Sample records for manufactured aggregate processing

  1. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect (OSTI)

    Milton Wu; Paul Yuran

    2006-12-31T23:59:59.000Z

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant availability and throughput capacity and to produce quality lightweight aggregate for use in commercial applications.

  2. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect (OSTI)

    Roy Scandrol

    2003-10-01T23:59:59.000Z

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  3. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect (OSTI)

    Roy Scandrol

    2003-04-01T23:59:59.000Z

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  4. Bolt Manufacture: Process Selection

    E-Print Network [OSTI]

    Colton, Jonathan S.

    file · Selective Laser Sintering (SLS) 3 D P i ti· 3-D Printing · Light Engineered Net Shaping (LENS Processes and Systems Prof. J.S. Colton © GIT 2009 20 #12;3D Printing Process (Soligen) ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 21 #12;3D Printing Head (Soligen)3D Printing

  5. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  6. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  7. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  8. DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    M. M. Wu

    2005-02-01T23:59:59.000Z

    Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

  9. aggregate processing technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    London 10 Particle-based modelling of aggregation and fragmentation processes: Fractal-like aggregates Nonlinear Sciences (arXiv) Summary: The incorporation of particle...

  10. INFORMATION SYSTEMS SUPPORT FOR MANUFACTURING PROCESSES

    E-Print Network [OSTI]

    activities. The feature overlapping of production planning and quality control between both systems raises and distribution (Merrit1999) and have extend their scope to support quality control and production tracking: Manufacturing Enterprises, Enterprise Resource Planning, Manufacturing Execution Systems, Discrete Processes

  11. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26T23:59:59.000Z

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  12. Cycle to Cycle Manufacturing Process Control

    E-Print Network [OSTI]

    Hardt, David E.

    Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

  13. Diagnosing spatial variation patterns in manufacturing processes

    E-Print Network [OSTI]

    Lee, Ho Young

    2004-09-30T23:59:59.000Z

    This dissertation discusses a method that will aid in diagnosing the root causes of product and process variability in complex manufacturing processes when large quantities of multivariate in-process measurement data are available. As in any data...

  14. Energetic additive manufacturing process with feed wire

    DOE Patents [OSTI]

    Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

    2000-11-07T23:59:59.000Z

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  15. Evaluating Energy Efficiency Improvements in Manufacturing Processes

    E-Print Network [OSTI]

    Boyer, Edmond

    Evaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agenda

  16. Wind Program Manufacturing Research Advances Processes and Reduces...

    Energy Savers [EERE]

    Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

  17. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic...

  18. Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    present opportunities to improve casting, forging, stamping, extrusion, assembly, and additive manufacturing processes. The U.S. manufacturing supply base will benefit from...

  19. Non-traditional ProcessingNon traditional Processing ME 4210: Manufacturing Processes and Engineering

    E-Print Network [OSTI]

    Colton, Jonathan S.

    : Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 11 #12;Laser CuttingLaser Cutting ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 12 #12;Laser CuttingLaser Cutting ME 4210Non-traditional ProcessingNon traditional Processing ver. 1 ME 4210: Manufacturing Processes

  20. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants 2011...

  1. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office Overview Microwave and Radio Frequency Workshop...

  2. Process systems engineering of continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Abel, Matthew J

    2010-01-01T23:59:59.000Z

    Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

  3. Journal of Manufacturing Processes Vol. 9/No. 1

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    laser thermal forming, is a flexible rapid prototyping and low-vol- ume manufacturing process that usesJournal of Manufacturing Processes Vol. 9/No. 1 2007 1 Journal of Manufacturing Processes Vol. 9/No. 1 2007 Energy-Level Effects on the Deformation Mechanism in Microscale Laser Peen Forming Youneng

  4. MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES Authors: Olivier Kerbrat of the tool may advantageously be machined or manufactured by an additive process. Originality/value: Nowadays is proposed to combine additive and subtractive processes, for tooling design and manufacturing

  5. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Kerns, John A. (Livermore, CA); Blaedel, Kenneth L. (Livermore, CA); Colella, Nicholas J. (Livermore, CA); Davis, Pete J. (Pleasanton, CA); Juntz, Robert S. (Hayward, CA)

    1998-01-01T23:59:59.000Z

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  6. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09T23:59:59.000Z

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  7. alpha-synuclein processing aggregation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    London 17 Particle-based modelling of aggregation and fragmentation processes: Fractal-like aggregates Nonlinear Sciences (arXiv) Summary: The incorporation of particle...

  8. Posted 5/10/12 Manufacturing /Process Engineer

    E-Print Network [OSTI]

    Heller, Barbara

    . Plymouth Tube Company is committed to providing products and services that meet or exceed customers to improve safety, quality, and manufacturing efficiency throughout the manufacturing area. Utilization, reduce cycle times, improve productivity, create and find capacity, improve process reliability

  9. Minimum Cost Data Aggregation with Localized Processing for Statistical Inference

    E-Print Network [OSTI]

    Anandkumar, Animashree

    Minimum Cost Data Aggregation with Localized Processing for Statistical Inference Animashree--The problem of minimum cost in-network fusion of measurements, collected from distributed sensors via multihop, which implies that any Steiner- tree approximation can be employed for minimum cost fusion with the same

  10. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    KEYWORDS: Life Cycle Assessment, LCA, Green manufacturing,cycle phases, Life Cycle Assessment (LCA). The followingimpact. 2.2 Life Cycle Assessment (LCA) and Related Metrics

  11. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect (OSTI)

    Eastwood, Eric

    2009-02-16T23:59:59.000Z

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  12. Identifying nonlinear variaiton patterns in multivariate manufacturing processes

    E-Print Network [OSTI]

    Zhang, Feng

    2005-02-17T23:59:59.000Z

    with the proposed visualization approach, provides an effective tool to aid in understanding the nature of the root causes of variation that affect a manufacturing process....

  13. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    discharge machining and additive manufacturing processes,conventional manufacturing processes. For additive processesmanufacturing processes are laser cutting as a subtractive process, the Selective Laser Sintering as an additive

  14. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    machining and additive manufacturing processes, are lackingconventional manufacturing processes. For additive processesmanufacturing processes are laser cutting as a subtractive process, the Selective Laser Sintering as an additive

  15. alternate manufacturing processes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes and Engineering Prof. J.S. Colton GIT 2009 1 Grinding Nil illegitimi carborundum ver. 1 12;ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton ...

  16. advanced manufacturing processes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes and Engineering Prof. J.S. Colton GIT 2009 1 Grinding Nil illegitimi carborundum ver. 1 12;ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton ...

  17. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    609 considered manufacturing processes are laser cutting asdie manufacturing comes from its ability to enable laser-of Laser-Based and Conventional Tool and Die Manufacturing.

  18. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

  19. Wellbore manufacturing processes for in situ heat treatment processes

    DOE Patents [OSTI]

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11T23:59:59.000Z

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  20. Role of the DAPIA in the manufactured housing process

    SciTech Connect (OSTI)

    Balistocky, S.; Lee, A.D.; Onisko, S.A.

    1986-02-01T23:59:59.000Z

    This paper describes the function of Design Approval Primary Inspection Agencies (DAPIAs) and provides some insights into the design approval process for manufacturing housing units. DAPIAs play a key role in assuring that the designs for manufactured housing units are in compliance with HUD's Manufactured Housing Constructing and Safety Standards. There are five DAPIAs performing plan checks and design reviews for the manufacturing operating in the Pacific Northwest region. The costs to a manufacturer for DAPIA services ranges from $100 to $250 to approve modifications to existing designs and $700 to $1200 to approve a totally new design. Each DAPIA indicated that they would be willing to work with BPA in some way to assist manufacturers produce units which can achieve MCS levels. They would be available for energy design consultation on an informal basis. In addition they would be willing to consider formal certifications of MCS designs if BPA develops evaluation criteria which they can apply.

  1. Approaches to Maintaining Provenance throughout the Additive Manufacturing Process

    E-Print Network [OSTI]

    prototyping and 3D printing by users both in engineering and the humanities. The proposed digital signing--Digital Signing; 3D printing; 3D objects; provenance. I.INTRODUCTION Additive manufacturing as a process has been

  2. LED Manufacturing Process Modifications Will Boost Quality and

    E-Print Network [OSTI]

    2012 The Issue Highly energyefficient LightEmitting Diode (LED) lighting products have made great process that will enable LED manufacturers to produce higher quality, energyefficient products at lower

  3. Alignment strategies for drug product process development and manufacturing

    E-Print Network [OSTI]

    Garvin, Christopher John

    2012-01-01T23:59:59.000Z

    The transfer of information between the drug product development and manufacturing organizations is fundamental to drug product commercialization. This information is used to characterize the product-process interaction ...

  4. Computer-aided Tooling Design for Manufacturing Processes

    E-Print Network [OSTI]

    Nee, Andrew Y. C.

    Tooling design for manufacturing processes refers to direct tooling for making a part such as molds and dies for injection molded parts and metal stampings, or for supporting machining operations such as jigs and fixtures. ...

  5. Next Generation Manufacturing Processes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solvent-Extraction Technology New Design Methods and Algorithms for Multi-component Distillation Processes Process Intensification with Integrated Water-Gas-Shift Membrane Reactor...

  6. An Environmental and Economic Trade-off Analysis of Manufacturing Process Chains to Inform Decision Making for Sustainability

    E-Print Network [OSTI]

    Robinson, Stefanie L.

    2013-01-01T23:59:59.000Z

    manufacturing processes, taking into account casting, laserFROM DISCRETE MANUFACTURING PROCESSES Figure 6.5: CO 2 laserMANUFACTURING PROCESSES Energy consumption (kWh) = Laser

  7. Process Analytical Technology in biopharmaceutical manufacturing

    E-Print Network [OSTI]

    Cosby, Samuel T. (Samuel Thomas)

    2013-01-01T23:59:59.000Z

    Process Analytical Technology (PAT) became a well-defined concept within the pharmaceutical industry as a result of a major initiative by the FDA called "Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach." ...

  8. Abstract--The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing

    E-Print Network [OSTI]

    Mustakerov, Ivan

    plant problem. Different processing schedules variants for different technological restrictions were, so they must rely on innovative approaches in all aspects of manufacturing technology. As a result existing results in the literature focus on either a single machine or several identical machines [5

  9. Managing Energy Efficiency in Manufacturing Processes Implementing Energy Performance in

    E-Print Network [OSTI]

    Boyer, Edmond

    Managing Energy Efficiency in Manufacturing Processes ­ Implementing Energy Performance and unsecured energy supply are topics that become increasingly important in today's society. Although renewable energy technologies may be a long-term solution, more efficient energy use potentially makes a high

  10. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    SciTech Connect (OSTI)

    Traub, Richard J.

    2008-10-01T23:59:59.000Z

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness.

  11. ME 4210: Manufacturing Processes and Engineering -Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    float glass process · Bottle manufacture ­ Codd bottles ­ Ramune bottles #12;ME 4210: Manufacturing a system for keeping fizzy drinks in bottles with a glass marble stopper. · When the bottle is filledME 4210: Manufacturing Processes and Engineering - Prof. J.S. Colton © GIT 2011 1 Glass Manufacture

  12. Thermodynamics of Peptide Aggregation Processes. An Analysis from Perspectives of Three Statistical Ensembles

    E-Print Network [OSTI]

    Christoph Junghans; Michael Bachmann; Wolfhard Janke

    2007-12-06T23:59:59.000Z

    We employ a mesoscopic model for studying aggregation processes of protein-like hydrophobic-polar heteropolymers. By means of multicanonical Monte Carlo computer simulations, we find strong indications that peptide aggregation is a phase separation process, in which the microcanonical entropy exhibits a convex intruder due to nonnegligible surface effects of the small systems. We analyze thermodynamic properties of the conformational transitions accompanying the aggregation process from the multicanonical, canonical, and microcanonical perspective. It turns out that the microcanonical description is particularly advantageous as it allows for unraveling details of the phase-separation transition in the thermodynamic region, where the temperature is not a suitable external control parameter anymore.

  13. Design for Reliability: Case Studies in Manufacturing Process Synthesis Y. Lawrence Yao*, and Chao Liu

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Design for Reliability: Case Studies in Manufacturing Process Synthesis Y. Lawrence Yao*, and Chao of manufacturing process design is to determine a set of process parameters for a manufacturing task. The design. Such a methodology is illustrated in case studies involving process design of laser forming of sheet metal, in which

  14. Process reengineering for the product development process at an analytical instrument manufacturer

    E-Print Network [OSTI]

    Tandon, Shubhang

    2014-01-01T23:59:59.000Z

    In an analytical instrument manufacturing company, the new product development process was analyzed with the objective of reducing time to market, to full scale production of new products and to improve project management ...

  15. ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton GIT 2009

    E-Print Network [OSTI]

    Colton, Jonathan S.

    illegitimi carborundum ver. 1 #12;ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT

  16. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01T23:59:59.000Z

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  17. ME 4210: Manufacturing Processes and Engineering -Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    or both · Open or closed (flash) · Key additional limitation ­ die pressure #12;ME 4210: ManufacturingME 4210: Manufacturing Processes and Engineering - Prof. J.S. Colton © GIT 2011 1 Topical Course Review No warranty as to completeness #12;ME 4210: Manufacturing Processes and Engineering - Prof. J

  18. Thermodynamics and kinetics of competing aggregation processes in a simple model system

    E-Print Network [OSTI]

    Berry, R. Stephen

    Thermodynamics and kinetics of competing aggregation processes in a simple model system Ambarish 8 November 2007 A simple model system has been used to develop thermodynamics and kinetics for bulk and thermodynamics of the processes and to infer the conditions in which one process dominates another, in the high

  19. Carbon dioxide capture from a cement manufacturing process

    DOE Patents [OSTI]

    Blount, Gerald C. (North Augusta, SC); Falta, Ronald W. (Seneca, SC); Siddall, Alvin A. (Aiken, SC)

    2011-07-12T23:59:59.000Z

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  20. F i W ldi PFusion Welding -Processes ME 6222: Manufacturing Processes and Systems

    E-Print Network [OSTI]

    Colton, Jonathan S.

    F i W ldi PFusion Welding - Processes ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 1 #12;Fusion weldingFusion welding · Intimate interfacial contact by using a liquid of substantiallyg q y similar composition to the base materials. · Heat + filler material = weld· Heat + filler

  1. Modular Process Equipment for Low Cost Manufacturing of High...

    Broader source: Energy.gov (indexed) [DOE]

    information Energy & Environmental Solutions Alternative Energy Products Overview 2 Cost of manufacturing Cycling lifetime of high capacity materials Prismatic cell...

  2. Cycle-to-cycle control of multiple input-multiple output manufacturing processes

    E-Print Network [OSTI]

    Rzepniewski, Adam K. (Adam Kamil), 1976-

    2005-01-01T23:59:59.000Z

    In-process closed-loop control of many manufacturing processes is impractical owing to the impossibility or the prohibitively high cost of placing sensors and actuators necessary for in-process control. Such processes are ...

  3. Solid electrolyte material manufacturable by polymer processing methods

    DOE Patents [OSTI]

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18T23:59:59.000Z

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  4. Process for manufacturing a lithium alloy electrochemical cell

    DOE Patents [OSTI]

    Bennett, William R. (North Olmstead, OH)

    1992-10-13T23:59:59.000Z

    A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

  5. In Proceedings of CONALD'98, June 1998, Pittsburgh Reinforcement learning for realistic manufacturing processes

    E-Print Network [OSTI]

    Kröse, Ben

    learning and manufacturing pro­ cesses. In an ``extended appendix'' some additional information manufacturing processes Stephan ten Hagen ? and Ben Kr¨ose Department of Mathematics, Computer Science, Physics This manuscript is a submission to the workshop ``Machine Learning and Reinforce­ ment Learning for Manufacturing

  6. SYSTEM APPROACH-BASED BAYESIAN NETWORK TO AID MAINTENANCE OF MANUFACTURING PROCESS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for manufacturing systems. In addition, recent works on system safety and Bayesian Networks (BNs) are developedSYSTEM APPROACH-BASED BAYESIAN NETWORK TO AID MAINTENANCE OF MANUFACTURING PROCESS Weber P., Suhner explores a new methodology to develop Bayesian Network-based diagnosis and prognosis aids for manufacturing

  7. Sustainability Indicators for Discrete Manufacturing Processes Applied to Grinding Technology

    E-Print Network [OSTI]

    Linke, Barbara S.; Corman, Gero J.; Dornfeld, David A.; Tönissen, Stefan

    2013-01-01T23:59:59.000Z

    Environmental pillar of sustainability All energy generationsustainability indicators INTRODUCTION Manufacturing has a large impact on worldwide energywith the same energy, E A = E B = E 0 , both sustainability

  8. ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2011 1 Rapid Prototyping ver. 1 #12;ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2011 2 Process · Additive fabrication ­ material is added, not removed · Direct fabrication from a CAD file · Layered

  9. The inverse problems of wing panel manufacture processes

    SciTech Connect (OSTI)

    Oleinikov, A. I., E-mail: a.i.oleinikov@mail.ru [Komsomolsk-on-Amur State Technical University, Lenina prospect 27, Komsomolsk-on-Amur, 681013, Russian Federation, and Institute of Machinery and Metallurgy Far Eastern Branch of the Russian Academy of Sciences, Metallurgov Street 1, Komsomolsk-on-Am (Russian Federation); Bormotin, K. S., E-mail: cvmi@knastu.ru [Komsomolsk-on-Amur State Technical University, Lenina prospect 27, Komsomolsk-on-Amur, 681013, Russian Federation (Russian Federation)

    2013-12-16T23:59:59.000Z

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  10. Manufacturing processes and molding of fiber-reinforced polyetheretherketone

    SciTech Connect (OSTI)

    Kempe, G.; Krauss, H. (DLR, Stuttgart (West Germany))

    1991-04-01T23:59:59.000Z

    The paper presents and discusses cetain procedures for manufacturing components from continuous fiber reinforced thermoplastics using carbon fiber-reinforced polyetheretherketone (PEEK). The manufacturing quality achieved has been examined and compared with the aid of bending tests and micrographs. Some thermal decomposition tests were also done. 5 refs.

  11. ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Definition · A microscopic mixture of two or more different materials. One typically being the continuous 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2011 11 #12;Stealth Ships ME 4210-up Material on stiffening structure Vacuum bag and fittings attached #12;ME 4210: Manufacturing Processes

  12. ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    solubility and porosity · Defects · Design rules · Economics #12;ME 6222: Manufacturing Processes and Systems with charge · steel making in blast furnace -mix coke with steel · Furnace material - refractory ­ high;Melting Time · Estimate by · Take into account oven efficiency ME 6222: Manufacturing Processes

  13. New Weld Process Increases Efficiency of Automotive Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department’s Oak Ridge National Laboratory (ORNL) formed a partnership with Eagle Bend Manufacturing to create a car door that is lighter and safer. With $1,500,000 in funding support...

  14. Sustainability Indicators for Discrete Manufacturing Processes Applied to Grinding Technology

    E-Print Network [OSTI]

    Linke, Barbara S.; Corman, Gero J.; Dornfeld, David A.; Tönissen, Stefan

    2013-01-01T23:59:59.000Z

    Proceedings of NAMRI/SME, Vol. 41, 2013 manufacturing,Proceedings of NAMRI/SME, Vol. 41, 2013 Sustainability3]. Proceedings of NAMRI/SME, Vol. 41, 2013 In the last

  15. Numerical and experimental analyses of resin infusion manufacturing processes of composite materials

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Numerical and experimental analyses of resin infusion manufacturing processes of composite SAS, 38630 Les Aveničres, France Abstract: Liquid Resin Infusion (LRI) processes are promising between the deformations of the porous medium and the resin flow during infusion [1

  16. 2.830J Control of Manufacturing Processes (SMA 6303), Spring 2004

    E-Print Network [OSTI]

    Hardt, D. E. (David E.)

    The objective of this subject is to understand the nature of manufacturing process variation and the methods for its control. First, a general process model for control is developed to understand the limitations a specific ...

  17. System level analysis and control of manufacturing process variation

    DOE Patents [OSTI]

    Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.

    2005-05-31T23:59:59.000Z

    A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.

  18. Process for the manufacture of 117Sn diethylenetriaminepentaacetic acids

    DOE Patents [OSTI]

    Srivastava, Suresh C. (Setauket, NY); Li, Zizhong (Upton, NY); Meinken, George (Middle Island, NY)

    2003-01-01T23:59:59.000Z

    Novel methods are provided for the manufacture of .sup.117m Sn(Sn.sup.4+) DTPA. The method allows the use of DTPA, a toxic chelating agent, in an approximately 1:1 ratio to .sup.117m Sn(Sn.sup.4+) via either aqueous conditions, or using various organic solvents, such as methylene chloride. A pharmaceutical composition manufactured by the novel method is also provided, as well as methods for treatment of bone tumors and pain associated with bone cancer using the pharmaceutical composition of the invention.

  19. Journal of Manufacturing Processes Vol. 5/No. 1

    E-Print Network [OSTI]

    Bukkapatnam, Satish T.S.

    to Grinding of Shafts Rajkumar Palanna, Manufacturing and Quality Engineering Manager, Honeywell Aerospace of air bearings used in aircraft environ- mental control systems (ECS)--a core competency of Honeywell to aerospace companies such as Honeywell.Air bearings allow machines to reach speeds of more than 100,000 rpm

  20. Low-cost sensor tape for environmental sensing based on roll-to-roll manufacturing process

    E-Print Network [OSTI]

    Gong, Nan-Wei

    We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing based on roll-to-roll manufacturing processes. We experiment with constructing sensors and electronic connections with low-cost ...

  1. Superior Processes at Industrial Equipment Manufacturers Benchmark best practices and performances for next-generation success

    E-Print Network [OSTI]

    Narasayya, Vivek

    Superior Processes at Industrial Equipment Manufacturers Benchmark best practices and performances invest time, effort and resources in establishing the best practices, technology systems and solutions at a pace faster than the competition. · Engaged people/human capital acquisition, development

  2. The development of a thin-film rollforming process for pharmaceutical continuous manufacturing

    E-Print Network [OSTI]

    Slaughter, Ryan (Ryan R.)

    2013-01-01T23:59:59.000Z

    In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

  3. Manufacturing conductive patterns on polymeric substrates : development of a microcontact printing process

    E-Print Network [OSTI]

    Hale, Melinda (Melinda Rae)

    2013-01-01T23:59:59.000Z

    The focus of this research was to develop a process suitable for creating very high resolution conductive patterns on polymer substrates, in a way that can be scaled to high volume manufacturing. The original motivation ...

  4. ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Thermit · Steel and cast iron welding · 3/4 Fe3O4 + 2 Al -> 9/4 Fe + Al2O3 + heat · 3 FeO + 2 Al -> 3 Fe: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2011 18 Thermit · Copper, brass and bronze welding: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2011 19 Thermit · Oxides of nickel, chromium

  5. Improving Product and Manufacturing Process Design through a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enable more accurate modeling of machining processes, which will result in improved productivity. Graphic credit Third Wave Systems. fluid. This inefficient trial-and-error process...

  6. Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Monitoring the resin infusion manufacturing process under industrial environment using the Liquid Resin Infusion process under industrial environment is proposed. To detect the resin front; Liquid Resin Infusion. #12;2 1. Introduction Recently, Liquid Composite Molding (LCM) processes have been

  7. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  8. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  9. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09T23:59:59.000Z

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  10. Process for the manufacture of carbon fibers and feedstock therefor

    SciTech Connect (OSTI)

    Sawran, W.R.; Turrill, F.H.; Newman, J.W.; Hall, N.W.; Ward, C.

    1987-06-09T23:59:59.000Z

    This patent describes a petroleum pitch derived from residuum from the catalytic cracking of petroleum, especially adapted for use in the manufacture of carbon fibers, with reduced stabilization time, the pitch comprising an aromatic enriched petroleum pitch containing about 20 to about 40 mole percent alpha hydrogens, based on the moles of hydrogen present in the pitch, having a softening point of at least about 250/sup 0/C, a xylene insolubles content of about 15% to about 40% by weight, a quinoline insolubles content of about 0% to about 5.0% by weight, a sulfur content of about 0.1 to about 4% by weight, a coking value of 65 to 90 weight % and a mesophase content of 0 to about 5% by weight.

  11. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect (OSTI)

    Roy Scandrol

    2003-07-01T23:59:59.000Z

    This quarterly report covers the period from April 1st, 2003 through June 30th, 2003. It covers; technical development, permitting status, engineering status, construction status, operations summary and marketing support activities for this period.

  12. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect (OSTI)

    Roy O. Scandrol

    2005-08-05T23:59:59.000Z

    This quarterly report covers the period from April 1, 2005 through June 30, 2005. It covers: technical development, permitting status, engineering status, construction status, operations summary and marketing support activities for this period.

  13. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect (OSTI)

    Roy Scandrol

    2004-11-01T23:59:59.000Z

    This quarterly report covers the period from July 1st, 2004 through September 30th, 2004. It covers: technical development, permitting status, engineering status, construction status, operations summary and marketing support activities for this period. Plant startup, including equipment and system debugging, is underway. Minor adjustments to the SDA feed system, pug mill, and extruder were completed. Testing of admixtures to prevent the wetted SDA from sticking is continuing. The power plant is implementing a lime optimization program to reduce the calcium hydroxide values in the ash.

  14. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    SciTech Connect (OSTI)

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2014-02-18T23:59:59.000Z

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  15. New Weld Process Increases Efficiency of Automotive Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Office (VTO) researchers at ORNL developed a non-destructive, infrared thermography-based system for evaluating weld quality. The new process enables automotive...

  16. ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    2011 9 Friction stir welding · used for aluminum · requires no filler · low distortion · low Processes and Engineering Prof. J.S. Colton © GIT 2011 10 Friction Stir Welding #12;ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2011 11 Friction Stir Welding FSW Normal weld #12;ME 4210

  17. DURABILITY COMPARISON AND LIFE PREDICTIONS OF COMPETING MANUFACTURING PROCESSES: AN EXPERIMENTAL STUDY OF

    E-Print Network [OSTI]

    Fatemi, Ali

    processes. These include forged steel, cast aluminum, and cast iron knuckles. Fatigue behavior is a key steel and cast aluminum knuckles. Finite element analysis of the steering knuckles was also conducted with the experimental component test results. INTRODUCTION Manufacturing processes face major competitions in automotive

  18. Journal of Manufacturing Processes Vol. 6/No. 2

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    interaction between the plasma, confined medium, coating layer, and processed metal, is compared with two), such as microelectromechanical actuators, micro-gears, mi- cro-switches, and microchannels, wearing and fa- tigue performance

  19. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30T23:59:59.000Z

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  20. Process for manufacture of thick film hydrogen sensors

    DOE Patents [OSTI]

    Perdieu, Louisa H. (Overland Park, KS)

    2000-09-09T23:59:59.000Z

    A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

  1. COMPARATIVE DURABILITY STUDY OF COMPETING MANUFACTURING PROCESS TECHNOLOGIES

    E-Print Network [OSTI]

    Fatemi, Ali

    , cast aluminum, and cast iron knuckles. The connecting rods evaluated consisted of forged steel the adoption of optimum materials and components in automotive industry. Automotive designers have a wide range of materials and processes to select from. Steel forgings are in competition with aluminum forgings

  2. ISO9000 BASED ADVANCED QUALITY APPROACH FOR CONTINUOUS IMPROVEMENT OF MANUFACTURING PROCESSES

    E-Print Network [OSTI]

    Boyer, Edmond

    improvement, Modelling 1. INTRODUCTION The importance of Total Quality Management TQM has been considerably in order to advance towards total quality. Advance can be developed on different levelsISO9000 BASED ADVANCED QUALITY APPROACH FOR CONTINUOUS IMPROVEMENT OF MANUFACTURING PROCESSES DEEB

  3. F i W ldiFusion Welding ME 4210: Manufacturing Processes and Engineering

    E-Print Network [OSTI]

    Colton, Jonathan S.

    F i W ldiFusion Welding ver. 1 ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 1 #12;Fusion weldingFusion welding · Intimate interfacial contact by using a liquid of substantiallyg q y similar composition to the base materials. · Heat + filler material = weld· Heat + filler

  4. Phase Transitions, Curve Evolution, and the Control of Semiconductor Manufacturing Processes

    E-Print Network [OSTI]

    Given a material that may exist in either of two phases, how will the boundaries between the phases of the region of phase change vanishes. The motion of the sharp interface may be studied through the limitingPhase Transitions, Curve Evolution, and the Control of Semiconductor Manufacturing Processes Jordan

  5. ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    temperatures, easy to diffusion bond. · Iron, titanium and copper also can be diffusion bonded, because · Diffusion bonding · Soldering and brazing · Fusion welding #12;ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2011 3 Diffusion bonding · High pressure and temperature for extended periods

  6. everage manufacturers use a clever process known as crossflow filtration1

    E-Print Network [OSTI]

    Brainerd, Elizabeth

    B everage manufacturers use a clever process known as crossflow filtration1 to produce sparkling. Onpage439ofthisissue,Sandersonandcol- leagues2 reportthatsomefishspeciesalsouse crossflow filtration of precisely how cross- flow filtration in fishes works. In fact, although crossflow filtration has been

  7. Low-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process

    E-Print Network [OSTI]

    Abstract-- We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing connections with low-cost conductive inkjet printed copper traces. Our first attempt is to fabricate humidityLow-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process Nan

  8. Department of Industrial Engineering Spring 2012 Equipment Jack Manufacturing Process Improvement at CIU -Global Project

    E-Print Network [OSTI]

    Demirel, Melik C.

    it to the current system's capacity Perform FMEA to conclude the top events critical to quality for the assembly collection for both EWMA, FMEA, and manufacturing systems Outcomes New, standardized process increased forecast schedules, orders, and capabilities. FMEA illustrates assembly steps that are crucial to quality

  9. Hot Isostatic Press Manufacturing Process Development for Fabrication of RERTR Monolithic Fuel Plates

    SciTech Connect (OSTI)

    Crapps, Justin M. [Los Alamos National Laboratory; Clarke, Kester D. [Los Alamos National Laboratory; Katz, Joel D. [Los Alamos National Laboratory; Alexander, David J. [Los Alamos National Laboratory; Aikin, Beverly [Los Alamos National Laboratory; Vargas, Victor D. [Los Alamos National Laboratory; Montalvo, Joel D. [Los Alamos National Laboratory; Dombrowski, David E. [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory

    2012-06-06T23:59:59.000Z

    We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bonding interface.

  10. Numerical and experimental analyses of resin infusion manufacturing processes of composite materials

    E-Print Network [OSTI]

    Wang, Peng; Molimard, Jérôme; Vautrin, Alain; Minni, Jean-Christophe; 10.1177/0021998311421990

    2012-01-01T23:59:59.000Z

    Liquid resin infusion (LRI) processes are promising manufacturing routes to produce large, thick, or complex structural parts. They are based on the resin flow induced, across its thickness, by a pressure applied onto a preform/resin stacking. However, both thickness and fiber volume fraction of the final piece are not well controlled since they result from complex mechanisms which drive the transient mechanical equilibrium leading to the final geometrical configuration. In order to optimize both design and manufacturing parameters, but also to monitor the LRI process, an isothermal numerical model has been developed which describes the mechanical interaction between the deformations of the porous medium and the resin flow during infusion.1, 2 With this numerical model, it is possible to investigate the LRI process of classical industrial part shapes. To validate the numerical model, first in 2D, and to improve the knowledge of the LRI process, this study details a comparison between numerical simulations and...

  11. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12T23:59:59.000Z

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  12. ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Processes and Systems Prof. J.S. Colton © GIT 2011 9 Forging pressure ­ sliding region h x 2011 10 Average forging pressure ­ sliding k x k x k x x ave x h xh x dx h x x dx k p k p kkk 000 2 exp: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2011 13 Average forging pressure ­ all sliding

  13. Journal of Manufacturing Processes 14 (2012) 416424 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Rogers, John A.

    2012-01-01T23:59:59.000Z

    Journal of Manufacturing Processes 14 (2012) 416­424 Contents lists available at SciVerse ScienceDirect Journal of Manufacturing Processes journal homepage: www.elsevier.com/locate/manpro Technical paper A prototype printer for laser driven micro-transfer printing Reza Saeidpourazara , Michael D. Sangidb , John A

  14. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Nguyen Minh; Kurt Montgomery

    2004-10-01T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  15. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect (OSTI)

    George Atanasoff

    2010-10-29T23:59:59.000Z

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

  16. D f ti P iDeformation Processing ME 4210: Manufacturing Processes and Engineering

    E-Print Network [OSTI]

    Colton, Jonathan S.

    (psi) stickingsliding sliding friction hill 6000 8000 10000 pressure( xk xk 0 2000 4000 Forgingp P and Engineering Prof. J.S. Colton © GIT 2009 13 #12;Forging Ex 1 5Forging - Ex. 1-5 ti kilidi sliding 10000 12000(sticking) P(sliding) 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Distance from forging edge (in) F ME 4210: Manufacturing

  17. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 13, NO. 2, MAY 2000 181 Evaluating the Impact of Process Changes on

    E-Print Network [OSTI]

    Rubloff, Gary W.

    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 13, NO. 2, MAY 2000 181 Evaluating--Cluster tools are highly integrated machines that can perform a sequence of semiconductor manufacturing. In addition, we present an integrated simulation model that in- cludes a process model. For a given scheduling

  18. Controlled Thermal-Mechanical Processing of Tubes and Pipes for Enhanced Manufacturing and Performance

    SciTech Connect (OSTI)

    Kolarik, Robert V.

    2005-11-11T23:59:59.000Z

    The Alloy Steel Business of The Timken Company won an award for the controlled thermo-mechanical processing (CTMP) project and assembled a strong international public/private partnership to execute the project. The premise of the CTMP work was to combine Timken's product understanding with its process expertise and knowledge of metallurgical and deformation fundamentals developed during the project to build a predictive process design capability. The CTMP effort succeeded in delivering a pc-based capability in the tube optimization model, with a virtual pilot plant (VPP) feature to represent the desired tube making process to predict the resultant microstructure tailored for the desired application. Additional tasks included a system for direct, online measurement of grain size and demonstration of application of CTMP via robotically enhanced manufacturing.

  19. 304 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 4, NO. 4, NOVEMBER 1991 A Process Control Methodology Applied to

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    304 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 4, NO. 4, NOVEMBER 1991 A Process.Moran was with the Massachusetts Institute of Technology. Cam- bridge, MA 02139. He is now with McKinsey and Company, Inc., San

  20. The critical role of manufacturing-process innovation on product development excellence in high-technology companies

    E-Print Network [OSTI]

    Duarte, Carlos E. A., 1962-

    2004-01-01T23:59:59.000Z

    Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

  1. VirtuCast: Multicast and Aggregation with In-Network Processing

    E-Print Network [OSTI]

    Schmid, Stefan

    by network (functions) virtualization [9] and software-defined networking, e.g., #12;(a) 5 × 5 Grid Topology (b) Steiner Arborescence (c) Virtual Arborescence Fig. 1: An aggregation example on a 5 × 5 grid and storage resources available at middleboxes in datacenters [5], in universal nodes, or in distributed

  2. Process for manufacture of inertial confinement fusion targets and resulting product

    DOE Patents [OSTI]

    Masnari, Nino A. (Ann Arbor, MI); Rensel, Walter B. (Ann Arbor, MI); Robinson, Merrill G. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI); Wise, Kensall D. (Ann Arbor, MI); Wuttke, Gilbert H. (Ypsilanti Township, Washtenaw County, MI)

    1982-01-01T23:59:59.000Z

    An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

  3. Design and Development of a Layer-Based Additive Manufacturing Process

    E-Print Network [OSTI]

    of Metal Parts of Designed Mesostructure 2006 NSF Design, Service, and Manufacturing Grantees and Research

  4. INCREASING YIELDS AND BROADENING MARKETS: PROCESS INNOVATIONS IN THE MANUFACTURING OF ENERGY-SAVING WINDOW GLAZINGS

    SciTech Connect (OSTI)

    Mark Burdis; Neil Sbar

    2005-04-01T23:59:59.000Z

    The goal of this project was to develop and implement advanced thin film process technology which would significantly improve the manufacturability of both static and dynamic high performance energy saving coatings for windows. The work done has been aimed at improvements to the process that will result in increases in yield, and this was divided into four main areas, dealing with improvements in substrate preparation methods, reductions in the incidence of problems caused by particulate contamination, use of in-situ optical monitoring to improve process control, and overall system integration to enable simplified, and therefore lower cost operation. Significant progress has been made in each of the areas. In the area of substrate preparation, the enhanced washing techniques which have been developed, in combination with a new inspection technique, have resulted in significant reductions in the number of EC devices which are rejected because of substrate problems. Microscopic inspection of different defects in electrochromic devices showed that many were centered on particles. As a result, process improvements aimed at reducing the incidence of particles throughout the entire process have been implemented. As a result, the average number of defects occurring per unit area has been significantly reduced over the period of this project. The in-situ monitoring techniques developed during this project have become an indispensable part of the processing for EC devices. The deposition of several key layers is controlled as a result of in-situ monitoring, and this has facilitated significant improvements in uniformity and repeatability. Overall system integration has progressed to the stage where the goal of a closed-loop monitoring and control system in within reach, and it is anticipated that this will be achieved during the scale-up phase. There has been a clear increase in the yield occurring over the period of this project (Sept 1999 to September 2003), which is attributable to a range of process improvements implemented as a result of this work. It is anticipated that the yield will increase further as a result of these ongoing programs. The manufacturability of these advanced glazing systems has also been significantly improved, by a variety of different measures such as in-situ monitoring, system integration, and measurements taken to reduce the incidence of defects caused by contamination. It is therefore anticipated that the transfer of this performance to the new coating equipment to be introduced during scale-up to the first manufacturing plant will be reasonably straightforward.

  5. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30T23:59:59.000Z

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

  6. IMAGING-BASED OPTICAL CALIPER FOR OBJECTS IN HOT MANUFACTURING PROCESSES

    SciTech Connect (OSTI)

    Huang, Howard

    2013-04-03T23:59:59.000Z

    OG Technologies, Inc. (OGT), in conjunction with its industrial and academic partners, proposes to develop an �Imaging-Based Optical Caliper (hereafter referred to as �OC�) for Objects in Hot Manufacturing Processes�. The goal is to develop and demonstrate the OC with the synergy of OGT�s current technological pool and other innovations to provide a light weight, robust, safe and accurate portable dimensional measurement device for hot objects with integrated wireless communication capacity to enable real time process control. The technical areas of interest in this project are the combination of advanced imaging, Sensor Fusion, and process control. OGT believes that the synergistic interactions between its current set of technologies and other innovations could deliver products that are viable and have high impact in the hot manufacture processes, such as steel making, steel rolling, open die forging, and glass industries, resulting in a new energy efficient control paradigm in the operations through improved yield, prolonged tool life and improved quality. In-line dimension measurement and control is of interest to the steel makers, yet current industry focus is on the final product dimension only instead of whole process due to the limit of man power, system cost and operator safety concerns. As sensor technologies advances, the industry started to see the need to enforce better dimensional control throughout the process, but lack the proper tools to do so. OGT along with its industrial partners represent the indigenous effort of technological development to serve the US steel industry. The immediate market that can use and get benefited from the proposed OC is the Steel Industry. The deployment of the OC has the potential to provide benefits in reduction of energy waste, CO2 emission, waste water amount, toxic waste, and so forth. The potential market after further expended function includes Hot Forging and Freight Industries. The OC prototypes were fabricated, and were progressively tested on-site in several steel mill and hot forging facilities for evaluation. Software refinements and new calibration procedures were also carried out to overcome the discovered glitches. Progress was presented to the hot manufacture facilities worldwide. Evidence showed a great interest and practical need for this product. OGT is in the pilot commercialization mode for this new development. The R&D team also successfully developed a 3D measurement function with no additional investment of hardware or equipment to measure low or room temperature object dimensions. Several tests were conducted in the reality environment to evaluate the measurement results. This new application will require additional development in product design.

  7. Process for producing an aggregate suitable for inclusion into a radiation shielding product

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

  8. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    energy ef?ciency. Taking the non-continuous nature of discrete part manufacturing and the time independency

  9. Sustainability Indicators for Discrete Manufacturing Processes Applied to Grinding Technology

    E-Print Network [OSTI]

    Linke, Barbara S.; Corman, Gero J.; Dornfeld, David A.; Tönissen, Stefan

    2013-01-01T23:59:59.000Z

    Environmental pillar of sustainability All energy generationsustainability indicators INTRODUCTION Manufacturing has a large impact on worldwide energywith the same energy, E A = E B = E 0 , both sustainability

  10. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L. [comp.

    1993-06-01T23:59:59.000Z

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  11. 390 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 10, NO. 3, AUGUST 1997 Polysilicon RTCVD Process Optimization for

    E-Print Network [OSTI]

    Rubloff, Gary W.

    -conscious manufacturing (ECM) requires efficient utilization of materials and energy with minimum waste emission chemistry, and sensor and control systems, and is validated by our experimental data. Significant 8721505). G. Lu was with the NSF Engineering Research Center for Advanced Electronic Materials Processing

  12. Multi-cusp ion source for doping process of flat panel display manufacturing

    SciTech Connect (OSTI)

    Inouchi, Yutaka, E-mail: inouchi-yutaka@nissin.co.jp; Matsumoto, Takeshi; Dohi, Shojiro; Tanii, Masahiro; Takahashi, Genki; Nishimura, Ippei; Tatemichi, Junichi; Konishi, Masashi; Naito, Masao [FPD Machine Business Center, Nissin Ion Equipment Co., Ltd., Shiga 528-0068 (Japan)] [FPD Machine Business Center, Nissin Ion Equipment Co., Ltd., Shiga 528-0068 (Japan)

    2014-02-15T23:59:59.000Z

    We developed a multi-cusp ion source for Nissin ion doping system iG5 which is used in low temperature poly-crystalline silicon processes for flat panel display (FPD) manufacturing. In this ion source, BF{sub 3} or PH{sub 3} diluted H{sub 2} plasmas are produced and large area ribbon ion beams are extracted. In general, ion ratio of B{sup +} in BF{sub 3} plasma is much smaller than BF{sub 2}{sup +} in multi-cusp ion sources. We developed a new method to increase B{sup +} ratio and obtained mass analyzed B{sup +} target current of 130 mA. We employed newly improved multi-slot type electrodes for the beam extraction system and obtained stable beams with the uniformity of below 3%. In BF{sub 3} plasmas, several undesirable metal fluorides are produced in the plasma chamber and deposited on the electrode system, which cause glitches and poor beam uniformity. We introduce several cleaning methods.

  13. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2003-12-09T23:59:59.000Z

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  14. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Scorey, Clive (Cheshire, CT); Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); German, Randall M. (State College, PA)

    2000-01-01T23:59:59.000Z

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  15. Investigation for determining the curing characteristics of lightweight aggregate concrete

    E-Print Network [OSTI]

    Carlton, Thomas Arlis

    1955-01-01T23:59:59.000Z

    desired gradatiani This burning produces an inert ~ highly porous material that will no longer soften in water gntil after World Mar II ~ the principal use of lightweight aggre- gates was in the manufacture of lightweight aoncrete building bloaks... or not the method of curing is of equal, lesser, or greater inportance for concrete made with lightweight aggregates ~ The prime need for curing concrete is to prevent the loss of water neoessary ta complete the hydratfen process in the os?cent The general...

  16. Project process mapping : evaluation, selection, implementation, and assessment of energy cost reduction opportunities in Manufacturing

    E-Print Network [OSTI]

    Stoddard, Steven J

    2012-01-01T23:59:59.000Z

    Company X uses large amounts of electricity in its manufacturing operations. Electricity prices at selected plants in the company's Region 1 territory rose by over 350% between 2000 and 2011, in part due to increasing ...

  17. Process management principles for increasing the energy efficiency of manufacturing operations

    E-Print Network [OSTI]

    Espindle, L. P. (Leo P.)

    2011-01-01T23:59:59.000Z

    Energy usage is a significant operating cost for manufacturing facilities in the United States, and interest in energy management has been rising of late, 2, 3]. One approach, recommended by the Environmental Protection ...

  18. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    M (2011) Assessment of Energy and Resource Consumption ofAs pointed out above, the energy and resource consumption ofasp Towards energy and resource ef?cient manufacturing: A

  19. Roll-To-Roll Process for Transparent Metal Electrodes in OLED Manufacturing

    SciTech Connect (OSTI)

    Slafer, W. Dennis

    2010-06-02T23:59:59.000Z

    This program will develop and demonstrate a new manufacturing technology that can help to improve the efficiency and reduce the cost of producing the next generation solid-state lighting (OLEDs)for a broad range of commercial applications. This will not only improve US competitiveness in the manufacturing sector but will also result in a positive impact in meeting the Department of Energy’s goal of developing high efficiency lighting while reducing the environmental impact.

  20. An Environmental and Economic Trade-off Analysis of Manufacturing Process Chains to Inform Decision Making for Sustainability

    E-Print Network [OSTI]

    Robinson, Stefanie L.

    2013-01-01T23:59:59.000Z

    Manufacturing. (2011). Sustainability framework model.for Advanced Manufacturing (NACFAM) Sustainability FrameworkScreenshot of NACFAM Sustainability Framework tool (National

  1. Process for manufacturing bis(2-methoxyethyl)-2,3,6,7-tetracyano-1,4,5,8,9,10-hexazaanthracene

    SciTech Connect (OSTI)

    Rasmussen, Paul George; Lawton, Richard Graham

    2014-06-03T23:59:59.000Z

    A process to manufacture substituted tetracyano-hexaazatricyclics with the substitutions occurring at the 9 and 10 hydrogens. The process begins with 2,3-dichloro-5,6-dicyanopyrazine, which is reacted to form the desired tetracyano-hexaazatricyclic. Different process embodiments enable different reaction paths to the desired tetracyano-hexaazatricyclic. Different tetracyano-hexaazatricyclic embodiments include bis(2-methoxyethyl)-2,3,6,7-tetracyano-1,4,5,8,9,10-hexazaanthracene and bis(2-methoxyethoxyethyl)-2,3,6,7-tetracyano-1,4,5,8,9,10-hexazaanthracen- e.

  2. Better Solar Cells and Manufacturing Processes Using NREL's Ultrafast Quantum Efficiency Method (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    Fact sheet on the FlashQE system, a 2011 R&D 100 Award winner. A solid-state optical system by NREL and Tau Science measures solar cell quantum efficiency in less than a second, enabling a suite of new capabilities for solar cell manufacturers.

  3. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect (OSTI)

    Xiaodi Huang; Richard Gertsch

    2005-02-04T23:59:59.000Z

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  4. Data aggregation for capacity management

    E-Print Network [OSTI]

    Lee, Yong Woo

    2004-09-30T23:59:59.000Z

    This thesis presents a methodology for data aggregation for capacity management. It is assumed that there are a very large number of products manufactured in a company and that every product is stored in the database with its standard unit per hour...

  5. "Parametric Process Optimization to Improve the Accuracy of Rapid Prototyped Stereolithography Parts," Jack Zhou, Dan Herscovici & Calvin Chen, International Journal of Machine Tools and Manufacture, No.40, 1-17,1999

    E-Print Network [OSTI]

    Zhou, Jack

    are integrated manufacturing processes that include CAD/CAM, control of laser devices, materials, manufacturing Parts," Jack Zhou, Dan Herscovici & Calvin Chen, International Journal of Machine Tools and Manufacture defaulted and user selected manufacturing parameters. Accuracy is evaluated by dimensional errors, form

  6. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Product Manufacture in a Flexible Manufacturing System Nancypart production under flexible process routings is studiedMachining; Cost; Energy; Flexible Manufacturing INTRODUCTION

  7. The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and

    E-Print Network [OSTI]

    Liu, Y. A.

    Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter

  8. Posted 10/18/11 MANUFACTURING ENGINEER

    E-Print Network [OSTI]

    Heller, Barbara

    manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

  9. Processing Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Science Related to the Electron Beam Melting Additive Manufacturing Process October 14 th , 2014 Ryan Dehoff Metal Additive Manufacturing Thrust Lead Manufacturing...

  10. Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S.Logistical(S3TEC ) |Manufacturing

  11. Manufacturability Study and Scale-Up for Large Format Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    integrators - Original equipment manufacturers * Development of processes, process optimization, manufacturing schemes, materials improvements, diagnostics, and production yield...

  12. Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars

    SciTech Connect (OSTI)

    Villa, Andrea; Mussi, Valerio [Laboratorio MUSP-via Turotti 9, 29122 Piacenza (Italy); Strano, Matteo [Politecnico di Milano-Dipartimento di Meccanica, via La Masa 1, 20156, Milan (Italy)

    2011-05-04T23:59:59.000Z

    The role of an anti-intrusion bar for automotive use is to absorb the kinetic energy of the colliding bodies that is partially converted into internal work of the bodies involved in the crash. The aim of this paper is to investigate the performances of a new kind of anti-intrusion bars for automotive use, filled with metallic foams. The reason for using a cellular material as a filler deals with its capacity to absorb energy during plastic deformation, while being lightweight. The study is the evolution of a previous paper presented by the authors at Esaform 2010 and will present new results and findings. It is conducted by evaluating some key technical issues of the manufacturing problem and by conducting experimental and numerical analyses. The evaluation of materials and shapes of the closed sections to be filled is made in the perspective of a car manufacturer (production costs, weight reduction, space availability in a car door, etc.). Experimentally, foams are produced starting from an industrial aluminium precursor with a TiH{sub 2} blowing agent. Bars are tested in three point bending, in order to evaluate their performances in terms of force-displacement response and other specific performance parameters. In order to understand the role of interface between the inner surface of the tube and the external surface of the foam, different kinds of interface are tested.

  13. Essays on aggregate and individual consumption fluctuations

    E-Print Network [OSTI]

    Hwang, Youngjin

    2006-01-01T23:59:59.000Z

    This thesis consists of three essays on aggregate and individual consumption fluctuations. Chapter 1 develops a quantitative model to explore aggregate and individual consumption dynamics when the income process exhibits ...

  14. Freese-casting as a Novel Manufacturing Process for Fast Reactor Fuels

    SciTech Connect (OSTI)

    Wegst, Ulrike G.K.; Allen, Todd; Sridharan, Kumar

    2014-04-07T23:59:59.000Z

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reqctors requires novel fuel types based on new materials and designs that can acieve higher performance requirements (higher burn up, higher power, and greator margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a welldefined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  15. Process reengineering for new product introduction at an analytical instrument manufacturing firm

    E-Print Network [OSTI]

    Ranjan, Aditya

    2014-01-01T23:59:59.000Z

    The process of transforming Research and Development knowledge to successfully introducing new products in the market forms a key competency of an innovative company. This new product introduction process was studied at ...

  16. Multiple Input-Multiple Output Cycle-to-Cycle Control of Manufacturing Processes

    E-Print Network [OSTI]

    Rzepniewski, Adam K.

    Cycle-to-cycle control is a method for using feedback to improve product quality for processes that are inaccessible within a single processing cycle. This limitation stems from the impossibility or the prohibitively high ...

  17. Development of a hot isostatic pressing process for manufacturing silicon carbide particulate reinforced iron 

    E-Print Network [OSTI]

    Oakeson, David Oscar

    1992-01-01T23:59:59.000Z

    to aluminum, titanium, and some other metals and alloys. However, information obtained in processing iron can be used in developing guidelines for processing other metals. For example, the processing temperature as a fraction of the melting temperature... processes can be used for particulate reinforced MMCs which would break whisker or fiber reinforcements. ~' Conse- quently, particulate reinforced MMCs have appeared in other industries and have been demonstrated in applications including aluminum...

  18. VOLUME 88, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 17 JUNE 2002 Universal Attractors of Reversible Aggregate-Reorganization Processes

    E-Print Network [OSTI]

    Timme, Marc

    aggregates from different initial structures by diffusive reorganization [M. Filoche and B. Sapoval, Phys. This rearrangement is appropriately modeled by processes exhibiting reversible dynamics [1,3,5]. Recently, Filoche

  19. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  20. ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2009

    E-Print Network [OSTI]

    Colton, Jonathan S.

    ­ Air (oxygen), vacuum, inert gas (argon) · Heating ­ External - electric, gas, oil ­ Internal Prof. J.S. Colton © GIT 2009 11 Processes · Sand · Shell · Plaster · Ceramic · Investment · Lost foam Metals processed by casting · Sand casting ­ 60% · Investment casting ­ 7% · Die casting ­ 9% · Permanent

  1. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Energy Savers [EERE]

    ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing:...

  2. RELIABILITY: FALLACY OR REALITY? AS CHIP ARCHITECTS AND MANUFACTURERS PLUMB EVER-SMALLER PROCESS

    E-Print Network [OSTI]

    Minnesota, University of

    fluctuations are one type of process variation. Second, there are voltage variations, such as voltage droops droops are an example of this type of fault. N Permanent faults remain in the system until a corrective

  3. Application of variation risk management processes in commercial aircraft design and manufacture

    E-Print Network [OSTI]

    Parkins, Michael A. (Michael Andrew), 1976-

    2004-01-01T23:59:59.000Z

    Companies and academics have known for many years that reducing variation in production processes can decrease production cost, increase product quality, and have substantial impact on overall profitability. Tools to help ...

  4. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect (OSTI)

    Geisz, J. F.

    2012-11-01T23:59:59.000Z

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  5. Interpreting the Aggregation Kinetics of Amyloid Peptides

    E-Print Network [OSTI]

    Caflisch, Amedeo

    Amyloid fibrils are insoluble mainly -sheet aggregates of proteins or peptides. The multi-step process) and amyloid-protected states, is used to investigate the kinetics of aggregation and the pathways of fibril state. The minimal-size aggregate able to form a fibril is generated by collisions of oligomers

  6. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    SciTech Connect (OSTI)

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29T23:59:59.000Z

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  7. Process for the manufacture of an attrition resistant sorbent used for gas desulfurization

    DOE Patents [OSTI]

    Venkataramani, Venkat S.; Ayala, Raul E.

    2003-09-16T23:59:59.000Z

    This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.

  8. Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors

    E-Print Network [OSTI]

    Wang, Peng; Drapier, Sylvain; Vautrin, Alain; Minni, Jean-Christophe; 10.1177/0021998311410479

    2012-01-01T23:59:59.000Z

    A novel direct approach to detect the resin flow front during the Liquid Resin Infusion process under industrial environment is proposed. To detect the resin front accurately and verify the results, which are deduced from indirect micro-thermocouples measurements, optical fiber sensors based on Fresnel reflection are utilized. It is expected that the results derived from both techniques will lead to an improvement of our understanding of the resin flow and in particular prove that micro-thermocouples can be used as sensors as routine technique under our experimental conditions. Moreover, comparisons with numerical simulations are carried out and experimental and simulated mold filling times are successfully compared.

  9. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    DOE Patents [OSTI]

    Deevi, Seetharama C. (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); Sikka, Vinod K. (Oak Ridge, TN); Hajaligol, Mohammed R. (Richmond, VA)

    2000-01-01T23:59:59.000Z

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  10. An Environmental and Economic Trade-off Analysis of Manufacturing Process Chains to Inform Decision Making for Sustainability

    E-Print Network [OSTI]

    Robinson, Stefanie L.

    2013-01-01T23:59:59.000Z

    to theoretical energy consumption, and data on potential2006 energy consumption by manufacturers -- data tables.month wise energy consumption/energy bill data for last 12

  11. An Environmental and Economic Trade-off Analysis of Manufacturing Process Chains to Inform Decision Making for Sustainability

    E-Print Network [OSTI]

    Robinson, Stefanie L.

    2013-01-01T23:59:59.000Z

    Additive Calculation and Cost .. 169 6.8.16 Solid Waste 169 6.9 Validation of Welding Building Block .. 170 6.9.1 Comparison to Manufacturing

  12. Method and apparatus for in-process sensing of manufacturing quality

    DOE Patents [OSTI]

    Hartman, Daniel A. (Santa Fe, NM); Dave, Vivek R. (Los Alamos, NM); Cola, Mark J. (Santa Fe, NM); Carpenter, Robert W. (Los Alamos, NM)

    2005-02-22T23:59:59.000Z

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.

  13. Method and Apparatus for In-Process Sensing of Manufacturing Quality

    DOE Patents [OSTI]

    Hartman, D.A.; Dave, V.R.; Cola, M.J.; Carpenter, R.W.

    2005-02-22T23:59:59.000Z

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.

  14. Proceedings of the Second International WLT-Conference on Lasers in Manufacturing 2003,Munich, June 2003 Process Design Of Laser Forming For Three Dimensional Thin Plates

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Proceedings of the Second International WLT-Conference on Lasers in Manufacturing 2003,Munich, June 2003 1 Process Design Of Laser Forming For Three Dimensional Thin Plates J. G. Cheng1 and Y. L. Yao2 1 Engineering, Columbia University Abstract Extensive efforts have been made in analyzing and predicting laser

  15. MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS

    E-Print Network [OSTI]

    Magee, Joseph W.

    MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

  16. NADIM-Travel: A Multiagent Platform for Travel Services Aggregation

    E-Print Network [OSTI]

    Kropf, Peter

    services aggregators are increasingly in demand. A travel services aggregation platform should be able-coordinator agent manages users' requests as well as the response aggregation process. Service agents, on their partNADIM-Travel: A Multiagent Platform for Travel Services Aggregation Houssein Ben-Ameur a , François

  17. Innovation enabling manufacturing processes

    E-Print Network [OSTI]

    Lu, Ilyssa Jing

    2008-01-01T23:59:59.000Z

    Global operations for multinational companies today pose a particularly challenging environment for maintaining fluid knowledge transfer and effective communication methodologies. In a continuous drive for product innovation, ...

  18. Development of a Multi-Step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical

    E-Print Network [OSTI]

    Heider, Patrick L.

    The development and operation of the synthesis and workup steps of a fully integrated, continuous manufacturing plant for synthesizing aliskiren, a small molecule pharmaceutical, are presented. The plant started with ...

  19. An Environmental and Economic Trade-off Analysis of Manufacturing Process Chains to Inform Decision Making for Sustainability

    E-Print Network [OSTI]

    Robinson, Stefanie L.

    2013-01-01T23:59:59.000Z

    and Additive Calculation and Cost .. 169 6.8.16 Solid Waste 169 6.9 Validation of Welding Building Block .. 170 6.9.1 Comparison to Manufacturing

  20. Trajectory-Oriented and Fault-Tolerant-Based Intelligent Process Control for Flexible CIGS PV Module Manufacturing; Final Technical Report, 13 May 2002--30 May 2005

    SciTech Connect (OSTI)

    Simpson, L.; Britt, J.; Birkmire, R.; Vincent, T.

    2005-10-01T23:59:59.000Z

    ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.

  1. Interfuel Substitution and Energy Use in the UK Manufacturing Sector

    E-Print Network [OSTI]

    Steinbuks, Jevgenijs

    of the following reasons. First, studies based on the aggregate data fail to account for large di¤erences in technological requirements for fuel types used in speci?c industries. For ex- ample, most cement kilns today use coal and petroleum coke as primary fuels... in the manufacturing processes. Waverman (1992) pointed out that fuels used by industrial sectors for non-energy purposes, such as coking coal, petrochemical feedstocks, or lubricants, have few available substitutes, and should therefore be excluded from the data...

  2. Manufacturing Spotlight: Boosting American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  3. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Broader source: Energy.gov (indexed) [DOE]

    Technical Assistance 12 Advanced Manufacturing Office (AMO): Purpose Laser Processing for Additive Manufacturing Carbon Fiber from Microwave Assisted Plasma Process AMO's Purpose...

  4. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30T23:59:59.000Z

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  5. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz- [ORNL; Chourey, Aashish [American Magnetics Inc.

    2010-08-01T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  6. Designing a National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

  7. A COMPARISON OF THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 300-M STEEL MANUFACTURED BY THE VACUUM ARC REMELT AND THE ELECTROSLAG REMELT PROCESSES

    E-Print Network [OSTI]

    Lechtenberg, Thomas A.

    2011-01-01T23:59:59.000Z

    AND MECHANICAL PROPERTIES OF 300~M STEEL MANUFACTURED BY THEAND MECHANICAL PROPERTIES OF 300~M STEEL MANUFACTURED BY THEArc Remelt (VAR) 300-M steel were measured, These were

  8. Small file aggregation in a parallel computing system

    DOE Patents [OSTI]

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang

    2014-09-02T23:59:59.000Z

    Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.

  9. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect (OSTI)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30T23:59:59.000Z

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger than 18 micron. Inter-aggregate pores continued to be the dominant flow pathways even at much smaller spacing; intra-aggregate flow was less than 10% of the total flow when the inter- and intra-aggregate pore sizes were comparable. Such studies are making it possible to identify which model upscaling assumptions are realistic and what computational methods are required for detailed numerical investigation of microbial carbon cycling dynamics in soil systems.

  10. Additive Manufacturing: Implications on Research and Manufacturing

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

  11. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    different types of additive manufacturing technologies, suchbe used to model the additive manufacturing process as well.composite manufacturing and 3D printing, are additive. They

  12. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A. (American Magnetics, Inc.)

    2010-05-12T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  13. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  14. Recycling of PET bottles as fine aggregate in concrete

    SciTech Connect (OSTI)

    Frigione, Mariaenrica, E-mail: mariaenrica.frigione@unisalento.i [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2010-06-15T23:59:59.000Z

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365 days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility.

  15. An exploration of materials and methods in manufacturing : shoreline membranes

    E-Print Network [OSTI]

    Chin, Ryan C. C., 1974-

    2000-01-01T23:59:59.000Z

    This thesis is an investigation into the design methodologies and ideologies of manufacturing processes specifically related to automotive design. The conceptualization, prototyping, testing, and manufacturing of cars is ...

  16. Design for manufacturability with regular fabrics in digital integrated circuits

    E-Print Network [OSTI]

    Gazor, Mehdi (Seyed Mehdi)

    2005-01-01T23:59:59.000Z

    Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

  17. automobile part manufacturers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  18. allergenic extract manufacturers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  19. alloy pv manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  20. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  1. 2.852 Manufacturing Systems Analysis, Spring 2004

    E-Print Network [OSTI]

    Gershwin, Stanley

    This course deals with the following topics: Models of manufacturing systems, including transfer lines and flexible manufacturing systems; Calculation of performance measures, including throughput, in-process inventory, ...

  2. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  3. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Plants Challenge Manufacturing R&D Facilities Manufacturing Demonstration Facility Manufacturing Institutes National Additive Manufacturing Innovation Institute - Pilot Now...

  4. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  5. Wireless technology for integrated manufacturing

    SciTech Connect (OSTI)

    Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

    1996-08-01T23:59:59.000Z

    This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

  6. Petrick Technology Trends Of Manufacturing

    E-Print Network [OSTI]

    #12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: · that firms sophisticated modeling and simulation of both new products and production processes; · that additive

  7. MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION

    E-Print Network [OSTI]

    Schumacher, Russ

    MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

  8. 308 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING. VOL. 5. NO. 4. NOVEMBER 1992 Real-Time Statistical Process Control Using Tool

    E-Print Network [OSTI]

    California at Berkeley, University of

    . Many tools and techniques are being used toward this end. Statistical Pro- cess Control (SPC) is prominent among them, as it can help in the timely detection of costly process shifts. Historically, SPC has. To discover this degradation, critical process parameters are monitored using various types of control charts

  9. An Environmental and Economic Trade-off Analysis of Manufacturing Process Chains to Inform Decision Making for Sustainability

    E-Print Network [OSTI]

    Robinson, Stefanie L.

    2013-01-01T23:59:59.000Z

    have a more energy-efficient design, in which electricalan energy and resource efficient process chain design. In J.energy roughing and finish machining, plans for minimum consumable use, efficient spindle/tooling design

  10. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31T23:59:59.000Z

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  11. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Manufacturing Plan for Aminosilicone-based CO{sub 2} Absorption Material

    SciTech Connect (OSTI)

    Vogt, Kirkland

    2013-02-01T23:59:59.000Z

    A commercially cost effective manufacturing plan was developed for GAP-1m, the aminosilicone-based part of the CO{sub 2} capture solvent described in DE-FE0007502, and the small-scale synthesis of GAP-1m was confirmed. The plan utilizes a current intermediate at SiVance LLC to supply the 2013-2015 needs for GE Global Research. Material from this process was supplied to GE Global Research for evaluation and creation of specifications. GE Global Research has since ordered larger quantities (60 liters) for the larger scale evaluations that start in first quarter, 2013. For GE’s much larger future commercial needs, an improved, more economical pathway to make the product was developed after significant laboratory and literature research. Suppliers were identified for all raw materials.

  12. PORTAL Aggregation Analysis and Documentation

    E-Print Network [OSTI]

    Bertini, Robert L.

    PORTAL Aggregation Analysis and Documentation Kristin A. Tufte Portland State University Introduction This document describes the aggregation procedures for PORTAL . Analysis of different aggregation system. Details on the status values and their descriptions can be found in the SWARM documentation

  13. EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING

    E-Print Network [OSTI]

    Boyer, Edmond

    will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

  14. Journal of VLSI Signal Processing 38, 131146, 2004 c 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

    E-Print Network [OSTI]

    Bhattacharyya, Shuvra S.

    applications expressed as synchronous dataflow (SDF) graphs. SDF is a restricted form of dataflow where each transfer of an SDF actor. Good bounds on the CBP parameter can aid an SDF compiler in performing more processing applications; and examine CBP parameterizations for several other practical SDF actors. Keywords

  15. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 14, NO. 3, AUGUST 2001 255 Autonomous On-Wafer Sensors for Process

    E-Print Network [OSTI]

    California at Berkeley, University of

    for such a sensor wafer, including equipment characterization and design, process calibration, and equipment qualification and diag- nosis. In this paper, various sensor architectures, power supplies, communications metrology to in-line metrology. Wafer measurement equipment has been moved, where possible, from stand

  16. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and...

  17. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

  18. Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices

    E-Print Network [OSTI]

    Hum, Philip W. (Philip Wing-Jung)

    2006-01-01T23:59:59.000Z

    Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for ...

  19. Fracture model for cemented aggregates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

    2013-01-01T23:59:59.000Z

    A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

  20. MANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED MANUFACTURING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and an additive process. Manufacturability indexes are calculated at the tool design stage, these indexes provide an accurate view of which areas of the tool will advantageously be machined or manufactured by an additiveMANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED

  1. Accepted Manuscript Sustainable manufacturing: Evaluation and Modeling of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in additive manufacturing Florent Le Bourhisa · Olivier Kerbrata Jean-Yves Hascoeta · Pascal Mognola Accepted of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologies such as Direct Additive Laser Manufac- turing allow us to manufacture functional

  2. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    Robert McEwan GE America Makes The National Accelerator for Additive Manufacturing & 3D Printing Advanced Manufacturing Office (AMO) manufacturing.energy.gov 13 Manufacturing...

  3. Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8

    SciTech Connect (OSTI)

    Arora, J.L.; Tsaros, C.L.

    1980-02-01T23:59:59.000Z

    This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

  4. Exploring OLAP Aggregates with Hierarchical Visualization Techniques

    E-Print Network [OSTI]

    Scholl, Marc H.

    interact with data in a predominantly "drill-down" fashion, i.e. from coarse grained aggregates towards-Line Analytical Processing (OLAP) has evolved into a core technology for comprehensive data analysis in business to be analyzed impose new requirements on OLAP systems. The goal of in- tegrating data from heterogeneous sources

  5. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    process control charts (SPC) for product quality and processstatistical process control (SPC) charts. The concept is toMethods Univariate SPC for semiconductor manufacturing

  6. anionic surfactant aggregation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZnO nanostructures formation from zinc nanoclasters size of several nanometers to ZnO fractal aggregates (FA) size up to hundreds of nanometers. Determinants of this process are...

  7. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  8. Manufacture of finely divided carbon

    SciTech Connect (OSTI)

    Walker, D.G.

    1980-01-22T23:59:59.000Z

    Finely divided carbon is manufactured by a process producing a gaseous stream containing carbon monoxide by reacting coal and air in a slagging ash gasifier, separating carbon monoxide from the gaseous mixture, and disproportionating the carbon monoxide to produce finely divided carbon and carbon dioxide, the latter of which is recycled to the gasifier.

  9. RRR Niobium Manufacturing Experience

    SciTech Connect (OSTI)

    Graham, Ronald A. [ATI Wah Chang, An Allegheny Technologies Company, Albany, Oregon 97321 (United States)

    2007-08-09T23:59:59.000Z

    ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

  10. The Advanced Manufacturing Partnership

    E-Print Network [OSTI]

    Das, Suman

    ;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

  11. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    to the manufacturing sector in Western Michigan. In addition to serving as director of the MRC, Dr. Patten is alsoManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  12. Cost Effective Cooling Strategies for Manufacturing Facilities

    E-Print Network [OSTI]

    Kumar, R.

    there are many similarities. In addition to the above environmental conditions for the process/machines and workers, cost effective design of manufacturing facilities must also address maintainability, sanitation, durability, energy conservation and budgetary...

  13. Photographic lens manufacturing and production technologies

    E-Print Network [OSTI]

    Kubaczyk, Daniel Mark

    2011-01-01T23:59:59.000Z

    An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

  14. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Environmental Management (EM)

    12:00 pm - 1:30 pm Lunch - On Your Own 1:30pm - 3:45pm Breakout Sessions - 4 Groups Blue Team A (Washington I) - Manufacturing Process Technology Facilitators - Joe Cresko and...

  15. Analyzing sampling methodologies in semiconductor manufacturing

    E-Print Network [OSTI]

    Anthony, Richard M. (Richard Morgan), 1971-

    2004-01-01T23:59:59.000Z

    This thesis describes work completed during an internship assignment at Intel Corporation's process development and wafer fabrication manufacturing facility in Santa Clara, California. At the highest level, this work relates ...

  16. Journal of Mechanisms and Robotics Hybrid Deposition Manufacturing: Design

    E-Print Network [OSTI]

    Dollar, Aaron M.

    combines additive manufacturing (AM) processes such as FDM with material deposition and embedded components applications. Additive manufacturing techniques are used to print both permanent components and sacrificial, leveraging the benefits of additive manufacturing and expanding the range of design options for robotic

  17. Advanced Manufacturing Use Cases and Early Results in GENI Infrastructure

    E-Print Network [OSTI]

    Calyam, Prasad

    for controlling remote processes in manufacturing facilities. In addition, there is a need to suitably configureAdvanced Manufacturing Use Cases and Early Results in GENI Infrastructure Alex Berryman, Prasad to advanced manufacturing communities are exciting prospects due to the growth of the global marketplace

  18. automatic polishing process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mold manufacturing process includes polishing operations when surface molds and tooling manufacturers. HSM in particular has made it possible to reduce mold manufacturing...

  19. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect (OSTI)

    Easoz, J.R.; Herlocher, R.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States))

    1991-12-01T23:59:59.000Z

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  20. Manufacture of radiopharmaceuticals-recent advances

    SciTech Connect (OSTI)

    Krieger, J.K.

    1996-12-31T23:59:59.000Z

    Trends in radiopharmaceutical manufacturing have been influenced by the demands of the regulatory agencies, the demands of the customers, and the ever-increasing complexity of new products. Process improvements resulting from automation in the production of radionuclides for diagnostic imaging products, {sup 99m}/Tc generators, {sup 67}Ga, and {sup 201}Tl have been introduced to enhance compliance with current good manufacturing practices and to improve worker safety, both by reducing dose in accord with as low as reasonably achievable levels of radiation and by providing an ergonomically sound environment. Tighter process control has resulted in less lot-to-lot variability and ensures reliability of supply. Reduced manufacturing lapse time for {sup 99m}Tc generators minimizes decay and conserves the supply of {sup 99}Mo. Automation has resulted in an even greater degree of remote operation and has led to reductions in dose, improved process control, and faster throughput in the manufacture of radionuclides.

  1. Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering

    E-Print Network [OSTI]

    Salustri, Filippo A.

    to component dimension i CT total cost of manufacturing and quality Cpi capability index of last process, and quality, for the sake of achieving a minimal total cost and reducing lead-time. However, in existing workSimultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial

  2. Agile manufacturing from a statistical perspective

    SciTech Connect (OSTI)

    Easterling, R.G. [Sandia National Labs., Albuquerque, NM (United States). New Initiatives Dept.

    1995-10-01T23:59:59.000Z

    The objective of agile manufacturing is to provide the ability to quickly realize high-quality, highly-customized, in-demand products at a cost commensurate with mass production. More broadly, agility in manufacturing, or any other endeavor, is defined as change-proficiency; the ability to thrive in an environment of unpredictable change. This report discusses the general direction of the agile manufacturing initiative, including research programs at the National Institute of Standards and Technology (NIST), the Department of Energy, and other government agencies, but focuses on agile manufacturing from a statistical perspective. The role of statistics can be important because agile manufacturing requires the collection and communication of process characterization and capability information, much of which will be data-based. The statistical community should initiate collaborative work in this important area.

  3. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M [Los Alamos National Laboratory

    2012-08-01T23:59:59.000Z

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  4. DOE Offers Support for Innovative Manufacturing Plant That Will...

    Broader source: Energy.gov (indexed) [DOE]

    of traditional polysilicon purification processes, which will reduce the overall cost of solar modules and panels. At full production, the manufacturing plant is expected to...

  5. Manufacturing R&D for the Hydrogen Economy Workshop Summary

    Broader source: Energy.gov (indexed) [DOE]

    to validate optimal materials and processes * Conduct R&D to manufacture large composite pressure vessels from filament to localized reinforced techniques - localized...

  6. Upcoming Funding Opportunity for Tower Manufacturing and Installation...

    Energy Savers [EERE]

    intends to support partnerships that lead to innovative designs and processes for wind turbine tower manufacturing and turbine system installation. Supported projects will develop...

  7. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  8. Locating Chicago Manufacturing

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Renaissance Council, is among the nation's leading public high schools focused on manufac- turing area's econ- omy, including how important manufacturing is to that economy, which manufac- turing

  9. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing manufacturing industries and result in creative new products. Stronger, more corrosion-resistant and lower cost steel alloys are being developed and commercialized to...

  10. Temporal pulse tailoring in laser manufacturing technologies

    E-Print Network [OSTI]

    Peinke, Joachim

    5 Temporal pulse tailoring in laser manufacturing technologies Razvan Stoian1 , Matthias. Ultrafast lasers have gained momentum in material processing technolo- gies in response to requirements for quality material processing. 5.1 Introduction The demand for precision in laser material processing

  11. Direct Observation of Aggregative Nanoparticle Growth: Kinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size...

  12. Novel Laser-Based Manufacturing of nano-LiFePO4-Based Materials for High Power Li Ion Batteries

    E-Print Network [OSTI]

    Horne, Craig R.; Jaiswal, Abhishek; Chang, On; Crane, S.; Doeff, Marca M.; Wang, Emile

    2006-01-01T23:59:59.000Z

    17-18, 2007 Novel Laser-Based Manufacturing of nano-LiFePO 4laser-based process for synthesizing nanomaterials, NanoParticle Manufacturing (

  13. aggregation aggregate strength: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of these quantum diffusion-limited aggregates vary between 1.43 and 2, depending on the size of the initial wave packet. David B. Johnson; Gonzalo Ordez 2011-11-02 60...

  14. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01T23:59:59.000Z

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  15. Computer-Aided Design & Applications, Vol. 2, No. 6, 2005, pp 747-758 Geometric Optimization Algorithms in Manufacturing

    E-Print Network [OSTI]

    Tang, Kai

    . 1. INTRODUCTION With the advances of manufacturing equipments such as CNC machines and laser Algorithms in Manufacturing Kai Tang Department of Mechanical Engineering Hong Kong University of Science algorithms for several geometric optimization problems in manufacturing processes. We first describe

  16. A new DFM approach to combine machining and additive manufacturing

    E-Print Network [OSTI]

    Kerbrat, Olivier; Hascoët, Jean-Yves; 10.1016/j.compind.2011.04.003

    2011-01-01T23:59:59.000Z

    Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

  17. IT/Automation Cost Reduction in Intel’s Manufacturing Environment

    E-Print Network [OSTI]

    Subirana, Brian

    2004-03-05T23:59:59.000Z

    Intel manufacturing relies heavily on IT and Factory Automation during the manufacturing processes. At Intel, everything from scheduling products on the floor and product delivery systems to statistical process control is ...

  18. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  19. Manufacturing Process Optimization to Improve Stability, Yield and Efficiency of CdS/CdTe PV Devices: Final Report, December 2004 - January 2009

    SciTech Connect (OSTI)

    Sampath, W. S.; Enzenroth, A.; Barth, K.

    2009-03-01T23:59:59.000Z

    The research by Colorado State University advances the understanding of device stability, efficiency, and process yield for CdTe PV devices.

  20. Solder technology in the manufacturing of electronic products

    SciTech Connect (OSTI)

    Vianco, P.T.

    1993-08-01T23:59:59.000Z

    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  1. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deposition Manufacturing 201303127 Methods and Materials for Room Temperature Polymer Additive Manufacturing 201303140 Reactive Polymer Fused Deposition Manufacturing 201303151...

  2. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Broader source: Energy.gov (indexed) [DOE]

    collector Delaminate and reuse release substrate & slit to width ASSEMBLY Approach: Battery Stack Manufacturing Process OPTODOT Energy Storage Solutions Through...

  3. Title of the paper: A new DFM approach to combine machining and additive manufacturing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Title of the paper: A new DFM approach to combine machining and additive manufacturing Authors approach to combine machining and additive manufacturing 1. Introduction In order to stay competitive, technical improvements in additive manufacturing processes provide the opportunity to manufacture real

  4. Using Layered Manufacturing for Scientific Visualization Mike Bailey, Oregon State University

    E-Print Network [OSTI]

    Bailey, Mike

    Manufacturing, on the other hand, is characterized by additive manufacturing processes. They start with nothing, but there are significant advantages to additive manufacturing for scientific visualization: · Extremely complex parts can1 Using Layered Manufacturing for Scientific Visualization Mike Bailey, Oregon State University

  5. Processing Materials Devices and Diagnostics for Thin Film Photovoltaics: Fundamental and Manufacturability Issues; Final Report, 5 September 2001 - 31 May 2008

    SciTech Connect (OSTI)

    Birkmire, R. W.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E.; Dobson, K. D.; Bowden, S.

    2009-04-01T23:59:59.000Z

    The critical issues addressed in this study on CIGS, CdTe, and a-Si modules will provide the science and engineering basis for developing viable commercial processes and improved module performance.

  6. Manufacturing Process Optimization to Improve Stability, Yield and Efficiency of CdS/CdTe PV Devices: Phase II, Annual Technical Report, January 2006 - February 2007

    SciTech Connect (OSTI)

    Sampath, W. S.; Enzenroth, A.; Barth, K.

    2007-05-01T23:59:59.000Z

    We designed, fabricated, installed, and tested a fixture for automated cooling of a substrate in vacuum for optimum processing of the back contact. Large-area devices have 10.9% efficiency.

  7. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced manufacturing and materials technologies for commercial applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood of...

  8. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  9. MCM-C Multichip Module Manufacturing Guide

    SciTech Connect (OSTI)

    Blazek, R.J.; Kautz, D.R.; Galichia, J.V.

    2000-11-20T23:59:59.000Z

    Honeywell Federal Manufacturing & Technologies (FM&T) provides complete microcircuit capabilities from design layout through manufacturing and final electrical testing. Manufacturing and testing capabilities include design layout, electrical and mechanical computer simulation and modeling, circuit analysis, component analysis, network fabrication, microelectronic assembly, electrical tester design, electrical testing, materials analysis, and environmental evaluation. This document provides manufacturing guidelines for multichip module-ceramic (MCM-C) microcircuits. Figure 1 illustrates an example MCM-C configuration with the parts and processes that are available. The MCM-C technology is used to manufacture microcircuits for electronic systems that require increased performance, reduced volume, and higher density that cannot be achieved by the standard hybrid microcircuit or printed wiring board technologies. The guidelines focus on the manufacturability issues that must be considered for low-temperature cofired ceramic (LTCC) network fabrication and MCM assembly and the impact that process capabilities have on the overall MCM design layout and product yield. Prerequisites that are necessary to initiate the MCM design layout include electrical, mechanical, and environmental requirements. Customer design data can be accepted in many standard electronic file formats. Other requirements include schedule, quantity, cost, classification, and quality level. Design considerations include electrical, network, packaging, and producibility; and deliverables include finished product, drawings, documentation, and electronic files.

  10. CIMplementation™: Evaluating Manufacturing Automation

    E-Print Network [OSTI]

    Krakauer, J.

    management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

  11. 11th IFAC Workshop on Intelligent Manufacturing System IMS'13, Sao Paulo, Brazil, May 22-24, 2013 Improving production process performance thanks to neuronal analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    processes is linked to the quality problem. Policies such as Total Quality Management (TQM) are defined.chaprentier@univ-lorraine.fr and andre.thomas@univ-lorraine.fr). Abstract: Product quality level is become a key factor for companies can ensure the required quality thanks to an "on-line quality approch" and proposes a neural network

  12. Turbulent breakage of ductile aggregates

    E-Print Network [OSTI]

    Marchioli, Cristian

    2015-01-01T23:59:59.000Z

    In this paper we study breakage rate statistics of small colloidal aggregates in non-homogeneous anisotropic turbulence. We use pseudo-spectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modelled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, $\\sigma>\\sigma_{cr}$, and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e. breakage occurs as soon as $\\sigma>\\sigma_{cr}$). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.

  13. The design, manufacturing and use of economically friendly injection molds

    E-Print Network [OSTI]

    Buchok, Aaron (Aaron J.)

    2008-01-01T23:59:59.000Z

    Much of the polymer manufacturing done today involves the process of injection molding. It can be difficult to gain experience in the art of designing and building tooling for this process outside of industry. The goal of ...

  14. The efficiency and eco-efficiency of manufacturing

    E-Print Network [OSTI]

    Gutowski, Timothy G.

    2010-01-01T23:59:59.000Z

    In this paper, we review the efficiency of both manufacturing processes and systems over recent decades and compare nano-materials technologies in this context. To a first approximation, nano-materials processes appear to ...

  15. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29T23:59:59.000Z

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  16. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Manufacturing Demonstration Facility Workshop Critical Materials Workshop Agenda Innovative Manufacturing Initiatives Recognition Day...

  17. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  18. Two-Dimensional Infrared Correlation Spectroscopy Study of the Aggregation of Cytochrome c in the Presence

    E-Print Network [OSTI]

    Pezolet, Michel

    Two-Dimensional Infrared Correlation Spectroscopy Study of the Aggregation of Cytochrome c´ cules, Universite´ Laval, Que´ bec, Que´ bec, Canada G1K 7P4 ABSTRACT Two-dimensional infrared-step aggregation process. Finally, the results obtained during the heating period clearly indicate that before

  19. anaerobic aggregates determined: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forest road aggregate 8 Determination of branch fraction and minimum dimension of mass-fractal aggregates G. Beaucage* Materials Science Websites Summary: . Branched aggregates...

  20. THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS

    SciTech Connect (OSTI)

    Wada, Koji [Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan); Tanaka, Hidekazu; Yamamoto, Tetsuo [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Suyama, Toru [Nagano City Museum, Hachimanpara Historic Park, Oshimada, Nagano 381-2212 (Japan); Kimura, Hiroshi, E-mail: wada@perc.it-chiba.ac.jp [Center for Planetary Science (CPS), Chuo-ku Minatojima Minamimachi 7-1-48, Kobe 650-0047 (Japan)

    2011-08-10T23:59:59.000Z

    Collisional growth of dust aggregates is a plausible root of planetesimals forming in protoplanetary disks. However, a rebound of colliding dust aggregates prevents dust from growing into planetesimals. In fact, rebounding aggregates are observed in laboratory experiments but not in previous numerical simulations. Therefore, the condition of rebound between dust aggregates should be clarified to better understand the processes of dust growth and planetesimal formation. We have carried out numerical simulations of aggregate collisions for various types of aggregates and succeeded in reproducing a rebound of colliding aggregates under specific conditions. Our finding is that in the rebound process, the key factor of the aggregate structure is the coordination number, namely, the number of particles in contact with a particle. A rebound is governed by the energy dissipation along with restructuring of the aggregates and a large coordination number inhibits the restructuring at collisions. Results of our numerical simulation for various aggregates indicate that they stick to each other when the mean coordination number is less than 6, regardless of their materials and structures, as long as their collision velocity is less than the critical velocity for fragmentation. This criterion of the coordination number would correspond to a filling factor of {approx}0.3, which is somewhat larger than that reported in laboratory experiments. In protoplanetary disks, dust aggregates are expected to have low bulk densities (<0.1 g cm{sup -3}) during their growth, which would prevent dust aggregates from rebounding. This result supports the formation of planetesimals with direct dust growth in protoplanetary disks.

  1. Processing Materials Devices and Diagnostics for Thin Film Photovoltaics: Fundamental and Manufacturability Issues; Final Report, 5 September 2001 - 31 May 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br BromineProbingProcesses andSubcontract

  2. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger [University of Arizona

    2014-12-17T23:59:59.000Z

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  3. Muffle furnace evaluation of FGD sludge-coal-clay mixtures as potential synthetic aggregates

    E-Print Network [OSTI]

    Pettit, Jesse William

    1978-01-01T23:59:59.000Z

    or returned to the adjacent surface coal mines for disposal. Alternatives to these two methods of disposal are being studied (3, 6, 11). The feasibility of using this material as a raw material in the manufacture of synthetic aggregates has recently been... suitability of synthetic aggregates made from lignite fly ash using a rotary kiln. Lignite or subbituminous coals such as those used are typical of the high-lime or "western" coals that are mined in the western half of the United States. Because of the high...

  4. Effect of Dispersant on Asphaltene Suspension Dynamics: Aggregation and Sedimentation

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    processes, most involving scat- tering, either dynamic light scattering, static light scattering, or neutron on this aggregation behavior through the use of dynamic light scattering, showing that both the amount of dispersant asphaltene suspensions. The light scattering results match well with those obtained through the macroscopic

  5. Medians and Beyond: New Aggregation Techniques for Sensor Networks

    E-Print Network [OSTI]

    Gao, Jie

    databases, Query processing General Terms Algorithms Keywords Sensor Networks, Aggregation, Approximation Algorithms, Dis­ tributed Algorithms # The authors were supported by NSF grant IIS­0121562 and Army Research Organisation grant DAAD19­03­D­0004 through the In­ stitute for Collaborative Biotechnologies. Permission

  6. Medians and Beyond: New Aggregation Techniques for Sensor Networks

    E-Print Network [OSTI]

    Chaudhuri, Soma

    databases, Query processing General Terms Algorithms, Performance Keywords Sensor Networks, Aggregation, Approximation Algorithms, Dis- tributed Algorithms The authors were supported by NSF grant IIS-0121562 and Army Research Organisation grant DAAD19-03-D-0004 through the In- stitute for Collaborative Biotechnologies

  7. Evaluation of superpave fine aggregate specification

    E-Print Network [OSTI]

    Chowdhury, Md. Tahjib-Ul-Arif

    1999-01-01T23:59:59.000Z

    aggregate resistance (CAR) test, image analysis Hough transform, and visual inspection. The results from those tests were compared with the available performance history. The FAA test method does not consistently identify angular, cubical aggregates as high...

  8. A new global approach to design for additive manufacturing R. PONCHE 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A new global approach to design for additive manufacturing R. PONCHE 1 J.Y. HASCOET, O. KERBRAT, P directly through additive manufacturing. It is now accepted that these new processes can increase of these processes, with the Design For Additive Manufacturing (DFAM) concept. In this context, a methodology

  9. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  10. ATS materials/manufacturing

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

    1997-11-01T23:59:59.000Z

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  11. Manufacturing Success Stories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartment of EnergyManagementORNL isManufacturingManufacturing6

  12. Rapid prototyping applications for manufacturing

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Pardo, B.T.; Bryce, E.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-01-01T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{sup TM} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. As participants in the Beta test program for QuickCast{sup TM} resin and software, we experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible using this technology to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. We use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This report will focus on our successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes. 6 refs., 10 figs.

  13. ALTERNATE ACCEPTANCE OF WULFENSTEIN PIT AGGREGATE

    SciTech Connect (OSTI)

    J. W. Keifer

    1999-06-24T23:59:59.000Z

    The purpose of this calculation is to evaluate Wulfenstein fine aggregate for acceptability under ASTM C 33 standard specification.

  14. A decomposition-based approach for the integration of product development and manufacturing system design

    E-Print Network [OSTI]

    Kim, Yong-Suk, 1975-

    2002-01-01T23:59:59.000Z

    Using a structured approach to understand the interaction between product design decisions and manufacturing system design is critical to reflect manufacturing system issues early in the product development process. Early ...

  15. Design of multifunctional paired robots engaged across a thin plate for aircraft manufacturing and maintenance

    E-Print Network [OSTI]

    Karasic, Geoffrey Ian

    2011-01-01T23:59:59.000Z

    The aircraft industry lacks an automated system for wing box manufacturing and maintenance. Currently workers assemble and inspect thousands of fasteners in the wing structure by hand. This manufacturing process consumes ...

  16. Secure and Energy-Efficient Data Aggregation with Malicious Aggregator Identification in Wireless Sensor

    E-Print Network [OSTI]

    Stojmenovic, Ivan

    Secure and Energy-Efficient Data Aggregation with Malicious Aggregator Identification in Wireless. In this paper, we propose a secure and energy-efficient data aggregation scheme that can detect the malicious­13, 2011. c Springer-Verlag Berlin Heidelberg 2011 #12;Secure and Energy-Efficient Data Aggregation 3

  17. Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1998-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

  18. College of Engineering MFS Manufacturing Systems Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    ) The topics will include fundamentals of concurrent engineering, product life cycle, product specificationCollege of Engineering MFS Manufacturing Systems Engineering KEY: # = new course * = course changed of these processes. Lecture, two hours; laboratory; two hours. Prereq: EM 302, EM 313, and engineering standing

  19. 8th Global Conference on Sustainable Manufacturing

    E-Print Network [OSTI]

    Berlin,Technische Universität

    8th Global Conference on Sustainable Manufacturing Architecture for Sustainable Engineering to competent partners in the global village. Sustainability engineering has evolved as a means to meet mankind, Germany Co-Chairman Prof. Dr. N. Ibrahim Abu Dhabi University, UAE for a sustainable product and process

  20. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  1. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  2. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Chiang, Wei-yu Kevin

    an upstream firm, as a result of charging a wholesale price above the marginal cost, induces its intermediary Dynamics and Channel Efficiency in Durable Product Pricing and Distribution Wei-yu Kevin Chiang College the single-period vertical price interaction in a manufacturer­retailer dyad to a multi- period setting

  3. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  4. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30T23:59:59.000Z

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  5. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect (OSTI)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18T23:59:59.000Z

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  6. Power-law of Aggregate-size Spectra in Natural Systems

    E-Print Network [OSTI]

    Matteo Convertino; Filippo Simini; Filippo Catani; Igor Linkov; Gregory A. Kiker

    2013-03-07T23:59:59.000Z

    Patterns of animate and inanimate systems show remarkable similarities in their aggregation. One similarity is the double-Pareto distribution of the aggregate-size of system components. Different models have been developed to predict aggregates of system components. However, not many models have been developed to describe probabilistically the aggregate-size distribution of any system regardless of the intrinsic and extrinsic drivers of the aggregation process. Here we consider natural animate systems, from one of the greatest mammals - the African elephant (\\textit{Loxodonta africana}) - to the \\textit{Escherichia coli} bacteria, and natural inanimate systems in river basins. Considering aggregates as islands and their perimeter as a curve mirroring the sculpting network of the system, the probability of exceedence of the drainage area, and the Hack's law are shown to be the the Kor\\v{c}ak's law and the perimeter-area relationship for river basins. The perimeter-area relationship, and the probability of exceedence of the aggregate-size provide a meaningful estimate of the same fractal dimension. Systems aggregate because of the influence exerted by a physical or processes network within the system domain. The aggregate-size distribution is accurately derived using the null-method of box-counting on the occurrences of system components. The importance of the aggregate-size spectrum relies on its ability to reveal system form, function, and dynamics also as a function of other coupled systems. Variations of the fractal dimension and of the aggregate-size distribution are related to changes of systems that are meaningful to monitor because potentially critical for these systems.

  7. Additive Manufacturing for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  8. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers with about 600,000...

  9. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

  10. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

  11. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Hague, "Sustainability of additive manufacturing: measuringASTM Committee F42 on Additive Manufacturing Technologies,"ASTM Committee F42 on Additive Manufacturing Technologies. -

  12. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  13. A Generalized Eigensolver based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation Multigrid (SA)

    SciTech Connect (OSTI)

    Brezina, M; Manteuffel, T; McCormick, S; Ruge, J; Sanders, G; Vassilevski, P S

    2007-05-31T23:59:59.000Z

    Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error, meaning error that is poorly attenuated by the algorithm's relaxation process. For relaxation processes that are typically used in practice, algebraically smooth error corresponds to the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a standalone eigensolver for applications that desire an approximate minimal eigenvector, but the primary aim here is for GES-SA to produce an initial algebraically smooth component that may be used to either create a black-box SA solver or initiate the adaptive SA ({alpha}SA) process.

  14. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30T23:59:59.000Z

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  15. EA-1449: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash, King George County, Virginia

  16. Markov Modeling with Soft Aggregation for Safety and Decision Analysis

    SciTech Connect (OSTI)

    COOPER,J. ARLIN

    1999-09-01T23:59:59.000Z

    The methodology in this report improves on some of the limitations of many conventional safety assessment and decision analysis methods. A top-down mathematical approach is developed for decomposing systems and for expressing imprecise individual metrics as possibilistic or fuzzy numbers. A ''Markov-like'' model is developed that facilitates combining (aggregating) inputs into overall metrics and decision aids, also portraying the inherent uncertainty. A major goal of Markov modeling is to help convey the top-down system perspective. One of the constituent methodologies allows metrics to be weighted according to significance of the attribute and aggregated nonlinearly as to contribution. This aggregation is performed using exponential combination of the metrics, since the accumulating effect of such factors responds less and less to additional factors. This is termed ''soft'' mathematical aggregation. Dependence among the contributing factors is accounted for by incorporating subjective metrics on ''overlap'' of the factors as well as by correspondingly reducing the overall contribution of these combinations to the overall aggregation. Decisions corresponding to the meaningfulness of the results are facilitated in several ways. First, the results are compared to a soft threshold provided by a sigmoid function. Second, information is provided on input ''Importance'' and ''Sensitivity,'' in order to know where to place emphasis on considering new controls that may be necessary. Third, trends in inputs and outputs are tracked in order to obtain significant information% including cyclic information for the decision process. A practical example from the air transportation industry is used to demonstrate application of the methodology. Illustrations are given for developing a structure (along with recommended inputs and weights) for air transportation oversight at three different levels, for developing and using cycle information, for developing Importance and Sensitivity measures for soil aggregation, for developing dependence methodology, for constructing early alert logic, for tracking trends, for relating the Markov model to other (e.g., Reason) models, for developing and demonstrating rudimentary laptop software, and for developing an input/output display methodology.

  17. Wooden wind turbine blade manufacturing process

    DOE Patents [OSTI]

    Coleman, Clint (Warren, VT)

    1986-01-01T23:59:59.000Z

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  18. Industrial & Manufacturing Processes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Fuel at Lower Cost Facilitates the analysis of trace impurities in high-pressure hydrogen streams Replaces costly analytical equipment with inexpensive, easy-to-operate,...

  19. A Markovian analysis of semiconductor manufacturing processes

    E-Print Network [OSTI]

    Schultz, Kent Eugene

    1991-01-01T23:59:59.000Z

    conclusions drawn from these results are outlined in Chapter V. Since the measurement equipment used to measure the post etch line width was of interest, the two critical dimension (CD) measurement machines were compared using standard statistical tests... REVIEW A. Control Charts B. Markovian Analysis C. Hypothesis Testing D. Models and Contingency Tables 3 9 12 14 METHODOLOGY 21 A. Data. Collection and Analysis B. Sparse Contingency Tables C. Testing I' or Independence D. Testing for first...

  20. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    in Indiana (IN), USA electricity is mostly generated byUSA, where gas, nuclear and hydro are the main sources of electricity.

  1. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    University, Germany Edited by Prof. Dr. -lng. habil. Prof.E. h. Dr. -lng. E. h. Dr. h.c. Reimund Neugebauer Prof. T.

  2. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    = LCI = Mfg = MRR = RoHS = WEEE = Application programmingelectronic products (RoHS, WEEE). Complementary metal oxide

  3. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Hazardous Substances Directive WEEE = Waste Electrical andelectronic products (RoHS, WEEE). Complementary metal oxide

  4. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    house gas emissions and carbon footprint are numerous. Thisgas emissions and carbon footprint are numerous. In thispayback time • Carbon footprint • Efficiency improvement (

  5. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    cycle phases, Life Cycle Assessment (LCA). The followingvs use phase [3] 2.2 Life Cycle Assessment (LCA) and Relatedused method is Life Cycle Assessment (LCA), including its

  6. A Specification of Manufacturing Processes for Planning

    E-Print Network [OSTI]

    Southern California, University of

    : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 3.1.1. Drill : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 3.1.2. Mill #12; 3.6. Cutting Fluids : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14 3

  7. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandards forand Opportunities for the

  8. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrinceton PublicTODO: Add description

  9. Batteries - Materials Processing and Manufacturing Breakout session

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015 TheB2 March 5, 2014) TheBagdadThe20585

  10. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9, 2013News Archive News Archive RSS March 3,Research &

  11. Estimating the expected latency to failure due to manufacturing defects 

    E-Print Network [OSTI]

    Dorsey, David Michael

    2004-09-30T23:59:59.000Z

    Manufacturers of digital circuits test their products to find defective parts so they are not sold to customers. Despite extensive testing, some of their products that are defective pass the testing process. To combat ...

  12. A tactical planning model for a serial flow manufacturing system

    E-Print Network [OSTI]

    Huang, Bin, S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This project aims to improve the operation and planning of a specific type of manufacturing system, a serial flow line that entails a sequence of process stages. The objective is to investigate inventory policy, raw material ...

  13. Quality improvement strategy in a dynamic aerospace manufacturing environment

    E-Print Network [OSTI]

    English, Orion T. (Orion Tyler)

    2014-01-01T23:59:59.000Z

    In the manufacturing of any complex product it is a generally accepted phenomenon that defects will occur at various stages in the process. In aircraft modification and repair facilities, the low levels of automation and ...

  14. Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive

  15. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

  16. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    SciTech Connect (OSTI)

    Lowe, Terry C. [Los Alamos National Laboratory

    2012-07-24T23:59:59.000Z

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  17. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

  18. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  19. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Environmental Management (EM)

    Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting...

  20. Rapid three-dimensional manufacturing of microfluidic structures using a scanning laser system

    E-Print Network [OSTI]

    Rapid three-dimensional manufacturing of microfluidic structures using a scanning laser system Biao-dimensional manufacturing approach to the rapid processing of microfluidic structures using a scanning laser system. The scanning laser manufacturing technique could be potentially applied to a wide range of materials,10

  1. Proceedings of NAMRI/SME, Vol. 39, 2011 Additive Manufacturing based on Optimized Mask Video

    E-Print Network [OSTI]

    Chen, Yong

    Proceedings of NAMRI/SME, Vol. 39, 2011 Additive Manufacturing based on Optimized Mask Video@usc.edu, (213) 740-7829 ABSTRACT Additive manufacturing (AM) processes based on mask image projection and resolution of built components. KEYWORDS Additive manufacturing, Solid freeform fabrication, Mask image

  2. Manufacturing Demonstration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and aHistoricMannManufacturing

  3. Public Sector Energy Efficiency Aggregation Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

  4. Extracellular Proteins Promote Zinc Sulfide Aggregation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and metals, particularly how organics affect mobility, and its potential for bioremediation. It is known that some organics promote aggregation. Amine-bearing molecules, for...

  5. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  6. Manufacturing development of low activation vanadium alloys

    SciTech Connect (OSTI)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01T23:59:59.000Z

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  7. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01T23:59:59.000Z

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  8. Sandia National Laboratories: wind manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale, Arizona-based company that operates a turbine blade factory in...

  9. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  10. Solar collector manufacturing activity 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-15T23:59:59.000Z

    The report presents national and State-level data on the U.S. solar thermal collector and photovoltaic cell and module manufacturing industry.

  11. PROCEDURES FOR ALLOCATION AND AGGREGATION OF RESOURCES

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Chapter AA PROCEDURES FOR ALLOCATION AND AGGREGATION OF RESOURCES By Ronald R. Charpentier, T.......................................................................................................AA-7 Appendix 1 Aggregation of Undiscovered Oil, Gas, and NGL Volumes Of Regions to World Total Monte RH. The separate reporting of onshore versus offshore undiscovered resources is important to economic

  12. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

  13. Aggregate Issuance and Savings Waves Andrea Eisfeldt

    E-Print Network [OSTI]

    Haller, Gary L.

    is as follows: Firms which raise costly external finance can invest the issuance proceeds in productive capital. Our study is aimed at providing an estimate of a "revealed preference" measure of the aggregate cost their sources and uses of funds in order to make inferences about the aggregate cost of external finance

  14. Data Mining and Knowledge Discovery 1, 2953 (1997) c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

    E-Print Network [OSTI]

    Cafarella, Michael J.

    Data Mining and Knowledge Discovery 1, 29­53 (1997) c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals JIM of these operators. This paper defines that operator, called the data cube or simply cube. The cube operator

  15. GEOMETRIC CROSS SECTIONS OF DUST AGGREGATES AND A COMPRESSION MODEL FOR AGGREGATE COLLISIONS

    SciTech Connect (OSTI)

    Suyama, Toru [Nagano City Museum, Hachimanpara Historical Park Ojimada-machi, Nagano 381-2212 (Japan); Wada, Koji [Planetary Exploration Research Center, Chiba Institute of Technology, Tsudanuma 2-17-1, Narashino, Chiba 275-0016 (Japan); Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, N19-W8, Sapporo 060-0819 (Japan); Okuzumi, Satoshi, E-mail: museum@city.nagano.lg.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2012-07-10T23:59:59.000Z

    Geometric cross sections of dust aggregates determine their coupling with disk gas, which governs their motions in protoplanetary disks. Collisional outcomes also depend on geometric cross sections of initial aggregates. In a previous paper, we performed three-dimensional N-body simulations of sequential collisions of aggregates composed of a number of sub-micron-sized icy particles and examined radii of gyration (and bulk densities) of the obtained aggregates. We showed that collisional compression of aggregates is not efficient and that aggregates remain fluffy. In the present study, we examine geometric cross sections of the aggregates. Their cross sections decrease due to compression as well as to their gyration radii. It is found that a relation between the cross section and the gyration radius proposed by Okuzumi et al. is valid for the compressed aggregates. We also refine the compression model proposed in our previous paper. The refined model enables us to calculate the evolution of both gyration radii and cross sections of growing aggregates and reproduces well our numerical results of sequential aggregate collisions. The refined model can describe non-equal-mass collisions as well as equal-mass cases. Although we do not take into account oblique collisions in the present study, oblique collisions would further hinder compression of aggregates.

  16. Overview of the Photovoltaic Manufacturing Technology (PVMaT) project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

    1993-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

  17. Managing Attack Graph Complexity Through Visual Hierarchical Aggregation

    E-Print Network [OSTI]

    Noel, Steven

    Managing Attack Graph Complexity Through Visual Hierarchical Aggregation Steven Noel Center a framework for managing network attack graph complexity through interactive visualization, which includes hierarchical aggregation of graph elements. Aggregation collapses non-overlapping subgraphs of the attack graph

  18. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries

    SciTech Connect (OSTI)

    Belzer, D.B. (Pacific Northwest Lab., Richland, WA (USA)); Serot, D.E. (D/E/S Research, Richland, WA (USA)); Kellogg, M.A. (ERCE, Inc., Portland, OR (USA))

    1991-03-01T23:59:59.000Z

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner that allows evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study, conducted by Pacific Northwest Laboratory (PNL), developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key non-manufacturing sectors. This volume presents tabular and graphical results of the historical analysis and projections for each SIC industry. (JF)

  19. Material and processes selection in conceptual design 

    E-Print Network [OSTI]

    Krishnakumar, Karthikeyan

    2005-02-17T23:59:59.000Z

    Materials and manufacturing processes are an integral part of the design of a product. The need to combine materials and manufacturing processes selection during the early stages of the design has previously been realized. The work that generally...

  20. Out of Bounds Additive Manufacturing Christopher

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

  1. KLA-Tencor's Inspection Tool Reduces LED Manufacturing Costs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, KLA-Tencor is developing an improved inspection tool for LED manufacturing that promises to significantly increase overall process yields and minimize expensive waste. The power of the inspection tool lies in optical detection techniques coupled with defect source analysis software to statistically correlate front-end geometric anomalies in the substrate to killer defects on the back end of the manufacturing line, which give rise to an undesirable or unusable end product.

  2. Integration of rapid prototyping into design and manufacturing

    SciTech Connect (OSTI)

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-10-01T23:59:59.000Z

    The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs, improve efficiency, and increase flexibility without sacrificing quality. Sandia utilizes Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal design and manufacturing efforts. SL is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. SLS is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SL and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the Stereolithography and Selective Laser Sintering rapid prototyping machines.

  3. Hastings-Levitov aggregation in the small-particle limit

    E-Print Network [OSTI]

    James Norris; Amanda Turner

    2011-11-02T23:59:59.000Z

    We establish some scaling limits for a model of planar aggregation. The model is described by the composition of a sequence of independent and identically distributed random conformal maps, each corresponding to the addition of one particle. We study the limit of small particle size and rapid aggregation. The process of growing clusters converges, in the sense of Caratheodory, to an inflating disc. A more refined analysis reveals, within the cluster, a tree structure of branching fingers, whose radial component increases deterministically with time. The arguments of any finite sample of fingers, tracked inwards, perform coalescing Brownian motions. The arguments of any finite sample of gaps between the fingers, tracked outwards, also perform coalescing Brownian motions. These properties are closely related to the evolution of harmonic measure on the boundary of the cluster, which is shown to converge to the Brownian web.

  4. aggregate form size: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of exceedence of the aggregate-size provide a meaningful estimate of the same fractal dimension. Systems aggregate because of the influence exerted by a physical or...

  5. aggregate tests: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameter to aggregation. By using the local Whittle estimator, the statistic takes Weber, Stefan 3 A. SCOPE METHOD OF TEST FOR PROPORTIONS OF COARSE AGGREGATE IN FRESH...

  6. aggregations modeling scientific: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A N; Brilliantov, N V 2011-01-01 18 Aggregation of Composite Solutions: strategies, models, examples CERN Preprints Summary: The paper addresses aggregation issues for...

  7. Data Aggregation Strategies for Evaluation and Reporting | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aggregation Strategies for Evaluation and Reporting Data Aggregation Strategies for Evaluation and Reporting BetterBuildings: Data and Evaluation Peer Exchange Call: Data...

  8. Highly Stable Trypsin-Aggregate Coatings on Polymer Nanofibers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable Trypsin-Aggregate Coatings on Polymer Nanofibers for Repeated Protein Digestion. Highly Stable Trypsin-Aggregate Coatings on Polymer Nanofibers for Repeated Protein...

  9. Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 761-771 3D Texture Mapping for Rapid Manufacturing

    E-Print Network [OSTI]

    Chen, Yong

    , and product design [6]. · Layer manufacturing: Layer-based additive manufacturing processes Manufacturing Yong Chen University of Southern California, yongchen@usc.edu ABSTRACT Inspired by the developments of biomimetic design and layer manufacturing, we present a microstructure design method which uses

  10. Secure and Energy-Efficient Data Aggregation in Wireless Sensor Networks

    E-Print Network [OSTI]

    Sen, Jaydip

    2012-01-01T23:59:59.000Z

    Data aggregation in intermediate nodes (called aggregator nodes) is an effective approach for optimizing consumption of scarce resources like bandwidth and energy in Wireless Sensor Networks (WSNs). However, in-network processing poses a problem for the privacy of the sensor data since individual data of sensor nodes need to be known to the aggregator node before the aggregation process can be carried out. In applications of WSNs, privacy-preserving data aggregation has become an important requirement due to sensitive nature of the sensor data. Researchers have proposed a number of protocols and schemes for this purpose. He et al. (INFOCOM 2007) have proposed a protocol - called CPDA - for carrying out additive data aggregation in a privacy-preserving manner for application in WSNs. The scheme has been quite popular and well-known. In spite of the popularity of this protocol, it has been found that the protocol is vulnerable to attack and it is also not energy-efficient. In this paper, we first present a brie...

  11. Costs of aggregate hydrocarbon reserve additions

    E-Print Network [OSTI]

    Adelman, Morris Albert

    2002-01-01T23:59:59.000Z

    In what follows, we highlight problems created by aggregation using fixed conversion coefficients (Section 1). We then offer an economic index approach as an alternative, one that recognizes changing relative values of oil ...

  12. aggregates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of these quantum diffusion-limited aggregates vary between 1.43 and 2, depending on the size of the initial wave packet. David B. Johnson; Gonzalo Ordez 2011-11-02 48...

  13. aggregation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of these quantum diffusion-limited aggregates vary between 1.43 and 2, depending on the size of the initial wave packet. David B. Johnson; Gonzalo Ordez 2011-11-02 48...

  14. Diffusion-Limited Aggregation on Curved Surfaces

    E-Print Network [OSTI]

    Choi, J.

    We develop a general theory of transport-limited aggregation phenomena occurring on curved surfaces, based on stochastic iterated conformal maps and conformal projections to the complex plane. To illustrate the theory, we ...

  15. `Digital Tools for Design and Manufacture' Jim Ritchie

    E-Print Network [OSTI]

    Painter, Kevin

    of Mechanical, Process and Energy Engineering School of Engineering and Physical Sciences IMRC Digital Tools 26.40 BH3250 7.844 Select CableSelect ConnectorSelect Bulkhead Virtual Aided Process Planning Digital`Digital Tools for Design and Manufacture' Jim Ritchie (J.M.Ritchie@hw.ac.uk) Institute

  16. A Web-Based Curriculum Development on Nontraditional Manufacturing with

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    . For example, laser is widely accepted as an economical, high-throughput tool for metal/ ceramics cutting and drilling. Recent developments in MEMS and rapid prototyping manufacturing (RPM) would be impossible without collaborated on nontraditional material machining processes such as laser machining processes (LMP), electrical

  17. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  18. Additive Manufacturing Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

  19. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors,...

  20. Welcome and Advanced Manufacturing Partnership (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

  1. National Electrical Manufacturers Association (NEMA) Response...

    Energy Savers [EERE]

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  2. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  3. Alternative Energy Product Manufacturers Tax Credit | Department...

    Broader source: Energy.gov (indexed) [DOE]

    and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing...

  4. Additive Manufacturing Opportunities for Transportation | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Opportunities for Transportation Mar 13 2015 10:00 AM - 11:00 AM Lonnie Love, Manufacturing Systems Research Group Transportation Science Seminar Series...

  5. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

  6. Vehicle Technologies Office Merit Review 2014: Manufacturability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturability Study and Scale-Up for Large Format Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: Manufacturability Study and Scale-Up for Large Format...

  7. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

  8. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  9. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    key terms and details assumptions and references used in the Manufacturing Energy and Carbon Footprints (2010 MECS) Definitions and Assumptions for the Manufacturing Energy and...

  10. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Cement...

  11. Towards Semi-automated Workflow-based Aggregation of Web Services

    E-Print Network [OSTI]

    Brogi, Antonio

    -automated engineered process. We present a methodology which, given a set of service contracts, tries to construct an aggregation of such services. Service contracts include a description of the service behaviour (expressed-crafting to a semi-automated engineered process. We present a methodology which, given a set of service contracts

  12. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  13. Wind Energy Manufacturing Tax Incentive

    Broader source: Energy.gov [DOE]

    With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

  14. Manufacturing System Design Framework Manual

    E-Print Network [OSTI]

    Vaughn, Amanda

    2002-01-01T23:59:59.000Z

    Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

  15. CFL Manufacturers: ENERGY STAR Letters

    Broader source: Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  16. SUBGRADE AGGREGATE, SPECIAL (Tollway) Effective: October 29, 2012

    E-Print Network [OSTI]

    of porous granular embankment material of the specified thickness for the SUBGRADE AGGREGATE, SPECIAL item AGGREGATE, SPECIAL shall consist of the following: The coarse aggregate for porous granular embankment shall) particles, or crushed concrete. Virgin steel slag aggregates and other expansive materials as determined

  17. The International Journal of Flexible Manufacturing Systems, 15, 167186, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

    E-Print Network [OSTI]

    Jin, Jionghua "Judy"

    improvement. Most of the previous SPC research emphasized reducing variations due to assignable causes by implementing control charts for process monitoring. Different from this focus, this article aims to analyze manufacturing process monitoring with the focus on control chart implementation. The emphasized issue is how

  18. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01T23:59:59.000Z

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  19. An information modeling framework for process planning

    E-Print Network [OSTI]

    Atreya, Dinesh S.

    1993-01-01T23:59:59.000Z

    and manufacture and thus plays an important role in achieving CIM. Process Planning has been defined by the Society of Manufacturing Engineers as the systematic de- termination of methods by which a product is to be manufactured economically and competitively... Planning As defined earlier, process planning is the systematic determination of the methods by which a product is to be manufactured economically and competitively. Usually, process planning as well as operation planning involves a series of tasks...

  20. Spray drying as part of the continuous manufacturing value proposition at Novartis

    E-Print Network [OSTI]

    Youngman, Adam (Adam Joshua)

    2009-01-01T23:59:59.000Z

    Novartis Technical Operations is considering a complete overhaul of their manufacturing processes. To date, all drugs have been made by using a batch process. In an attempt to lower costs, Novartis is evaluating moving ...

  1. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect (OSTI)

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-09-28T23:59:59.000Z

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O–D stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup ?} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  2. Manufacturing Success Stories | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7Processes to TheirEnergy Midwest MIEMakingManagingManufacturing

  3. Reduction and aggregation of silver in aqueous gelatin and silica suspensions

    SciTech Connect (OSTI)

    Kapoor, S.; Lawless, D.; Kennepohl, P.; Meisel, D. [Argonne National Lab., IL (United States); Serpone, N. [Concordia Univ., Montreal, Quebec (Canada)

    1994-06-01T23:59:59.000Z

    The investigation of silver reduction and aggregation processes are of specific interest to the photographic industry, which relies heavily on photochemical equivalents of these reactions. Mechanistic insights into the formation of small silver clusters in aqueous solution have been obtained from both pulse and {gamma}-radiolytic studies. This paper examines the reduction of silver ions and the subsequent formation of silver clusters in aqueous gelatin solutions and on colloidal silica particles using the pulse radiolysis technique. The aggregation processes are compared with the parallel reactions in aqueous solutions.

  4. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  5. Manufacturing Energy Bandwidth Studies: Chemical, Peroleum Refining, Pulp and Paer, and Iron and Steel Sectors

    E-Print Network [OSTI]

    Brueske, S.; Cresko, J.; Capenter, A.

    2014-01-01T23:59:59.000Z

    on the chemical product results and other energy consumption details can be found in the bandwidth studies. MECS Data/Energy Footprints A large range of sources were consulted to provide data and insight on the manufacturing process and product energy... Consumption Survey (MECS) data, for the latest survey year of 2010 [1]. MECS is a national sample survey of U.S. manufacturing establishments conducted every four years. Information is collected and reported on U.S. manufacturing energy consumption...

  6. Process Intensification - Chemical Sector Focus

    Broader source: Energy.gov (indexed) [DOE]

    cost and risk in chemical manufacturing facilities. 24 25 At the core of PI is the optimization of process performance by focusing on molecular level kinetics, 26...

  7. Model-Based Engineering and Manufacturing CAD/CAM Benchmark.

    SciTech Connect (OSTI)

    Domm, T.C.; Underwood, R.S.

    1999-10-13T23:59:59.000Z

    The Benchmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus for Y-12 modernization efforts. The companies visited included several large established companies and a new, small, high-tech machining firm. As a result of this effort, changes are recommended that will enable Y-12 to become a more modern, responsive, cost-effective manufacturing facility capable of supporting the needs of the Nuclear Weapons Complex (NWC) into the 21st century. The benchmark team identified key areas of interest, both focused and general. The focus areas included Human Resources, Information Management, Manufacturing Software Tools, and Standards/Policies and Practices. Areas of general interest included Infrastructure, Computer Platforms and Networking, and Organizational Structure. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were somewhere between 3-D solid modeling and surfaced wire-frame models. The manufacturing computer tools were varied, with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) from a common model. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a single computer-aided manufacturing (CAM) system. The Internet was a technology that all companies were looking to either transport information more easily throughout the corporation or as a conduit for business, as the small firm was doing successfully.

  8. Design specifications for manufacturability of MCM-C multichip modules

    SciTech Connect (OSTI)

    Blazek, R.; Desch, J.; Kautz, D.; Morgenstern, H.

    1996-10-01T23:59:59.000Z

    A comprehensive guide for ceramic-based multichip modules (MCMS) has been developed by AlliedSignal Federal Manufacturing & Technologies (FM&T) to provide manufacturability information for its customers about how MCM designs can be affected by existing process and equipment capabilities. This guide extends beyond a listing of design rules by providing information about design layout, low- temperature cofired ceramic (LTCC) substrate fabrication, MCM assembly and electrical testing Electrical mechanical packaging, environmental, and producibility issues are reviewed. Examples of three MCM designs are shown in the form of packaging cross-sectional views, LTCC substrate layer allocations, and overall MCM photographs. The guide has proven to be an effective tool for enhancing communications between MCM designers and manufacturers and producing a microcircuit that meets design requirements within the limitations of process capabilities.

  9. Novel Laser-Based Manufacturing of nano-LiFePO4-Based Materials for High Power Li Ion Batteries

    E-Print Network [OSTI]

    Horne, Craig R.; Jaiswal, Abhishek; Chang, On; Crane, S.; Doeff, Marca M.; Wang, Emile

    2006-01-01T23:59:59.000Z

    NanoParticle Manufacturing (NPM™), has been used tomaterials synthesized by the NPM™ process (branded as nPWR™)phosphoric acid into an NPM™ reactor. The powder collected

  10. Power Quality from the Manufacturer’s Standpoint

    E-Print Network [OSTI]

    McEachern, A.

    Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

  11. Manufacturing for the Hydrogen Economy Manufacturing Research & Development

    E-Print Network [OSTI]

    to coordinate and leverage the current federal efforts focused on manufacturability issues such as low-cost of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

  12. Hollow spherical shell manufacture

    DOE Patents [OSTI]

    O'Holleran, Thomas P. (Belleville, MI)

    1991-01-01T23:59:59.000Z

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  13. Hollow spherical shell manufacture

    DOE Patents [OSTI]

    O'Holleran, T.P.

    1991-11-26T23:59:59.000Z

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  14. Methodology to manage process technology innovation

    E-Print Network [OSTI]

    Schweizer, Daniel

    2010-01-01T23:59:59.000Z

    The research conducted for this thesis was performed at "Company X", a U.S.-based engineered goods manufacturer. This project focused on the company's Advanced Manufacturing group and its process technology development ...

  15. Many qualitative properties of the product and the process are of interest during semiconduc-tor manufacturing. One of the typical examples is the sidewall surface roughness of an etched pol-

    E-Print Network [OSTI]

    California at Berkeley, University of

    will show how categorical models can be used to tune a process, and later to control it via SPC charts

  16. Improvements in manufacture of iridium alloy materials

    SciTech Connect (OSTI)

    Ohriner, E.K. (Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6083 (United States))

    1993-01-15T23:59:59.000Z

    Iridium alloys are used as fuel-cladding material in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyager 1 and 2, Galileo, and Ulysses spacecrafts. This hardware was fabricated from small, 500-g drop-cast ingots. Porosity in these ingots and the resulting defects in the rolled sheets caused rejection of about 30% of the product. An improved manufacturing process was developed with the goal of substantially reducing the level of defects in the rolled sheets. The ingot size is increased to 10 kg and is produced by vacuum arc remelting. In addition, the ingot is hot extruded prior to rolling. Since implementation of the process in 1989, the average rate of rejection of the product has been reduced to below 10%.

  17. Implementing SPC in a Simulation Model for Manufacturing Transitions

    E-Print Network [OSTI]

    Nembhard, Harriet Black

    - ~(~-;::;: Implementing SPC in a Simulation Model for Manufacturing Transitions Harriet Black and 2). Product quality often suffers during such transition periods. Statistical process control (SPC the design and development of an integrated SPC and simulation model. Figure 1 shows a screen snapshot

  18. An Innovative Framework Supporting SME Networks for Complex Product Manufacturing

    E-Print Network [OSTI]

    Boyer, Edmond

    An Innovative Framework Supporting SME Networks for Complex Product Manufacturing Luis Maia.kankaanpaa@uwasa.fi, ahsh@uwasa.fi Abstract. Current market dynamics require European SME's to focus on complex products collaboration processes and supporting ICT tools. This paper presents a framework to support SME

  19. Manufacturing Energy and Carbon Footprints 

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  20. Optimizing Manufactured Housing Energy Use

    E-Print Network [OSTI]

    McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

    2004-01-01T23:59:59.000Z

    In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built...

  1. Manufacturing Energy and Carbon Footprints

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  2. Surveys on Mathematics for Industry 5 (1995) 2733 Improving manufacturing quality

    E-Print Network [OSTI]

    Pukelsheim, Friedrich

    that Quality Engineering is part of a more embracing concept, total quality management. Section 3 on PlannedSurveys on Mathematics for Industry 5 (1995) 27­33 Improving manufacturing quality through planned experimentation is a powerful tool to improve quality of industrial manufacturing processes, in an environment

  3. Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing

    E-Print Network [OSTI]

    Park, Yong-Lae

    Manufacturing Yong-Lae Park1 , Kelvin Chau2 , Richard J. Black2 and Mark R. Cutkosky1 1 Center for Design deposition manufacturing (SDM) process was explored. The sensorized SDM-fabricated finger mechanoreceptors on its legs [2], in addition to hair sensors, chemical sensors, etc. [1], [26]. Mechanoreceptors

  4. Accepted to International Journal of Internet Manufacturing and Services (Accepted Feb 11, 2009)

    E-Print Network [OSTI]

    California at Los Angeles, University of

    , capture, and integrate RFID data in an enterprise manufacturing system. An XML based rule language) A Rule Language and Framework for RFID Data Capture and Processing in Manufacturing Enterprise System, Los Angeles 420 Westwood Plaza, UCLA, Los Angeles, CA 90095 Abstract: In an RFID-enabled enterprise

  5. Exploring OLAP Aggregates with Hierarchical Visualization Techniques

    E-Print Network [OSTI]

    Reiterer, Harald

    with data cubes in a predominantly "drill- down" fashion, i.e. from coarse grained aggregates towards technology for comprehensive data analysis in business and, more recently, in various non-business environments. Growing complexity and volumes of the data to be analyzed impose new requirements on OLAP systems

  6. Physical controls on copepod aggregations in the Gulf of Maine

    E-Print Network [OSTI]

    Woods, Nicholas W

    2013-01-01T23:59:59.000Z

    This thesis explores the role that the circulation in the Gulf of Maine (GOM) plays in determining the distribution of dense aggregations of copepods. These aggregations are an important part of the marine ecosystem, ...

  7. Optical activity of electronically delocalized molecular aggregates: Nonlocal response formulation

    E-Print Network [OSTI]

    Mukamel, Shaul

    Optical activity of electronically delocalized molecular aggregates: Nonlocal response formulation and optical rotation in small optically active molecules, larger conjugated molecules, and molecular aggregates is developed using spatially nonlocal electric and magnetic optical response tensors (r

  8. Magnetic properties of aggregate polycrystalline diamond: implications for carbonado history

    E-Print Network [OSTI]

    Kletetschka, Gunther

    Magnetic properties of aggregate polycrystalline diamond: implications for carbonado history Gu form 20 June 2000; accepted 25 June 2000 Abstract Carbonados are aggregate polycrystalline diamonds features; magnetic hysteresis 1. Introduction Carbonados are sintered polycrystalline micro- diamond

  9. Introduction Coordinated Aggregation Resource Scheduling Reserve Scheduling Coordinated Aggregation of Distributed

    E-Print Network [OSTI]

    Resource Scheduling Reserve Scheduling Power Balance Available power g(t) - Bulk power B - Load Aggregation Resource Scheduling Reserve Scheduling Power Balance ... !" #$%&"'()*+" " ,*-*+.*-" " ,*/*)01" devil is in the details what variability? - variability in wind or rooftop solar? - what time scales

  10. From amorphous aggregates to polymer bundles: The role of stiffness on structural phases in polymer aggregation

    E-Print Network [OSTI]

    Johannes Zierenberg; Wolfhard Janke

    2015-01-24T23:59:59.000Z

    We study the aggregation transition of a finite theta-polymer system in dependence on the bending stiffness $\\kappa$ with the help of parallel multicanonical simulations. In order to distinguish amorphous aggregates from polymer bundles we introduce an order parameter, measuring the correlation of the end-to-end vectors. With the help of this order parameter, we construct generic $T$-$\\kappa$ phase diagrams for systems with $2$ and $8$ polymers and discuss the occurring phases from amorphous aggregates to bundle structures. For an intermediate stiffness range we find multiple aggregated phases which change with increasing number of polymers and discuss their nature with the help of microcanonical analyses. We show that the stiffness of semiflexible theta polymers is the distinguishing parameter for the emergent structural motifs.

  11. Aggregate Production Planning for Process Industries under Competition

    E-Print Network [OSTI]

    Karmarkar, U. S.; Rajaram, K.

    2008-01-01T23:59:59.000Z

    such as the oil refining and steel industries, there arerefining industry appears to be a particularly egregious example of jockeying by crude oil

  12. Aggregate Production Planning for Process Industries under Competition

    E-Print Network [OSTI]

    Karmarkar, U. S.; Rajaram, K.

    2008-01-01T23:59:59.000Z

    as petro- refining, petrochemicals, basic chemicals, cement,the context of the petrochemical industry, these producerscorrespond to the ten major petrochemical refining companies

  13. Aggregate Production Planning for Process Industries under Competition

    E-Print Network [OSTI]

    Karmarkar, U. S.; Rajaram, K.

    2008-01-01T23:59:59.000Z

    occurs in oil production, where the supply of crude is oftenproduction quantities and profits for refiners and the crude oilproduction quantities and profits for refiners and the crude oil

  14. An analysis of buildings-related energy use in manufacturing

    SciTech Connect (OSTI)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01T23:59:59.000Z

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  15. Method of manufacturing a large-area segmented photovoltaic module

    DOE Patents [OSTI]

    Lenox, Carl

    2013-11-05T23:59:59.000Z

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  16. Mine-to-Mill Optimization of Aggregate Production

    SciTech Connect (OSTI)

    Greg Adel; Toni Kojovic; Darren Thornton

    2006-09-30T23:59:59.000Z

    Mine-to-Mill optimization is a total systems approach to the reduction of energy and cost in mining and processing. Developed at the Julius Krutschnitt Mineral Research Center in Queensland, Australia, the Mine-to-Mill approach attempts to minimize energy consumption through optimization of all steps in the size reduction process. The approach involves sampling and modeling of blasting and processing, followed by computer simulation to optimize the operation and develop alternatives. The most promising alternatives are implemented, and sampling is conducted to quantify benefits. In the current project, the primary objective was to adapt Mine-to-Mill technology to the aggregates industry. The first phase of this work was carried out at the Bealeton Quarry near Fredericksburg, Virginia. The second phase was carried out at the Pittsboro Quarry south of Chapel Hill, North Carolina. Both quarries are operated by Luck Stone Corporation of Richmond, Virginia. As a result of the work, several conclusions can be drawn from the project which should assist DOE in assessing the applicability of the Mine-to-Mill approach to the aggregates industry. 1. Implementation of MTM guidelines at Pittsboro has resulted in tangible improvements in productivity. It is clear that MTM guidelines represent an energy savings of around 5% (primary and secondary) and an overall energy savings of 1%. This 1-5% energy savings is also consistent with simulated results for Bealeton had side-by-side shots used to evaluate the technology been carried out in the same rockmass. 2. Luck Stone clearly runs their operations at a high standard. Hence the percentage improvement realized in this project may represent the lower end of what might be expected overall in the aggregates industry. 3. Variability in ore types across both Bealeton and Pittsboro suggests a 2:1 difference in hardness which contradicts the misconception that quarry rock is homogenous. Therefore, the idea of comparing side-by-side blasts is not viable and long term comparisons stand the best chance of confirming the benefits of optimized blasting. 4. There are clear limitations on how much improvement can be made in the aggregate industry due to the fixed feed size that reports to the tertiary section of a typical aggregate plant. These limitations restrict the MTM approach from exercising significant increases in blasting which would only serve to increase fines and reduce product yield. 5. The key to success at Pittsboro was the development of MTM guidelines for the modified blasting practice in consultation with the drill & blast crew. Their full buy-in was necessary to implement optimized blasting in a sustained manner. 6. The JKSimBlast and JKSimMet models have proven to be effective tools for examining blasting and processing at Bealeton and Pittsboro. These models should enable Luck Stone to transfer the MTM approach to other sites.

  17. The photovoltaic manufacturing technology project: A government/industry partnership

    SciTech Connect (OSTI)

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  18. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  19. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright © 2011 Versa Power Systems. All Rights

  20. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D Additive Manufacturing © Christopher B. Williams Electron Beam Melting Electron Beam Melting Direct Metal

  1. Mechanics and Design, Manufacturing Professor Hani Naguib

    E-Print Network [OSTI]

    Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials. Apple Canada(Se12), Revenue: $5,067,109 9. CGI Group(Se12), Revenue: $4,786,857 10. Siemens Canada(Se12

  2. Clean Energy Manufacturing Incentive Grant Program

    Broader source: Energy.gov [DOE]

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  3. Clean Energy Manufacturing Incentive Program (Virginia)

    Broader source: Energy.gov [DOE]

    In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

  4. Arnold Schwarzenegger HIGH-VOLUME MANUFACTURING FOR

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor HIGH-VOLUME MANUFACTURING FOR LOW-COST, FLEXIBLE SOLAR CELL Prepared-VOLUME MANUFACTURING FOR LOW-COST, FLEXIBLE SOLAR CELL EISG AWARDEE InterPhases Research 166 N. Moorpark Rd. Suite 204

  5. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  6. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  7. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  8. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

  9. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01T23:59:59.000Z

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  10. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  11. Creation and sustainment of manufacturing technology roadmaps

    E-Print Network [OSTI]

    Grillon, Louis S

    2012-01-01T23:59:59.000Z

    Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

  12. Communal spaces: aggregation and integration in the Mogollon Region of the United States Southwest

    SciTech Connect (OSTI)

    Nisengard, Jennifer E.

    2006-12-01T23:59:59.000Z

    Aggregation and integration are processes that occur in human societies throughout the globe. An informative example of population aggregation and social integration can be observed in the North American desert borderlands from A.D. 250 to 1450 in the area known as the Mogollon region. In fact, Mogollon communities oscillated from smaller social groups into larger ones and dispersed into smaller groups only to form larger ones again. For this reason, examining the groups of people living in the Mogollon region provides a magnified view of social change over a substantial period. Understanding patterns of aggregation and integration provides researchers with the promise for research into the nature of these phenomena. In general, the Mogollon region is characterized by limited water supplies and low average annual precipitation. However, pockets of the Mogollon area, including the Mimbres valley and the Gila River valley, represent oases, where permanent rivers and their associated tributaries allowed for the pursuit of agricultural endeavors and access to a wide variety of wild plant and animal resources. The areas with these kinds of potential became population centers for previously dispersed groups of people living in the region. These people exploited natural resources and practiced agriculture in areas surrounding their communities. Over time, more organized aggregated and socially integrated communities were established throughout the region. Using ancient Mogollon communal architecture, commonly called kivas, this study examines issues of, and evidence for, population aggregation and social integration.

  13. Characterization of aggregate shape properties using a computer automated system

    E-Print Network [OSTI]

    Al Rousan, Taleb Mustafa

    2005-02-17T23:59:59.000Z

    Development Methodology?????.. 176 Statistical-Based Aggregate Shape Classification??............... 177 Analysis and Results???????...?????????. 181 Aggregate Texture versus Angularity????????? 181 Effect of Crushing and Size on Shape Properties...)?????????????.. 40 2.24 Laser-based Aggregate Scanning System (LASS) Hardware Architecture??????????????????????? 41 2.25 Illustration of the Erosion-Dilation and Fractal Behavior Method???????????????...????????? 48 2.26 Illustration of the Difference...

  14. Synthetic clay-magnetite aggregates designed for controlled deposition experiments

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Synthetic clay-magnetite aggregates designed for controlled deposition experiments Feinberg, J M of synthetic clay-magnetite aggregates whose physical attributes can be tailored for controlled depositional orientation or oriented aggregation. Grain size distributions of magnetite in three different clay

  15. Thermodynamics and Structure of Peptide-Aggregates at Membrane Surfaces

    E-Print Network [OSTI]

    Quake, Stephen R.

    Thermodynamics and Structure of Peptide- Aggregates at Membrane Surfaces INAUGURALDISSERTATION zur. Introduction 01 1.1 ­ Thermodynamics of Protein Aggregation 01 1.2 ­ Formation of Protein Aggregates 03 1 and P-glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity 23 3

  16. Light scattering with oxide nanocrystallite aggregates for dye-

    E-Print Network [OSTI]

    Cao, Guozhong

    Light scattering with oxide nanocrystallite aggregates for dye- sensitized solar cell application 4://spiedl.org/terms #12;Light scattering with oxide nanocrystallite aggregates for dye-sensitized solar cell application used for a photoelectrode in a dye-sensitized solar cell, the aggregates can be designed to generate

  17. Experimental Evaluation of New Generation Aggregate Image Measurement System

    E-Print Network [OSTI]

    Gates, Leslie L.

    2010-07-14T23:59:59.000Z

    . 2003). The current Superpave methods do not measure aggregates texture, although it has significance influence on performance (Fletcher et al. 2002). In some cases, the fine aggregate angularity method does not distinguish between poor and high...) ......................................................... 14 Sphericity Index (3D Form Analysis) ................................................. 14 Sensitivity, Repeatability, and Reproducibility of AIMS ................................ 15 CHAPTER III IMPROVEMENTS OF THE AGGREGATE IMAGE...

  18. Energy-Efficient Aggregate Query Evaluation in Sensor Networks

    E-Print Network [OSTI]

    Liang, Weifa

    Energy-Efficient Aggregate Query Evaluation in Sensor Networks Zhuoyuan Tu and Weifa Liang efficiently. This paper considers the aggregate query evaluation in a sensor network database to the base station, which is called in-network aggregation. In other words, a tree rooted at the base station

  19. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

  20. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Analysis May 2013 Additive Manufacturing in China: Aviationan overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  1. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Fuel Cell Manhattan Project Manufacturing Fuel Cell Manhattan Project The Office of Naval Research recently sponsored and completed the Manufacturing Fuel Cell...

  2. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Bulletin Analysis May 2013 Additive Manufacturing in China:an overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  3. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place: San Bruno,...

  4. u.s. department of commerce national institute of standards and technology manufacturing extension partnership W W W . n i s t . g o v / m e p 1 -8 0 0 -m e p -4 m F g

    E-Print Network [OSTI]

    Perkins, Richard A.

    Manufacturing and business process improvements based on 5S, Kanban, Kaizen, and Six Sigma have helped hundreds

  5. Cost effective manufacturing of the SEA 10X concentrator array

    SciTech Connect (OSTI)

    Kaminar, N.; McEntee, J.; Curchod, D. (Solar Engineering Applications Corp., San Jose, CA (United States))

    1991-11-01T23:59:59.000Z

    This report describes a low-cost, mass-producible 10X concentrator system that has been claimed to produce electricity at $0.04/kWh. It details changes in manufacturing techniques that could produce a concentrator system at a selling price of $0.71/W. (A simple design and a minimum number of parts and manufacturing steps reduced production costs.) Present production techniques, changes to improve these techniques, impediments to changes, and solutions to the impediments are described. This 10X concentrator system uses available components and manufacturing processes and one-sun solar cells in conjunction with inexpensive plastic lenses to generate about eight times the amount of electricity normally produced by these cells.

  6. Webinar: Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  7. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  8. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  9. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  10. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  11. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  12. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  13. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  14. Clean Energy Manufacturing Innovation Institute for Composite...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Fiber Reinforced Polymer Composite Manufacturing Workshop...

  15. From BPEL Processes to YAWL Workflows Antonio Brogi and Razvan Popescu

    E-Print Network [OSTI]

    Brogi, Antonio

    argue for the use of service contracts [4] consisting of (a) a (WSDL) signature, (b) an (OWL process inputs a set of service contracts to be aggregated and it outputs the contract of the aggregated

  16. Pseudomonas fluorescens -A robust manufacturing platform

    E-Print Network [OSTI]

    Lebendiker, Mario

    Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

  17. Additive manufacturing of metallic tracks on

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

  18. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  19. Energy Manufacturing Matthew Realff and Steven Danyluk

    E-Print Network [OSTI]

    Das, Suman

    Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

  20. Manufacturing Research & Development for Systems that will

    E-Print Network [OSTI]

    focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

  1. Injection Molding-Injection Molding Process Description

    E-Print Network [OSTI]

    Colton, Jonathan S.

    and Engineering Prof. J.S. Colton © GIT 2009 1 #12;Overview · Equipment · Process ME 4210: Manufacturing ProcessesKrausMaffei at Ford - 4000 tonnes 5ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 #12Ranges from 3,000 to 40,000 psi · Hydraulic pressure is about 10x less ME 4210: Manufacturing Processes

  2. Fireproof impact limiter aggregate packaging inside shipping containers

    DOE Patents [OSTI]

    Byington, Gerald A. (Knoxville, TN); Oakes, Jr., Raymon Edgar (Kingston, TN); Feldman, Matthew Rookes (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    The invention is a product and a process for making a fireproof, impact limiter, homogeneous aggregate material for casting inside a hazardous material shipping container, or a double-contained Type-B nuclear shipping container. The homogeneous aggregate material is prepared by mixing inorganic compounds with water, pouring the mixture into the void spaces between an inner storage containment vessel and an outer shipping container, vibrating the mixture inside the shipping container, with subsequent curing, baking, and cooling of the mixture to form a solidified material which encapsulates an inner storage containment vessel inside an outer shipping container. The solidified material forms a protective enclosure around an inner storage containment vessel which may store hazardous, toxic, or radioactive material. The solidified material forms a homogeneous fire-resistant material that does not readily transfer heat, and provides general shock and specific point-impact protection, providing protection to the interior storage containment vessel. The material is low cost, may contain neutron absorbing compounds, and is easily formed into a variety of shapes to fill the interior void spaces of shipping containers.

  3. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 5, OCTOBER 2006 1039 A Systematic Approach to Process Selection in

    E-Print Network [OSTI]

    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 5, OCTOBER 2006 1039 A Systematic Approach and manufacturing processes. In microelectromechanical systems (MEMS) the currently available set of manufacturing

  4. Computational Modeling of an MRI Guided Drug Delivery System Based on Magnetic Nanoparticle Aggregations for the Navigation of Paramagnetic Nanocapsules

    E-Print Network [OSTI]

    N. K. Lampropoulos; E. G. Karvelas; I. E. Sarris

    2015-04-14T23:59:59.000Z

    A computational method for magnetically guided drug delivery is presented and the results are compared for the aggregation process of magnetic particles within a fluid environment. The model is developed for the simulation of the aggregation patterns of magnetic nanoparticles under the influence of MRI magnetic coils. A novel approach for the calculation of the drag coefficient of aggregates is presented. The comparison against experimental and numerical results from the literature is showed that the proposed method predicts well the aggregations in respect to their size and pattern dependance, on the concentration and the strength of the magnetic field, as well as their velocity when particles are driven through the fluid by magnetic gradients.

  5. Manufacturing

    Office of Environmental Management (EM)

    674 Academy Press. Washington, DC. 675 Pre. 2014. SimaPro Database Manual - Methods Library (2.7). Available at: www.pre- 676 sustainability.comdownload...

  6. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy UniversityOversightFlow of Materials

  7. Beyond Simple Aggregates: Indexing for Summary Queries

    E-Print Network [OSTI]

    Yi, Ke "Kevin"

    # of employees #12;3-1 Reporting vs. Aggregation Date Keyword 2011.04.08 Masters 2011 2011.04.08 Libya 2011.04.07 Japan nuclear crisis 2011.04.07 Libya · · · 2011.03.11 Japan earthquake 2011.03.11 Japan tsunami 2011 2011.04.08 Libya 2011.04.07 Japan nuclear crisis 2011.04.07 Libya · · · 2011.03.11 Japan earthquake

  8. Research on advanced photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

    1991-11-01T23:59:59.000Z

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  9. Carbon fiber manufacturing via plasma technology

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  10. Method for manufacturing whisker preforms and composites

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A process for manufacturing Si.sub.3 N.sub.4 /SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si.sub.3 N.sub.4 at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si.sub.3 N.sub.4 /SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  11. Achieving world-class perceived vehicle quality through improved engineering and manufacturing tools

    E-Print Network [OSTI]

    Glomski, Paul T

    2005-01-01T23:59:59.000Z

    Throughout the vehicle development process, automotive manufacturers must work to meet a variety of customer needs. One increasingly important attribute is vehicle exterior perceived quality, which is largely dependent on ...

  12. Damage initiation, progression and failure of polymer matrix composites due to manufacturing induced defects 

    E-Print Network [OSTI]

    Chowdhury, Khairul Alam

    2007-09-17T23:59:59.000Z

    In polymer matrix composites (PMCs) manufacturing processes can induce de- fects, e.g., voids, fiber misalignment, irregular fiber distribution in the cross-section and broken fibers. The effects of such defects can be beneficial or deleterious de...

  13. EATON PURSUES PRINT-BASED MANUFACTURING OF INTEGRATED, LOW-COST, HIGH-PERFORMANCE SSL LUMINAIRES

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Eaton is using manufacturing process innovation to develop a way to place the LED package, chip, or chip array directly on a fixture or heat sink in order to improve...

  14. Heat treatment optimization in the manufacture of Wilson Rockwell steel hardness test blocks

    E-Print Network [OSTI]

    Tan, Vincent Tandean

    2009-01-01T23:59:59.000Z

    The heat-treatment process in the manufacture of Wilson Rockwell steel hardness test blocks often produces parts which are inconsistent in the mean hardness and hardness uniformity. In this thesis, the sources of variation ...

  15. Manufacturing and characterization of welded, sintered condensers for a loop heat pipe

    E-Print Network [OSTI]

    Sircar, Jay D

    2013-01-01T23:59:59.000Z

    A manufacturing process plan was developed for a welded condenser utilizing a sintered wick. Electronic devices have progressed to the point where new designs are limited by the thermal management system used to ensure ...

  16. On the manufacture of very thin elastomeric films by spin-coating

    E-Print Network [OSTI]

    Krishnan, Sriram, 1978 May-

    2007-01-01T23:59:59.000Z

    I present a process for manufacturing poly-dimethylsiloxane (PDMS) films of thicknesses down to 50 microns. PDMS films are currently fabricated by spin-coating the polymer on a wafer and then manually peeling the film after ...

  17. Feature-based investment cost estimation based on modular design of a continuous pharmaceutical manufacturing system

    E-Print Network [OSTI]

    Collins, Donovan (Donovan Scott)

    2011-01-01T23:59:59.000Z

    Previous studies of continuous manufacturing processes have used equipment-factored cost estimation methods to predict savings in initial plant investment costs. In order to challenge and validate the existing methods of ...

  18. Root cause analysis of solder flux residue incidence in the manufacture of electronic power modules

    E-Print Network [OSTI]

    Jain, Pranav

    2011-01-01T23:59:59.000Z

    This work investigates the root causes of the incidence of solder flux residue underneath electronic components in the manufacture of power modules. The existing deionized water-based centrifugal cleaning process was ...

  19. On the friction coefficient of straight-chain aggregates

    E-Print Network [OSTI]

    Lorenzo Isella; Yannis Drossinos

    2011-01-31T23:59:59.000Z

    A methodology to calculate the friction coefficient of an aggregate in the continuum regime is proposed. The friction coefficient and the monomer shielding factors, aggregate-average or individual, are related to the molecule-aggregate collision rate that is obtained from the molecular diffusion equation with an absorbing boundary condition on the aggregate surface. Calculated friction coefficients of straight chains are in very good agreement with previous results, suggesting that the friction coefficients may be accurately calculated from the product of the collision rate and an average momentum transfer,the latter being independent of aggregate morphology. Langevin-dynamics simulations show that the diffusive motion of straight-chain aggregates may be described either by a monomer-dependent or an aggregate-average random force, if the shielding factors are appropriately chosen.

  20. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25T23:59:59.000Z

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.