprints illustrate where and how energy is used within a typical plant, from central boilers to motors. Most important, the footprints identify where energy is lost due to inefficiencies, both inside and outside the plant boundary. Considerable energy is lost, for example, in steam and

42

MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANUFACTURING MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge) Manufacturing 332420 Other Metal Container Manufacturing 332439 Machine Shops 332710 Electroplating, Plating, Polishing, Anodizing, and Coloring 332813 Industrial valve Manufacturing 332911 Other Ordnance and Accessories Manufacturing 332995 All Other Miscellaneous Fabricated Metal Product Manufacturing

43

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: GHG  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon dioxide emissions (MMTCO2) based upon the Annual Energy Outlook 2007. According to EIA "Annual Energy Outlook 2007" data, energy-related CO2 emissions projected for the Bulk Chemical industry was 349.0 MMTCO2 in 2004. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2007 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005-2030. The AEO2007 reflects data and information available as of September 15, 2006. Source: Annual Energy Outlook 2007 with projections to 2030, U.S.

44

Survey of Physical and Chemical Properties of Soils Collected From Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report presents technical information and data from a study of the physical and chemical nature of soils at former manufactured gas plant (MGP) sites. Included in the report is a comparison of chemical analysis methods for determination of monocyclic aromatic hydrocarbons (MAHs), polycyclic aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons (TPH). One of the specific objectives of the research was determining relationships between total soil and leachate concentrations of analytes of int...

1999-12-15T23:59:59.000Z

45

Chemical Looping for Combustion and Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

ChemiCal looping for Combustion and ChemiCal looping for Combustion and hydrogen produCtion Objective The objective of this project is to determine the benefits of chemical looping technology used with coal to reduce CO 2 emissions. Background Chemical looping is a new method to convert coal or gasified coal to energy. In chemical looping, there is no direct contact between air and fuel. The chemical looping process utilizes oxygen from metal oxide oxygen carrier for fuel combustion, or for making hydrogen by "reducing" water. In combustion applications, the products of chemical looping are CO 2 and H 2 O. Thus, once the steam is condensed, a relatively pure stream of CO 2 is produced ready for sequestration. The production of a sequestration ready CO 2 stream does not require any additional separation units

46

Chemical vapor deposition techniques and related methods for manufacturing microminiature thermionic converters  

DOE Patents (OSTI)

Methods of manufacturing microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures using MEMS manufacturing techniques including chemical vapor deposition. The MTCs made using the methods of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

2002-06-25T23:59:59.000Z

47

Production of manufactured aggregates from flue gas desulfurization by-products  

SciTech Connect

CONSOL R and D has developed a disk pelletization process to produce manufactured aggregates from the by-products of various technologies designed to reduce sulfur emissions produced from coal utilization. Aggregates have been produced from the by-products of the Coolside and LIMB sorbent injection, the fluidized-bed combustion (FBC), spray dryer absorption (SDA), and lime and limestone wet flue gas desulfurization (FGD) processes. The aggregates produced meet the general specifications for use as road aggregate in road construction and for use as lightweight aggregate in concrete masonry units. Small field demonstrations with 1200 lb to 5000 lb of manufactured aggregates were conducted using aggregates produced from FBC ash and lime wet FGD sludge in road construction and using aggregates made from SDA ash and lime wet FGD sludge to manufacture concrete blocks. The aggregates for this work were produced with a bench-scale (200--400 lb batch) unit. In 1999, CONSOL R and D constructed and operated a 500 lb/hr integrated, continuous pilot plant. A variety of aggregate products were produced from lime wet FGD sludge. The pilot plant test successfully demonstrated the continuous, integrated operation of the process. The pilot plant demonstration was a major step toward commercialization of manufactured aggregate production from FGD by-products. In this paper, progress made in the production of aggregates from dry FGD (Coolside, LIMB, SDA) and FBC by-products, and lime wet FGD sludge is discussed. The discussion covers bench-scale and pilot plant aggregate production and aggregate field demonstrations.

Wu, M.M.; McCoy, D.C.; Fenger, M.L.; Scandrol, R.O.; Winschel, R.A.; Withum, J.A.; Statnick, R.M.

1999-07-01T23:59:59.000Z

48

Feasibility of Detecting Byproducts of Chemical Weapons Manufacturing in Environmental Media: A Preliminary Evaluation  

DOE Green Energy (OSTI)

Quantitative information on the environmental transport and fate of organophosphorus nerve agents has been limited to studies conducted at high concentration representative of acute doses (Munroe et al. 1999). Nerve agents have relatively rapidly degradation rates at acute levels, and first order degradation pathways and half-lives have been characterized. However, similar knowledge is lacking in the open literature on the long-term environmental persistence of nerve agents, their manufacturing precursors and byproducts, and their degradation products, particularly at sub-acute or chronic health levels. Although many recent publications reflect low-level detection methods for chemical weapons signature compounds extracted from a variety of different media (e.g. D'Agostino et al., 2001; Kataoka et al., 2001), little of this work answers questions regarding their adsorptive character and chemical persistence. However, these questions are a central theme to both the detection of illegal chemical weapons manufacturing, as well as determining long-term cleanup needs and health risks associated with potential terrorist acts using such agents. Adsorption onto environmental surfaces can enhance the persistence of organophosphorus compounds, particularly with strong chelators like phosphonic acids. In particular, organophosphorus compound adsorption can lead to irreversible binding (e.g. Aubin and Smith, 1992), and current methods of chemical extraction and solid-state detection are challenged to detect them. This may be particularly true if the adsorbed compound is of a low initial concentration because it may be that the most preferred adsorption sites form the strongest bonds. This is particularly true in mixed media having various adsorption domains that adsorb at different rates (e.g. Weber and Huang, 1996). For high enough initial concentrations, sorption sites become saturated and solvent extraction has a relatively high efficiency. It is no surprise that many CW fate studies can report findings using traditional extraction or solid-state methods of detection, since release concentration exceed the capacity of environmental media to adsorb or degrade them. This report documents a test using solid-state {sup 31}P-NMR and GC/MS methods to delineate two adsorbed phosphonates on a uniform silica gel substrate at different concentrations. The test sought to determine the sensitivity of {sup 31}P-NMR detection, delineate adsorption character of the phosphonates, quantify their extraction efficiency using different solvents, and test the phosphonate mobility and photodegradability under short-term idealized conditions. The results show that solid-state detection at the experimental conditions can detect individual phosphonate species down to the 100 ppm level. Sensitivity could be further increased using larger samples and longer collection times. Solvent extraction of the phosphonates from the silica gel showed that a chlorinated solvent (methylene chloride) produced poor recovery for phosphonic acids from the silica gel, whereas methanol used as a solvent achieved high extraction efficiency. The phosphonates used showed strong aqueous mobility in a silica gel column experiment, with a small but significant amount left adsorbed to the substrate. A 96 hour photo-degradation experiment showed no degradation of the compounds.

Davisson, L; Reynolds, J G; Koester, C; Chinn, S C; Maxwell, R S; Love, A H; Viani, B E

2003-03-01T23:59:59.000Z

49

Soap Manufacturing TechnologyChapter 9 Semi-Boiled Soap Production Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 9 Semi-Boiled Soap Production Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 9 Semi-Boiled Soap Production Systems fr

50

Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources  

DOE Green Energy (OSTI)

This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

Donaldson, T.L.; Culberson, O.L.

1983-06-01T23:59:59.000Z

51

SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION  

DOE Green Energy (OSTI)

The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

Eric J. Carlson; Yong Yang; Chandler Fulton

2004-04-20T23:59:59.000Z

52

A study of the manufacturing and product possibilities of a cork/polylactic acid compound  

E-Print Network (OSTI)

A study of the manufacturing and product capabilities of a cork/polylactic acid compound was conducted. Fine granulated cork, 1mm in diameter, was compounded with Natureworks' IngeoTM3051D PLA and extruded into pellets. ...

Reed, Sarah BR

2011-01-01T23:59:59.000Z

53

Full lead time mapping, analysis and improvement for packaging product manufacturing  

E-Print Network (OSTI)

Service level is significant for the customers of a packaging product manufacturing company, especially for the customers with large- volume and high-value orders. To improve the service level will not only provide better ...

Jin, Yi, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

54

Materials Processing & Manufacturing Division  

Science Conference Proceedings (OSTI)

In its broadest scope, the Materials Processing & Manufacturing Division (MPMD) covers manufacturing from product design to production, integrating process ...

55

Normative price for a manufactured product: the SAMICS methodology. Volume II. Analysis. JPL publication 78-98. [Solar Array Manufacturing Industry Costing Standards  

DOE Green Energy (OSTI)

The Solar Array Manufacturing Industry Costing Standards (SAMICS) provide standard formats, data, assumptions, and procedures for determining the price a hypothetical solar array manufacturer would have to be able to obtain in the market to realize a specified after-tax rate of return on equity for a specified level of production. This document presents the methodology and its theoretical background. It is contended that the model is sufficiently general to be used in any production-line manufacturing environment. Implementation of this methodology by the Solar Array Manufacturing Industry Simulation computer program (SAMIS III, Release 1) is discussed.

Chamberlain, R.G.

1979-01-15T23:59:59.000Z

56

Energy Report: U.S. Wind Energy Production and Manufacturing Surges,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: U.S. Wind Energy Production and Manufacturing Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy August 14, 2012 - 9:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released a new report today highlighting strong growth in the U.S. wind energy market in 2011, increasing the U.S. share of clean energy and supporting tens of thousands of jobs, and underscoring the importance of continued policy support and clean energy tax credits to ensure that the manufacturing and jobs associated with this booming global industry remain in America According to the 2011 Wind Technologies Market Report, the United States remained one

57

Using Incentive Plans to Boost Productivity in Manufacturing  

Science Conference Proceedings (OSTI)

... with the theory being that fewer employees would cut payroll costs and force the ... company performance rather than as a daily motivator for plant production.

58

Idaho Chemical Processing Plant product denitrator upgrade  

SciTech Connect

The uranium product denitrator at the Idaho Chemical Processing Plant has had serious operating problems since 1970, including inadequate contamintion control, fluidized bed caking, frequent bed heater failure, product overflow plugging, and poor feed control. These problems were minimized through selective redesign and upgrade of the process equipment as part of a process upgrade program completed in March 1981. Following startup and testing of the rebuilt product denitrator, 1044 kg of enriched uranium was processed in three weeks while demonstrating greater reliability, ease of operation, and improved contamination control. To maximize personnel safety in the future, the denitrator vessel should be made critically safe by geometry and process instrumentation isolated from the process for semi-remote operation.

Rindfleisch, J.A.; Durst, P.C.; Dahl, C.A.; Casterline, C.E.; Petig, A.V.

1982-05-01T23:59:59.000Z

59

Graphene as a manufactured product : a look forward  

E-Print Network (OSTI)

Graphene's unique electrical and mechanical properties have brought it into the spotlight in recent years. With the number of patents increasing rapidly every year, production of the material is becoming more and more ...

Frost, Stephen T

2013-01-01T23:59:59.000Z

60

Costs Models in Design and Manufacturing of Sand Casting Products  

E-Print Network (OSTI)

In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

Perry, Nicolas; Bernard, Alain

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Costs Models in Design and Manufacturing of Sand Casting Products  

E-Print Network (OSTI)

In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

Nicolas Perry; Magali Mauchand; Alain Bernard

2010-11-26T23:59:59.000Z

62

Chemical States of Volatile and Corrosive Fission Products in ...  

Science Conference Proceedings (OSTI)

Page 1. Chemical States of Volatile and Corrosive Fission Products in Thorium Based Fuels from Thermodynamic Studies ...

2006-07-20T23:59:59.000Z

63

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

its products and processes to various industries, including chemical processing, metallurgy, electronics, and pulp and paper industries. Air Products continues to maintain a...

64

Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dept. Reports: U.S. Wind Energy Production and Manufacturing Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 8:00am Addthis WASHINGTON - The Energy Department released two new reports today showcasing record growth across the U.S. wind market -- increasing America's share of clean, renewable energy and supporting tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time - representing 43 percent of all new electric additions and accounting for $25 billion in U.S. investment.

65

Method for manufacturing a well production and sand screen assembly  

SciTech Connect

A method for forming and assembling a well production and sand screen assembly in a well having a screen therein forming an outer annulus and a wash pipe internally of the screen forming an inner annulus comprising further (A) mounting a high pressure fluid pump means and a valve means on each wash pipe, inner annulus, and outer annulus, and (B) connecting the valve means in fluid communication with the high pressure fluid pump means for controlling the ingress and egress of the high pressure fluids and removed formation material for forming a sand pack in the well and simultaneously for applying and maintaining a positive fluid pressure against the overburden during work in the well for preventing cave-ins and sloughing of the unconsolidated formation well walls until the sand pack is formed.

Widmyer, R.H.

1982-10-12T23:59:59.000Z

66

Concurrent consideration of evacuation safety and productivity in manufacturing facility planning using multi-paradigm simulations  

Science Conference Proceedings (OSTI)

Manufacturing facilities are expected to maintain a high level of production and at the same time, employ strict safety standards to ensure the safe evacuation of the people in the event of emergencies (fire is considered in this paper). These two goals ... Keywords: Agent based simulation, BDI, Emergency management, Layout planning

Karthik Vasudevan; Young-Jun Son

2011-11-01T23:59:59.000Z

67

Trade Secrets Laws and Production Efficiency: Model and Empirics from Lean Manufacturing ?  

E-Print Network (OSTI)

Model and Empirics from Lean Manufacturing How does the institutional environment affect production efficiency? Here, we model the effect of the legal protection of trade secrets on the effectiveness of efforts to reduce production cost. We show that, with stronger trade secrets protection, lean manufacturing will be more effective in reducing cost. However, stronger protection has conflicting effects on cost itself. Stronger protection reduces the spill-out of knowledge to competitors, which tends to reduce cost, but it also reduces spill-in of knowledge, which tends to raise cost. We test the model in the U.S. context, using a difference-in-differences design, exploiting changes in state-level trade secrets over time. Consistent with the model, stronger trade secrets protection was associated with a larger effect of lean manufacturing on inventories. An increase in the statutory protection of trade secrets by one standard deviation was associated with lean manufacturing reducing inventories by 2.9%. “Mr Ohno believed just-in-time was a manufacturing advantage for Toyota. And for many years, he would not allow anything to be recorded about it.... I think he also feared Americans would discover this powerful tool and use it against the

Jie Gong; I. P. L. Png

2013-01-01T23:59:59.000Z

68

Production of chemical feedstocks from biomass  

Science Conference Proceedings (OSTI)

Glucose and xylose, produced from biomass by hydrolysis with mineral acids can be fermented to produce a variety of chemical feedstocks including ethanol, organic acids, butanol and acetone. Acid rather than enzyme hydrolysis is preferred. In acid hydrolysis reaction temperature and acid concentration were found to be the major variables affecting sugar yield and kinetics. Low reaction temperatures and high acid concentrations are preferred to maximise sugar yields and minimise degradation product formation. Using corn stover residue nearly complete conversion of hemicellulose and cellulose to sugars was obtained. Prehydrolysis of corn stover was found to be faster than paper and peat, and the hydrolysis reaction somewhat slower than prehydrolysis. Acid hydrolyzates using the University of Arkansas process can be fermented to ethanol without pretreatment. Yeast extract is necessary for this process.

Shah, R.B.; Clausen, E.C.; Gaddy, J.L.

1984-01-01T23:59:59.000Z

69

Chemical Emissions of Residential Materials and Products: Review of Available Information  

E-Print Network (OSTI)

39 Chemical Emissions of Residential Materials and Products:37 Chemical Emissions of Residential Materials and Products:38 Chemical Emissions of Residential Materials and Products:

Willem, Henry

2010-01-01T23:59:59.000Z

70

Chemical production from industrial by-product gases: Final report  

DOE Green Energy (OSTI)

The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

Lyke, S.E.; Moore, R.H.

1981-04-01T23:59:59.000Z

71

Bench Scale Study of Integrated Chemical Oxidation and Enhanced Bio-Stabilization of Manufactured Gas Plant SoilsBench Scale Study of Integrated Chemical Oxidation and Enhanced Bio-Stabilization of Manufactured Gas Plant Soils  

Science Conference Proceedings (OSTI)

A bench-scale study was conducted to investigate a new remedial approach to treat constituents of concern (COC) that were present in soil from a former manufactured gas plant (MGP) site. The approach combines in situ chemical oxidation, in situ stabilization, and enhanced biodegradation to provide overall degradation/stabilization of COCs that would not be possible using any of the three technologies alone. Sodium persulfate was chosen as the oxidant because it can be activated by ...

2013-07-18T23:59:59.000Z

72

Energy Department Reports U.S. Wind Energy Production and Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports U.S. Wind Energy Production and Reports U.S. Wind Energy Production and Manufacturing Reaches Record Highs Energy Department Reports U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 12:00pm Addthis The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time-representing 43% of all new electric additions and accounting for $25 billion in U.S. investment. In the first four years of the Obama Administration, American electricity

73

Reports Show Record High U.S. Wind Energy Production and Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Show Record High U.S. Wind Energy Production and Reports Show Record High U.S. Wind Energy Production and Manufacturing Reports Show Record High U.S. Wind Energy Production and Manufacturing August 6, 2013 - 12:00pm Addthis Two men work on the nacelle of a wind turbine. The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the world's largest and fastest growing wind markets. In 2012, wind energy became the number one source of new U.S. electricity generation capacity for the first time-representing 43% of all new electric additions and accounting for $25 billion in U.S. investment.

74

Research on Multi-criteria Decision-Making Model of Multi-variety Discrete Production and Manufacture  

Science Conference Proceedings (OSTI)

In this paper, taking econonic, order execution, output and consuming into account, the decision-making model of multi-variety discrete production and manufacture has been presented for the multiobjective decision multi-attribute problem. The analytic ... Keywords: decision-making model, discrete production and manufacture, AHP, MAUF

Jianfang Sun; Fan Zhu; Xiaopeng Xie

2008-12-01T23:59:59.000Z

75

Chemical Looping Gasification for Hydrogen Enhanced Syngas Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture The Ohio State University (OSU) Project Number: FE0012136 Project Description The...

76

Explore Careers in Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

77

NETL: ICCS Area 1 - Air Products and Chemicals, Inc  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Products and Chemicals, Inc. - Industrial Carbon Capture and Sequestration Air Products and Chemicals, Inc. - Industrial Carbon Capture and Sequestration Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Allentown, Pennsylvania PROJECT FACT SHEET Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production [PDF-1.6MB] (Oct 2012) ENVIRONMENTAL REPORTS APCI Environmental Assessment [PDF-30MB] FONSI Finding of no significant impact [PDF-257KB] CONSTRUCTION PHOTOS [PDF-572.9KB] PROGRAM PUBLICATIONS Information to come. PAPERS AND PRESENTATIONS Demonstration of Carbon Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production or "Port Arthur CCUS" [PDF-1.13MB] (May 2013)

78

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

79

Topic: Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Project. Sustainable Manufacturing Program. Sustainability Characterization for Product Assembly Processes Project. Testbed ...

2012-09-19T23:59:59.000Z

80

Highlights of Industrial Energy Audits with Application in Paper Product Manufacturing  

E-Print Network (OSTI)

Experience in executing comprehensive energy audits in varied industrial plants has resulted in a basic audit methodology and has revealed several interesting energy conservation opportunities applicable to paper products manufacturing. The most difficult and important part of an energy audit is the data collection that is necessary to fully understand the energy flows in the facility. Although many common opportunities exist that can be found in check lists, many opportunities are discovered only by a thorough understanding of the distribution of energy consumption that comes from detailed measurements and data analysis.

Hart, M. N.; Bond, S. K.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE  

SciTech Connect

In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The unit raw material cost for REML (through-hardened bearing steel) is somewhat greater than raw material cost for the conventional line (case-hardened bearing steel). However, changeover time, tooling costs, gauging costs, utilities and energy costs, and manning of REML are less than the conventional line. Since REML supports near single piece flow, work in process inventory and work flow time are much less on the REML line than on the conventional line. REML allows the reduction in inventory of source steel tube sizes from several hundred to a few dozen. As a result, the business model indicates that the costs incurred on the manufacturing line are less with the REML line than with the conventional line for low manufacturing run volumes. Environment The REML line, when processing through-hardenable steel, requires far less hydrocarbon and other process gases than the conventional line when processing case hardenable steel. The REML line produces fewer greenhouse gas emissions and less liquid and solid waste materials. Broad Applicability The REML benefits will in general be extendible to the manufacture of non-bearing, heat treated and finished machined metal parts in the United States.

Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

2007-11-05T23:59:59.000Z

82

EI Summary of All Manufacturing SIC  

U.S. Energy Information Administration (EIA) Indexed Site

All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) The manufacturing sector includes establishments engaged in the mechanical or chemical transformation of materials or substances into new products. These operations are generally conducted in facilities described as plants, factories, or mills, while characteristically using power-driven machines and material-handling equipment. Manufacturing also includes such activities as the assembly of components of manufactured products and the blending of materials, such as lubricating oil, plastics, resins, or liquors.

83

Manufacturing technologies  

SciTech Connect

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

84

Chemical Constituents in Coal Combustion Products: Molybdenum  

Science Conference Proceedings (OSTI)

This report provides comprehensive information on the environmental occurrence and behavior of molybdenum (Mo), with specific emphasis on Mo derived from coal combustion products (CCPs). Included are discussions of Mo's occurrence in water and soil, potential human health and ecological effects, geochemistry, occurrence in CCPs, leaching characteristics from CCPs, measurement techniques, and treatment/remediation options.

2011-11-04T23:59:59.000Z

85

Qualification of the Second Batch Production 9-Cell Cavities Manufactured by AES and Validation of the First US Industrial Cavity Vendor for ILC  

SciTech Connect

One of the major goals of ILC SRF cavity R&D is to develop industrial capabilities of cavity manufacture and processing in all three regions. In the past several years, Jefferson Lab, in collaboration with Fermi National Accelerator Laboratory, has processed and tested all the 9-cell cavities of the first batch (4 cavities) and second batch (6 cavities) production cavities manufactured by Advanced Energy Systems Inc. (AES). Over the course, close information feedback was maintained, resulting in changes in fabrication and processing procedures. A light buffered chemical polishing was introduced, removing the weld splatters that could not be effectively removed by heavy EP alone. An 800 Celsius 2 hour vacuum furnace heat treatment procedure replaced the original 600 Celsius 10 hour procedure. Four out of the six 9-cell cavities of the second production bath achieved a gradient of 36-41 MV/m at a Q0 of more than 8·109 at 35 MV/m. This result validated AES as the first “ILC certified” industrial vendor in the US for ILC cavity manufacture.

Geng, R L; Golden, B A; Kushnick, P; Overton, R B; Calderaro, M; Peterson, E; Rathke, J; Champion, M S; Follkie, J

2011-07-01T23:59:59.000Z

86

Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant  

E-Print Network (OSTI)

The Honeywell chemical plant located in Hopewell, Virginia includes processing units that purify raw phenol, react the phenol with hydrogen to form crude cyclohexanone, and purify the crude cyclohexanone. In order to reduce energy usage, two opportunities for heat recovery and heat integration were identified. A feasibility study and economic analysis were performed on the two opportunities, and both projects were implemented. The first project utilized the heat contained in a distillation process overheads stream to preheat the raw material entering the distillation process. This was accomplished via a heat exchanger, and reduced the utility steam requirement by 10,000 pph. The second project utilized the heat generated by the hydrogenation reaction (in the form of waste heat steam) to preheat the feed material in an adjacent process. This was accomplished via a heat exchanger, and reduced the utility steam requirement by 8,000 pph. These two energy projects required $1.1 million of capital and saved $1.0 million in utility steam annually.

Togna, K .A.

2012-01-01T23:59:59.000Z

87

Process planning for rapid manufacturing of plastic injection mold for short run production.  

E-Print Network (OSTI)

??This thesis presents a process planning methodology for a rapid injection mold tool manufacturing system that involves additive and subtractive techniques, whereby slabs are sequentially… (more)

Karthikeyan, Rajesh Kumar

2010-01-01T23:59:59.000Z

88

Technology Development and Manufacturing ...  

Science Conference Proceedings (OSTI)

... Manufacturing Tax Credits; Loan Guarantees – Renewable Energy • FY 11 Budget- Univ. ... Products China Philippines Czech Republic 25 30 35 ...

2013-06-11T23:59:59.000Z

89

Rate of Industrial Conservation - Petroleum Refining, Chemicals and Pulp and Paper Manufacture  

E-Print Network (OSTI)

This paper considers three related questions: 1) What are the primary economic driving forces which determine the rate of industrial energy conservation? 2) How much industrial energy conservation has been achieved over 1972-1973 levels? 3) What are the goals and expectations for decreases in industrial energy use during the next 10-20 years? The specific energy consumption (SEC) of a plant or industry, measured in BTU of fuel used/ton of product produced, can be used to monitor the energy conserved. The rate of SEC reduction is a function of five primary variables: the potential for reduction of the SEC, the unit cost of fuel, the capital available for implementation of conservation measures, the quantity of fuel available, and the availability: of equipment to implement needed conservation measures. A mathematical-economic model is proposed for the decrease in energy use, and permits calculation of dollars saved also. Conclusions from the study are: 1) Potential savings were estimated as 20-31% of 1972 levels; through 1978 a 13-20% actual reduction in energy use has been achieved. 2) The additional can be realized by; 1982 by "strong action", or by 1987 by "moderate action". To date moderate action has been taken. 3) Overall energy conservation pays out rapidly - dollars saved return dollars invested many fold!

Prengle, H. W. Jr.; Golden, S. A.

1979-01-01T23:59:59.000Z

90

Simulated Annealing For The Optimization Of Chemical Batch Production Processes  

E-Print Network (OSTI)

Batch distillation processes are widely used in chemical industry. In this work, we consider the optimization of such processes by simulated annealing. Although this method is stochastically in nature, it has two evitable advantages: it can be readily connected to highly sophisticated simulation codes and it converges towards a global optimum. According to the characteristics of batch distillation operation we propose to use a two-step computation approach. A feasible strategy (admissible control) will be searched for in the first step and it will be optimized in the second step. The approach has been applied to three models of batch distillation ranging from a simple test example to a real production system. These results show the potential of the method for developing optimal operation strategies for batch chemical processes. Keywords: batch distillation, simulated annealing, dynamic optimization. 1 Introduction The determination of optimal control strategies for chemical processe...

Michael Hanke; Pu Li

1998-01-01T23:59:59.000Z

91

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

92

Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance  

Science Conference Proceedings (OSTI)

Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

Scholand, Michael; Dillon, Heather E.

2012-05-01T23:59:59.000Z

93

\\Chemical Constituents in Coal Combustion Product Leachate: Selenium  

Science Conference Proceedings (OSTI)

Selenium is a common constituent in coal and coal combustion products (CCPs) and can be found in CCP leachate. The chemical profile provided here assembles and summarizes existing information on selenium’s environmental characteristics, which are focused on conditions associated with CCP management. Extensive references provide a means for obtaining more detailed information on specific subject areas. The following topics are covered: 1) occurrence and sources of selenium; 2) environmental ...

2013-12-26T23:59:59.000Z

94

Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing  

E-Print Network (OSTI)

In this paper, an electrospray technique followed by annealing at high temperatures was developed to produce nanocrystals of carbamazepine (CBZ), a poorly water-soluble drug, for continuous pharmaceutical manufacturing ...

Wang, Mao

95

Customized digital manufacturing : concept to construction methods across varying product scales  

E-Print Network (OSTI)

Architectural design and construction is rapidly changing through the extensive adoption of digital design, manufacture and assembly tools. Customized assemblies are paired and recombined to create unique spatial enclosures. ...

Botha, Marcel

2006-01-01T23:59:59.000Z

96

Chemical Emissions of Residential Materials and Products: Review of  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Emissions of Residential Materials and Products: Review of Chemical Emissions of Residential Materials and Products: Review of Available Information Title Chemical Emissions of Residential Materials and Products: Review of Available Information Publication Type Report LBNL Report Number LBNL-3938E Year of Publication 2010 Authors Willem, Henry, and Brett C. Singer Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords resave Abstract This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the databases that provide information on new or low-emission materials and products. The review focuses on the primary chemical or volatile organic compound (VOC) emissions from interior surface materials, furnishings, and some regularly used household products; all of these emissions are amenable to ventilation. Though it is an important and related topic, this review does not consider secondary pollutants that result from reactions of ozone and unsaturated organics bound to or emitted from material surfaces. Semi-volatile organic compounds (SVOCs) have been largely excluded from this review because ventilation generally is not an effective way to control SVOC exposures. Nevertheless, health concerns about exposures to SVOCs emitted from selected materials warrant some discussion.

97

Manufacturing technology  

SciTech Connect

This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

1993-08-01T23:59:59.000Z

98

Entropy production for mechanically or chemically driven biomolecules  

E-Print Network (OSTI)

Entropy production along a single stochastic trajectory of a biomolecule is discussed for two different sources of non-equilibrium. For a molecule manipulated mechanically by an AFM or an optical tweezer, entropy production (or annihilation) occurs in the molecular conformation proper or in the surrounding medium. Within a Langevin dynamics, a unique identification of these two contributions is possible. The total entropy change obeys an integral fluctuation theorem and a class of further exact relations, which we prove for arbitrarily coupled slow degrees of freedom including hydrodynamic interactions. These theoretical results can therefore also be applied to driven colloidal systems. For transitions between different internal conformations of a biomolecule involving unbalanced chemical reactions, we provide a thermodynamically consistent formulation and identify again the two sources of entropy production, which obey similar exact relations. We clarify the particular role degenerate states have in such a description.

Tim Schmiedl; Thomas Speck; Udo Seifert

2006-01-27T23:59:59.000Z

99

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

100

NIST Sustainable Manufacturing Indicators Repository (SMIR)  

Science Conference Proceedings (OSTI)

... manufacturing strongly influence a product's life cycle impacts on the environment and the company's sustainability. Sustainable manufacturing ...

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Miscanthus: a fastgrowing crop for biofuels and chemicals production  

NLE Websites -- All DOE Office Websites (Extended Search)

Correspondence to: Nicolas Brosse, Laboratoire d'Etude et de Recherche sur le MAteriau Bois, Faculté des Sciences et Techniques, Université de Lorraine, Bld des Aiguillettes, F-54500 Vandoeuvre-lès-Nancy, France. E-mail: Nicolas.Brosse@lermab.uhp-nancy.fr © 2012 Society of Chemical Industry and John Wiley & Sons, Ltd 1 Miscanthus: a fast- growing crop for biofuels and chemicals production Nicolas Brosse, Université de Lorraine, Vandoeuvre-lès-Nancy, France Anthony Dufour, CNRS, Université de Lorraine, Nancy, France Xianzhi Meng, Qining Sun, and Arthur Ragauskas, Georgia Institute of Technology, Atlanta, GA, USA Received February 9, 2012; revised April 17, 2012; accepted April 18, 2012 View online at Wiley Online Library (wileyonlinelibrary.com); DOI: 10.1002/bbb.1353;

102

Developing the Manufacturing Process for Hylene MP Curing Agent  

SciTech Connect

This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

Eastwood, Eric

2009-02-16T23:59:59.000Z

103

Chemical Looping Reforming for H2, CO and Syngas Production  

SciTech Connect

We demonstrate that the extension of CLC onto oxidants beyond air opens new, highly efficient pathways for production of ultra-pure hydrogen, activation of CO{sub 2} via reduction to CO, and are currently working on production of syngas using nanocomposite Fe-BHA. CLR hold great potential due to fuel flexibility and CO{sub 2} capture. Chemical Looping Combustion (CLC) is a novel clean combustion technology which offers an elegant and highly efficient route for fossil fuel combustion. In CLC, combustion of a fuel is broken down into two spatially separated steps. In the reducer, the oxygen carrier (typically a metal) supplies the stoichiometric oxygen required for fuel combustion. In the oxidizer, the oxygen-depleted carrier is then re-oxidized with air. After condensation of steam from the effluent of the reducer, a high-pressure, high-purity sequestration-ready CO{sub 2} stream is obtained. In the present study, we apply the CLC principle to the production of high-purity H{sub 2}, CO, and syngas streams by replacing air with steam and/or CO{sub 2} as oxidant, respectively. Using H{sub 2}O as oxidant, pure hydrogen streams can be obtained. Similarly, using CO{sub 2} as oxidant, CO is obtained, thus opening an efficient route for CO{sub 2} utilization. Using steam and CO{sub 2} mixtures for carrier oxidation should thus allow production of syngas with adjustable CO:H{sub 2} ratios. Overall, these processes result in Chemical Looping Reforming (CLR), i.e. the net overall reaction is the steam and/or dry reforming of the respective fuel.

Bhavsar,Saurabh; Najera,Michelle; Solunke,Rahul; Veser,Götz

2001-06-06T23:59:59.000Z

104

Exploring the Relationship Between R&D and Productivity at the Firm Level in French Manufacturing  

E-Print Network (OSTI)

in Z . Griliches (ed. ), R&D, Patents, and Productivity.Z v i . 1986. "Productivity, R&D, and Basic Research at thein Z . Griliches (ed. ), R&D, Patents, and Productivity.

Hall, Bronwyn H.; Mairesse, Jacques

1992-01-01T23:59:59.000Z

105

Physical and Chemical Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

data image data image Physical and Chemical Applications Research in this area includes: Chemical analysis (femtosecond laser ablation). Advanced sensors (laser ultrasonics). Advanced materials and nanotechnology for clean energy- hydrogen storage, nanostructured organic light-emitting diodes, nanowires, and nanoparticles). Photons to fuels (biosynthetic pathways for generating hydrocarbon biofuels in photosynthetic organisms). Advanced Sensor Development Sensor-based control of industrial processes can help companies: Decrease production costs; Reduce waste of raw materials on manufacturing lines; Lower manufacturing downtime from equipment maintenance; Increase the energy efficiency of manufacturing processes; Detect equipment failure early, before it becomes a major liability;

106

US Manufacturing in Context  

Science Conference Proceedings (OSTI)

... manufacturing firms lead the Nation in exports: The $1.3 ... 86% of all US goods exported in 2011 ... growing production of domestic natural gas, and the ...

107

Process for manufacture of inertial confinement fusion targets and resulting product  

DOE Patents (OSTI)

An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

Masnari, Nino A. (Ann Arbor, MI); Rensel, Walter B. (Ann Arbor, MI); Robinson, Merrill G. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI); Wise, Kensall D. (Ann Arbor, MI); Wuttke, Gilbert H. (Ypsilanti Township, Washtenaw County, MI)

1982-01-01T23:59:59.000Z

108

Chemical Emissions of Residential Materials and Products: Review of Available Information Environmental Energy Technologies Division  

E-Print Network (OSTI)

Chemical Emissions of Residential Materials and Products: Review of Available Information Contract 500-08-06. Chemical Emissions of Residential Materials and Products: Review of Available Information Henry Willem and Brett C. Singer LBNL-3938E #12;Chemical Emissions of Residential Materials

109

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

110

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

111

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. (AIR PRODUCTS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PATENT RIGHTS PATENT RIGHTS TO INVENTIONS MADE UNDER A CONTRACT ENTITLED "DYNAMIC EXPERT SYSTEMS CONTROL FOR OPTIMAL OXY-FUEL MELTER PERFORMANCE" - DOE CONTRACT DE-FC02-98CH10919; W(A)-98-021, CH-0989 Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights to inventions of its employees and of its subcontractors other than those eligible to obtain title pursuant to P.L. 96-517, as amended, or National Laboratories. As brought out in the attached waiver petition, Air Products is leading what is essentially a teaming arrangement for the development and demonstration of a dynamic control system which will allow oxy-fuel glass melting furnaces to operate more efficiently on a continuous basis. As a result of the improved control system, Air Products anticipates a reduction of about

112

Profiles in Energy Efficiency: Production Strategy Saves Money and Energy Eastman Chemical Company  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Strategy Saves Money & Energy: Eastman Chemical Production Strategy Saves Money & Energy: Eastman Chemical Company Eastman Chemical Company produces a broad range of advanced materials, additives and functional products, specialty chemicals, and fibers that are found in products people use every day. With its global headquarters in Kingsport, TN, Eastman employs approximately 13,500 people worldwide and operates 14 production facilities in the United States. An active partner in the U.S. EPA's ENERGY STAR program, Eastman has used the ENERGY STAR Guidelines for Energy Management to restructure its energy program and the partnership to secure executive-level support, capital funding, and broader organizational involvement in energy management.

113

PV Inverter Products Manufacturing and Design Improvements for Cost Reduction and Performance Enhancements: Final Subcontract Report, November 2003 (Revised)  

SciTech Connect

The specific objectives of this subcontracted development work by Xantrex Technology Inc. were to: (1) Capture the newest digital signal processor (DSP) technology to create high-impact,''next generation'' power conversion equipment for the PV industry; (2) Create a common resource base for three PV product lines. This standardized approach to both hardware and software control platforms will provide significant market advantage over foreign competition; (3) Achieve cost reductions through increased volume of common components, reduced assembly labor, and the higher efficiency of producing more products with fewer design, manufacturing, and production test variations; (4) Increase PV inverter product reliability. Reduce inverter size, weight and conversion losses. The contract goals were to achieve an overall cost reduction of 10% to 20% for the three inverters and with no compromise in performance. The cost of the 10-kW inverter was reduced by 56%, and the cost of the 25-kW inverter was reduced by 53%. The 2.5-kW inverter has no basis for comparison, but should benefit equally from this design approach. Not only were the contract cost reduction goals exceeded by a wide margin, but the performance and reliability of the products were also enhanced. The conversion efficiency improvement, as reflected in the 50% conversion loss reduction, adds significant value in renewable energy applications. The size and weight reductions also add value by providing less cumbersome product solutions for system designers.

West, R.

2004-04-01T23:59:59.000Z

114

Chemical Hydride Slurry for Hydrogen Production and Storage  

Science Conference Proceedings (OSTI)

The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. ? During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

115

Specific PVMaT R&D in CdTe Product Manufacturing: Final Subcontract Report, March 2003  

DOE Green Energy (OSTI)

Results of a 3+ year subcontract are presented. The research was conducted under Phase 5A2 of the subcontract. The three areas of effort in the subcontract were (1) manufacturing line improvements, (2) product readiness, and (3) environmental, safety, and health programs. The subcontract consisted of three phases, approximately 1 year each. Phase I included the development, design, and implementation of a high-throughput, low-cost lamination process. This goal was achieved using the support of key experts such as Automation and Robotics Research Institute (ARRI) to identify appropriate lamination equipment vendors, and material handling. Product designs were reviewed by Arizona State University Photovoltaic Testing Laboratory and Underwriters Laboratories. Modifications to the module designs were implemented to meet future testing requirements. A complete review of the Environmental, Health, and Safety programs was conducted, along with training by the Environmental Protection Agency (EP A) and Occupational Safety and Health Administration (OSHA). Work conducted during Phase II included the implementation of an improved potting procedure for the wiring junction. The design of the equipment focused on high-throughput, low-cost operations. During Phase III , First Solar made significant progress in three areas: Manufacturing Readiness; Product Performance; and Environmental, Health, and Safety (EH&S). First Solar's accomplishments in laser scribing significantly exceeded the stated goals. Innovations implemented during Phase III were made possible by adopting a new type of high-frequency, low-pulse-width laser, galvanometer-driven laser-beam system, and numerous advanced, automated, equipment features. Because of the greater than one order of magnitude increase in the throughput and laser life, a factor of two decrease in equipment cost, and complete automation, a major impact on lowering the cost of the PV product is anticipated.

Bohland, J.; McMaster, A.; Henson, S.; Hanak, J.

2004-01-01T23:59:59.000Z

116

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations;  

SciTech Connect

DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

Not Available

2006-04-01T23:59:59.000Z

117

NIST Workshop on Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Day1: 15:15 – 15:30. Kathi Futornick. URS Corporation. Standards Opportunity in Sustainable Product Development and Manufacturing. ...

2009-12-01T23:59:59.000Z

118

Multiple-part-type systems in high volume manufacturing : Kanban System design for automatic production scheduling  

E-Print Network (OSTI)

A Kanban Production System is designed to help a factory line meet fluctuating demands for multiple part types. Based on the parameter settings of the Control-Point Policy, the optimum Kanban levels are obtained. The ...

Lee, Kaizhao

2008-01-01T23:59:59.000Z

119

Electricity Diffusion and Trend Acceleration in Inter-War Manufacturing Productivity  

E-Print Network (OSTI)

counting both the horse power capacity of a steam turbine attached to an electric generator within the plant, and the horse power capacity of all the electric motors that use the electricity so generated to run production machinery in the factory. Clearly... economies typical of a volume production process such as electricity generation, the consequent drastic reduction in power generation capital at the factory level was much faster than the corresponding increase in the generation capital of electric utilities...

Ristuccia, Cristiano A; Solomou, Solomos

2004-06-16T23:59:59.000Z

120

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report  

Science Conference Proceedings (OSTI)

This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

Not Available

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales  

SciTech Connect

Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

2011-05-01T23:59:59.000Z

122

Electrolyzer Manufacturing Progress and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

123

Chemical Processing Department monthly report for August 1963  

SciTech Connect

This report, from the Chemical Processing Department at HAPO for August 1963, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and weapons manufacturing operation.

1963-09-20T23:59:59.000Z

124

Hydro-chemical Process for Alumina Production from Low Grade ...  

Science Conference Proceedings (OSTI)

The process is a hydro-chemical treatment for the residue after the typical Bayer ... LNG Power Plant:Trihydrate (150°C Dgs.) & Monohydrate (250°C Dgs.)*.

125

Product development of a device for manufacturing medical equipment for use in low-resource settings  

E-Print Network (OSTI)

The objective of this paper is to describe the product design of a device that can be used to create medical supplies on-site in clinics in low-resource settings. The machine uses purely mechanical elements to cut and fold ...

Schlecht, Lisa (Lisa Anne)

2010-01-01T23:59:59.000Z

126

Analytical Method for the Detection of Ozone Depleting Chemicals (ODC) in Commercial Products Using a Gas Chromatograph with an Electron Capture Detector (GC-ECD)  

SciTech Connect

This document describes an analytical procedure that was developed for the trace level detection of residual ozone depleting chemicals (ODC) associated with the manufacture of selected commercial products. To ensure the United States meets it obligation under the Montreal Protocol, Congress enacted legislation in 1989 to impose an excise tax on electronic goods imported into the United States that were produced with banned chemicals. This procedure was developed to technically determine if residual ODC chemicals could be detected on electronic circuit boards. The analytical method utilizes a “purge and trap” technique followed by gas chromatography with electron capture detection to capture and analyze the volatile chemicals associated with the matrix. The method describes the procedure, the hardware, operating conditions, calibration, and quality control measures in sufficient detail to allow the capability to be replicated. This document corresponds to internal Standard Operating Procedure (SOP) EFL-130A, Rev 4.

Lee, Richard N.; Dockendorff, Brian P.; Wright, Bob W.

2008-08-01T23:59:59.000Z

127

EIA Energy Efficiency-Table 3c. Capacity Adjusted Value of Production a by  

Gasoline and Diesel Fuel Update (EIA)

c c Page Last Modified: May 2010 Table 3c. Capacity Adjusted Value of Production 1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 430 468 552 312 Beverage and Tobacco Product Manufacturing 98 120 131 313 Textile Mills 57 50 44 314 Textile Product Mills 31 34 36 315 Apparel Manufacturing 66 53 31 316 Leather and Allied Product Manufacturing 11 8 7 321 Wood Product Manufacturing 87 94 110 322 Paper Manufacturing 159 160 177 323 Printing and Related Support Activities 104 109 107 324 Petroleum and Coal Products Manufacturing 134 215 523 325 Chemical Manufacturing 415 470 657 326 Plastics and Rubber Products Manufacturing 158 183 212 327 Nonmetallic Mineral Product Manufacturing 85 97 134

128

Mild, Nontoxic Production of Fuels and Chemicals from Biomass  

Fossil fuel resources supply almost 90 percent of the world’s energy and the vast majority of its organic chemicals. This dependency is insupportable in light of rising emissions, demand and diminishing access. Abundant, renewable biomass is an ...

129

Succinic Acid-A Model Building Block for Chemical Production from Renewable Resources  

Science Conference Proceedings (OSTI)

One of the major considerations for the development of new technologies that can be utilized in a corn wet mill for the production of new chemical products is the concept of platform building blocks. This concept is based on the fact that a single building block has the potential to create a significant number of final products. Succinic acid represents a building block that can be used as a starting material for producing a large number of commodity and specialty chemicals.

Werpy, Todd A.; Frye, John G.; Holladay, John E.

2006-04-01T23:59:59.000Z

130

Energy Efficiency in BP's PTA Manufacturing Plants  

E-Print Network (OSTI)

BP is a leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA manufacturing process has significantly improved over the past several years, which has translated into substantial decreases in greenhouse gas emissions across our global sites. The talk will provide a general overview of the PTA business and manufacturing process, as well as selected examples of enabling technology evolutions leading to this improved performance.

Clark, F.

2010-01-01T23:59:59.000Z

131

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... Manufacturing Energy Consumption Survey (MECS ... transportation, manufacturing, and a variety of consumer products. It is the ...

132

Photovoltaic manufacturing technology, Phase 1  

DOE Green Energy (OSTI)

This report examines manufacturing multiple-band-gap, multiple- junction solar cells and photovoltaic modules. Amorphous silicon alloy material is deposited (using microwave plasma-assisted chemical vapor deposition) on a stainless-steel substrate using a roll-to-roll process that is continuous and automated. Rapid thermal equilibration of the metal substrate allows rapid throughput of large-area devices in smaller production machines. Potential improvements in the design, deposition, and module fabrication process are described. Problems are also discussed that could impede using these potential improvements. Energy Conversion Devices, Inc. (ECD) proposes cost and time estimates for investigating and solving these problems. Manufacturing modules for less than $1.00 per peak watt and stable module efficiencies of greater than 10% are near-term goals proposed by ECD. 18 refs.

Izu, M. (Energy Conversion Devices, Inc., Troy, MI (United States))

1992-03-01T23:59:59.000Z

133

2011 Next Generation Manufacturing Study 2011 Next ...  

Science Conference Proceedings (OSTI)

... well: 28% of manufacturers reported they were ... The NGM Study manufacturers report annual revenues ... 0.7% 0.5% Petroleum and Coal Products Mfg ...

134

Bio Solutions Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

search Name Bio Solutions Manufacturing Inc Place Las Vegas, Nevada Zip 89103 Product Waste-to-energy bioremediation developer. References Bio Solutions Manufacturing Inc1...

135

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

136

Specific PVMaT R&D on Siemens Cz silicon product manufacturing: Annual Subcontract Report, June 1998 -- June 1999  

DOE Green Energy (OSTI)

This report describes work done by Siemens Solar Industries (SSI) from June 1998 to June 1999 during Phase 1 of a three-phase Photovoltaic Manufacturing Technology (PVMaT 5A2) subcontract from DOE/NREL. The work focuses on improvements in the cost per watt of Cz modules and improved PV module manufacturing technology. The first step toward reducing cost was to reduce wafer thickness. The approach has been a two-step reduction in thickness, from 385 microns to 250 micron cells, and then from 250 microns to 125 micron cells during Phase II. During Phase I, the handling tools, the back-surface-field process, and the confirmation of the environmental integrity of thinner wafers have all been accomplished. Cells with efficiency over 15.5% have been demonstrated in high-volume production. SSI has initiated the development and growth of 200-mm ingot to be fabricated into wafers and eventually cells. Cell and module production with 200-mm cells will begin during Phase II. Hazardous waste reduction has been attacked in two ways. The largest consumable item aside from polysilicon is silicon carbide (SiC) used in the wafer-slicing process. This SiC use has been reduced significantly through recycling and re-use. This program approach is well under way at SSI, with more than 25% of the SiC used being recycled. The largest hazardous waste volume at SSI is the caustic waste generated in the wafer etching processes. The reduction of this waste will be accomplished using subcontractors with extensive environmental compliance experience such that the solution is driven by best available techniques, lowering operating cost as a secondary motive. These three areas of focus thinner cells, larger cells and modules, and hazardous waste reduction have the potential to reduce cost by about 30% per watt. This first phase of large 150-mm-thinner 250-micron cells has demonstrated a potential for 10% cost reduction, with the final yield improvements being implemented in the SSI line now. The follow-on work during Phase II, with thinner cells, larger cells, and continued waste reduction, will allow the 30%, three-year goal to be met.

Jester, T. L.

2000-04-24T23:59:59.000Z

137

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

development of several new components for hydrogen fueling including an isothermal compressor, packless valves and dispenser system. The work under Air Products' subcontract is...

138

Generation of synthesis gas for fuels and chemicals production.  

E-Print Network (OSTI)

??Many scientists believe that the oil production will peak in the near future, if the peak has not already occurred. Peak oil theories and uncertain… (more)

Tunĺ, Per

2013-01-01T23:59:59.000Z

139

CHEMICAL TRAPPING OF A PRIMARY QUANTUM CONVERSION PRODUCT IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

CONVERSION PRODUCT I N PHOTOSYNTHESIS G e r a l d A. C o r kthe two light acts of photosynthesis. Potassium Ecrricyanide

Corker, Gerald A.; Klein, Melvin P.; Calvin, Melvin.

2008-01-01T23:59:59.000Z

140

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Development Unit (AFDU), new technologies for the synthesis of value-added syngas-derived products from non-traditional feedstocks. The project is to demonstrate the...

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manufacturing Portal  

Science Conference Proceedings (OSTI)

... datasets. Manufacturers of … more. In Situ Characterization of Nanoscale Gas-Solid Interactions by TEM Observing and ...

2013-09-09T23:59:59.000Z

142

About Manufacturing  

Science Conference Proceedings (OSTI)

... reflects the changes in prices that manufacturers ... Petroleum Electricity Natural Gas Coal Emissions ... Position Abroad on a Historical Cost Basis ...

2013-07-25T23:59:59.000Z

143

Manufacturing News  

Science Conference Proceedings (OSTI)

... Two New MEP Centers Will Serve Kentucky and South Dakota Manufacturers Release Date: 01/24/2013 Small and mid ...

2010-09-22T23:59:59.000Z

144

Chemical Constituents in Coal Combustion Product Leachate: Boron  

Science Conference Proceedings (OSTI)

This report profiles the element boron as it occurs in leachate at coal combustion product management sites. Included are discussions of boron's occurrence in soils and water, concentrations in coal combustion products (CCPs), CCP leaching characteristics, effects on human health and ecology, geochemistry, and treatment options for removal from water.

2005-03-21T23:59:59.000Z

145

Chemical Hydride Slurry for Hydrogen Production and Storage  

DOE Green Energy (OSTI)

?\tDuring the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

McClaine, Andrew W.

2008-09-30T23:59:59.000Z

146

Green Manufacturing Portal  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Portal. Green Manufacturing Portal. ... see all Green Manufacturing programs and projects ... ...

2012-12-27T23:59:59.000Z

147

Green Manufacturing Events  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Events. Green Manufacturing Events. (showing 1 - 1 of 1). Manufacturing Innovations ...

2011-06-20T23:59:59.000Z

148

Manufacturing Energy Portal  

Science Conference Proceedings (OSTI)

NIST Home > Manufacturing Energy Portal. Manufacturing Energy Portal. ... see all Manufacturing Energy programs and projects ... ...

2013-11-07T23:59:59.000Z

149

Processing and Product Manufacturing  

Science Conference Proceedings (OSTI)

Oct 19, 2010 ... Various polymer coatings were applied to wood specimens using a ... in plasma are the main responsibles for the heating of those materials.

150

Inventory of chemicals used at Hanford Site production plants and support operations (1944-1980)  

SciTech Connect

A complete list of chemicals used in the production facilities and support operations of the US Department of Energy Hanford Site is presented to aid development of plans for characterizing the radioactive liquid chemical wastes stored in the 149 single-shell tanks. The complete chemical list is compared to the list provided by the regulatory agencies to identify hazardous chemicals stored in the single-shell tanks. A reduced list has been developed by others and is used to identify the chemical constituents for analysis in the Waste Characterization Plan for the Hanford Site Single-Shell Tanks. The chemical list is based on chemical process flowsheets, essential material consumption records, letters, reports, and other historical data. 14 refs., 36 tabs.

Klem, M. J.

1990-04-01T23:59:59.000Z

151

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient Tennessee-based IAC Helps Manufacturer Become More Energy Efficient November 14, 2011 - 12:22pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? With 50+ assessments and 500+ total recommendations made, this IAC's recommendations could save the average manufacturer evaluated an average $118,636 in electrical, natural gas, waste and productivity costs. This team has saved FUJIFILM Hunt Chemicals U.S.A facility nearly 1,240,976 kW hours of electricity -- an estimated $39,280 per year! Earlier this month, we brought you the story of Chrome Deposit Corporation, a manufacturer that with the help of the University of Delaware Industrial Assessment Center is saving millions of dollars with

152

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AIR PRODUCTS AND CHEMICALS, INC. FOR AN AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-95GO10059; W(A)-96-016; CH-0908 The Petitioner, Air Products and Chemicals, Inc., has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Sorption Enhanced Reaction (SER) Process for Production of Hydrogen." The objective of the cooperative agreement is to develop and demonstrate the feasibility of performing Steam Methane Reforming (SMR) at a low temperature with a suitable metal oxide chemisorbent for the production of hydrogen. The agreement comprises three phases including, respectively, concept

153

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

154

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

155

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

156

The critical role of manufacturing-process innovation on product development excellence in high-technology companies  

E-Print Network (OSTI)

Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

Duarte, Carlos E. A., 1962-

2004-01-01T23:59:59.000Z

157

Chemical Constituents in Coal Combustion Product Leachate: Thallium  

Science Conference Proceedings (OSTI)

This report provides comprehensive information on the environmental behavior of thallium. Included are discussions of thallium’s occurrence in soil and water, occurrence in coal and coal combustion products (CCPs), CCP leaching characteristics, effects on human health and ecology, geochemistry, and treatment/remediation options.

2008-12-02T23:59:59.000Z

158

Chemical Constituents in Coal Combustion Product Leachate: Beryllium  

Science Conference Proceedings (OSTI)

This report profiles the environmental behavior of the element beryllium. It includes discussions of beryllium8217s occurrence in soils and water, concentrations in coal and coal combustion products (CCPs), geochemistry, mobility in groundwater, toxicology, and treatment options for removal from water.

2006-11-14T23:59:59.000Z

159

Production of chemical feedstock by the methanolysis of wood  

DOE Patents (OSTI)

A process is discussed for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700/sup 0/C to 1200/sup 0/C, at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

Steinberg, M.; Fallon, P.

1983-06-01T23:59:59.000Z

160

Production of chemical feedstock by the methanolysis of wood  

DOE Patents (OSTI)

A process for the production of ethylene, benzene and carbon monoxide from particulated biomass such as wood by reaction with methane at a temperature of from 700.degree. C. to 1200.degree. C., at a pressure of from 20 psi to 100 psi for a period of from 0.2 to 10 seconds.

Steinberg, Meyer (Melville, NY); Fallon, Peter (East Moriches, NY)

1984-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Orimulsion Combustion By-Products: Chemical Composition and Leaching Characteristics  

Science Conference Proceedings (OSTI)

Orimulsion (R) is a synthetic fuel derived by mixing heavy bitumen with water to produce an emulsion that can be burned as a primary fuel in electric utility boilers. It can be used for generation of electricity in modified oil-fired utility boilers. This report presents the results of a study on by-products generated from the combustion of Orimulsion.

1998-09-22T23:59:59.000Z

162

Chemical Constituents in Coal Combustion Product Leachate: Arsenic  

Science Conference Proceedings (OSTI)

This report provides comprehensive information on the environmental behavior of arsenic. Included are discussions of arsenic’s occurrence in soil and water, occurrence in coal combustion products (CCPs), CCP leaching characteristics, effects on human health and ecology, geochemistry, and treatment/remediation options.

2008-11-25T23:59:59.000Z

163

Capacity, production, and manufacturing of wood-based panels in north America. Forest Service general technical report  

SciTech Connect

This report is an informational report about four wood-based panel industries particleboard, oriented strandboard, medium density fiberboard, and Southern Pine plywood. Items highlighted are trends in manufacturing and new plant costs, industry manufacturing capacity, and location. Recent data show the greatest amount of growth taking place in the oriented strandboard sector. Modest rates of growth are occuring in the Southern Pine Plywood, particleboard, and medium density fiberboard sectors.

Spelter, H.

1994-10-01T23:59:59.000Z

164

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Electro Microfluidic Dual In-line Package (EMDIP) Electro Microfluidic Dual In-line Package (EMDIP) PDF format (115 kb) EMDIP diagram EMDIP Diagram Microfluidics is experiencing explosive growth in new product developments. Already there are many commercial applications for electro microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of surface micromachined microfluidic devices is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. In order to realize applications for these devices, an efficient method for packaging microfluidic devices is needed. Responding to this need, researchers at Sandia developed the Electro Microfluidic Dual In-Line Package (EMDIP) and the Fluidic Printed Wiring Board (FPWB).

165

Smart Manufacturing Processes and Equipment  

Science Conference Proceedings (OSTI)

... on testing machine tool capability for batch production (ISO 26303 ... NC Manufacturing Group (KTH, Step Tools, Sandvik, GE Energy, University of ...

2013-01-02T23:59:59.000Z

166

Advanced Manufacturing Office: Closed Solicitations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production EE-2E 08112008 09192008 Manufacturing- Industrial Distributed Energy FuelFeedstock Flexibility and Combined Heat and Power U.S. Department of Energy- Industrial...

167

MANUFACTURING NIST Impact Verification Program  

Science Conference Proceedings (OSTI)

... manufactured from structural steel such as oil and gas ... both in the US and around the world. ... of proficiency test data available for production lots.

2013-01-30T23:59:59.000Z

168

EIA Energy Efficiency-Table 4c. Capacity Adjusted Value of Production a by  

Gasoline and Diesel Fuel Update (EIA)

c c Page Last Modified: May 2010 Table 4c. Capacity Adjusted Value of Production 1 by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 432 459 487 312 Beverage and Tobacco Product Manufacturing 116 110 115 313 Textile Mills 55 52 42 314 Textile Product Mills 32 34 32 315 Apparel Manufacturing 67 53 31 316 Leather and Allied Product Manufacturing 11 8 6 321 Wood Product Manufacturing 88 95 98 322 Paper Manufacturing 172 163 160 323 Printing and Related Support Activities 107 106 99 324 Petroleum and Coal Products Manufacturing 221 241 254 325 Chemical Manufacturing 437 468 510 326 Plastics and Rubber Products Manufacturing 162 181 175

169

EIA Energy Efficiency-Table 3b. Value of Production a by Selected  

Gasoline and Diesel Fuel Update (EIA)

and 2006 > Table 3b and 2006 > Table 3b Page Last Modified: May 2010 Table 3b. Value of Production 1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food Manufacturing 429 456 539 312 Beverage and Tobacco Product Manufacturing 103 104 125 313 Textile Mills 57 45 39 314 Textile Product Mills 31 31 33 315 Apparel Manufacturing 65 43 30 316 Leather and Allied Product Manufacturing 10 6 6 321 Wood Product Manufacturing 91 88 112 322 Paper Manufacturing 155 152 171 323 Printing and Related Support Activities 100 95 100 324 Petroleum and Coal Products Manufacturing 136 218 551 325 Chemical Manufacturing 419 452 662 326 Plastics and Rubber Products Manufacturing 164 172 212

170

Manufacturing News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

171

Manufacturing Growth  

Science Conference Proceedings (OSTI)

... report, even the lithium-ion batteries used in Chevy's much anticipated electric car, the Volt, are supplied by South Korean battery manufacturer LG ...

2013-07-31T23:59:59.000Z

172

Advanced Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

173

Oil Combustion By-Products: Chemical Characteristics, Management Practices, and Groundwater Effects  

Science Conference Proceedings (OSTI)

This report presents the results of a study of combustion by-products generated and collected at oil-fired utility power plants. The study was conducted by EPRI in order to assemble and evaluate information on the chemical characteristics, management practices, and groundwater effects associated with the combustion by-products.

1998-04-03T23:59:59.000Z

174

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

175

Manufacturing Extension Partnership, Manufacturing Data and ...  

Science Conference Proceedings (OSTI)

... Manufacturing Data & Trends. Manufacturing is a dynamic and changing industry. In this ... Voytek. DATA RESOURCES. Capacity ...

2013-06-17T23:59:59.000Z

176

Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds  

Science Conference Proceedings (OSTI)

The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

2008-02-29T23:59:59.000Z

177

An investigation of synthetic fuel production via chemical looping  

Science Conference Proceedings (OSTI)

Producing liquid hydrocarbon fuels with a reduced greenhouse gas emissions profile would ease the transition to a carbon-neutral energy sector with the transportation industry being the immediate beneficiary followed by the power industry. Revolutionary solutions in transportation, such as electricity and hydrogen, depend on the deployment of carbon capture and storage technologies and/or renewable energy systems. Additionally, high oil prices may increase the development of unconventional sources, such as tar sands, that have a higher emissions profile. One process that is gaining interest is a system for producing reduced carbon fuels though chemical looping technologies. An investigation of the implications of such a process using methane and carbon dioxide that is reformed to yield methanol has been done. An important aspect of the investigation is the use of off-the-shelf technologies to achieve the results. The ability of the process to yield reduced emissions fuels depends on the source for the feed and process heat. For the range of conditions considered, the emissions profile of methanol produced in this method varies from 0.475 to 1.645 moles carbon dioxide per mole methanol. The thermal load can be provided by methane, coal or carbon neutral (biogas). The upper bound can be lowered to 0.750 by applying CCS and/or using nonfossil heat sources for the reforming. The process provides an initial pathway to incorporate CO{sub 2} into fuels independent of electrolytic hydrogen or developments in other sectors of the economy. 22 refs., 1 fig., 3 tabs.

Frank Zeman; Marco Castaldi [Columbia University, New York, NY (United States). Department of Earth and Environmental Engineering

2008-04-15T23:59:59.000Z

178

The Economic Impact of Ethanol Production in Iowa David Swenson  

E-Print Network (OSTI)

production and, through the processing, adds value to the commodity as additional payments to workers, Iowa's total GDP grew by 30 percent, all manufacturing GDP by 24 percent, and the chemical manufacturing industry by 29 percent ­ better than the manufacturing average but below the overall average

Beresnev, Igor

179

Chemical Metrology for Polymers Manufacturing  

Science Conference Proceedings (OSTI)

... Value-assignment projects are designed to include ... in Polymeric Material Using Energy Dispersive X ... The following industry standard method of test ...

2012-11-16T23:59:59.000Z

180

Annual Survey of Manufactures | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

are measuring productivity, updating producer price indexes, evaluating and forecasting future industrial activity, benchmarking current data on manufacturing shipments...

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Chemical and Pharmaceutical Industry Susan Brench (1984)  

E-Print Network (OSTI)

The Chemical and Pharmaceutical Industry Susan Brench (1984) If you have any questions, or would like to ask for some careers advice about working in the Chemical Manufacturing industry from Susan:alumnae@murrayedwards.cam.ac.uk The products and services of the chemical and pharmaceutical industry deliver clean water, vital medicines

Goldschmidt, Christina

182

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

183

Exhibitor: MURLIN CHEMICAL INC.  

Science Conference Proceedings (OSTI)

Murlin Chemical, Inc. manufactures Bone Ash at its plant located in West Conshohocken, Pennsylvania, USA. Established in 1978, Murlin Chemical supplies ...

184

Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer We studied pharmaceutical and chemical waste production in a Greek hospital. Black-Right-Pointing-Pointer Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total pharmaceutical waste was 12.4 {+-} 3.90 g/patient/d. Black-Right-Pointing-Pointer Chemical waste comprised 1.8% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total chemical waste was 5.8 {+-} 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and 'other'. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective unit production rates were: (1) for reagents 1.7 (2.4) g/patient/d and 0.3 (0.4) g/examination/d, (2) for solvents 248 (127) g/patient/d and 192 (101) g/examination/d, (3) for dyes and tracers 4.7 (1.4) g/patient/d and 2.5 (0.9) g/examination/d and (4) for solid waste 54 (28) g/patient/d and 42 (22) g/examination/d.

Voudrias, Evangelos, E-mail: voudrias@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, GR-671 00 Xanthi (Greece); Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini [Department of Environmental Engineering, Democritus University of Thrace, GR-671 00 Xanthi (Greece)

2012-07-15T23:59:59.000Z

185

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS INC. FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1W 1Z .UU:1- I [-: - 1W 1Z .UU:1- I [-: - L LJUL 1l UUb L- bJl . (-' - I HULF-'Hb I'. , k1.-, * * STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER A SUBCONTRACT UNDER DOE COOPERATIVE AGREEMENT NO. CIE-FC36- 04G013030 WITH PROTON ENERGY SYSTEMS, INC-; W(A)-05-007; CH-1271 As set out in the attached waiver petition and in subsequent discussic ns with DOE Patent Counsel, Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under its subcontract under the above-identified cooperative agreement between DOE and Proton Energy Systems (Proton), Inc., a domestic small business, by Air Products e-nployees.

186

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

187

Innovations in Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

188

Advanced Manufacturing Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Office: News on Twitter Bookmark Advanced Manufacturing Office: News on Google Bookmark Advanced Manufacturing Office: News on Delicious Rank Advanced Manufacturing...

189

Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production  

SciTech Connect

Cyanobacteria are ideal metabolic engineering platforms for carbon-neutral biotechnology because they directly convert CO2 to a range of valuable products. In this study, we present a computational assessment of biochemical production in Synechococcus sp. PCC 7002 (Synechococcus 7002), a fast growing cyanobacterium whose genome has been sequenced, and for which genetic modification methods have been developed. We evaluated the maximum theoretical yields (mol product per mol CO2 or mol photon) of producing various chemicals under photoautotrophic and dark conditions using a genome-scale metabolic model of Synechococcus 7002. We found that the yields were lower under dark conditions, compared to photoautotrophic conditions, due to the limited amount of energy and reductant generated from glycogen. We also examined the effects of photon and CO2 limitations on chemical production under photoautotrophic conditions. In addition, using various computational methods such as MOMA, RELATCH, and OptORF, we identified gene-knockout mutants that are predicted to improve chemical production under photoautotrophic and/or dark anoxic conditions. These computational results are useful for metabolic engineering of cyanobacteria to synthesize valueadded products.

Vu, Trang; Hill, Eric A.; Kucek, Leo A.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

2013-05-24T23:59:59.000Z

190

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Survey (MECS) Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections MECS Industry Analysis Briefs Steel Industry Analysis The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago. Chemical Industry Analysis The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals

191

Green Manufacturing Programs/Projects for the Systems ...  

Science Conference Proceedings (OSTI)

Green Manufacturing Programs/Projects for the Systems Integration Division. Production Network Supplier Characterization Project. ...

2011-12-23T23:59:59.000Z

192

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I- S I... SJ4.'i_ .---- - I- S I... SJ4.'i_ .---- - ---- ----- -- _- , 1 .3 t fLU4 ' I 04 - -t - rt . .5 * * STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-04GO14006 ENTITLED "DESIGN AND DEVELOPMENT OF NEW CARBON-EIASED SORBENT SYSTEMS FOR AN EFFECTIVE CONTAINMENT OF HYDROGEN"; W(A)-04-028; CH-1197 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Air Products and Chemicals Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees. regardless of tier, except inventions made by subcontractors eligible to retain title to inventions

193

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TON 11 2005 16:10 FR IPL D*H 630 252 2779 TO RG,:0, P.02/073 TON 11 2005 16:10 FR IPL D*H 630 252 2779 TO RG,:0, P.02/073 STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36- 02AL67613 ENTITLED "DEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION"; W(A)-05-001; CH-1253 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions

194

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGCP-HQ P.06/07 AGCP-HQ P.06/07 * * STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER ITS SUBCONTRACT UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC43-02R340595 WITH THE COMMONWEALTH OF PENNSYLVANIA ENTITLED "NOVEL COMPRESSION FUELING APPARATUS TO MEET HYDROGEN VEHICLE RANGE REQUIREMENTS"; W(A)-04-083; CH-1262 As set out in the attached waiver petition and in subsequent discussions with DOE patent counsel, Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L.

195

Chemical transformations are essential to all living organisms--and also to the manufacture of many products including fuels,  

E-Print Network (OSTI)

interests include plasma waste gasification, plasma torches, spectroscopy, plasma medicine, and holographic2512 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 36, NO. 5, OCTOBER 2008 Experimental Investigation-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser

Kemner, Ken

196

Clean Energy Manufacturing Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

197

Chemical weathering and soil production 1 Copyright 2006 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms (in press)  

E-Print Network (OSTI)

Chemical weathering and soil production 1 Copyright © 2006 John Wiley & Sons, Ltd. Earth Surf and chemical processes (e.g. Riebe et al., 2001, 2003a; Anderson et al., 2002; Stallard and Edmond, 1983 downslope. Chemical weathering ­ the dissolution and precipitation of minerals via subsurface flow ­ occurs

Heimsath, Arjun M.

198

ORIGINAL ARTICLE Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks  

E-Print Network (OSTI)

Abstract We consider stochastically modeled chemical reaction systems with massaction kinetics and prove that a product-form stationary distribution exists for each closed, irreducible subset of the state space if an analogous deterministically modeled system with mass-action kinetics admits a complex balanced equilibrium. Feinberg’s deficiency zero theorem then implies that such a distribution exists so long as the corresponding chemical network is weakly reversible and has a deficiency of zero. The main parameter of the stationary distribution for the stochastically modeled system is a complex balanced equilibrium value for the corresponding deterministically modeled system. We also generalize our main result to some non-mass-action kinetics.

David F. Anderson; Gheorghe Craciun; Thomas G. Kurtz

2009-01-01T23:59:59.000Z

199

Manufacturing Extension Partnership Homepage  

Science Conference Proceedings (OSTI)

... The Manufacturing Extension Partnership (MEP) is a catalyst for strengthening American manufacturing – accelerating its ongoing transformation ...

2013-08-23T23:59:59.000Z

200

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. (AIR PRODUCTS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INVENTION INVENTION RIGHTS UNDER COOPERATIVE AGREEMENT NO. DE-FC22-95PC95051 W(A)-95-014 , CH-0861 The Petitioner, Air Products, was awarded this cooperative agreement in response to an unsolicited proposal for the engineering development of slurry bubble column reactors. Air Products was selected for this cooperative agreement based on its past experience and current research efforts in related technology as well as the capabilities of the Government-owned Alternative Fuels Development Unit located on the Petitioner's LaPorte, Texas site. The Contracting Officer has found that although the provisions of the 1992 Energy Policy Act, P.L. 102-486, do not apply to this cooperative agreement, the cost sharing requirements of §3002 of the Act are met. Air Products has requested a waiver of domestic and foreign rights for all subject

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS & CHEMICALS, INC. FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& CHEMICALS, INC. FOR AN ADVANCE & CHEMICALS, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-98FT40343; W(A)-99-017, CH-1018 The Petitioner, Air Products, & Chemicals, Inc. (APCI), was awarded this cooperative agreement for the performance of work entitled, "Development of an ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generator Systems". Under the cooperative agreement, APCI is to develop Ionic Transport Membrane (ITM Oxygen) technology for stand-alone plants for producing oxygen in tonnage quantities, and for integration of ITM Oxygen plants with Integrated Gasification Combined Cycle (IGCC) and other power generation systems. The Department of Energy's Integrated Gasification Combined Cycle

202

Cost model for a small glass manufacturing enterprise.  

E-Print Network (OSTI)

??The cost model developed is for small, glass-manufacturing enterprises to help themdetermine their product costs. It estimates the direct cost in glass manufacturing such as… (more)

Gopisetti, Swetha.

2008-01-01T23:59:59.000Z

203

NREL: News - New Study Shows Solar Manufacturing Costs Not Driven...  

NLE Websites -- All DOE Office Websites (Extended Search)

take an in-depth look at national competitiveness in PV manufacturing September 5, 2013 Production scale, not lower labor costs, drives China's current advantage in manufacturing...

204

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network (OSTI)

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

205

Posted 7/24/12 Manufacturing Engineer  

E-Print Network (OSTI)

, starters, and generators for the commercial transportation, hybrid electric vehicle and aerospace of technologically advanced aerospace and industrial products. We design and manufacture aerospace systems Prairie, WI 53158 Electromagnetic Enterprises (EME) designs and manufactures specialized electric motors

Heller, Barbara

206

Summit Manufacturing: Case Closure (2010-SE-0303)  

Energy.gov (U.S. Department of Energy (DOE))

DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

207

MST: Organizations: Manufacturing Processes & Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Processing Manufacturing Processing Manufacturing Process, Science, and Technology Mark Smith Mark Smith, Senior Manager Manufacturing Process Science and Technology conducts research and development on advanced manufacturing process and materials technologies. It provides manufacturing process development, technical consulting, and technology transfer to support Sandia product realization needs. This organization also provides prototype fabrication and specialized production services, as required, to support Sandia missions. Departments Dianna Blair Mike Kelly Alex Roesler Paul C. McKey Thin Film, Vacuum, and Packaging Organic Materials Ceramics and Glass Meso Mfg. and System Development Dianna Blair, Manager Mike Kelly, Manager Alex Roesler, Manager Paul C. McKey,

208

Photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

1991-12-01T23:59:59.000Z

209

Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010  

DOE Green Energy (OSTI)

Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

Fatemi, H.

2012-07-01T23:59:59.000Z

210

Method for conversion of carbohydrate polymers to value-added chemical products  

DOE Patents (OSTI)

Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.

Zhang, Zongchao C. (Norwood, NJ); Brown, Heather M. (Kennewick, WA); Su, Yu (Richland, WA)

2012-02-07T23:59:59.000Z

211

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Machining PDF format (236 kb) MS&T's machining group consists of two departments: Manufacturing Processing, and Manufacturing Processes and Services. The two departments team to build, procure, and assemble unique prototype and production hardware with diverse quality requirements. The in-house capability can manufacture hardware ranging from microscopic to proportions measured in feet and tons. The group's outside contacts and resources are almost boundless. This team's expertise includes: precision machining, welding, fabrication and assembly, aircraft quality sheet metal construction, and explosives machining and assembly. The department can manage a variety of activities: design modifications, in-house fabrication, outside shop selection and surveillance and manufacturing records management.

212

Yellow phosphorus process to convert toxic chemicals to non-toxic products  

DOE Patents (OSTI)

The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

Chang, S.G.

1994-07-26T23:59:59.000Z

213

Manufacturing Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

214

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network (OSTI)

-volume production, and to direct future public-private partnerships that will facilitate transfer of technology will identify and prioritize topics for public-private R&D on manufacturing of PEM fuel cells. Fuel Cell System

215

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

216

Methods to Manufacture Cermets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacture Cermets Methods to Manufacture Cermets There are many methods to manufacture cermets. One option is shown here. DU dioxide and steel powder are mixed, the mixture is...

217

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A SUBCONTRACT WITH MILLENNIUM CELL, INC. UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-04GO14008; W(A)-04-045; CH-1213 The Petitioner, Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above-identified cooperative agreement entitled "Process for Regeneration of Sodium Borate to Sodium Borohydride for use as a Hydrogen Storage Source". The Petitioner is a subcontractor under the referenced DOE cooperative agreement with Millenium Cell, Inc., a domestic small business. Referring to item 2 of Air Products' waiver petition, the purpose of the agreement is to develop and construct a prototype process demonstration unit to validate a hydrogen storage

218

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36- PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36- 04GO14155 ENTITLED "DEVELOPMENT OF ADVANCED MEMBRANE TECHNOLOGY PLATFORM FOR HYDROCARBON SEPARATIONS"; W(A)-04-063; CH-1231 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions ... pursuant to.P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of Air Products' waiver petition, the purpose of this agreement

219

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FC36-021D14321; W(A)-03-036; FC36-021D14321; W(A)-03-036; CH-1131 The Petitioner, Air Products and Chemicals, Inc., has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced cooperative agreement and lower-tiered subcontracts entered thereunder. The cooperative agreement is entitled "Multi-partner Demonstration of Energy Efficient and Environmentally Improved Methods for the Production of Polyurethane Foam." This waiver does not apply to the rights of those parties subject to Public Law 96-517, as amended, nor shall it grant any rights in inventions made by employees of National Laboratories. The objective of the cooperative agreement is to demonstrate Petitioner's liquid CO2 surfactant technology on a full scale production line in order to illustrate performance and utility

220

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCED  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCED ADVANCED WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-01GO11087 ENTITLED "VALIDATION OF AN INTEGRATED SYSTEM FOR A HYDROGEN FUELED POWER PARK"; W(A)-02-(15; CH-1100 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 in Air Product's waiver petition, the overall goal of this agreement is

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Progress in chemical processing of LEU targets for {sup 99}Mo production -- 1997  

SciTech Connect

Presented here are recent experimental results of the continuing development activities associated with converting current processes for producing fission-product {sup 99}Mo from targets using high-enriched uranium (HEU) to low-enriched uranium (LEU). Studies were focused in four areas: (1) measuring the chemical behavior of iodine, rhodium, and silver in the LEU-modified Cintichem process, (2) performing experiments and calculations to assess the suitability of zinc fission barriers for LEU metal foil targets, (3) developing an actinide separations method for measuring alpha contamination of the purified {sup 99}Mo product, and (4) developing a cooperation with Sandia National Laboratories and Los Alamos National Laboratory that will lead to approval by the US Federal Drug Administration for production of {sup 99}Mo from LEU targets. Experimental results continue to show the technical feasibility of converting current HEU processes to LEU.

Vandegrift, G.F.; Conner, C.; Sedlet, J.; Wygmans, D.G. [Argonne National Lab., IL (United States); Wu, D. [Univ. of Illinois, Urbana, IL (United States); Iskander, F.; Landsberger, S. [Univ. of Texas, Austin, TX (United States)

1997-10-01T23:59:59.000Z

222

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Advanced Manufacturing Trades Training Program Business Program Lead Yvonne Baros Advanced Manufacturing Trades Training Program Tom Souther Advanced Technology Academy...

223

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skills Standards The Academic and Employability Skills Standards align Sandia's training efforts in advanced manufacturing with the recommendations of the Manufacturing Skill...

224

Process for the manufacture of an electrode for electrochemical process and a cathode for the electrolytic production of hydrogen  

SciTech Connect

An electrically conductive substrate is coated with a material containing an unsintered powder of a metal active for electrochemical proton reduction and colloidal silica and the said material is heated on the substrate successively in an oxidizing atmosphere and then in a reducing atmosphere. The electrode may be employed as a cathode for electrolytic production of hydrogen in an alkaline medium.

Nicolas, E.; Merckaert, L.

1985-08-13T23:59:59.000Z

225

Chemical Emissions of Residential Materials and Products: Review of Available Information  

SciTech Connect

This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the databases that provide information on new or low-emission materials and products. The review focuses on the primary chemical or volatile organic compound (VOC) emissions from interior surface materials, furnishings, and some regularly used household products; all of these emissions are amenable to ventilation. Though it is an important and related topic, this review does not consider secondary pollutants that result from reactions of ozone and unsaturated organics bound to or emitted from material surfaces. Semi-volatile organic compounds (SVOCs) have been largely excluded from this review because ventilation generally is not an effective way to control SVOC exposures. Nevertheless, health concerns about exposures to SVOCs emitted from selected materials warrant some discussion.

Willem, Henry; Singer, Brett

2010-09-15T23:59:59.000Z

226

Chemical analysis and reactivity of biomass pyrolysis products. Application to the development of carbon-neutral biofuels and chemicals.  

E-Print Network (OSTI)

??In this dissertation the pyrolytic conversion of biomass into chemicals and fuels was investigated from the analytical point of view. The study was focused on… (more)

Torri, Cristian and#60;1982and#62

2011-01-01T23:59:59.000Z

227

Chemical Emissions of Residential Materials and Products: Review of Available Information  

E-Print Network (OSTI)

44: 525- Page | 39 Chemical Emissions of ResidentialHazard Assessment of Chemical Air Contaminants Measured intoxicity Page | 37 Chemical Emissions of Residential

Willem, Henry

2010-01-01T23:59:59.000Z

228

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

229

Enhanced Hydrogen Production in Escherichia coli Through Chemical Mutagenesis, Gene Deletion, and Transposon Mutagenesis  

E-Print Network (OSTI)

We demonstrate that hydrogen production can be increased by random mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and that hydrogen production can be further increased in the chemically-mutagenized strain by targeted gene deletion and overexpression of genes related to formate metabolism. Chemical mutagenesis of Escherichia coli BW25113 hyaB hybC hycE::kan/pBS(Kan)-HycE to form strain 3/86 resulted in 109 +/- 0.5- fold more hydrogen; 3/86 lacks functional hydrogen uptake hydrogenases 1 and 2, has hydrogenproducing hydrogenase 3 inactivated from the chromosome, and has constitutively active hydrogenase 3 based on expression of the large subunit of hydrogenase 3 from a high copy number plasmid. Deleting fdoG, which encodes formate dehydrogenase O, (that diverts formate from hydrogen), from chemical mutagen 3/86 increased hydrogen production 188 +/- 0.50-fold (relative to the unmutagenized strain), and deletion of hycA, which encodes the repressor of formate hydrogen lyase (FHL), increased hydrogen production 232 +/- 0.50-fold. Deleting both fdoG and hycA increased hydrogen production 257 +/- 0.50-fold, and overexpressing fhlA along with the fdoG hycA mutations increased hydrogen 308 +/- 0.52-fold. Whole-transcriptome analysis of chemical mutagen 3/86 revealed 89 genes were induced and 31 genes were repressed. In an effort to identify chromosomal mutations in chemical mutagen 3/86, we performed comparative genome sequencing and identified two chromosomal loci with mutations in coding regions of ftnA and yebJ; however, neither gene was related to the increased hydrogen production as determined by the close vial (short) hydrogen assay. In addition, transposon mutagenesis, which is one of the most efficient strategies for creating random mutations in the genomic DNA, was performed in two different strains: E. coli BW25113 hyaB hybC hycA fdoG::kan/pCA24N-FhlA and E. coli MG1655 to identify beneficial mutations for hydrogen production. As a result of screening 461 E. coli BW25113 hyaB hybC hycA fdoG::kan/pCA24N-FhlA transformants and 1000 E. coli MG1655 transformants, three interesting mutations have been discovered in E. coli BW25113 hyaB hybC hycA fdoG::kan/pCA24N-FhlA transformants (gpsA, dipZ, glgP) and 1 beneficial mutation in E. coli MG1655 transformants (malT). When any of these genes gpsA, dipZ, or glgP is disrupted by Tn5 insertion, hydrogen production decreases 17, 3 and 8-fold, respectively. Additionally, when malT gene is disrupted by Tn5 insertion, hydrogen increases 3.4-fold.

Garzon Sanabria, Andrea Juliana

2010-05-01T23:59:59.000Z

230

Manufacturing Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

Not Available

2011-10-01T23:59:59.000Z

231

Biomass production and chemical cycling in a man-made geothermal wetland  

DOE Green Energy (OSTI)

Biomass production and, to a lesser extent, chemical cycling have been evaluated in a man-made wetland created using geothermal water in southcentral Idaho. The wetland system consisted of a 0.25 ha area divided into two ponds. The upper pond contained submerged species (Egeria, pondweeds and coontail); the lower pond was planted with emergents (cattail, bulrush, and common reed). Biomass production from emergent plants in the two-year-old system was promising and compared favorably with production values reported in the literature for natural wetlands. Chemical cycling of potassium (K) was evaluated through the lower pond system. Uptake of several other constituents (F and Na) of the geothermal water by the emergent plants was observed. However, there was little difference in elemental concentrations of the system's influent and effluent, probably due to evapotranspiration of water which effectively concentrates elements in the remaining water. Twenty-one species of diatoms were identified in the geothermal wetland, and numerous species of insects were observed. The man-made wetland also created substantial habitat for wildlife. This type of system could be used as an alternative to injection of spent geothermal fluids from small-scale projects. Study results indicate that a wetland system can be developed to produce substantial quantities of biomass in a cold desert environment.

Breckenridge, R.P.; Wheeler, L.R.; Ginsburg, J.F.

1983-06-01T23:59:59.000Z

232

MST: Organizations: Precision Meso Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

233

2010 Georgia Manufacturing Survey  

Science Conference Proceedings (OSTI)

... Linked to Innovation Manufacturing Wages by Percentages of Respondents ... Manufacturing Strategies by Industry Group (Percentage of firms ...

2013-07-31T23:59:59.000Z

234

Additive Manufacturing - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCES: Research Groups for the Additive Manufacturing of Superalloys Compilation of groups involved in additive manufacturing, 0, 1118, Lynette ...

235

Advanced Manufacturing Office: Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Solicitations on Twitter Bookmark Advanced Manufacturing Office: Solicitations on Google Bookmark Advanced Manufacturing Office: Solicitations on Delicious Rank Advanced...

236

Advanced Manufacturing Office: Webcasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webcasts on Twitter Bookmark Advanced Manufacturing Office: Webcasts on Google Bookmark Advanced Manufacturing Office: Webcasts on Delicious Rank Advanced...

237

Advanced Manufacturing Office: Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Subscribe on Twitter Bookmark Advanced Manufacturing Office: Subscribe on Google Bookmark Advanced Manufacturing Office: Subscribe on Delicious Rank Advanced...

238

Advanced Manufacturing Office: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Workshops on Twitter Bookmark Advanced Manufacturing Office: Workshops on Google Bookmark Advanced Manufacturing Office: Workshops on Delicious Rank Advanced...

239

Specific PVMaT R and D in CdTe Product Manufacturing; Phase II Annual Subcontract Technical Report; May 1999--September 2000  

DOE Green Energy (OSTI)

Just prior to the beginning of Phase II of the PVMaT project Solar Cells, Inc, (SCI) and True North Partners of Scottsdale, AZ, formed a joint venture partnership name First Solar, LLC. By the end of 1999, this event resulted in the construction of a new major manufacturing plant for photovoltaic modules, based on cadmium telluride, located in Perrysburg, a suburb of Toledo, Ohio. This plant was designed to be capable of producing PV modules at a rate of 100 MW per year within about three years. Significantly, a new semiconductor coating system, the heat of the production line, has already shown the capability of the 100 MW per year rate. These events have led to the expansion of the effort on the PVMaT project that included the former SCI team in Toledo, Ohio, a new team of engineering subcontractor, Product Search, Inc., and, later, a new laser team from First Solar, both from Scottsdale, Arizona. These three teams joined in a collaborative effort on Tasks 4: Manufacturing Line Improvements, on Task 5: Product Readiness, and on Task Environmental, Health, and Safety Issues. One Task 4 goal was to address the technical issues of the failed UL 1703 qualification testing in Phase I. Completing this goal, along with module lamination improvement done in Task 5, was instrumental in the design, fabrication, and installation of a high-throughput solar finishing line. The main components of this line, also a Task 4 project, were successfully tested in module finalization on the production line. Developing a novel, single-laser scribing system was another major accomplishment. In Task 5, the major activity was improved module lamination. Progress in Tasks 4 and 5 resulted in improved modules that were submitted for UL 1703 qualification testing. In March 2000, a new encapsulation process came under development, in which the back glass cover plate is substituted by a combination of a polymer layer as a dielectric and aluminum foil as a moisture barrier. The go al of the Environmental, Health, and Safety program is to conduct an extensive review of its current programs and address issues that need improvement.

McMaster, A. (First Solar, LLC)

2001-01-22T23:59:59.000Z

240

Chemical Emissions of Residential Materials and Products: Review of Available Information The Home Energy Scoring Tool: A  

E-Print Network (OSTI)

component of the program has been designed to support the existing energy analysis marketplace by providing web- based applications and market delivery strategy. Introduction Globally, energy usedChemical Emissions of Residential Materials and Products: Review of Available Information

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and methods, such as production scheduling, automation, Computer Integrated Manufacture (CIM), quality control, materials inventory management and staffing that are necessary over...

242

Advanced Manufacturing Office: About the Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

collapse processing steps to lower the energy intensity of manufactured products. Next-Generation Materials cut energy use and provide new functional properties that enable...

243

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

The gross output for the petroleum and coal products subsector grew by about 3 percent, ... Manufacturing Energy Consumption Survey, MECS Definition of Fuel Use, ...

244

Advanced Manufacturing Office (Formerly Industrial Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy intensity and efficiently direct energy to forming the product. Examples include additive manufacturing, selective heating, and out-of-the-autoclave composite...

245

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOREIGN AND DOMESTIC RIGHTS IN SUBJECT INVENTIONS UNDER DOE FOREIGN AND DOMESTIC RIGHTS IN SUBJECT INVENTIONS UNDER DOE CONTRACT NO. DE-AC26-98FT40419; WAIVER NO. W(A) 98-018, CH0985 Petitioner Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of foreign and domestic rights in all subject inventions arising under the referenced contract, entitled, "Carbon Dioxide Capture from Industrial Process Gases by High-Temperature Pressure Swing Adsorption (PSA)". The source of U.S. Government funding for the contract is the Office of Fossil Energy of the U.S. Department of Energy (DOE). The scope of work under the contract involves developing a new low-cost adsorption technology to capture carbon dioxide (CO) from flue gases and wet process gases by utilizing a unique class of adsorbent materials, and demonstrating and quantifying the benefits of applying

246

MANUFACTURING INSECURITY  

Science Conference Proceedings (OSTI)

... machine tools, used in the production of precision components in the aerospace, gas and diesel ... throughout the medical, textile, oil, glass, heavy ...

2013-07-31T23:59:59.000Z

247

Energy Department Launches New Clean Energy Manufacturing Initiative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Clean Energy Manufacturing New Clean Energy Manufacturing Initiative Energy Department Launches New Clean Energy Manufacturing Initiative March 26, 2013 - 10:56am Addthis News Media Contact (202) 586-4940 OAK RIDGE - As part of the Obama Administration's commitment to revitalizing America's manufacturing sector, today the Energy Department launched the Clean Energy Manufacturing Initiative (CEMI), a new Department initiative focused on growing American manufacturing of clean energy products and boosting U.S. competitiveness through major improvements in manufacturing energy productivity. The initiative includes private sector partnerships, new funding from the Department, and enhanced analysis of the clean energy manufacturing supply chain that will guide the Department's future funding decisions.

248

Process for the production of a chemical synthesis gas from coal  

SciTech Connect

A process is described for the production of a chemical synthesis product gas from a carbonaceous feed material and steam which comprises: (A) reacting said steam with said carbonaceous feed material in a reaction zone at a reaction temperature between about 1000F and about 1500/sup 0/F and at a reaction pressure in excess of about 100 psia, in the presence of a carbon-alkali metal catalyst and sufficient added hydrogen and carbon monoxide to provide substantially equilibrium quantities of hydrogen and carbon monoxide in said reaction zone at said reaction temeperature and said reaction pressure; (B) withdrawing from said reaction zone an effluent gas containing substantially equilibrium quantities, at said reaction temperature and pressure, of methane, carbon dioxide, steam, hydrogen and carbon monoxide; (C) treating said effluent gas for the removal of steam and acid gases to produce a treated gas containing primarily carbon monoxide, hydrogen and methane; (D) recovering substantially all of the carbon monoxide and hydrogen from said treated gas as a chemical synthesis product gas, thereby producing a gas comprised substantially of methane; (E) contacting the gas produced in step (D) comprised substantially of methane with steam in a steam reforming zone under conditions such tat at least a portion of the methane present reacts with said steam to produce hydrogen and carbon monoxide; and (F) passing the effluent from said steam reforming zone into said reaction zone without substantial cooling, thereby supplying said added hydrogen and carbon monoxide required in said reaction zone and wherein said reforming zone is operated at conditions such that the heat content of said effluent from said steam reforming zone is sufficient to supply substantially all of the heat needed to preheat said carbonaceous feed material to said reaction temperature.

Eakman, J.; Kalina, T.; Marshall, H.

1980-07-08T23:59:59.000Z

249

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

250

Chemical microsensors  

DOE Patents (OSTI)

An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

Li, DeQuan (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

251

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report and Appendices (CD-ROM)  

SciTech Connect

The main report on this CD assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performace and efficiency improvements. The Appendices on this CD provide supporting information for the analyses and provides and recommendations for assessing the effectiveness of the U.S. Department of Energy BestPractices Steam Program.

Not Available

2002-10-01T23:59:59.000Z

252

Synthesis, characterization, and evaluation of silica and polymer supported catalysts for the production of fine chemicals .  

E-Print Network (OSTI)

??Catalysis is an important field of study in chemical engineering and chemistry due to its application in a vast number of chemical transformations. Traditionally, catalysts… (more)

Shiels, Rebecca Anne

2008-01-01T23:59:59.000Z

253

Manufacturing R&D for the Hydrogen Economy Roadmap Workshop  

E-Print Network (OSTI)

manufacturing and technical standards required for low-cost, high-volume production, and to direct future public-private

254

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FC07-971D13514; W(A)-97-030; CH- FC07-971D13514; W(A)-97-030; CH- 0933 The Petitioner, Air Products and Chemicals, Inc., has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced cooperative agreement entitled "High Efficiency, High Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion." The objective of the cooperative agreement is to develop and demonstrate a new, high- efficiency, high-capacity, low-NOx combustion system with an innovative low-cost, on-site vacuum-swing-adsorption (VSA) oxygen generation. The system is to operate in the economically optimum range of 35-50% oxygen in the oxidizer by integrating an 02 VSA into the combustion process. The integrated VSA will be configured to supply the average oxygen

255

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-94GO10004; W(A)-94-034; CH-0844 The Petitioner, Air Products and Chemicals, Inc. has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Development of Advanced Membrane Devices." The objective of the cooperative agreement is to develop advanced membrane technology for the energy efficient separation of carbon dioxide and hydrogen sulfide from methane. The agreement includes two phases. Phase I will further develop and refine membrane technology, and phase II will demonstrate commercial membrane fabrication process. The work includes identifying and validating advanced membrane materials; optimizing process designs

256

Assessment of fuels and chemicals production using solar thermal energy. Final report  

DOE Green Energy (OSTI)

This study investigated the technical and economic viability of a wide range of potentially market-dominating solar thermal fuels and chemicals (S/T-F/C) system concepts. The current market-dominating fuels and chemical processes were reviewed to identify those appearing to have the greatest potential for successful integration with a solar thermal heat source. In addition, advanced concepts (e.g., coal gasification, oil shale, etc.) were examined. Based upon that initial screening, systems felt to be a representative cross-section of possible S/T-F/C systems were selected for further study. For each of those systems (e.g., steam reforming of natural gas, oil shale retorting, etc.), a case-study type examination was made to estimate plant costs, operational performance, technical difficulties, and financial characteristics (e.g., return on investment). More advanced systems (such as thermochemical hydrogen production) which are not sufficiently well defined at present to permit a case-study examination were also evaluated, but in a qualitative fashion.

Not Available

1982-01-25T23:59:59.000Z

257

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor concept for deep space exploration Research directions Weapons chemistry and nuclear performance Radiological, nuclear, and chemical signatures Energy production,...

258

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

precision machining technology, automated machining and manufacturing technology, welding, photonics technology, microelectromechanical systems (MEMS), and testing and...

259

Cost of quality tradeoffs in manufacturing process and inspection strategy selection  

E-Print Network (OSTI)

In today's highly competitive markets manufacturers must provide high quality products to survive. Manufacturers can achieve higher levels of quality by changing their manufacturing process and/or by product inspection ...

Zaklouta, Hadi

2011-01-01T23:59:59.000Z

260

Chemical Product and Process Volume 2, Issue 1 2007 Article 10  

E-Print Network (OSTI)

chemical entities (NCEs) is a kinetic model of the reaction system. Once obtained, this allows the chemical for the kinetic terms Ri will be unknown. It is therefore difficult, especially when each chemical species may, the dynamics of well- mixed chemical systems typically obey the law of mass action kinetics and hence

Newcastle upon Tyne, University of

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D.  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov/manufacturing Advanced Manufacturing Next-Generation Manufacturing As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future.

262

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

263

To: NIST Advanced Manufacturing National Program Office I ...  

Science Conference Proceedings (OSTI)

... how manufacturers could achieve the European Union's 2050 target for 80 ... demand by 50% • Value-added wood-derived biofuels and chemicals ...

2012-11-06T23:59:59.000Z

264

US MANUFACTURERS WITH PRODUCTS CONFORMING ...  

Science Conference Proceedings (OSTI)

... against which the effectiveness and success of future Metric Program “stimulation” can be ... 33, 34 and 35, as might be expected, as well as SICs 30 ...

2010-07-27T23:59:59.000Z

265

The President's Manufacturing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

266

Manufacturing Day 2012  

Science Conference Proceedings (OSTI)

... City, I had the opportunity to visit GAL Manufacturing Corp., an elevator parts manufacturer in the Bronx, right down the road from Yankee Stadium. ...

2013-02-28T23:59:59.000Z

267

Microelectronics Manufacturing Infrastructure  

Science Conference Proceedings (OSTI)

... But the manufacturing infrastructure is aging. ... to create an integrated infrastructure for manufacturing ... will enhance the value and utility of portable ...

2011-10-19T23:59:59.000Z

268

Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals  

SciTech Connect

This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

McKimpson, Marvin G.

2006-04-06T23:59:59.000Z

269

Benefits analysis for the production of fuels and chemicals using solar thermal energy. Final report  

DOE Green Energy (OSTI)

Numerous possibilities exist for using high temperature solar thermal energy in the production of various chemicals and fuels (Sun Fuels). Research and development activities have focused on the use of feedstocks such as coal and biomass to provide synthesis gas, hydrogen, and a variety of other end-products. A Decision Analysis technique geared to the analysis of Sun Fuels options was developed. Conventional scoring methods were combined with multi-attribute utility analysis in a new approach called the Multi-Attribute Preference Scoring (MAPS) system. MAPS calls for the designation of major categories of attributes which describe critical elements of concern for the processes being examined. The six major categories include: Process Demonstration; Full-Scale Process, Feedstock; End-Product Market; National/Social Considerations; and Economics. MAPS calls for each attribute to be weighted on a simple scale for all of the candidate processes. Next, a weight is assigned to each attribute, thus creating a multiplier to be used with each individual value to derive a comparative weighting. Last, each of the categories of attributes themselves are weighted, thus creating another multiplier, for use in developing an overall score. With sufficient information and industry input, each process can be ultimately compared using a single figure of merit. After careful examination of available information, it was decided that only six of the 20 candidate processes were adequately described to allow a complete MAPS analysis which would allow direct comparisons for illustrative purposes. These six processes include three synthesis gas processes, two hydrogen and one ammonia. The remaining fourteen processes were subjected to only a partial MAPS assessment.

None

1982-05-01T23:59:59.000Z

270

Manufacturing Economics  

Science Conference Proceedings (OSTI)

Table 2   Comparison of five-year estimate of operating costs for CO 2 and disc laser...$0.09 Hours/year 2000 2000 Laser on, kW 50 12.5 Chiller, kW 25 3.25 Total power on, $/h 6.75 1.42 Laser standby, kW 2.5 0.5 Chiller standby, kW 25 1.5 Total standby, $/h 2.48 0.18 $/h production 3.9 0.6525 Electricity consumption Laser gas mix, $/h 1.27 He, N 2 , CO 2 PM parts, $/h 1.63 0.15 Resonator...

271

Photovoltaic manufacturing technology, Phase 1  

DOE Green Energy (OSTI)

This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

Not Available

1992-10-01T23:59:59.000Z

272

Locating Chicago Manufacturing  

E-Print Network (OSTI)

and engineering.3 The Chicago Manufacturing Renaissance Council itself is a unique public-private partnership

Illinois at Chicago, University of

273

Manufacturing Simulation Portal  

Science Conference Proceedings (OSTI)

... in planning by robots in scenarios relevant to … more. ... SUSTAINABLE MANUFACTURING PROCESS ANALYSIS APPLICATIONS DEVELOPMENT. ...

2012-12-27T23:59:59.000Z

274

Manufacturing Services | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Services Do you have a new idea? You may need to file a patent to both develop it and protect it. Find out more below. Search for existing patents Apply for a patent Business Owners Getting a business started, established, and growing is difficult. We want to make that easier. Check out the government services below that are available to businesses, and find out more about what's coming with StartUp America. Start a business Access financing Find opportunities to sell products and services to the government Grow your business Help with exporting for beginners and for experts. Shared Facilities Facilities can be a huge factor in whether you create a new product or

275

Heliostat manufacturing analysis  

DOE Green Energy (OSTI)

Results of a manufacturing cost analysis of heliostats are presented. The two primary objectives are: (1) providing a base for uniform cost analysis, and (2) providing facility and manufacturing cost estimates for planning purposes in the development of a heliostat industry. The manufacturing analysis provides materials, labor, equipment, and facility costs for each step in the manufacturing process. Detailed procedures are presented for cost estimates. These include estimating worksheets for each component of the manufacturing costs.

Drumheller, K.

1978-10-01T23:59:59.000Z

276

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Recognition Awards The AMTTP won Sandia's Silver President's Quality Award and the Manufacturing Science and Technology Center's Gold Recognition and Team Award. Letters of...

277

Advanced Manufacturing Office: Advanced Manufacturing Partnership  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national...

278

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

MEST & SIT Skills Standard Technical Institute Partners Training Areas Program Recognition Partners Contacts News Articles Advanced Manufacturing Trades Training Program (AMTTP)...

279

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) May 28, 2010 DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards. DOE determined the product was noncompliant based on the company's own testing. Summit must immediately notify each person (or company) to whom Summit distributed the noncompliant products that the product does not meet Federal standards. In addition, Summit must provide to DOE documents and records showing the number of units Summit distributed and to whom. The manufacturer and/or

280

Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants  

E-Print Network (OSTI)

BP is the world’s leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA manufacturing process has significantly improved over the past several years, which has translated into substantial decreases in greenhouse gas emissions across our global sites. The talk will provide a general overview of the PTA business and manufacturing process, as well as the enabling technology evolutions leading to this improved performance.

Clark, F.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

DOE Green Energy (OSTI)

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

282

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

SciTech Connect

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

283

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

284

Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

Not Available

2006-02-01T23:59:59.000Z

285

An applied manufacturing system for highly-complex assembly factory  

E-Print Network (OSTI)

This thesis focuses on a manufacturing system at a semiconductor equipment manufacturing company (SEMC). The company faces highly variable demand for its products that require highly-complex assembly within the factory. ...

Umeda, Koji

2008-01-01T23:59:59.000Z

286

Inbound freight consolidation for US manufacturers at China  

E-Print Network (OSTI)

In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

Fang, Yi, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

287

New applications of high-temperature solar energy for the production of transportable fuels and chemicals and for energy storage  

DOE Green Energy (OSTI)

The solar fuels and chemicals study was limited to the examination of processes requiring temperatures in excess of 1000/sup 0/K since lower temperature processes had already been examined in studies concerned with the application of waste heat from nuclear power plants to industrial processes. In developing the carbon cycle processes, the primary activity included an extensive literature search and the thermodynamic evaluation of a number of candidate chemical cycles. Although both hydrogen and carbon closed- and open-loop chemical cycles were studied, it was concluded that the carbon cycles offered sufficient additional potential to warrant concentrating on them in subsequent work. The section on new ideas for transportable fuels presents the elements of a new concept for a carbon cycle recovery technique to produce transportable fuels. The elements discussed are sources of carbon dioxide, solar energy reduction of CO/sub 2/, potential carbon cycles, and use of carbon monoxide as fuel and feedstocks. Another section presents some new concepts for the use of high-temperature solar energy in the production of essential materials and for closed-loop chemical storage, as well as for the production of hydrogen as a fuel and open-loop applications. Potential problem areas pertinent to solar-derived fuels and chemicals have been identified. These problems are primarily associated with the limited high temperature experience in industry and include materials compatibility, separation of reaction products, development of solid electrolytes and high-temperature electrodes, selective emission of receiver coatings at high temperature, and a lack of chemical kinetics data, and high-temperature thermodynamic data.

Not Available

1979-01-19T23:59:59.000Z

288

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

289

Manufacturing Licenses Available | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing SHARE Manufacturing 200401490 Production of Materials with Superior Properties Utilizing High Magnetic Field (Related ID # 200501531, 200701867, 200802085, 200902312, 201002455, 201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID # 200701983, 200802088) 200701972 Manufacturing Biodiesel from Triglycerides (Related ID # 200702012, 200802186) 200701983 Meso-scale Fluidic Digital Valve 200802083 A Hydraulic Flow Control Device by Means of a Digital Poppet Valve 200802088 Miniature shape memory alloy fluid control valve 200902224 Glass Drawing for Wire Arrays 200902231 Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods 200902291 Method of Machining Carbon and Graphite foams 200902309 Multi-Winding Homopolar Electric Machine Offers

290

Characterization of rocket propellant combustion products. Chemical characterization and computer modeling of the exhaust products from four propellant formulations: Final report, September 23, 1987--April 1, 1990  

SciTech Connect

The overall objective of the work described in this report is four-fold: to (a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army`s Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; (b) determine the composition of the exhaust produces; (c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; (d) recommended alternations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction. 34 refs., 2 figs., 35 tabs.

Jenkins, R.A.; Nestor, C.W.; Thompson, C.V.; Gayle, T.M.; Ma, C.Y.; Tomkins, B.A.; Moody, R.L.

1991-12-09T23:59:59.000Z

291

Energy Conservation Opportunities in Hydrocarbon Resin Manufacturing Facilities  

E-Print Network (OSTI)

"The results of a plant-wide assessment of the manufacturing facilities of Neville Chemical Company, a manufacturer of hydrocarbon resins will be presented in this paper. The project was co-funded by US Department of Energy under its Plant-Wide Opportunity Assessment Program. Resin manufacturing is a highly energy intensive process. The process needs extensive heating accomplished through steam boilers and thermal oil heaters, and cooling which is accomplished through refrigeration as well as process cooling water systems. Detailed energy assessment of Neville Chemical plants has shown significant energy conservation opportunities. For the less capital-intensive measures, energy cost savings of 20% to 30% with paybacks of less than two years were identified. The identified measures can be easily replicated in similar facilities. In this paper, details of the processes in hydrocarbon resin production from an energy consumption viewpoint will be discussed, current prevalent practices in the industry will be elaborated, and potential measures for energy use and cost savings will be outlined."

Ganji, A. R.

2003-05-01T23:59:59.000Z

292

Applicability of lean manufacturing and quick response manufacturing in a high-mix low-volume environment  

E-Print Network (OSTI)

As today's manufacturers face increasing pressure to improve costs and compete globally, many are turning to the philosophy of Lean Manufacturing as exemplified by the Toyota Production System. Lean is most successful when ...

Joing, Matthew J. (Matthew John), 1972-

2004-01-01T23:59:59.000Z

293

The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and  

E-Print Network (OSTI)

Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter of a specific property, eq. Liquid Density #12;4 Appendix B Prediction Methods and NIST TDE Equations

Liu, Y. A.

294

"S" Glass Manufacturing Technology Transfer  

SciTech Connect

A glass-ceramic-to metal sealing technology patented by Sandia National Laboratories, Albuquerque (SNLA) was developed by MRC-Mound for use in the manufacture of weapon components. Successful implementation attracted increasingly widespread weapon use of this technology. "S-glass" manufacturing technology was transferred to commercial vendors to ensure that weapons production schedules would be met in the coming years. Such transfer also provided sources of this fledgling technology for the Department of Defense (DOD), aerospace and other commercial uses. The steps involved in the technology transfer are described, from the initial cooperative development work of Sandia and Mound scientists and technologists to the final phase of qualifying commercial vendors for component manufacture.

Buckner, Dean, A.; McCollister, Howard, L.

1988-06-01T23:59:59.000Z

295

Soap Manufacturing Technology  

Science Conference Proceedings (OSTI)

Soap producers as well as anyone with an interest in soap technology will benefit from the new AOCS Press Soap Manufacturing Technology book. Soap Manufacturing Technology Surfactants and Detergents aocs articles Detergents division divisions fabric

296

Energy Use in Manufacturing  

Reports and Publications (EIA)

This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

William Gifford

2006-08-14T23:59:59.000Z

297

Manufacturing Extension Partnership  

Science Conference Proceedings (OSTI)

... research and development programs with manufacturing and military applications including robotic deburring, automated lay up of thermoplastic ...

2009-08-25T23:59:59.000Z

298

Manufacturing Modeling and Simulation  

Science Conference Proceedings (OSTI)

... An integrated data model for manufacturing activities will be defined ... Measurement science techniques, including classic statistics, will be applied ...

2013-01-04T23:59:59.000Z

299

Green Manufacturing News  

Science Conference Proceedings (OSTI)

... New MEP Advisory Board White Paper Assesses the Present and Future of American Manufacturing Release Date: 04/13/2010 ...

2010-10-27T23:59:59.000Z

300

Sustainable Manufacturing Briefing  

Science Conference Proceedings (OSTI)

... enhance their brands. • Is sustainability an opportunity or cost? There is no ... demonstrate, deploy, and accredit new sustainable manufacturing ...

2012-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Testimonials from Manufacturing  

Science Conference Proceedings (OSTI)

... The economic environment is difficult for Cargill Corn Milling, as it is difficult for many manufacturing companies today. ...

2013-01-30T23:59:59.000Z

302

Quality technique transfer: Manufacturing and software  

Science Conference Proceedings (OSTI)

An argument for quality technique transfer between manufacturing and software is put forward in which it is recognised that the nature of the production process differs and that the emphasis accorded given stages in the respective life cycles ...

Graham A. King

2000-01-01T23:59:59.000Z

303

Level schedule implementation in unstable manufacturing environments  

E-Print Network (OSTI)

American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

López de Haro, Santiago

2008-01-01T23:59:59.000Z

304

Cost modeling for monoclonal antibody manufacturing  

E-Print Network (OSTI)

The Novartis BioPharmOps division is responsible for manufacturing large molecule products, including monoclonal antibodies, for late stage clinical trials and commercial sales. The BioPharmOps site in Huningue, France is ...

Simpson, Christina M. (Christina Margaret)

2011-01-01T23:59:59.000Z

305

Climate VISION: Private Sector Initiatives: Automobile Manufacturers  

Office of Scientific and Technical Information (OSTI)

emissions from their U.S. automotive manufacturing facilities, based on U.S. vehicle production, by 2012 from a base year of 2002. The following documents are available for...

306

Understanding Manufacturing Energy Use Through Statistical Analysis  

E-Print Network (OSTI)

Energy in manufacturing facilities is used for direct production of goods, space conditioning, and general facility support such as lighting. This paper presents a methodology for statistically analyzing plant energy use in terms of these major end uses.

Kissock, J. K.; Seryak, J.

2004-01-01T23:59:59.000Z

307

WTEC Panel Report on ENVIRONMENTALLY BENIGN MANUFACTURING  

E-Print Network (OSTI)

)...............................................................................225 Chaparral Steel/Texas Industries ...................................................................................5 1.3 Total energy-related carbon emissions for selected manufacturing industries, 1994 quite similar to those in Europe, and our rates of waste production and energy usage are beyond those

Gutowski, Timothy

308

CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2  

DOE Green Energy (OSTI)

There are a number of exothermic chemical reactions which might benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. A particularly promising area is production of oxygenated chemicals, such as alcohols and ethers, from synthesis gas, which can be economically produced from coal or biomass. The ebullated bed operation requires that the small-diameter ({approx}1/32 inch) catalyst particles have enough mechanical strength to avoid loss by attrition. However, all of the State Of The Art (SOTA) catalysts and advanced catalysts for the purpose are low in mechanical strength. The patented carbon-coated catalyst technology developed in our laboratory converts catalyst particles with low mechanical strength to strong catalysts suitable for ebullated bed application. This R&D program is concerned with the modification on the mechanical strength of the SOTA and advanced catalysts so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. The objective of this R&D program is to study the technical and economic feasibility of selective production of high-value oxygenated chemicals from synthesis gas and CO{sub 2} mixed feed in an ebullated bed reactor using carbon-coated catalyst particles.

Peizheng Zhou

2001-10-26T23:59:59.000Z

309

CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2  

DOE Green Energy (OSTI)

There are a number of exothermic chemical reactions which might benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. A particularly promising area is production of oxygenated chemicals, such as alcohols and ethers, from synthesis gas, which can be economically produced from coal or biomass. The ebullated bed operation requires that the small-diameter ({approx} 1/32 inch) catalyst particles have enough mechanical strength to avoid loss by attrition. However, all of the State Of The Art (SOTA) catalysts and advanced catalysts for the purpose are low in mechanical strength. The patented carbon-coated catalyst technology developed in our laboratory converts catalyst particles with low mechanical strength to strong catalysts suitable for ebullated bed application. This R&D program is concerned with the modification on the mechanical strength of the SOTA and advanced catalysts so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. The objective of this R&D program is to study the technical and economic feasibility of selective production of high-value oxygenated chemicals from synthesis gas and CO{sub 2} mixed feed in an ebullated bed reactor using carbon-coated catalyst particles.

Peizheng Zhou

2000-11-17T23:59:59.000Z

310

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

311

Blade Manufacturing Improvement Project: Final Report  

SciTech Connect

The Blade Manufacturing Improvement Project explores new, unique and improved materials integrated with innovative manufacturing techniques that promise substantial economic enhancements for the fabrication of wind turbine blades. The primary objectives promote the development of advanced wind turbine blade manufacturing in ways that lower blade costs, cut rotor weight, reduce turbine maintenance costs, improve overall turbine quality and increase ongoing production reliability. Foam Matrix (FMI) has developed a wind turbine blade with an engineered foam core, incorporating advanced composite materials and using Resin Transfer Molding (RTM) processes to form a monolithic blade structure incorporating a single molding tool. Patented techniques are employed to increase blade load bearing capability and insure the uniform quality of the manufactured blade. In production quantities, FMI manufacturing innovations may return a sizable per blade cost reduction when compared to the cost of producing comparable blades with conventional methods.

SHERWOOD, KENT

2002-10-01T23:59:59.000Z

312

Cost analysis methodology: Photovoltaic Manufacturing Technology Project  

DOE Green Energy (OSTI)

This report describes work done under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) Project. PVMaT is a five-year project to support the translation of research and development in PV technology into the marketplace. PVMaT, conceived as a DOE/industry partnership, seeks to advanced PV manufacturing technologies, reduce PV module production costs, increase module performance, and expand US commercial production capacities. Under PVMaT, manufacturers will propose specific manufacturing process improvements that may contribute to the goals of the project, which is to lessen the cost, thus hastening entry into the larger scale, grid-connected applications. Phase 1 of the PVMaT project is to identify obstacles and problems associated with manufacturing processes. This report describes the cost analysis methodology required under Phase 1 that will allow subcontractors to be ranked and evaluated during Phase 2.

Whisnant, R.A. (Research Triangle Inst., Research Triangle Park, NC (United States))

1992-09-01T23:59:59.000Z

313

Climate VISION: Private Sector Initiatives: Chemical Manufacturing...  

Office of Scientific and Technical Information (OSTI)

Industry Associations FederalState Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Expertise...

314

IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE  

DOE Green Energy (OSTI)

The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate/fermentation process yielded improvements beyond what was expected solely from the addition of sugar. In order to expand the economic potential for building a biorefinery, the conversion of enzyme hydrolysates of AFEX-treated bagasse to succinic acid was also investigated. This program established a solid basis for pre-treatment of bagasse in a manner that is feasible for producing ethanol at raw sugar mills.

Dr. Donal F. Day

2009-01-29T23:59:59.000Z

315

DOE - Office of Legacy Management -- Hooker Chemical Co - NY 05  

Office of Legacy Management (LM)

Hooker Chemical Co - NY 05 Hooker Chemical Co - NY 05 FUSRAP Considered Sites Site: Hooker Chemical Co. (NY.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Occidental Chemical Corporation Hooker Electrochemical Corporation NY.05-1 NY.05-2 Location: Niagara Falls , New York NY.05-3 Evaluation Year: 1985 NY.05-1 NY.05-2 Site Operations: Design, engineering, construction, equipping and operation of a plant for the manufacture of Product 45 (xylene hexachloride); MFL (Miller's fluorolubricant); P-45Cl; and recovered P-45Cl2 from residues produced in the manufacture of P-45Cl; used hydrochloric acid (a byproduct of the P-45 Program) in the chemical processing of uranium-bearing slag as a precursor to recovery. NY.05-2 NY.05-4 Site Disposition: Eliminated - Radiation levels below criteria NY.05-1

316

The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol  

Science Conference Proceedings (OSTI)

The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

2011-10-03T23:59:59.000Z

317

Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012  

SciTech Connect

The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

Meskhidze, Nicholas [NCSU] [NCSU

2013-10-21T23:59:59.000Z

318

A Study of the Cross-Industry Transferability of The Intergrated System of Toyota Production and Sales Management: A Case Study of Desktop Computer Manufacturing.  

E-Print Network (OSTI)

??Diversity of consumers, timely needs of the times, combined with market information, production and selling out of products, enterprises can profit possible. Want in the… (more)

Lu, Chun-Fu

2011-01-01T23:59:59.000Z

319

Process for chemical reaction of amino acids and amides yielding selective conversion products  

DOE Patents (OSTI)

The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

Holladay, Jonathan E. (Kennewick, WA)

2006-05-23T23:59:59.000Z

320

Requirements for status for volume fuel cell manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Status for Volume Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July 13-14, 2005 Requirements for Manufactured Fuel Cells Customer Requirements: Commercial Plant Study - Volume: 250,000 fuel stacks per year - Cost: $30/kw net Requirements for Manufactured Fuel Cells Commercial Volume Manufacturing - Material Utilization: >85% - Controlled Environments (Humidity, temperature, dust) - Environmentally safe direct and indirect materials - Hydrogen safety - Make or Buy Decisions on non/proprietary unit cell components - Integrated strategic supply chain - Design for Manufacturing, Assembly, and Service Requirements for Manufactured Fuel Cells Quality Control & Assurance - Accelerated tests and process parameters correlated to key product requirements (QFD)

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Manufacturing Office: Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance on Twitter Bookmark Advanced Manufacturing Office: Technical Assistance on Google Bookmark Advanced Manufacturing Office: Technical Assistance on Delicious Rank...

322

Advanced Manufacturing Office: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Advanced Manufacturing Office: Financial Opportunities on Google Bookmark Advanced Manufacturing Office: Financial Opportunities on Delicious Rank...

323

Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures  

SciTech Connect

The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal performance between the various coproduct cases is further complicated by the fact that the carbon footprint is not the same when carbon leaving with the coproduct are accounted for. The economic analysis and demand for a particular coproduct in the market place is a more meaningful comparison of the various coproduction scenarios. The first year cost of electricity calculated for the bituminous coal is $102.9/MWh while that for the lignite is $108.1/MWh. The calculated cost of hydrogen ranged from $1.42/kg to $2.77/kg depending on the feedstock, which is lower than the DOE announced hydrogen cost goal of $3.00/kg in July 14, 2005. Methanol cost ranged from $345/MT to $617/MT, while the market price is around $450/MT. For Fischer-Tropsch liquids, the calculated cost ranged from $65/bbl to $112/bbl, which is comparable to the current market price of crude oil at around $100/bbl. It should be noted, however, that F-T liquids contain no sulfur and nitrogen compounds. The calculated cost of alcohol ranged from $4.37/gal to $5.43/gal, while it ranged from $2.20/gal to $3.70/gal in a DOE funded study conducted by Louisiana State University. The Louisiana State University study consisted of a significantly larger plant than our study and benefited from economies of scale. When the plant size in our study is scaled up to similar size as in the Louisiana State University study, cost of alcohol is then reduced to a range of $3.24/gal to $4.28/gal, which is comparable. Urea cost ranged from $307/MT to $428/MT, while the market price is around $480/MT.

Rao, A. D.; Chen, Q.; Samuelsen, G. S.

2012-09-30T23:59:59.000Z

324

Petrographic, mineralogical, and chemical characterization of certain Alaskan coals and washability products. Final report, July 11, 1978-October 11, 1980  

DOE Green Energy (OSTI)

Petrological, mineralogical and chemical characterization provides basic information needed for proper utilization of coals. Since many of these coals are likely to be beneficiated to reduce ash, the influence of coal washing on the characteristics of the washed product is important. Twenty samples of Alaskan coal seams were used for this study. The coals studied ranged in rank from lignite to high volatile A bituminous with vitrinite/ulminite reflectance ranging from 0.25 to 1.04. Fifteen raw coals were characterized for proximate and ultimate analysis reflectance rank, petrology, composition of mineral matter, major oxides and trace elements in coal ash. Washability products of three coals from Nenana, Beluga and Matanuska coal fields were used for characterization of petrology, mineral matter and ash composition. Petrological analysis of raw coals and float-sink products showed that humodetrinite was highest in top seam in a stratigraphic sequence

Rao, P.D.; Wolff, E.N.

1981-05-01T23:59:59.000Z

325

KMC Controls Inc Kreuter Manufacturing Company | Open Energy Information  

Open Energy Info (EERE)

KMC Controls Inc Kreuter Manufacturing Company KMC Controls Inc Kreuter Manufacturing Company Jump to: navigation, search Name KMC Controls, Inc. (Kreuter Manufacturing Company) Place New Paris, Indiana Zip IN 46553 Product Manufacturer of building management control products and systems. References KMC Controls, Inc. (Kreuter Manufacturing Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. KMC Controls, Inc. (Kreuter Manufacturing Company) is a company located in New Paris, Indiana . References ↑ "KMC Controls, Inc. (Kreuter Manufacturing Company)" Retrieved from "http://en.openei.org/w/index.php?title=KMC_Controls_Inc_Kreuter_Manufacturing_Company&oldid=348127" Categories:

326

A collaborative and integrated platform to support distributed manufacturing system using a service-oriented approach based on cloud computing paradigm  

Science Conference Proceedings (OSTI)

Today's manufacturing enterprises struggle to adopt cost-effective manufacturing systems. Overview of the recent manufacturing enterprises shows that successful global manufacturing enterprises have distributed their manufacturing capabilities over the ... Keywords: Cloud computing, Collaborative product development, Distributed product development, Modularity, STEP standard, Service-oriented manufacturing, XML

Omid Fatahi Valilai; Mahmoud Houshmand

2013-02-01T23:59:59.000Z

327

Chemical Emissions of Residential Materials and Products: Review of Available Information  

E-Print Network (OSTI)

of 2-butoxyethanol emissions from selected consumer productsfrom vinyl flooring in the emission cell “FLEC". Atmosphericfrom household product emissions in the presence of ozone: A

Willem, Henry

2010-01-01T23:59:59.000Z

328

Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems  

SciTech Connect

This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented.

C. Henry Copeland; Paul Pier; Samantha Whitehead; David Behel

2001-09-30T23:59:59.000Z

329

Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels  

Science Conference Proceedings (OSTI)

The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

Wang, Yong (Richland, WA), Liu; Wei (Richland, WA)

2012-01-24T23:59:59.000Z

330

Trends in Materials and Manufacturing Technologies for Energy ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... 8th Global Innovations Symposium: Trends in Materials and Manufacturing Technologies for Energy Production by Joy A. Hines, David F. Barh, ...

331

Data Standards and Tools to Monitor and Improve Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

applying MTConnect at System Insights in building software and hardware tools that use big data analytics to improve energy and production efficiency in manufacturing systems...

332

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

2002 Manufacturing Energy Consumption Survey Methodology and ... where Op,MECS is the MECS estimate of the amount of petroleum product p produced offsite and ...

333

Resource Consumption in Additive Manufacturing with a PSS Approach.  

E-Print Network (OSTI)

??Since the 1980’s, additive manufacturing (AM) has gradually advanced from rapid prototyping applications towards fabricating end consumer products. Many small companies may prefer accessing AM… (more)

Nopparat, Nanond; Kianian, Babak; Thompson, Anthony

2012-01-01T23:59:59.000Z

334

Fuel Cell Technologies Office: Manufacturing Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development on AddThis.com... Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Education Systems...

335

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Realizing Building End-Use Efficiency with Ermerging Technologies Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

336

CFL Manufacturers: ENERGY STAR Letters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters CFL Manufacturers: ENERGY STAR Letters January 25, 2010 DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program. When a product is disqualified from the ENERGY STAR Program, all corresponding packaging and supplier's products will be disqualified as well. CFL Manufacturers: ENERGY STAR Letters More Documents & Publications Ex Parte Communication Memo Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative Realizing Building End-Use Efficiency with Ermerging Technologies

337

Integration of the SAPRC Chemical Mechanism in the SMOKE Emissions Processor for the CMAQ/Models- 3 Airshed Model  

E-Print Network (OSTI)

Industrial Processes; Primary Metal Production; By-product Coke Manufacturing; OvenIndustrial Processes; Primary Metal Production; By-product Coke Manufacturing; Oven

Adelman, Z; Vukovich, J; Carter, W P L

2005-01-01T23:59:59.000Z

338

Specific PVMaT R and D in CdTe product manufacturing: Phase 1 annual report, 5 May 1998--4 May 1999  

DOE Green Energy (OSTI)

This report documents the work performed by First Solar, LLC, during the first year of this Photovoltaic Manufacturing Technology (PVMaT) subcontract. The following milestones were successfully completed: (1) Initiate lamination development program by interviewing key suppliers and experts such as STR, Inc., ARRI, and automotive glass manufacturers; (2) Complete process specification for high-throughput laminator; (3) Initiate contact with module testing laboratory and complete preliminary module design review; (4) Complete review and survey of current environmental, health and safety (EHS) programs; (5) Complete design specifications for the high-throughput laminator; (6) Complete preliminary testing of modules; (7) Establish Qualification Testing Schedule; (8) Develop plans for critical areas of EHS improvement with the assistance of industry experts such as OSHA On-Site Consultation; (9) Begin de-bug of high-throughput laminator; (10) Initiate qualification testing on First Solar's standard modules; (11) Initiate EHS improvement projects; (12) Complete prove-in of high-throughput laminator at a rate of 30 modules per hour; (13) Complete report on lamination rates, yields, and reductions in labor and equipment costs; (14) Complete qualification testing on First Solar's standard module for IEEE 1262 and UL 1703; and (15) Complete implementation of critical EHS improvements.

Bohland, J.; Kormanyos, K.; Faykosh, G.; Champion, V.; Cox, S.; McCarthur, M.; Dapkus, T.; Kamm, K.; Flis, M.

2000-03-01T23:59:59.000Z

339

Physical and chemical properties of the products of in situ vitrification engineering tests 5, 6, and 7  

SciTech Connect

In situ vitrification (ISV) is an in situ thermal treatment process that is being investigated by the Idaho National Engineering Laboratory (INEL) for application to buried waste sites. ISV is a thermal treatment process that converts contaminated soil into a chemically inert and stable glass and crystalline product. The INEL is evaluating whether the treatment process is a viable one for remediating a buried mixed transuranic waste site at the INEL Subsurface Disposal Area (SDA). The SDA is a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. As part of the INEL investigation, a series of tests have been performed that address issues associated with vitrification of buried waste. Two pilot ISV tests and four tests at laboratory scale, formerly called engineering scale, were performed in 1990 to support the INEL investigation. The chemical composition and leaching of the produce glass is described.

Loehr, C.A.; Weidner, J.R.

1991-12-01T23:59:59.000Z

340

Manufacturing Skills Certification System  

Science Conference Proceedings (OSTI)

... system to their business so that they utilize the skills certification system ... provide input to The Manufacturing Institute about aggregate skill needs of ...

2012-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Manufacturing Research & Reports  

Science Conference Proceedings (OSTI)

... Regulatory and Policy Recommendations. The impact of regulations and policies on the manufacturing industry in areas such as tax, energy, trade ...

2013-08-27T23:59:59.000Z

342

Locating American Manufacturing:  

Science Conference Proceedings (OSTI)

... future of manufacturing in America but also ... as defined in the North American Industry Classification ... about two thirds of American metropolitan areas ...

2013-07-31T23:59:59.000Z

343

Manufacturing Portal Overview  

Science Conference Proceedings (OSTI)

... The manufacturing sector is an important source of US innovation, accounting for about 70 percent of US industry R&D. ...

2012-05-09T23:59:59.000Z

344

Wind Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

345

Acoustics by additive manufacturing.  

E-Print Network (OSTI)

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance… (more)

Setaki, F.

2012-01-01T23:59:59.000Z

346

Baldrige by Sector: Manufacturing  

Science Conference Proceedings (OSTI)

Can a manufacturer facing global competition, increased pressure on costs, and the need to show quarterly profits benefit from the Baldrige process ...

2013-08-07T23:59:59.000Z

347

Innovations in Additive Manufacturing  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... Additive Manufacturing's Role in Fabrication and Repair of Aerospace Components: James Sears1; 1South Dakota School of Mines & ...

348

Integrating Energy Management and Lean Manufacturing  

E-Print Network (OSTI)

There is a close relationship between energy efficiency and lean manufacturing. Lean focuses on the continuous elimination of non-value added activities and waste in a manufacturing process. Energy management focuses on the continuous elimination of wasted energy in a manufacturing process. This paper will focus on industrial facilities that participated in a Power Smart Lean initiative with Manitoba Hydro. The objective of this service is to leverage lean principles by capitalizing on the synergies between lean manufacturing and energy management to increase the incorporation of energy efficiency into a manufacturing plant. Case studies are presented showing the resulting electric and gas saving opportunities from identifying and reducing wasted energy. Examples are presented to show the incidental energy savings realized by facilities that have used lean to improve productivity. Finally, case studies are discussed which demonstrate the utilization of lean approaches and tools with parallels to energy management.

Stocki, M.

2009-05-01T23:59:59.000Z

349

A new DFM approach to combine machining and additive manufacturing  

E-Print Network (OSTI)

Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

Kerbrat, Olivier; Hascoët, Jean-Yves; 10.1016/j.compind.2011.04.003

2011-01-01T23:59:59.000Z

350

Manufacturing fuel-switching capability, 1988  

SciTech Connect

Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

1991-09-01T23:59:59.000Z

351

Three immobilized-cell columnar bioreactors for enhanced production of commodity chemicals  

DOE Green Energy (OSTI)

Immobilized-cell fluidized-bed bioreactors (FBRS) can be used with a variety of fermentations to increase production of fuels, solvents, organic acids, and other fermentation products. Part of the increased rates and yields are due to the immobilization of the biocatalyst at high concentrations. This FBR system with immobilized Zymomonas mobiles increased ethanol productivity more than tenfold with 99% conversion and near stoichiometric yields. FBRs also offer several additional modes of operation for simultaneous fermentation and separation to further increase production by removing the inhibitory products directly from the continuous fermentation. The production of lactic acid by immobilized Lactobacillus was augmented with the addition and removal of solid adsorbent particles to the FBR. An immiscible organic extractant also was used to extract butanol from the acetone-butanol fermentation by Clostridium acetobutylicum. Demonstrations with these FBR systems have already shown definite advantages by improved overall product yields (decreasing feed costs) and by increased rates (decreasing capital and operating costs). Further demonstration and scale-up continue.

Davison, B.H.; Scott, C.D.; Kaufman, E.N.

1993-07-01T23:59:59.000Z

352

Effect of Processing Mode on Trace Elements in Dewatered Sludge Products Brian K. Richards1  

E-Print Network (OSTI)

-added product, such as pellets, heat, power, ethanol, or chemicals. In addition to various kinds of chips of fossil fuels. Woody biomass, or forest biomass, also comes in a variety of forms as forest products. Wood. The kind of product manufactured in the woods is important to mills that produce the next value

Walter, M.Todd

353

Removing of Formation Damage and Enhancement of Formation Productivity Using Environmentally Friendly Chemicals  

E-Print Network (OSTI)

Matrix acidizing is used in carbonate formations to create wormholes that connect the formation to the wellbore. Hydrochloric acid, organic acids, or mixtures of these acids are typically used in matrix acidizing treatments of carbonate reservoirs. However, the use of these acids in deep wells has some major drawbacks including high and uncontrolled reaction rate and corrosion to well tubulars, especially those made of chrome-based tubulars (Cr-13 and duplex steel), and these problems become severe at high temperatures. Hydrochloric acid (HCl) and its based fluids have a major drawback in stimulating shallow (low fracture gradient) formations as they may cause face dissolution (formation surface washout) if injected at low rates. The objective of stimulation of sandstone reservoirs is to remove the damage caused to the production zone during drilling or completion operations. Many problems may occur during sandstone acidizing with Hydrochloric/Hydrofluoric acids (HCl/HF) mud acid. Among those problems: decomposition of clays in HCl acids, precipitation of fluosilicates, the presence of carbonate can cause the precipitation of calcium fluorides, silica-gel filming, colloidal silica-gel precipitation, and mixing between various stages of the treatment. To overcome problems associated with strong acids, chelating agents were introduced and used in the field. However, major concerns with most of these chemicals are their limited dissolving power and negative environmental impact. Glutamic acid diacetic acid (GLDA) a newly developed environmentally friendly chelate was examined as stand-alone stimulation fluid in deep oil and gas wells. In this study we used GLDA to stimulate carbonate cores (calcite and dolomite). GLDA was also used to stimulate and remove the damage from different sandstone cores containing different compositions of clay minerals. Carbonate cores (calcite and dolomite) of 6 and 20 in. length and 1.5 in. diameter were used in the coreflood experiments. Coreflood experiments were run at temperatures ranging from 180 to 300oF. Ethylene diamine tetra acetic acid (EDTA), hydroxyl ethylethylene diaminetriacetic acid (HEDTA), and GLDA were used to stimulate and remove the damage from different sandstone cores at high temperatures. X-ray Computed Topography (CT) scans were used to determine the effectiveness of these fluids in stimulation calcite and dolomite cores and removing the damage from sandstone cores. The sandstone cores used in this study contain from 1 to 18 wt percent illite (swellable and migratable clay mineral). GLDA was found to be highly effective in creating wormholes over a wide range of pH (1.7-13) in calcite cores. Increasing temperature enhanced the reaction rate, more calcite was dissolved, and larger wormholes were formed for different pH with smaller volumes of GLDA solutions. GLDA has a prolonged activity and leads to a decreased surface spending resulting in face dissolution and therefore acts deeper in the formation. In addition, GLDA was very effective in creating wormholes in the dolomite core as it is a good chelate for magnesium. Coreflood experiments showed that at high pH values (pH =11) GLDA, HEDTA, and EDTA were almost the same in increasing the permeability of both Berea and Bandera sandstone cores. GLDA, HEDTA, and EDTA were compatible with Bandera sandstone cores which contains 10 wt percent Illite. The weight loss from the core was highest in case of HEDTA and lowest in case of GLDA at pH 11. At low pH values (pH =4) 0.6M GLDA performed better than 0.6M HEDTA in the coreflood experiments. The permeability ratio (final/initial) for Bandera sandstone cores was 2 in the case of GLDA and 1.2 in the case of HEDTA at pH of 4 and 300oF. At high pH HEDTA was the best chelating agent to stimulate different sandstone cores, and at low pH GLDA was the best one. For Berea sandstone cores EDTA at high pH of 11 was the best in increasing the permeability of the core at 300oF. The low pH GLDA based fluid has been especially designed for high temperature oil well stimulation i

Mahmoud, Mohamed Ahmed Nasr Eldin

2011-05-01T23:59:59.000Z

354

Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report  

DOE Green Energy (OSTI)

As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

Not Available

1986-06-01T23:59:59.000Z

355

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 17 Enzymatic and Chemical Modification of Palm Oil, Palm Kernel Oil, and Its Fractions  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 17 Enzymatic and Chemical Modification of Palm Oil, Palm Kernel Oil, and Its Fractions Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Te

356

Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems  

SciTech Connect

This Annual Technical Progress Report presents the principal results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. Optimal production of biomass depends on a number of factors. These factors include pH management, harvesting, and impact of auxiliary operations on the algae population. A number of experiments are presented which attempt to identify and characterize the impact of these factors.

C. Henry Copeland; Paul Pier; Samantha Whitehead; David Behel

2002-09-30T23:59:59.000Z

357

Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks  

DOE Green Energy (OSTI)

Progress in studies on the production of reducing sugars and other products by Clostridium thermocellum on cellulosic biomass is reported. The rate of reducing sugar production using corn residue was found to be equal if not greater than on solka floc. Current work is being devoted towards elucidating discrepancies between reducing sugar analysis and high pressure liquid chromatography sugar analysis in order to permit accurate material balances to be completed. Studies are reported in further characterizing the plasmics of C. thermocellum and in the development of protoplasts of the same microorganism. A process and economic analysis for the production of 200 x 10/sup 6/ pounds (90 x 10/sup 6/ kilograms) per year of soluble reducing sugars from corn stover cellulose, using enzymes derived from Clostridium thermocellum was designed. Acrylic acid was produced in resting cell preparation of Clostridium propionicum from both ..beta..-alanine and from propionic acid. Results from the conversion of corn stover hydrolyzates to lactic acid, a precursor to acrylic acid, show that up to 70% of the sugars produced are converted to lactic acid. Efforts are proceeding to improve the conversion yield and carry out the overall conversion of corn stover to acrylic acid in the same fermentor. Results on the production of acetone and butanol by Clostridium acetobutylicum demonstrated the capability of the strain to produce mixed solvents in concentration and conversion similar to that achieved in industrial processes. Various studies on the production of acetic acid by Clostridium thermoaceticum are also reported.

Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

1977-11-01T23:59:59.000Z

358

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

359

Manufacturing research strategic plan  

SciTech Connect

This plan provides an overall strategic roadmap for the DOE-defense programs advanced manufacturing research program which supports the national science based stockpile stewardship program. This plan represents a vision required to develop the knowledge base needed to ensure an enduring national capability to rapidly and effectively manufacture nuclear weapons.

1995-11-01T23:59:59.000Z

360

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Miraial formerly Kakizaki Manufacturing Miraial formerly Kakizaki Manufacturing Jump to: navigation, search Name Miraial (formerly Kakizaki Manufacturing) Place Tokyo, Japan Zip 171-0021 Product Manufacturer of wafer handling products and other components for the global semiconductor industry. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Particle Generation by Laser Ablation in Support of Chemical Analysis of High Level Mixed Waste from Plutonium Production Operations  

Science Conference Proceedings (OSTI)

Investigate particles produced by laser irradiation and their analysis by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA/ICP-MS), with a view towards optimizing particle production for analysis of high level waste materials and waste glass. LA/ICP-MS has considerable potential to increase the safety and speed of analysis required for the remediation of high level wastes from cold war plutonium production operations. In some sample types, notably the sodium nitrate-based wastes at Hanford and elsewhere, chemical analysis using typical laser conditions depends strongly on the details of sample history composition in a complex fashion, rendering the results of analysis uncertain. Conversely, waste glass materials appear to be better behaved and require different strategies to optimize analysis.

J. Thomas Dickinson; Michael L. Alexander

2001-11-30T23:59:59.000Z

362

PRODUCTION OF ELECTROLYTIC THORIUM CELL FEED BY A WET CHEMICAL METHOD. Process Report  

SciTech Connect

In order to produce a substantially oxide-free chloride. a specialized technique, based on the chemical characteristics of the ammonium thorium chloride complexes, has been found optimum. The procedure involves the formation of a solution of thorium chloride and ammonium chloride, evaporation of the solution to form a hydrated ammonium thorium chloride complex, dehydration of the complex by low-temperature drying, and ignition of the complex, after inter-mixture with an alkali chloride, to remove ammonium chloride and to form a thorium alkali chloride mixture for electrolysis. (L.T.W.)

Fisher, C.E.

1955-03-18T23:59:59.000Z

363

Goodman Manufacturing: Noncompliance Determination (2011-SE-4301) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Noncompliance Determination (2011-SE-4301) Noncompliance Determination (2011-SE-4301) Goodman Manufacturing: Noncompliance Determination (2011-SE-4301) October 17, 2011 DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing . Goodman must immediately notify each person (or company) to whom Goodmany distributed the noncompliant products that the product does not meet Federal standards. In addition, Goodman must provide to DOE documents and records showing the number of units Goodman distributed and to whom. The manufacturer and/or private labeler of the product may be subject to civil

364

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

365

Status of Process Development for Pyrolysis of Biomass for Liquid Fuels and Chemicals Production.  

Science Conference Proceedings (OSTI)

Pyrolysis is one of several thermochemical conversion strategies to produce useful fuels from biomass material . The goal of fast pyrolysis is to maximize liquid product yield. Fast pyrolysis is accomplished by the thermal treatment of the biomass in an air-free environment. Very short heat up and cool-down is a requirement for fast pyrolysis. The typical residence time in the pyrolysis reactor is 1 second. In order to accomplish the fast heatup, grinding the biomass to a small particle size in the range of 1 mm is typical and pre-drying of the biomass to less than 10 weight percent moisture is considered the standard. Recovery of the product liquid, called bio-oil, is accomplished by a variety of methods all of which require a quick quench of the product vapor. A definition of fast pyrolysis bio-oil is provided for the CAS # RN 1207435-39-9 recently issued by ChemAbstracts Services.

Elliott, Douglas C.

2010-06-01T23:59:59.000Z

366

Development of an Energy Consumption Model at a Multi-Product Chemical Plant  

E-Print Network (OSTI)

A plant-wide energy model is being developed to be used primarily as a planning tool to evaluate the impact of energy conservation projects and plant expansions on the total plant energy balance. Statistical analysis of historical data from each production unit has generated regression equations which correlate the various energy utilities with production rate and other variables. The form of the model varies from unit to unit. Startups, shutdowns, and unit interruptions are simulated using a Monte Carlo technique. In some units, energy consumption does not correlate with production rate, which indicates that energy savings may be possible through better control of energy usage. The model should also lay the framework for an on-line energy management program.

Wyhs, N. A.; Logsdon, J. E.

1980-01-01T23:59:59.000Z

367

Production of liquid fuels and chemicals by microalgae. Final subcontract report  

DOE Green Energy (OSTI)

An overall objective of the project was to conceptually determine if simple open pond systems have application for the production of fuels from microalgae. To demonstrate the overall objective, work concentrated on showing the potential microalgal yields that are possible from an open pond system on a sustained basis. Furthermore, problems associated with this experimental system were documented and reported so that future endeavors shall benefit. Finally, operational costs were documented to permit preliminary economic analysis of the system. The major conclusions of this project can be summarized as follows: (1) Using two wildtype species in northern California a yearly average productivity of 15 gm/m/sup 2//day, or 24 tons/acre/yr can be obtained in water with TDS = 4 to 8 ppt. (2) This can probably be increased to 20 to 25 gm/m/sup 2//day or 32 to 40 tons/acre/y in southern California. (3) Productivity can probably be further increased by using competitive strains screened for low respiration rates, tolerances to high levels of dissolved oxygen, broad temperature optima, and resistance to photoinhibition. (4) In systems with randomized, turbulent mixing, productivity is independent of channel velocity at least for productivities up to 25 to 30 gm/m/sup 2//day and velocities from 1 to 30 cm/sec. (5) Storage product induction requires one to three days of growth in batch mode under n-depleted conditions. (6) Critical cost centers include CO/sub 2/ input, harvesting and system capital cost. (7) Media recycling, necessary for water conservation, has no adverse effects, at least in the short term for strains which do not excrete organics, and when the harvesting method is at least moderately effective for all algal forms which may be present. 8 refs., 28 figs., 56 tabs.

Weissman, J.C.; Goebel, R.P.

1985-03-01T23:59:59.000Z

368

IT/Automation Cost Reduction in Intel’s Manufacturing Environment  

E-Print Network (OSTI)

Intel manufacturing relies heavily on IT and Factory Automation during the manufacturing processes. At Intel, everything from scheduling products on the floor and product delivery systems to statistical process control is ...

Subirana, Brian

2004-03-05T23:59:59.000Z

369

CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS  

DOE Green Energy (OSTI)

This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane. The remaining carbonaceous material is essentially bio-inactive and is permanently sequestered. The feasibility of using algae to convert carbon dioxide to a biomass has been demonstrated. This biomass provides a sustainable means to produce methane, ethanol, and/or bio diesel. The first application of concept demonstrated by the project could be to use algal biomass production to capture carbon dioxide associated with ethanol production.

C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

2003-12-15T23:59:59.000Z

370

Ohio Advanced Energy Manufacturing Center  

Science Conference Proceedings (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

371

Ohio Advanced Energy Manufacturing Center  

SciTech Connect

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

372

A traceability information model for CNC manufacturing  

Science Conference Proceedings (OSTI)

This paper proposes an information model for tracing CNC manufacturing operations. The objective of the model is to assure that traceability data is comprehensive and available for every CNC machined product, independent of the relationship between the ... Keywords: CAM, ISO 10303 AP238, Product characteristics, STEP, Traceability

Julio Garrido Campos; Martin Hardwick

2006-05-01T23:59:59.000Z

373

Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Yeelong Wind Power Equipment Manufacturing Co Ltd Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place Hebei Province, China Sector Wind energy Product China-based wind turbine equipment manufacturer. References Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd is a company located in Hebei Province, China . References ↑ "[ Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hebei_Yeelong_Wind_Power_Equipment_Manufacturing_Co_Ltd&oldid=346424

374

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go ManufacturingAvailable formats Cost of Natural Gas Used in Manufacturing Sector Has Fallen Released: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17

375

Iskra Wind Turbine Manufacturers Ltd | Open Energy Information  

Open Energy Info (EERE)

Iskra Wind Turbine Manufacturers Ltd Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name Iskra Wind Turbine Manufacturers Ltd Place Nottingham, United Kingdom Sector Wind energy Product Iskra manufactures and markets the AT5-1 home-sized wind turbine rated at 5.3 kW, suitable for low wind speeds. References Iskra Wind Turbine Manufacturers Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iskra Wind Turbine Manufacturers Ltd is a company located in Nottingham, United Kingdom . References ↑ "Iskra Wind Turbine Manufacturers Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Iskra_Wind_Turbine_Manufacturers_Ltd&oldid=347129" Categories: Clean Energy Organizations

376

Lessons Learned During the Manufacture of the NCSX Modular Coils  

Science Conference Proceedings (OSTI)

The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

2009-09-15T23:59:59.000Z

377

The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994  

DOE Green Energy (OSTI)

The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

1994-03-15T23:59:59.000Z

378

An application reference model for layered manufacturing  

SciTech Connect

The Intelligent Manufacturing Systems (IMS) Test Case 6 project (Rapid Product Development) was set up to demonstrate rapid product development and 3D measurement techniques where the agencies performing the work were distributed over different countries. Test Case 6 provided a unique opportunity to examine the process by which an application protocol (AP) of the Standard for Exchange of Product Data is prepared. The test case had a well defined scope, the production of simple parts by means of layered manufacturing techniques. The information concerned with this manufacture was similarly well defined, due to the requirement that the information be transmitted among the organizations participating in the test case. STEP is an international standard specifying the data content and format for storage and exchange of product data throughout the product`s life cycle. STEP has been under development since 1984 and is just now emerging as an International Standard. STEP is specified as a series of information models using the EXPRESS computer language. For purposes of data exchange, a mapping to a physical file format is specified. Informally, product data can be defined as all the data about a product which one might wish to save. This definition implies some variation in the amount of data to be saved in any one instance. In the case of Test Case 6, one would certainly wish to save the IGES files describing the part. One may or may not wish to save the manufacturing parameters. While there are many parts of STEP with different purposes, the important series of parts for the purposes of standardizing product data are those dealing with application protocols. An application protocol specifies the details of product data within the context of a single application (in this case, layered manufacturing). Other APs deal with such subjects as configuration-managed solid parts and associated drafting.

Kennicott, P.R.

1994-02-01T23:59:59.000Z

379

Advanced Manufacturing Office: U.S. Manufacturer Going Above...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Manufacturer Going Above and Beyond with Superior Energy Performance to someone by E-mail Share Advanced Manufacturing Office: U.S. Manufacturer Going Above and Beyond with...

380

The production of fuels and chemicals from food processing wastes using a novel fermenter separator  

Science Conference Proceedings (OSTI)

During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

American Energy and Manufacturing Competitiveness Summit | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit American Energy and Manufacturing Competitiveness Summit Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy and shorten the time needed to bring a product to market. On display at the

382

Taiwan Semiconductor Manufacturing Co Ltd TSMC | Open Energy Information  

Open Energy Info (EERE)

Semiconductor Manufacturing Co Ltd TSMC Semiconductor Manufacturing Co Ltd TSMC Jump to: navigation, search Name Taiwan Semiconductor Manufacturing Co Ltd (TSMC) Place Hsinchu, Taiwan Zip 300 Sector Solar Product Taiwan-based semiconductor company. The firm is also venturing into solar and LED production. References Taiwan Semiconductor Manufacturing Co Ltd (TSMC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Taiwan Semiconductor Manufacturing Co Ltd (TSMC) is a company located in Hsinchu, Taiwan . References ↑ "Taiwan Semiconductor Manufacturing Co Ltd (TSMC)" Retrieved from "http://en.openei.org/w/index.php?title=Taiwan_Semiconductor_Manufacturing_Co_Ltd_TSMC&oldid=352012"

383

Ensuring American Leadership in Clean Energy Manufacturing | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing Ensuring American Leadership in Clean Energy Manufacturing December 11, 2013 - 1:40pm Addthis Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa. David Danielson David Danielson

384

Method and apparatus for obtaining enhanced production rate of thermal chemical reactions  

DOE Patents (OSTI)

The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

2003-04-01T23:59:59.000Z

385

Manufacturing Renaissance: Return of manufacturing to western countries.  

E-Print Network (OSTI)

??Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers… (more)

Kianian, Babak; Larsson, Tobias

2013-01-01T23:59:59.000Z

386

Development of geothermally assisted process for production of liquid fuels and chemicals from wheat straw  

SciTech Connect

The effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw are investigated. Both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose are considered. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge were also investigated. A brief study was made of the effects of two major parameters, substrate concentration and enzyme/substrate ratio, on the sugar yield from enzymatic hydrolysis of optimally pretreated straw. The efficiency with which these sugars could be fermented to ethanol was studied. In most cases experiments were carried out using distilled water; however, the effects of direct use of geothermal water were determined for each of the major steps in the process. An appendix to the body of the report describes the results of a preliminary economic evaluation of a plant designed to produce 25 x 10/sup 6/ gallons of ethanol per year from wheat straw using the best process conditions determined in the above work. Also appended are the results from a preliminary investigation of the applicability of autohydrolysis technology to the production of fermentable sugars from corn stover.

Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

1981-06-01T23:59:59.000Z

387

Changes in Energy Intensity in the Manufacturing Sector 1985-1994  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Energy Intensity in the Manufacturing Sector 1985 - 1994 Full Report Introduction Summary of Data Data Tables Data Summaries All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone (32) Metals (33) Fab. Metals (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites Commercial Residential Transportation International Manufacturing Energy Intensity Changes in Energy Intensity Click for Full Graph Manufacturing Energy Consumption Consumption of Energy Click for Full Graph Manufacturing Shipments History of Shipments Click for Full Graph The focus of this data report is on intensity of energy use, measured by energy consumption relative to constant dollar shipments of manufactured products -- commonly called energy intensities (EI) by energy analysts. This report explicitly relates changes in two energy measures of energy intensity to efficiency, while being cognizant that there are structural and behavioral effects enmeshed in those measures of energy efficiency. Reporting EI serves to continue the Intensity Change report series.

388

Imperial Manufacturing: Proposed Penalty (2013-CE-5322) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2013-CE-5322) Proposed Penalty (2013-CE-5322) Imperial Manufacturing: Proposed Penalty (2013-CE-5322) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Imperial Manufacturing, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Imperial Manufacturing: Proposed Penalty (2013-CE-5322) More Documents & Publications Imperial Manufacturing: Order (2013-CE-5322)

389

Solar Thermal Manufacturing Activities  

Reports and Publications (EIA)

This report, Solar Thermal Collector Manufacturing Activities, providesan overview and tables with historical data spanning 2000-2009. These tables willcorrespond to similar tables to be presented in the Renewable Energy Annual 2009 andare numbered accordingly.

Michele Simmons

2010-12-01T23:59:59.000Z

390

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

391

Advanced Manufacturing Partnership  

Energy.gov (U.S. Department of Energy (DOE))

AMO leads DOE's participation in the national interagency Advanced Manufacturing Partnership (AMP). AMO joins with other Federal agencies investing in innovation and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national economy. AMO contributes more broadly to the AMP with activities in Technology Development, Shared Infrastructure and Facilities, Education and Workforce Development.

392

Materials technology assessment of high-temperature solar receivers for fuels and chemicals production  

DOE Green Energy (OSTI)

Current interest in using solar thermal energy to produce fuels and chemicals has prompted an assessment of materials technology for five proposed designs of solar receivers. The principal process of interest is water splitting. Reaction schemes considered involve the high-temperature decomposition of sulfuric acid, and silicon carbide is the structural ceramic material usually considered most resistant to the conditions of this reaction. Hence we have assessed the fabricability of the designs from SiC for that reaction system, even though most designs envision use with air, helium, or nitrogen as a heat transfer medium. Honeycomb and hemispherical dome receivers have been fabricated from SiC. A receiver using planar coiled tubes has been fabricated from cordierite but not from SiC. Fabrication has not been demonstrated for helical coil and long tube designs. The last three of these should be fabricable with up to two years development. All lack the ultimate test: operational experience. The need for relable seals is common to all designs. Metallic gaskets are subject to corrosion, and ceramic and mechanical seals have not been demonstrated for the anticipated thermal cycling.

Tiegs, T.N.

1981-07-01T23:59:59.000Z

393

Reduction of rework at a large aerospace manufacturer  

E-Print Network (OSTI)

It is an axiom of the manufacturing of any complex product that errors will occur that require repair or discard of said product. In building aircraft, Raptor Aerospace encounters and repairs numerous deviations from the ...

Lieberman, Jeremy A. (Jeremy Alan)

2012-01-01T23:59:59.000Z

394

US Manufacturing Jobs:  

Science Conference Proceedings (OSTI)

... among the top companies hiring for production occupations is eProduction Solutions, an oil and natural gas production company. ...

2013-07-31T23:59:59.000Z

395

COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS  

Science Conference Proceedings (OSTI)

The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

Peter G. Stansberry; John W. Zondlo

2001-07-01T23:59:59.000Z

396

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA)

How Did Manufacturers Use Natural Gas? Manufacturers used natural gas in processes, in boilers, for nonprocess uses, and as feedstock. In 1991 and 1994, ...

397

Manufacturing Demonstration Facility Technology Collaborations...  

NLE Websites -- All DOE Office Websites (Extended Search)

advanced manufacturing and materials technologies for commercial applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood of...

398

EERE: Advanced Manufacturing Office - Webmaster  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative March 26, 2013 New Energy Department Funding to Establish...

399

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

400

Advanced Manufacturing Office: Better Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Plants on Twitter Bookmark Advanced Manufacturing Office: Better Plants on Google Bookmark Advanced Manufacturing Office: Better Plants on Delicious Rank Advanced...

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

402

Platform Chemicals from an Oilseed Biorefinery  

Science Conference Proceedings (OSTI)

The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.

Tupy, Mike; Schrodi Yann

2006-11-06T23:59:59.000Z

403

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

404

Process for manufacturing tantalum capacitors  

DOE Patents (OSTI)

A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

1993-02-02T23:59:59.000Z

405

Process for manufacturing tantalum capacitors  

DOE Patents (OSTI)

A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

406

Agent-based distributed manufacturing control: A state-of-the-art survey  

Science Conference Proceedings (OSTI)

Manufacturing has faced significant changes during the last years, namely the move from a local economy towards a global and competitive economy, with markets demanding for highly customized products of high quality at lower costs, and with short life ... Keywords: Distributed manufacturing control, Holonic manufacturing systems, Intelligent manufacturing systems, Multi-agent systems

Paulo Leităo

2009-10-01T23:59:59.000Z

407

Summit Manufacturing: Noncompliance Determination (2010-SE-0303)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Matter of: Summit Manufacturing, Inc. Case Number 2010-SE-0303 NOTICE OF NONCOMPLIANCE DETERMINATION CERTIFICATION Manufacturers of certain covered products are required to certify compliance with the applicable energy conservation standards through submission of a compliance statement and a certification report. 10 CFR § 430.62. See 42 U.S.C. 6296 . The compliance statement is a legal statement by the manufacturer that the information provided in its certification reports is true , accurate and complete, that the basic models certified meet the applicable energy conservation standard, that the energy efficiency information report is the result of testing performed in conformance with the applicable test requirements in 10 CFR part 430, subpart B; and that the manufacturer is

408

Aurora Photovoltaics Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Aurora Photovoltaics Manufacturing Aurora Photovoltaics Manufacturing Jump to: navigation, search Name Aurora Photovoltaics Manufacturing Place Lawrenceville, New Jersey Zip 8648 Sector Solar Product A subsidiary of EPV solar, based in New Jersey, focused on manufacturing of PV cells. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Leitner Shriram Manufacturing Ltd | Open Energy Information  

Open Energy Info (EERE)

Leitner Shriram Manufacturing Ltd Leitner Shriram Manufacturing Ltd Jump to: navigation, search Name Leitner Shriram Manufacturing Ltd Place Chennai, Tamil Nadu, India Zip 600095 Sector Wind energy Product Chennai-based JV between Leitwind and Shriram EPC with the purpose of manufacturing MW-class wind turbines. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

The outcome of our research can be utilized by metal foam manufacturers to improve their product. An example of this is Recemat International, a producer of  

E-Print Network (OSTI)

of different biofuels can be produced, including Fisher-Tropsch liquids (FTL), dimethyl ether (DME that would be used for biofuel production. These fuels include Fischer-Tropsch liquids (FTL), methanol such as dimethyl ether (DME) or Fischer-Tropsch liquids (FTL) made from lignocellulosic biomass. A relatively

Groningen, Rijksuniversiteit

411

A roadmap for a methodology to assess, improve and sustain intra- and inter-enterprise system performance with respect to technology-product life cycle in small and medium manufacturers: Research Article  

Science Conference Proceedings (OSTI)

Increased manufacturing costs are forcing U.S. manufacturing firms to send their operations off shore. Such business practices are greatly impacting the vitality of small and medium manufacturers (SMMs) in the U.S. economy. This article intends to advance ...

Ash Genaidy; Waldemar Karwowski

2008-01-01T23:59:59.000Z

412

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

413

Development of LEU targets for {sup 99}Mo production and their chemical processing status 1993  

SciTech Connect

Most of the world`s supply of {sup 99m}{Tc} for medical purposes is currently produced from {sup 99}Mo derived from the fastening of high enriched uranium (HEU). Substitution of low enriched uranium (LEU) silicide fuel for the HEU alloy and aluminide fuels used in current target designs will allow equivalent {sup 99}Mo yields with little change in target geometries. Substitution of uranium metal for uranium oxide films in other target designs will also allow the substitution of LEU for HEU. In 1993, DOE renewed funding that was terminated in 1990 for development of LEU targets for {sup 99}Mo production. During the past year, our efforts were to (1) renew contact with {sup 99}Mo producers, (2) define the means to test our process for recovering {sup 99}Mo from irradiated LEU-silicide targets, and (3) begin to test our process on spent LEU-silicide miniplates stored at ANL from past fuel development studies.

Vandegrift, G.F.; Hutter, J.C.; Srinivasan, B.; Matos, J.E.; Snelgrove, J.L.

1993-10-01T23:59:59.000Z

414

Processing cellulosic solids for methane production by a combined chemical and biological process  

Science Conference Proceedings (OSTI)

Cellulosic solids are pretreated by calcium hydroxide to produce salts of volatile organic acids and other water-soluble substances. Pure cellulose, sawdust, and waste paper are used as model substances for the study of alkaline degradation. It was found that sawdust is more difficult to degrade than the other two substances. The cooking conditions for high conversion of model substance and high yield of organic acids are found to be 275/sup 0/C to 300/sup 0/C with the corresponding reaction time from 30 to 15 minutes. The cooking liquor can be readily fermented in an anaerobic fluidized-bed digester for methane production. The cooking liquor from different reaction conditions can all be digested by the methanogens. Higher than 90% of COD can be removed under the conditions of low organic loading rate (<2.0 g COD/1/day) and low hydraulic retention time (1.5-2.0 days).

Tsai, G.J.; Tsao, G.T.

1987-01-01T23:59:59.000Z

415

Company Name Tax Credit* Manufacturing Facility's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Company Name Tax Credit* Manufacturing Facility's City & State Project Description Carrier Corporation $5.1 million Indianapolis, IN Carrier, a part of UTC Building & Industrial Systems and a subsidiary of United Technologies Corporation, was selected for a $5.1 million dollar 48C Advanced Energy Manufacturing Tax Credit to expand production at its Indianapolis facility to meet increasing demand for its eco-friendly condensing gas furnace product line. The new line includes the most energy efficient gas furnaces on the market-all with at least 92% annual fuel utilization efficiency-and exemplifies Carrier's commitment to economical and environmentally sustainable solutions for achieving improved energy efficiency and performance.

416

Photovoltaic Manufacturing Technology, Phase 1, Final report  

DOE Green Energy (OSTI)

This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

Easoz, J.R.; Herlocher, R.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States))

1991-12-01T23:59:59.000Z

417

Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report  

E-Print Network (OSTI)

At the end of 1997, The Energy Information Administration (EIA) published a report titled What Took Place in the Economic Environment Between 1991 and 1994 That Affected the Energy Manufacturers Used? This report contains information gathered from Manufacturing Energy Consumption Surveys (MECS), representing a sampling of over 250,000 manufacturing establishments in 52 industries and nine geographical Census divisions. Although the report covers natural gas, distillate fuel oil, residual fuel oil, liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify electric motor systems. The report also introduces the US Department of Energy's Motor Challenge Program and the US Environmental Protection Agency's Green Lights and Energy Star Programs. Topics such as changes in the electricity market, technology improvements, price disparities, and lessons learned from the natural gas restructuring as related to the electric utility deregulation relate the changes that are impacting the industrial environment. Although the report details information from many industries, the four major energy consumers in the manufacturing sector are: * Petroleum and Coal Products (SIC 29) * Chemicals and Allied Products (SIC 28) * Paper and Allied Partners (SIC 26) * Primary Metal Industries (SIC 33) These industries are also very proactive in their attempts to promote energy efficiency in all areas, including electrical. For example, the IEEE-841 Standard motor is a result of the work of some of these industries. The impact on the industrial Maintenance, Repair, and Operations (MRO) suppliers and Original Equipment Manufacturers (OEM) markets show the need for increasing awareness in all aspects of electrical energy, especially in light of the implementation of the Energy Policy Act and the deregulation of the utility industry.

Lockhead, S.

1999-05-01T23:59:59.000Z

418

Pre-CAD-Frication: Re-establishing Automotive Paradigms to a Manufactured Architecture.  

E-Print Network (OSTI)

??Through the late Twentieth Century, leading vehicle manufacturers increasingly eschewed the drive from mass production and instead focused upon lean production, where output has been… (more)

Anderson, Shaun Anthony

2010-01-01T23:59:59.000Z

419

Slideshow: Innovation in the Manufacturing Sector | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy

420

Artisan Manufacturing: Proposed Penalty (2010-CW-0712) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Artisan Manufacturing: Proposed Penalty (2010-CW-0712) Artisan Manufacturing: Proposed Penalty (2010-CW-0712) Artisan Manufacturing: Proposed Penalty (2010-CW-0712) September 8, 2010 DOE alleged in a Notice of Proposed Civil Penalty that Artisan Manufacturing Company, Inc. failed to certify a variety of faucets as compliant with the applicable water conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable water conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Artisan Manufacturing: Proposed Penalty (2010-CW-0712) More Documents & Publications Artisan Manufacturing: Order (2010-CW-0712)

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals  

SciTech Connect

Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

Lowe, Terry C. [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

422

Material Design, Selection, and Manufacturing Methods for System Sustainment  

Science Conference Proceedings (OSTI)

This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

David Sowder, Jim Lula, Curtis Marshall

2010-02-18T23:59:59.000Z

423

Production of high-energy chemicals using solar energy heat. Project 8999, final report for the period September 1, 1977--May 31, 1978  

DOE Green Energy (OSTI)

The first phase of a study to identify candidate processes and products suitable for future exploitation using high-temperature solar energy is presented. This phase has been principally analytical, consisting of techno-economic studies, thermodynamic assessments of chemical reactions and processes, and the determination of market potentials for major chemical commodities that use significant amounts of fossil resources today. The objective was to identify energy-intensive processes that would be suitable for the production of chemicals and fuels using solar energy process heat. Of particular importance was the comparison of relative costs and energy requirements for the selected solar product versus costs for the product derived from conventional processing. The assessment methodology used a systems analytical approach to identify processes and products having the greatest potential for solar energy-thermal processing. This approach was used to establish the basis for work to be carried out in subsequent phases of development. It has been the intent of the program to divide the analysis and process identification into the following three distinct areas: (1) process selection, (2) process evaluation, and (3) ranking of processes. Four conventional processes were selected for assessment namely, methanol synthesis, styrene monomer production, vinyl chloride monomer production, and terephthalic acid production.

Dafler, J.R.; Sinnott, J.; Novil, M.; Yudow, B.D.; Rackoff, M.G.

1978-12-01T23:59:59.000Z

424

Request for Information Manufacturing Technology ...  

Science Conference Proceedings (OSTI)

... Page 4. Confidential. All Rights Reserved. ... o The energy sector is representing significant opportunities for manufacturers. ...

2013-08-06T23:59:59.000Z

425

Semiconductor Manufacturing International Corp SMIC | Open Energy  

Open Energy Info (EERE)

Manufacturing International Corp SMIC Manufacturing International Corp SMIC Jump to: navigation, search Name Semiconductor Manufacturing International Corp (SMIC) Place Shanghai, Shanghai Municipality, China Zip 201203 Sector Solar Product Semiconductor group launching solar cell production from its recycled silicon wafers. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

PV Manufacturing R&D Accomplishments and Status  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) PV Manufacturing Research and Development Project has worked for 11 years in partnership with the U.S. photovoltaic industry to reduce manufacturing costs while significantly scaling up production capacity. Over this period, the PV Manufacturing R&D Project has issued seven solicitations for partnerships that have resulted in over 50 cost-shared R&D subcontracts that addressed the cost and capacity goals of the Project, including 10 that are currently active. The previous and current contracts have typically focused on addressing Project goals in one of two areas: module manufacturing and balance-of-systems (BOS)/systems work. The majority of the DOE investment has been targeted toward module manufacturing. The partnerships have resulted in a significant and measurable increase in PV module/systems production capacity, a decrease in PV manufacturing costs, and a subsequent return on the joint public and private investments facilitated by the Project.

Mooney, D.; Mitchell, R.; Witt, E.; King, R.; Ruby, D.

2003-11-01T23:59:59.000Z

427

Microsoft Word - Ex Parte Memo re Manufactured Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 6, 2013 May 6, 2013 Re Ex Parte Communication On Wednesday May 1, 2013, a group of non-profit and state energy efficiency advocates met with representatives of the Department of Energy to discuss the efficiency standards for Manufactured Housing. See Advanced Notice of Proposed Rulemaking, Energy Efficiency Standards for Manufactured Housing, Docket No. EERE-2009-BT-BC-0021, 75 Fed. Reg. 7556 (Feb. 22, 2010). The efficiency advocates presented information on: a) manufactured homes production, percent of production of manufactured homes that meet energy star standards, and TVA programs to encourage purchase of energy star manufactured homes; b) the need for coordination between DOE and HUD regarding manufactured homes; c) additional information DOE should obtain concerning the impact of air sealing.

428

ATS materials/manufacturing  

SciTech Connect

The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

1997-11-01T23:59:59.000Z

429

Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass  

DOE Green Energy (OSTI)

The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

Villet, R. (ed.)

1981-02-01T23:59:59.000Z

430

Prepared by Eastman Chemical Company  

E-Print Network (OSTI)

Products Liquid Phase Conversion Company, L.P., nor any of their subcontractors nor the U.S. Department of Energy, nor any person acting on behalf of either: (A) Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinions of authors expressed herein does not necessarily state or reflect those of the U.S. Department of Energy. The Liquid Phase Methanol (LPMEOH™) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration

For The

2003-01-01T23:59:59.000Z

431

Sustainable Manufacturing in the Systems Integration Division  

Science Conference Proceedings (OSTI)

... Sustainability Modeling and Optimization Project. Sustainability of Unit Manufacturing Processes Project. Sustainable Manufacturing Program. ...

2011-12-23T23:59:59.000Z

432

A modern depleted uranium manufacturing facility  

SciTech Connect

The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

Zagula, T.A.

1995-07-01T23:59:59.000Z

433

Signature Metabolites at Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report presents results of research to demonstrate the biodegradation component of natural attenuation at former manufactured gas plant (MGP) sites. Researchers developed a target compound list of signature metabolites, biochemical intermediates of mono- and polycyclic aromatic hydrocarbon (MAH and PAH) biodegradation. They identified and tested appropriate methods of chemical analysis for these metabolites in MGP groundwater and sediments. Emphasis was placed on identifying natural microbiological ...

2008-10-14T23:59:59.000Z

434

California Appliance Efficiency Regulations for Manufacturers  

E-Print Network (OSTI)

California Appliance Efficiency Regulations for Manufacturers CEC-400-2012-FS-004-En Updated 3 electricity or water, California law requires that such products comply with the Appliance Efficiency Regulations* in order to be sold or offered for sale in California. Designed to help California reduce energy

435

Manufacturing Data & Trends  

Science Conference Proceedings (OSTI)

... America's Future Partners; Right Skills Now; E3: Economy - Energy - Environment. ... Productivity Bureau of Labor Statistics Labor Productivity & Costs. ...

436

Characteristics of Manufacturing Processes  

Science Conference Proceedings (OSTI)

Table 2   Rating of characteristics for common manufacturing processes...AHB, Vol 4 CVD/PVD All 1 5 5 4 3 AHB, Vol 13, p 456 Rating scheme: 1, poorest; 5, best. Ratings from Ref 5 . AHB, ASM Handbook ; EMH, Engineered

437

Turbine airfoil manufacturing technology  

DOE Green Energy (OSTI)

The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

1995-12-31T23:59:59.000Z

438

Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1978-February 28, 1979  

DOE Green Energy (OSTI)

The ongoing progress of a coordinated research program aimed at optimizing the biodegradation of cellulosic biomass to ethanol and chemical feedstocks is summarized. Growth requirements and genetic manipulations of clostridium thermocellum for selection of high cellulose producers are reported. The enzymatic activity of the cellulase produced by these organisms was studied. The soluble sugars produced from hydrolysis were analyzed. Increasing the tolerance of C. thermocellum to ethanol during liquid fuel production, increasing the rate of product formation, and directing the catabolism to selectively achieve high ethanol concentrations with respect to other products were studied. Alternative substrates for C. thermocellum were evaluated. Studies on the utilization of xylose were performed. Single stage fermentation of cellulose using mixed cultures of C. thermocellum and C. thermosaccharolyticum were studied. The study of the production of chemical feedstocks focused on acrylic acid, acetone/butanol, acetic acid, and lactic acid.

Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

1979-02-01T23:59:59.000Z

439

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

440

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

442

Transformational Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

443

Industrial Chocolate Manufacture and Use, 4th Edition  

Science Conference Proceedings (OSTI)

The fourth edition of Industrial Chocolate Manufacture and Use provides up-to-date coverage of all major aspects of chocolate manufacture and use, from the growing of cocoa beans to the packaging and marketing of the end product. Industrial Chocolate Manuf

444

Optimisation-based scheduling: A discrete manufacturing case study  

Science Conference Proceedings (OSTI)

This work presents the development and implementation of a production scheduling system for an electrical appliance manufacturer. Based on recent advances in optimisation-based scheduling approaches, two different software architectures based on two ... Keywords: Discrete manufacturing, Electrical appliances, Mixed-integer linear programming, Optimization-based scheduling

Michael C. Georgiadis; Aaron A. Levis; Panagiotis Tsiakis; Ioannis Sanidiotis; Constantinos C. Pantelides; Lazaros G. Papageorgiou

2005-08-01T23:59:59.000Z

445

Production and Utilization of CO3- Produced by a Corona Discharge in Air for Atmospheric Pressure Chemical Ionization  

SciTech Connect

Atmospheric pressure chemical ionization is a multistep ionization process used in mass spectrometry and ion mobility spectrometry. The formation of product ions depends upon interactions with the analyte and the reactant ion species formed in the ionization source. The predominant reactant ion observed in a point-to-plane corona discharge in air occurs at m/z 60. There have been multiple references in the literature to the identity of this ion with some disagreement. It was postulated to be either CO3- or N2O2-. The identity of this ion is important as it is a key to the ionization of analytes. It was determined here to be CO3- through the use of 18O labeled oxygen. Further confirmation was provided through MS/MS studies. The ionization of nitroglycerine (NG) with CO3- produced the adduct NG•CO3-. This was compared to ionization with NO3- and Cl- reactant ions that also formed adducts with NG. The fragmentation patterns of these three adducts provides insight into the charge distribution and indicates that CO3- has a relatively high electron affinity similar to that of nitrate.

Ewing, Robert G.; Waltman, Melanie J.

2010-12-14T23:59:59.000Z

446

Biomass Energy Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Incentive Biomass Energy Production Incentive Eligibility Agricultural Commercial Industrial Savings For Bioenergy Commercial Heating & Cooling Manufacturing Buying &...

447

Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duracold Refrigeration Manufacturing: Proposed Penalty Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) February 21, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Duracold Refrigeration Manufacturing Company, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342)

448

Revitalizing Innovation in Michigan for Clean Energy Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing Revitalizing Innovation in Michigan for Clean Energy Manufacturing April 25, 2011 - 4:33pm Addthis Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Kerry Duggan What does this mean for me? Michigan has expanded its manufacturing focus beyond automobiles. Companies across Michigan are producing advanced batteries, motors, controllers, lighting devices, wind machines, photovoltaic modules, and other clean energy products. To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Last week, I got

449

Goodman Manufacturing: Proposed Penalty (2011-SE-4301) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2011-SE-4301) Proposed Penalty (2011-SE-4301) Goodman Manufacturing: Proposed Penalty (2011-SE-4301) December 2, 2011 DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S. Federal law subjects manufacturers and private labelers to civil penalties if those parties distribute in the U.S. products that do not meet applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Goodman Manufacturing: Proposed Penalty (2011-SE-4301) More Documents & Publications Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)

450

Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, June 1-August 31, 1978  

DOE Green Energy (OSTI)

Studies concerning the cellobiose properties of Clostridium thermocellum were started to determine if the cellulose degradation end products can be enhanced for glucose (with a subsequent decrease in cellobiose). Implications of preliminary studies indicate that the cells or the enzyme(s) responsible for converting cellobiose to glucose can be manipulated environmentally and genetically to increase the final yield of glucose. The second area of effort is to the production of chemical feedstocks. Three fermentations have been identified for exploration. Preliminary reports on acrylic acid acetone/butanol, and acetic acid production by C. propionicum, C. acetobutylicum, and C. thermoaceticum, respectively, are included. (DMC)

Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

1978-08-01T23:59:59.000Z

451

Means of manufacturing annular arrays  

DOE Patents (OSTI)

A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

Day, R.A.

1985-10-10T23:59:59.000Z

452

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

453

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

454

Solar collector manufacturing activity, 1992  

DOE Green Energy (OSTI)

This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

Not Available

1993-11-09T23:59:59.000Z

455

Improved Boiler System Operation with Real-time Chemical Control  

E-Print Network (OSTI)

The steam boiler system is a critical component of most manufacturing processes. Steam production reliability is often a key component in product quality and overall production efficiency. Hourly steam load demands can swing by as much as 500% in some plants, making responsive water treatment of the boiler system difficult. This challenging production environment is made even more so by volatile economic forces in today's world. New technologies have been developed that help steam operations staff achieve more consistent, proactive boiler feedwater treatment by detecting system variability, determining the correct chemical or operational action, and delivering measurable environmental return on investment (ROI). These new technologies will be described and several case histories presented. The steam boiler system is a critical component of most manufacturing processes. Steam production reliability is often a key component in product quality and overall production efficiency. Hourly steam load demands can swing by as much as 500% in some plants, making responsive water treatment of the boiler system difficult. This challenging production environment is made even more so by volatile economic forces in today's world. New technologies have been developed that help steam operations staff achieve more consistent, proactive boiler feedwater treatment by detecting system variability, determining the correct chemical or operational action, and delivering measurable environmental return on investment (ROI). These new technologies will be described and several case histories presented.

Bloom, D.; Jenkins, B.

2010-01-01T23:59:59.000Z

456

Materials Standards for Additive Manufacturing  

Science Conference Proceedings (OSTI)

... ASTM F2924 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion) except for standards ...

2013-06-04T23:59:59.000Z

457

Integrating Materials and Manufacturing Innovation  

Science Conference Proceedings (OSTI)

Jun 13, 2012 ... 06/13 - TMS Launches New Open Access Journal: Integrating Materials and Manufacturing Innovation. Patti Dobranski Communication ...

458

Implementation of Sustainable Manufacturing Standards  

Science Conference Proceedings (OSTI)

... Manufacturing Standards Kathi Futornick, LEED AP Global Sustainability Practice URS Corporation NIST Workshop October 13-15, 2009 ...

2009-10-20T23:59:59.000Z

459

NIST Additive Manufacturing Test Artifact  

Science Conference Proceedings (OSTI)

NIST Additive Manufacturing Test Artifact. Summary. ... The test artifact is to be built using the AM system under investigation. ...

2013-04-26T23:59:59.000Z

460

Why Manufacturing Matters to California  

Science Conference Proceedings (OSTI)

... Sources: Bureau of Labor Statistics, IHS Global Insight. Manufacturing employment (left) ... Sources: Bureau of Labor Statistics, IHS Global Insight. ...

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufactured product chemically" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project: Manufacturing Services Network Models  

Science Conference Proceedings (OSTI)

... expressivity of a pattern library for manufacturing service capability information, by demonstrating the target information retrieval behavior enabled ...

2013-01-03T23:59:59.000Z

462

Additive Manufacturing: Pursuing the Promise  

NLE Websites -- All DOE Office Websites (Extended Search)

capability have captured the imaginations of investors. Revolutionary Speed, Efficiency, Optimization Additive manufacturing has the potential to vastly accelerate innovation,...

463

Manufacturing Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propylene (C 3 H 6): A normally gaseous olefinic hydrocarbon recovered from refinery processes or petrochemical processes. In the manufacturing ...

464

Teksun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Teksun PV Manufacturing Inc Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name Teksun PV Manufacturing Inc Address 401 Congress Ave Place Austin, Texas Zip 78701 Sector Solar Product Plan to manufacture large scale PV panels for utility scale solar power parks Website http://www.teksunpv.com/ Coordinates 30.266402°, -97.742959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.266402,"lon":-97.742959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

LightManufacturing | Open Energy Information  

Open Energy Info (EERE)

LightManufacturing LightManufacturing Jump to: navigation, search Logo: LightManufacturing Name LightManufacturing Address 855 4th Street Place California Zip 93449 Sector Solar Product heliostat, helisotats, sun trackers, solar thermal manufacturing systems. Year founded 2009 Number of employees 11-50 Company Type For Profit Phone number 415 796-6475 Website http://www.lightmanufacturings Coordinates 35.135012°, -120.6228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.135012,"lon":-120.6228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Out of Bounds Additive Manufacturing  

Science Conference Proceedings (OSTI)

Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

2013-01-01T23:59:59.000Z

467

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot

2004-06-30T23:59:59.000Z

468

The business case for continuous manufacturing of pharmaceuticals  

E-Print Network (OSTI)

Manufacturing in the pharmaceutical industry is presently characterized as a batch production system, which has existed in its current form for decades. This structure is the result of historical regulatory policy as well ...

Wilburn, Kristopher Ray

2010-01-01T23:59:59.000Z

469

Microsoft Word - JT Manufacturing Study Report 070522.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Scale-Up and Production Volume on SOFC Manufacturing Cost DOENETL-XXXXXXXX (optional) April 2, 2007 2 Disclaimer This report was prepared as an account of work...

470

Information tracking and sharing in organic photovoltaic panel manufacturing  

E-Print Network (OSTI)

The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative ...

Gong, Ming, M. Eng. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

471

Scheduling and shop floor control in commercial airplane manufacturing  

E-Print Network (OSTI)

Boeing is the premier manufacturer of commercial jetliners and a leader in defense and space systems. Competition in commercial aircraft production is increasing and in order to retain their competitive position, Boeing ...

Sahney, Vikram Neal

2005-01-01T23:59:59.000Z

472

Improving energy efficiency in a pharmaceutical manufacturing environment -- office building  

E-Print Network (OSTI)

Reducing energy consumption without compromising the quality of products in a pharmaceutical manufacturing environment and maintaining the comfort of employees is of critical important in maintaining the financial viability ...

Li, Wu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

473

Theoretical and Experimental Evaluation of Chemical Reactivity  

E-Print Network (OSTI)

Reactive chemicals are presented widely in the chemical and petrochemical process industry. Their chemical reactivity hazards have posed a significant challenge to the industries of manufacturing, storage and transportation. The accidents due to reactive chemicals have caused tremendous loss of properties and lives, and damages to the environment. In this research, three classes of reactive chemicals (unsaturated hydrocarbons, self-reacting chemicals, energetic materials) were evaluated through theoretical and experimental methods. Methylcyclopentadiene (MCP) and Hydroxylamine (HA) are selected as representatives of unsaturated hydrocarbons and self-reacting chemicals, respectively. Chemical reactivity of MCP, including isomerization, dimerization, and oxidation, is investigated by computational chemistry methods and empirical thermodynamic–energy correlation. Density functional and ab initio methods are used to search the initial thermal decomposition steps of HA, including unimolecular and bimolecular pathways. In addition, solvent effects are also examined using water cluster methods and Polarizable Continuum Models (PCM) for aqueous solution of HA. The thermal stability of a basic energetic material, Nitroethane, is investigated through both theoretical and experimental methods. Density functional methods are employed to explore the initial decomposition pathways, followed by developing detailed reaction networks. Experiments with a batch reactor and in situ GC are designed to analyze the distribution of reaction products and verify reaction mechanisms. Overall kinetic model is also built from calorimetric experiments using an Automated Pressure Tracking Adiabatic Calorimeter (APTAC). Finally, a general evaluation approach is developed for a wide range of reactive chemicals. An index of thermal risk is proposed as a preliminary risk assessment to screen reactive chemicals. Correlations are also developed between reactivity parameters, such as onset temperature, activation energy, and adiabatic time to maximum rate based on a limited number, 37 sets, of Differential Scanning Calorimeter (DSC) data. The research shows broad applications in developing reaction mechanisms at the molecular level. The methodology of reaction modeling in combination with molecular modeling can also be used to study other reactive chemical systems.

Wang, Qingsheng

2010-08-01T23:59:59.000Z

474

Additive manufacturing capabilities expanding | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Additive manufacturing capabilities expanding January 01, 2013 Large-scale polymer additive manufacturing equipment located at the Manufacturing Demonstration Facility. Additive...

475

EERE: Clean Energy Manufacturing Initiative Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Manufacturing Initiative Search Search Help Clean Energy Manufacturing Initiative EERE Clean Energy Manufacturing Initiative Printable Version Share this resource Send a...

476

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

477

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network (OSTI)

59, 2010 plenary Papers: Energy and Resource Efficiencyresources. Plenary Papers: Energy and Resource Efficiency •include: plenary Papers: Energy and Resource Efficiency

Dornfeld, David

2010-01-01T23:59:59.000Z

478

Manufacturing/Production Steering Committee Meeting  

SciTech Connect

This presentation discusses the following: (1) Nuclear Material Science - 22/1: Uranium Metallography and Metallurgy, 22/7: Plutonium Metallurgy, 22/8: Plutonium Corrosion; (2) Nuclear Materials Chemistry - 22/2: Actinide Chemistry, 22/7: Analytical Chemistry; (3) Tritium Science & Technology - 22/4: Tritium Science and Technology; and (4) Nuclear Materials Management - 22/5: Nuclear Materials Management, 22/9: Packaging, Storage and Transportation.

Castro, Richard G. [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

479

Manufacturing Productivity Through the Great Recession:  

Science Conference Proceedings (OSTI)

... related support activities Electrical equipment, appliance ... yielding a labor demand coefficient on ... an economic policy and forecasting research center ...

2013-07-29T23:59:59.000Z

480

Processing and Product Manufacturing - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... J5: Electrical Conductivity of Diesel-Biodiesel Blends Evaluated by the ... of their potentially novel physical properties resulting from quantum ...