National Library of Energy BETA

Sample records for manufactured aggregate processing

  1. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect (OSTI)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant

  2. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  3. Large forging manufacturing process

    DOE Patents [OSTI]

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  4. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  5. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Overview of ...

  6. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  7. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  8. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  9. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  10. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  11. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  12. Manufacturing Process for OLED Integrated Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach: Internal Extraction Layer (IEL): In-situ generation of nano-sized high optical index particles in a float glass manufacturing process without reheating the glass. ...

  13. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV...

  14. Energetic additive manufacturing process with feed wire

    DOE Patents [OSTI]

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  15. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-...

  16. Towards automatic planning for manufacturing generative processes

    SciTech Connect (OSTI)

    CALTON,TERRI L.

    2000-05-24

    Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from the original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.

  17. Aggregate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aggregate Aggregate Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:34:30

  18. bib-aggregate | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash - Project Brief [PDF-72KB] Universal Aggregates, LLC, King George County, VA PROJECT FACT SHEET Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash [PDF-412KB] (Feb 2008) PROGRAM PUBLICATIONS Final Report Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Absorber Ash [PDF-4.5MB] (Nov 2007) CCT

  19. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Kerns, John A.; Blaedel, Kenneth L.; Colella, Nicholas J.; Davis, Pete J.; Juntz, Robert S.

    1998-01-01

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  20. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  1. EERE Success Story-Battery Manufacturing Processes Improved by Johnson

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Project | Department of Energy Manufacturing Processes Improved by Johnson Controls Project EERE Success Story-Battery Manufacturing Processes Improved by Johnson Controls Project August 6, 2015 - 1:51pm Addthis EERE Success Story—Battery Manufacturing Processes Improved by Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV Everywhere goal of producing

  2. Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and ... design framework enabled by multi-scale, physics-based process models. ...

  3. Batteries - Materials Processing and Manufacturing Breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance safety * Organic solvent vs. dry ... Areas Being Discussed * Li metal manufacturing * Variability ... establish a transparent framework for an open forum ...

  4. Friction Stir Processing for Efficient Manufacturing

    SciTech Connect (OSTI)

    Mr. Christopher B. Smith; Dr. Oyelayo Ajayi

    2012-01-31

    Friction at contacting surfaces in relative motion is a major source of parasitic energy loss in machine systems and manufacturing processes. Consequently, friction reduction usually translates to efficiency gain and reduction in energy consumption. Furthermore, friction at surfaces eventually leads to wear and failure of the components thereby compromising reliability and durability. In order to reduce friction and wear in tribological components, material surfaces are often hardened by a variety of methods, including conventional heat treatment, laser surface hardening, and thin-film coatings. While these surface treatments are effective when used in conjunction with lubrication to prevent failure, they are all energy intensive and could potentially add significant cost. A new concept for surface hardening of metallic materials and components is Friction Stir Processing (FSP). Compared to the current surface hardening technologies, FSP is more energy efficient has no emission or waste by products and may result in better tribological performance. FSP involves plunging a rotating tool to a predetermined depth (case layer thickness) and translating the FSP tool along the area to be processed. This action of the tool produces heating and severe plastic deformation of the processed area. For steel the temperature is high enough to cause phase transformation, ultimately forming hard martensitic phase. Indeed, FSP has been used for surface modification of several metals and alloys so as to homogenize the microstructure and refine the grain size, both of which led to improved fatigue and corrosion resistance. Based on the effect of FSP on near-surface layer material, it was expected to have beneficial effects on friction and wear performance of metallic materials. However, little or no knowledge existed on the impact of FSP concerning friction and wear performance the subject of the this project and final report. Specifically for steel, which is the most dominant

  5. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect (OSTI)

    Eastwood, Eric

    2009-02-16

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  6. NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory (NREL) and SLAC National Accelerator Laboratory have been able to pinpoint for the first time what happens during a key manufacturing process of silicon solar cells. ...

  7. EV Everywhere Batteries Workshop - Materials Processing and Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Report | Department of Energy Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. report_out-manufacturing_b.pdf (117.4 KB) More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion

  8. Wellbore manufacturing processes for in situ heat treatment processes

    DOE Patents [OSTI]

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  9. Battery Manufacturing Processes Improved by Johnson Controls Project

    Broader source: Energy.gov [DOE]

    Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the governments EV Everywhere goal of producing by 2022 plug...

  10. NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process

    Broader source: Energy.gov [DOE]

    Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and SLAC National Accelerator Laboratory have been able to pinpoint for the first time what happens during a key manufacturing process of silicon solar cells.

  11. NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process April 1, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and SLAC National Accelerator Laboratory have been able to pinpoint for the first time what happens during a key manufacturing process of silicon solar cells. Their paper, "The formation mechanism for printed silver-contacts for silicon solar cells," appears in the journal Nature Communications. The paper was

  12. Process development status report for advanced manufacturing projects

    SciTech Connect (OSTI)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  13. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect (OSTI)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  14. Wind Program Manufacturing Research Advances Processes and Reduces Costs

    Broader source: Energy.gov [DOE]

    Knowing that reducing the overall cost of wind energy begins on the factory floor, the Wind Program supports R&D efforts and funding opportunities that integrate new designs, materials, and advanced techniques into the manufacturing process, making wind a more affordable source of renewable energy for communities nationwide.

  15. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    SciTech Connect (OSTI)

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious; Duty, Chad E; Armstrong, Beth L; Ivanov, Ilia N; Jacobs, Christopher B; Graham, David E; Moon, Ji Won

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  16. The metallurgy and processing science of metal additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  17. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit ...

  18. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2010 Energy Storage R&D ...

  19. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect (OSTI)

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  20. Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector The Process Energy Static Sankey diagram shows how energy is used directly for production by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan,

  1. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  2. Thermally stable booster explosive and process for manufacture

    DOE Patents [OSTI]

    Quinlin, William T.; Thorpe, Raymond; Lightfoot, James M.

    2006-03-21

    A thermally stable booster explosive and process for the manufacture of the explosive. The product explosive is 2,4,7,9-tetranitro-10H-benzo[4,5]furo[3,2-b]indole (TNBFI). A reactant/solvent such as n-methylpyrrolidone (NMP) or dimethyl formamide (DMF) is made slightly basic. The solution is heated to reduce the water content. The solution is cooled and hexanitrostilbene is added. The solution is heated to a predetermined temperature for a specific time period, cooled, and the product is collected by filtration.

  3. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  4. Carbon dioxide capture from a cement manufacturing process

    DOE Patents [OSTI]

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  5. Solid electrolyte material manufacturable by polymer processing methods

    DOE Patents [OSTI]

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  6. Process for manufacturing a lithium alloy electrochemical cell

    DOE Patents [OSTI]

    Bennett, William R.

    1992-10-13

    A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

  7. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Activities at DOE: Efficiency, Manufacturing, Process & Materials R&D Joe Cresko David Hardy Advanced Manufacturing Office Metrology Workshop December 9, 2013 NREL Industrial Energy Use 2 Source: Manufacturing Energy and Carbon Footprint, derived from 2006 MECS AMO programs target: * Research, Development and Demonstration of new, advanced processes and materials technologies that reduce energy consumption for manufactured products and enable life-cycle energy savings *

  8. UMass Lowell Smoothing Out Wrinkles in Blade Manufacturing Process

    Broader source: Energy.gov [DOE]

    A research team at the University of Massachusetts Lowell is ironing out the kinks in blade manufacturing to make way for safer, lighter and cheaper blades.

  9. Manufacturing Demonstration Facility: Roll-to-Roll Processing...

    Office of Scientific and Technical Information (OSTI)

    effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. ...

  10. The inverse problems of wing panel manufacture processes

    SciTech Connect (OSTI)

    Oleinikov, A. I.; Bormotin, K. S.

    2013-12-16

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  11. Improved Manufacturing Processes Save Company One Billion Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large-scale implementation of the technology helped save P&G 1 billion in manufacturing costs, according to Procter & Gamble. These cost-saving benefits are applicable towards ...

  12. Process for manufacture of semipermeable silicon nitride membranes

    DOE Patents [OSTI]

    Galambos, Paul Charles; Shul, Randy J.; Willison, Christi Gober

    2003-12-09

    A new class of semipermeable membranes, and techniques for their fabrication, have been developed. These membranes, formed by appropriate etching of a deposited silicon nitride layer, are robust, easily manufacturable, and compatible with a wide range of silicon micromachining techniques.

  13. SUSTAINABLE MANUFACTURING VIA MULTI-SCALE PHYSICS-BASED PROCESS MODELING AND MANUFACTURING-INFORMED DESIGN

    Broader source: Energy.gov [DOE]

    Micro-structural modeling tools for metals are being developed and used to demonstrate a design framework to improve the understanding of dynamic response and statistical variability. This project will enable design engineers to evaluate the effects of design changes and material selection; anticipate quality and cost prior to implementation on the factory floor; and enable low-waste, low-cost manufacturing. Third Wave Systems, Inc. - Minneapolis, MN

  14. System level analysis and control of manufacturing process variation

    DOE Patents [OSTI]

    Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.

    2005-05-31

    A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.

  15. Process for the manufacture of 117Sn diethylenetriaminepentaacetic acids

    DOE Patents [OSTI]

    Srivastava, Suresh C.; Li, Zizhong; Meinken, George

    2003-01-01

    Novel methods are provided for the manufacture of .sup.117m Sn(Sn.sup.4+) DTPA. The method allows the use of DTPA, a toxic chelating agent, in an approximately 1:1 ratio to .sup.117m Sn(Sn.sup.4+) via either aqueous conditions, or using various organic solvents, such as methylene chloride. A pharmaceutical composition manufactured by the novel method is also provided, as well as methods for treatment of bone tumors and pain associated with bone cancer using the pharmaceutical composition of the invention.

  16. Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Grants | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es098_johnson_2011_o.pdf (1.22 MB) More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives

  17. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    SciTech Connect (OSTI)

    Roy Scandrol

    2003-10-01

    This quarterly report covers the period from July 1st, 2003 through September 30th, 2003. It covers; technical development, permitting status, engineering status, construction status, operations summary and marketing support activities for this period.

  18. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  19. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  20. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  1. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  2. U.S. Department of Energy integrated manufacturing & processing predoctoral fellowships. Final Report

    SciTech Connect (OSTI)

    Petrochenkov, Margaret

    2003-03-31

    The objective of this program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design. This is the final report to close out the contract.

  3. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Heating Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Heating is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments are

  4. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Intensification Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Intensification is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Roll-to-Roll Processing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roll to Roll Processing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Roll-to-Roll Processing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  6. List of Processing and Manufacturing Equipment Incentives | Open...

    Open Energy Info (EERE)

    Solar Thermal Process Heat Photovoltaics Wind Biomass Fuel Cells Ground Source Heat Pumps Hydrogen Biodiesel Fuel Cells using Renewable Fuels Other Distributed Generation...

  7. Automated defect spatial signature analysis for semiconductor manufacturing process

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth W.; Gleason, Shaun S.; Karnowski, Thomas P.; Sari-Sarraf, Hamed

    1999-01-01

    An apparatus and method for performing automated defect spatial signature alysis on a data set representing defect coordinates and wafer processing information includes categorizing data from the data set into a plurality of high level categories, classifying the categorized data contained in each high level category into user-labeled signature events, and correlating the categorized, classified signature events to a present or incipient anomalous process condition.

  8. Process for manufacture of thick film hydrogen sensors

    DOE Patents [OSTI]

    Perdieu, Louisa H.

    2000-09-09

    A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

  9. Transesterification process to manufacture ethyl ester of rape oil

    SciTech Connect (OSTI)

    Korus, R.A.; Hoffman, D.S.; Bam, N.; Peterson, C.L.; Drown, D.C.

    1993-12-31

    A process for the production of the ethyl ester of winter rape [EEWR] for use as a biodiesel fuel has been studied. The essential part of the process is the transesterification of rape oil with ethanol, in the presence of a catalyst, to yield the ethyl ester of rape oil as a product and glycerin as a by-product. Experiments have been performed to determine the optimum conditions for the preparation of EEWR. The process variables were: (1) temperature, (2) catalyst, (3) rate of agitation, (4) water content of the alcohol used, and (5) the amount of excess alcohol used. The optimum conditions were: (1) room temperature, (2) 0.5% sodium methoxide or 1% potassium hydroxide catalyst by weight of rapeseed oil, (3) extremely vigorous agitation with some splashing during the initial phase of the reaction and agitation was not necessary after the reaction mixture became homogeneous, (4) absolute ethanol was necessary for high conversion, and (5) 50% excess ethanol with NaOCH{sub 3} or 100% excess with KOH gave a maximum conversion. Viscosity, cloud point and pour point of the EEWR were measured. A preliminary break-even cost for the commercial production of EEWR was found to be $0.55/liter [$2.08/US gallon].

  10. Thermographic process monitoring in powderbed based additive manufacturing

    SciTech Connect (OSTI)

    Krauss, Harald Zaeh, Michael F.; Zeugner, Thomas

    2015-03-31

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects

  11. Manufacturing process modeling for composite materials and structures, Sandia blade reliability collaborative

    SciTech Connect (OSTI)

    Guest, Daniel A.; Cairns, Douglas S.

    2014-02-01

    The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flow rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.

  12. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the batterys components to free up more space within the cell for storage.

  13. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    SciTech Connect (OSTI)

    Walczyk, Daniel F.

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  14. Control of VOC emissions from ink and paint manufacturing processes. Final report

    SciTech Connect (OSTI)

    McMinn, B.W.; Marsosudiro, P.J.

    1992-04-01

    The document presents the results of a study to collect and report information on processes used to manufacture paint and ink, volatile organic compound (VOC) emissions generated during these operations, emission control techniques and their effectiveness, and costs associated with process changes and emission control options.

  15. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  16. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems

    Broader source: Energy.gov [DOE]

    Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

  17. (Development of industrial processes for manufacturing of silicon sampling hadron calorimeters)

    SciTech Connect (OSTI)

    Plasil, F.; Walter, J.

    1991-01-04

    The travelers attended meetings in Dubna and in Zelenograd. Discussions in Dubna centered on (1) obtaining information on USSR capabilities in silicon detector manufacture and testing and on (2) strategy regarding the development of an industrial process and the manufacture of a large quantity of silicon detectors for the SSC L* collaboration. The ELMA plant in Zelenograd was inspected, and discussions were held on production process development and on a possible detector supply time line. In addition, J. Walter participated in technical and cost estimate forecast discussions with representatives of Wacker-Chemitronic Factory (Germany) about silicon crystals for possible use in the SSC.

  18. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Mishra, Rajiv; Sears, James

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less

  19. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    SciTech Connect (OSTI)

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Mishra, Rajiv; Sears, James

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. This symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.

  20. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    SciTech Connect (OSTI)

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  1. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    DOE Patents [OSTI]

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  2. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  3. Hot Isostatic Press Manufacturing Process Development for Fabrication of RERTR Monolithic Fuel Plates

    SciTech Connect (OSTI)

    Crapps, Justin M.; Clarke, Kester D.; Katz, Joel D.; Alexander, David J.; Aikin, Beverly; Vargas, Victor D.; Montalvo, Joel D.; Dombrowski, David E.; Mihaila, Bogdan

    2012-06-06

    We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bonding interface.

  4. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect (OSTI)

    George Atanasoff

    2010-10-29

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require

  5. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  6. Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment

    SciTech Connect (OSTI)

    Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

    2009-03-23

    Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the

  7. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability

    SciTech Connect (OSTI)

    Kleyboecker, A.; Liebrich, M.; Kasina, M.; Kraume, M.; Wittmaier, M.; Wuerdemann, H.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Mechanism of process recovery with calcium oxide. Black-Right-Pointing-Pointer Formation of insoluble calcium salts with long chain fatty acids and phosphate. Black-Right-Pointing-Pointer Adsorption of VFAs by the precipitates resulting in the formation of aggregates. Black-Right-Pointing-Pointer Acid uptake and phosphate release by the phosphate-accumulating organisms. Black-Right-Pointing-Pointer Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4

  8. Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event: Insights into Riming and Aggregation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giangrande, Scott E.; Toto, Tami; Bansemer, Aaron; Kumjian, Matthew R.; Mishra, Subhashree; Ryzhkov, Alexander V.

    2016-05-19

    Our study presents aircraft spiral ascent and descent observations intercepting a transition to riming processes during widespread stratiform precipitation. The sequence is documented using collocated scanning and profiling radar, including longer-wavelength dual polarization measurements and shorter-wavelength Doppler spectra. Riming regions are supported using aircraft measurements recording elevated liquid water concentrations, spherical particle shapes, and saturation with respect to water. Profiling cloud radar observations indicate riming regions during the event as having increasing particle fall speeds, rapid time-height changes, and bimodalities in Doppler spectra. These particular riming signatures are coupled to scanning dual polarization radar observations of higher differential reflectivity (ZDR)more » aloft. Moreover, reduced melting layer enhancements and delayed radar bright-band signatures in the column are also observed during riming periods, most notably with the profiling radar observations. The bimodal cloud radar Doppler spectra captured near riming zones indicate two time-height spectral ice peaks, one rimed particle peak, and one peak associated with pristine ice needle generation and/or growth between -4°C and -7°C also sampled by aircraft probes. We observe this pristine needle population near the rimed particle region which gives a partial explanation for the enhanced ZDR. The riming signatures aloft and radar measurements within the melting level are weakly lag correlated (r~0.6) with smaller median drop sizes at the surface, as compared with later times when aggregation of larger particle sizes was believed dominant.« less

  9. Process for producing an aggregate suitable for inclusion into a radiation shielding product

    DOE Patents [OSTI]

    Lessing, Paul A.; Kong, Peter C.

    2000-01-01

    The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

  10. Compatibility of manufacturing process fluids with R-134a and polyolester lubricant. Final report

    SciTech Connect (OSTI)

    Cavestri, R.C.; Schooley, D.L.

    1996-07-01

    This report includes a broad list of processing fluids that are known to be used to manufacture air conditioning and refrigeration products. Sixty-four process fluids from this list were selected for compatibility studies with R-134a and ICI EMKARATE RL32H (32 ISO) polyolester lubricant. Solutions or suspensions of the process fluid residues in polyolester lubricant were heated for 14 days at 175{degrees}C (347{degrees}F) in evacuated sealed glass tubes containing only valve steel coupons. Miscibility tests were performed at 90 wt.% R-134a, 10 wt.% polyolester lubricant with process fluid residue contaminate and were scanned in 10{degrees}C (18{degrees}F) increments over a temperature range of ambient to -40{degrees}C (-40{degrees}F). Any sign of turbidity, haze formation or oil separation was considered the immiscibility point.

  11. Controlled Thermal-Mechanical Processing of Tubes and Pipes for Enhanced Manufacturing and Performance

    SciTech Connect (OSTI)

    Kolarik, Robert V.

    2005-11-11

    The Alloy Steel Business of The Timken Company won an award for the controlled thermo-mechanical processing (CTMP) project and assembled a strong international public/private partnership to execute the project. The premise of the CTMP work was to combine Timken's product understanding with its process expertise and knowledge of metallurgical and deformation fundamentals developed during the project to build a predictive process design capability. The CTMP effort succeeded in delivering a pc-based capability in the tube optimization model, with a virtual pilot plant (VPP) feature to represent the desired tube making process to predict the resultant microstructure tailored for the desired application. Additional tasks included a system for direct, online measurement of grain size and demonstration of application of CTMP via robotically enhanced manufacturing.

  12. TOWARD LOW-COST FABRICATION OF MICROCHANNEL PROCESS TECHNOLOGIES - COST MODELING FOR MANUFACTURING DEVELOPMENT

    SciTech Connect (OSTI)

    Leith, Steven D.; King, Dale A.; Paul, Brian

    2010-11-07

    Chemical and energy conversion systems based on microchannel process technology (MPT) demonstrate high performance in applications in which rates are controlled by diffusive heat and mass transfer flux. The performance of MPT-based heat exchangers, absorbers/desorbers and chemical reactors all benefit from process intensification and have been used in a variety of mobile energy conversion systems including fuel reformers/converters, heat pumps and waste heat scavenging technologies. The service environments typical of MPTs often require the devices to be fabricated from metals such as aluminum, titanium, stainless steel or high temperature super alloys. Flow channels and associated critical dimensions in these devices can be as small as 50 um, but generally range from 100 to 1000 um in width and height with characteristic flow channel lengths normally in the mm to cm range. High surface area architectures (e.g. wicks or textured surfaces) are often included in the flow channels as well for enhanced mass transfer and/or catalytic functionality. Fabrication of MPT devices has historically been performed using a stacked-shim approach in which individual metal sheets are first patterned with micro- and meso-scale flow channels and subsequently bonded in a stack to create an array of miniaturized, parallel flow paths. Typical proof-of-concept fabrication efforts have utilized photo chemical machining (PCM) for shim patterning and diffusion bonding or diffusion brazing for joining of shim stacks. While flexible and capable of supporting technology demonstration, however, these techniques can be expensive at prototyping volumes. The high fabrication cost associated with these prototyping processes has contributed to a perception that MPT technology is expensive and will be relegated to a small application space. Recent work at the Microproducts Breakthrough Institute (MBI) has focused on exploring the cost structure of high volume manufacturing of MPT devices in effort to

  13. Process for manufacture of inertial confinement fusion targets and resulting product

    DOE Patents [OSTI]

    Masnari, Nino A.; Rensel, Walter B.; Robinson, Merrill G.; Solomon, David E.; Wise, Kensall D.; Wuttke, Gilbert H.

    1982-01-01

    An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

  14. Assessment of the Electrohol process to manufacture acetaldehyde from ethanol electrogeneratively. Final report

    SciTech Connect (OSTI)

    Trevino, A.A.

    1985-04-10

    Preliminary process economics data for the electrogenerative process to manufacture acetaldehyde from ethanol were generated based on patent information. The technology was assessed in four alternative processing options. The Electrohol process is viable in the US only if integrated to the production of 190 pf ethanol from corn in a large scale unit. To be competitive, the Electrohol process must show yields in excess of 93%. Its attractiveness depends on corn prices remaining under $2.90/bu and DDG selling for more than $132/T. A corn price of $2.00/bu is needed to make a farm-size corn-based processing alternative competitive. A plant based on the fermentation of molasses proved too expensive under the US economic assumptions. The Electrohol technology based on purchased ethanol cannot compete with the existing ethylene-based process under current conditions. To become attractive, the Electrohol process must have access to cheap ethanol ($1.43/gal). The zero electricity generation mode is the most attractive mode of operation for the Electrohol technology in the US. The penalty for low levels of generation (0.130 kwh/kg AcH) is, however, negligible. The optimum operating mode in W. Europe is the generation of 0.312 kwh/kg AcH. In Japan, the low generation level is perferred (0.130 kwh/kg AcH). In general, higher energy prices improve the competitiveness of the Electrohol processing alternatives.

  15. Characterizing performances of solder paste printing process at flexible manufacturing lines

    SciTech Connect (OSTI)

    Siew, Jit Ping; Low, Heng Chin; Teoh, Ping Chow

    2015-02-03

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter.

  16. IMAGING-BASED OPTICAL CALIPER FOR OBJECTS IN HOT MANUFACTURING PROCESSES

    SciTech Connect (OSTI)

    Huang, Howard

    2013-04-03

    OG Technologies, Inc. (OGT), in conjunction with its industrial and academic partners, proposes to develop an â??Imaging-Based Optical Caliper (hereafter referred to as â??OCâ?) for Objects in Hot Manufacturing Processesâ?. The goal is to develop and demonstrate the OC with the synergy of OGTâ??s current technological pool and other innovations to provide a light weight, robust, safe and accurate portable dimensional measurement device for hot objects with integrated wireless communication capacity to enable real time process control. The technical areas of interest in this project are the combination of advanced imaging, Sensor Fusion, and process control. OGT believes that the synergistic interactions between its current set of technologies and other innovations could deliver products that are viable and have high impact in the hot manufacture processes, such as steel making, steel rolling, open die forging, and glass industries, resulting in a new energy efficient control paradigm in the operations through improved yield, prolonged tool life and improved quality. In-line dimension measurement and control is of interest to the steel makers, yet current industry focus is on the final product dimension only instead of whole process due to the limit of man power, system cost and operator safety concerns. As sensor technologies advances, the industry started to see the need to enforce better dimensional control throughout the process, but lack the proper tools to do so. OGT along with its industrial partners represent the indigenous effort of technological development to serve the US steel industry. The immediate market that can use and get benefited from the proposed OC is the Steel Industry. The deployment of the OC has the potential to provide benefits in reduction of energy waste, CO2 emission, waste water amount, toxic waste, and so forth. The potential market after further expended function includes Hot Forging and Freight Industries. The OC

  17. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    SciTech Connect (OSTI)

    Quintana, Sarah V.

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  18. Manufacturing Process Development to Produce Depleted Uranium Wire for EBAM Feedstock

    SciTech Connect (OSTI)

    Alexander, David John; Clarke, Kester Diederik; Coughlin, Daniel Robert; Scott, Jeffrey E.

    2015-06-30

    Wire produced from depleted uranium (DU) is needed as feedstock for the Electron-Beam Additive Manufacturing (EBAM) process. The goal is to produce long lengths of DU wire with round or rectangular cross section, nominally 1.5 mm (0.060 inches). It was found that rolling methods, rather than swaging or drawing, are preferable for production of intermediate quantities of DU wire. Trials with grooveless rolling have shown that it is suitable for initial reductions of large stock. Initial trials with grooved rolling have been successful, for certain materials. Modified square grooves (square round-bottom vee grooves) with 12.5 % reduction of area per pass have been selected for the reduction process.

  19. State-of-the-art processes for manufacturing synthetic liquid fuels via the Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    A.Y. Krylova; E.A. Kozyukov

    2007-12-15

    Processes for manufacturing synthetic liquid fuels on the basis of the Fischer-Tropsch synthesis from alternative feedstock (natural gas, coal, biomass of various origins, etc.) are surveyed. State-of-the-art technology, companies that offer such processes, and the quality of products in comparison with their oil analogs, as well as economic features of the processes, are considered.

  20. Assessing your competitors' application of CIM/CIP. [Computer Integrated Manufacturing/Processing

    SciTech Connect (OSTI)

    King, M.J. ); Evans, H.N. )

    1993-07-01

    As part of the authors consulting assignments, they are frequently asked to describe what is best industry practice in the area of computer integrated manufacturing/processing (CIM/CIP). This might be specific to a particular piece, such as advanced controls or a laboratory system. Often it is in response to the enormous publicity given to CIM/CIP--begging the question, Who in the hydrocarbon industry is actually doing it '' Although much of this information is available to consultants, client confidentiality precludes its release. Instead, included is a questionnaire intended to be completed by representatives of manufacturing sites. The data gathered will be analyzed and reported in a future issue. The intent is to give anyone who has completed the questionnaire the opportunity to assess the position of his or her site with respect to the competition. To show how this might work a prototype study was completed. This included an estimate of the advanced control benefits achieved in 68 refineries in Western Europe. So that sites could be compared, these were expressed as a percentage of the maximum economically achievable.

  1. Process for depositing I-125 onto a substrate used to manufacture I-125 sources

    DOE Patents [OSTI]

    McGovern, James J.; Olynyk, Joseph M.

    1988-01-01

    The invention relates to a process for depositing I-125 on a substrate which comprises contacting a predetermined surface area of substrate with Xe-125 gas, whereby the Xe-125 decays to I-125 and the I-125 in turn deposits as a solid on the surface of the substrate, the contact being for a time sufficient to deposit at least about 1 microcurie of I-125. I-125 is thereby deposited in a relatively uniform amount over the surface area of the substrate. The substrate is then assayed to determine how much I-125 has been deposited. The substrate is then divided into pieces of measured surface area, each piece therefore containing a measured amount of deposited I-125, and each piece can then be used in the manufacture of an I-125 source.

  2. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  3. Identification of biological processes in a mixed hydrocarbon plume at a paint manufacturing facility

    SciTech Connect (OSTI)

    McLaughlan, R.G.; Walsh, K.P.; Henkler, R.D.; Anderson, B.N.

    1996-12-31

    In situ biodegradation is increasingly being used as a cost effective remedial strategy for contaminated sites. However, for the remediation to be successful, it is necessary to understand the fundamental geochemical and microbiological processes occurring at a particular site. At a paint manufacturing facility, a mixed hydrocarbon plume containing both BTEX and paraffinic hydrocarbons (Stoddard solvent) has contaminated the aquifer. The microbial processes occurring in the plume were investigated to better define the capacity of the aquifer to degrade hydrocarbons. Microbial oxidation of hydrocarbons is known to be coupled with the reduction of redox active species including oxygen, nitrate, ferric iron and sulphate as well as the production of methane. Water quality data, redox parameters and contaminant information were collected from the site to identify candidate biological processes occurring. The results show that as the contaminant concentration increases, the redox decreases indicating the generation of a more reduced environment. The decreasing redox correlates with increased concentrations of ammonia, ferrous iron and sulphide. The data indicates that there have been a range of different electron acceptor systems operating at the site. This has been correlated with a theoretical amount of benzene consumed. The chemistry from the wells at the site show that at least 47 mg/L of benzene is capable of being mineralized within the aquifer by microbial based transformations given the current contaminant loading and flowrate. 3 refs., 1 fig., 2 tabs.

  4. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture

    SciTech Connect (OSTI)

    Bhasin, A.K.; Berggren, M.H.; Ronzio, N.J.; Smit, F.J.

    1985-12-31

    This report describes the results of process and cost refinement studies for the manufacture of ultra-clean coal-slurry fuel for direct-fired gas turbines. The work was performed as an extension to an earlier contract in which AMAX R and D supplied METC with two lots of highly beneficiated coal slurry fuel for use in the Heat Engines program. A conceptual design study and cost estimate supplied to METC at that time indicated that a combined physical and chemical cleaning process could produce ultra-clean fuel at a competitive price. Laboratory and pilot plant studies performed for the contract extension further defined the process conditions and operating and capital costs to prepare coals containing from 0.2 to 1.0% ash as slurry fuels. A base-case fuel containing coal cleaned to 0.5% ash in a 1000 cp slurry containing 55% coal was $4.16 per million Btu when produced in quantities required to fuel a 500 MW gas-turbine generating station. Coal slurry fuel production costs as low as $3.66 per million Btu were projected for coals cleaned to 1.0% ash. 12 refs., 23 figs., 63 tabs.

  5. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  6. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    SciTech Connect (OSTI)

    Hwang, Yeong-Maw; Huang, Song-Jeng; Huang, Yu-San

    2011-05-04

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  7. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L.

    1993-06-01

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  8. Technology meets aggregate

    SciTech Connect (OSTI)

    Wilson, C.; Swan, C.

    2007-07-01

    New technology carried out at Tufts University and the University of Massachusetts on synthetic lightweight aggregate has created material from various qualities of fly ash from coal-fired power plants for use in different engineered applications. In pilot scale manufacturing tests an 'SLA' containing 80% fly ash and 20% mixed plastic waste from packaging was produced by 'dry blending' mixed plastic with high carbon fly ash. A trial run was completed to produce concrete masonry unit (CMU) blocks at a full-scale facility. It has been shown that SLA can be used as a partial substitution of a traditional stone aggregate in hot asphalt mix. 1 fig., 2 photos.

  9. Multi-cusp ion source for doping process of flat panel display manufacturing

    SciTech Connect (OSTI)

    Inouchi, Yutaka Matsumoto, Takeshi; Dohi, Shojiro; Tanii, Masahiro; Takahashi, Genki; Nishimura, Ippei; Tatemichi, Junichi; Konishi, Masashi; Naito, Masao

    2014-02-15

    We developed a multi-cusp ion source for Nissin ion doping system iG5 which is used in low temperature poly-crystalline silicon processes for flat panel display (FPD) manufacturing. In this ion source, BF{sub 3} or PH{sub 3} diluted H{sub 2} plasmas are produced and large area ribbon ion beams are extracted. In general, ion ratio of B{sup +} in BF{sub 3} plasma is much smaller than BF{sub 2}{sup +} in multi-cusp ion sources. We developed a new method to increase B{sup +} ratio and obtained mass analyzed B{sup +} target current of 130 mA. We employed newly improved multi-slot type electrodes for the beam extraction system and obtained stable beams with the uniformity of below 3%. In BF{sub 3} plasmas, several undesirable metal fluorides are produced in the plasma chamber and deposited on the electrode system, which cause glitches and poor beam uniformity. We introduce several cleaning methods.

  10. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2003-12-09

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  11. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2000-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  12. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 21, Materials and processes selection. Volume 2

    SciTech Connect (OSTI)

    Smith, B.R.

    1995-08-15

    This document identifies the candidate materials and manufacturing processes selected for development of the TPX Toroidal Field (TF) Magnet. Supporting rationale and selection criteria are provided for justification and the materials properties database report is included for completeness. Specific properties for each material selection are included in this document.

  13. Solving the Big Data (BD) Problem in Advanced Manufacturing (Subcategory for work done at Georgia Tech. Study Process and Design Factors for Additive Manufacturing Improvement)

    SciTech Connect (OSTI)

    Clark, Brett W.; Diaz, Kimberly A.; Ochiobi, Chinaza Darlene; Paynabar, Kamran

    2015-09-01

    3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure the amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.

  14. Save the Date: DOE EERE AMO Workshop to Discuss Manufacturing Process Intensification Innovation Topic

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) is planning to have a workshop in Arlington, VA at the Hilton Alexandria Old Town on 29 – 30 September, 2015. This 2 day workshop will focus on the on the...

  15. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Broader source: Energy.gov [DOE]

    Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  16. Process for manufacturing bis(2-methoxyethyl)-2,3,6,7-tetracyano-1,4,5,8,9,10-hexazaanthracene

    DOE Patents [OSTI]

    Rasmussen, Paul George; Lawton, Richard Graham

    2014-06-03

    A process to manufacture substituted tetracyano-hexaazatricyclics with the substitutions occurring at the 9 and 10 hydrogens. The process begins with 2,3-dichloro-5,6-dicyanopyrazine, which is reacted to form the desired tetracyano-hexaazatricyclic. Different process embodiments enable different reaction paths to the desired tetracyano-hexaazatricyclic. Different tetracyano-hexaazatricyclic embodiments include bis(2-methoxyethyl)-2,3,6,7-tetracyano-1,4,5,8,9,10-hexazaanthracene and bis(2-methoxyethoxyethyl)-2,3,6,7-tetracyano-1,4,5,8,9,10-hexazaanthracen- e.

  17. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    SciTech Connect (OSTI)

    Sai, Ranajit; Endo, Yasushi; Shimada, Yutaka; Yamaguchi, Masahiro; Shivashankar, S. A.

    2015-05-07

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f{sub FMR}) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f{sub FMR} has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.

  18. SUSTAINABLE MANUFACTURING VIA MULTI-SCALE PHYSICS-BASED PROCESS MODELING

    Broader source: Energy.gov (indexed) [DOE]

    AND MANUFACTURING-INFORMED DESIGN | Department of Energy Third Wave Systems, Inc. - Minneapolis, MN Micro-structural modeling tools for metals are being developed and used to demonstrate a design framework to improve the understanding of dynamic response and statistical variability. This project will enable design engineers to evaluate the effects of design changes and material selection; anticipate quality and cost prior to implementation on the factory floor; and enable low-waste, low-cost

  19. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect (OSTI)

    Xiaodi Huang; Richard Gertsch

    2005-02-04

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  20. Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors

    SciTech Connect (OSTI)

    Dale K. Kotter; Steven D. Novack

    2010-02-01

    DRAFT For Submittal to Journal of Solar Energy - Rev 10.1 ---SOL-08-1091 SOLAR Nantenna Electromagnetic Collectors Dale K. Kotter Idaho National Laboratory Steven D. Novack Idaho National Laboratory W. Dennis Slafer MicroContinuum, Inc. Patrick Pinhero University of Missouri ABSTRACT The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target mid-infrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers, including: 1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements; 2) selection of materials with proper THz properties; and 3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents, and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV

  1. Sustainable Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions ...

  2. Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars

    SciTech Connect (OSTI)

    Villa, Andrea; Mussi, Valerio; Strano, Matteo

    2011-05-04

    The role of an anti-intrusion bar for automotive use is to absorb the kinetic energy of the colliding bodies that is partially converted into internal work of the bodies involved in the crash. The aim of this paper is to investigate the performances of a new kind of anti-intrusion bars for automotive use, filled with metallic foams. The reason for using a cellular material as a filler deals with its capacity to absorb energy during plastic deformation, while being lightweight. The study is the evolution of a previous paper presented by the authors at Esaform 2010 and will present new results and findings. It is conducted by evaluating some key technical issues of the manufacturing problem and by conducting experimental and numerical analyses. The evaluation of materials and shapes of the closed sections to be filled is made in the perspective of a car manufacturer (production costs, weight reduction, space availability in a car door, etc.). Experimentally, foams are produced starting from an industrial aluminium precursor with a TiH{sub 2} blowing agent. Bars are tested in three point bending, in order to evaluate their performances in terms of force-displacement response and other specific performance parameters. In order to understand the role of interface between the inner surface of the tube and the external surface of the foam, different kinds of interface are tested.

  3. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    SciTech Connect (OSTI)

    Wegst, Ulrike G.K.; Allen, Todd; Sridharan, Kumar

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  4. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  5. WEBINAR: MODULAR CHEMICAL PROCESS INTENSIFICATION INSTITUTE FOR CLEAN ENERGY MANUFACTURING SOLICITATION, MAY 11, 2016

    Broader source: Energy.gov [DOE]

    The Energy Department's Office of Energy Efficiency and Renewable Energy will conduct an informational webinar for the Modular Chemical Process Intensification Institute for Clean Energy...

  6. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  7. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  8. Process for manufacturing an auto-collimating scintillator and product produced thereby

    DOE Patents [OSTI]

    Goodman, C.A.; Lyon, A.F.; Perez-Mendez, V.

    1995-06-27

    There is described a process for the vapor deposition of a scintillator phosphor composition with concomitant shadowing wherein the substrate to be processed is rotated through an arc relative to a vapor source of the scintillator phosphor composition whereby shadowing introduces voided gaps or interstices between columns as a result of the preferential components receiving more coating flux, particularly in the presence of oblique flux. 8 figs.

  9. Process for manufacturing an auto-collimating scintillator and product produced thereby

    DOE Patents [OSTI]

    Goodman, Claude A.; Lyon, Alan F.; Perez-Mendez, Victor

    1995-01-01

    There is described a process for the vapor deposition of a scintillator phosphor composition with concomitant shadowing wherein the substrate to be processed is rotated through an arc relative to a vapor source of the scintillator phosphor composition whereby shadowing introduces voided gaps or interstices between columns as a result of the preferential components receiving more coating flux, particularly in the presence of oblique flux.

  10. Process for the manufacture of an attrition resistant sorbent used for gas desulfurization

    DOE Patents [OSTI]

    Venkataramani, Venkat S.; Ayala, Raul E.

    2003-09-16

    This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.

  11. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and ...

  12. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: ...

  13. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    DOE Patents [OSTI]

    Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  14. Multilayered composite proton exchange membrane and a process for manufacturing the same

    SciTech Connect (OSTI)

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  15. Imaging Study of Multi-Crystalline Silicon Wafers Throughout the Manufacturing Process: Preprint

    SciTech Connect (OSTI)

    Johnston, S.; Yan, F.; Zaunbracher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-07-01

    Imaging techniques are applied to multi-crystalline silicon bricks, wafers at various process steps, and finished solar cells. Photoluminescence (PL) imaging is used to characterize defects and material quality on bricks and wafers. Defect regions within the wafers are influenced by brick position within an ingot and height within the brick. The defect areas in as-cut wafers are compared to imaging results from reverse-bias electroluminescence and dark lock-in thermography and cell parameters of near-neighbor finished cells. Defect areas are also characterized by defect band emissions. The defect areas measured by these techniques on as-cut wafers are shown to correlate to finished cell performance.

  16. Method and Apparatus for In-Process Sensing of Manufacturing Quality

    DOE Patents [OSTI]

    Hartman, D.A.; Dave, V.R.; Cola, M.J.; Carpenter, R.W.

    2005-02-22

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.

  17. Method and apparatus for in-process sensing of manufacturing quality

    DOE Patents [OSTI]

    Hartman, Daniel A.; Dave, Vivek R.; Cola, Mark J.; Carpenter, Robert W.

    2005-02-22

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.

  18. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect (OSTI)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  19. CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL

    SciTech Connect (OSTI)

    Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

    2008-02-01

    The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for

  20. Chemical coal cleaning process and costs refinement for coal-water slurry manufacture. Semi-annual progress report

    SciTech Connect (OSTI)

    Bhasin, A.K.; Berggren, M.H.; Smit, F.J.; Ames, L.B.; Ronzio, N.J.

    1985-03-01

    The Department of Energy, through the Morgantown Energy Technology Center (METC), has initiated a program to determine the feasibility and potential applications for direct firing of coal and coal-derived fuels in heat engines, specifically gas turbines and diesel engines. AMAX Extractive Research and Development, Inc. supplied METC with two lots of highly beneficiated coal slurry fuel for use in the Heat Engines programs. One of the lots was of ultra-clean coal-water slurry fuel (UCCSF) for which a two-stage caustic and acid leaching procedure was developed to chemically clean the coal. As a part of the contract, AMAX R and D developed a conceptual design and preliminary cost estimate for a commercial-scale process for UCCSF manufacture. The contract was extended to include the following objectives: define chemical cleaning and slurry preparation process conditions and costs more precisely; investigate methods to reduce the product cost; and determine the relationship, in dollars per million Btu, between product cost and fuel quality. Laboratory investigations have been carried out to define the chemical cleaning process conditions required to generate fuels containing from 0.17 to 1.0% ash. Capital and operating cost refinements are to be performed on the basis of the preferred process operating conditions identified during the laboratory investigations. Several such areas for cost reductions have been identified. Caustic strengths from 2 to 7% NaOH are currently anticipated while 25% NaOH was used as the basis for the preliminary cost estimate. In addition, leaching times for each of the process steps have been reduced to half or less of the times used for the preliminary cost estimate. Improvement of fuel quality has been achieved by use of a proprietary hot-water leaching step to reduce the residual alkali content to less than 250 ppM (Na/sub 2/O plus K/sub 2/O) on a dry coal basis. 2 refs., 3 figs., 24 tabs.

  1. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, ...

  2. A Virtual Test Approach to Incorporate Materials and Manufacturing Processes to Aid Design choices in High Performance Composites

    SciTech Connect (OSTI)

    Gonzalez-Murillo, C.; Price, M.

    2011-05-04

    The increasing use of fibre reinforced composites in structural components in the aerospace industry is providing many challenges to designers in understanding how they can be used more effectively to exploit their advantages. One of the main challenges is the selection of lay-ups for a given application. The difficulty lies in the variability that is achievable with composites. Each new layup or configuration is effectively a new material and requires and extensive test programme to validate the performance, from coupons which give basic material characteristics, up through the test pyramid through to large sub-component which contains basic assemblies. This variety of testing gives confidence in understanding the material behaviour and performance in structural assemblies. On the other hand, the manufacturing process is also important here with different processes sometimes needed for different materials or thicknesses. This is a time consuming and expensive process requiring many thousands of small tests leading up to a few major tests which are complex to set up and carry out. This research is attempting to address this by developing a virtual test system which will sit hand-in-hand with a physical test system. The goal of virtual tests appears reachable using the finite element analysis technique in which many experimental tests can be replaced by high fidelity simulations. The payoff in reduced cycle time and costs for designing and certifying composite structures is very attractive; and the possibility also arises of considering material configurations that are too complex to certify by purely empirical methods. The validated simulations could then be subsequently used for variants or derivatives of composites to inform design choices and establish new validation programmes where appropriate. This paper presents a series of simulations of the critical testing procedures needed to validate high performance composites materials using linear and non

  3. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.

    2016-04-26

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less

  4. Advanced Manufacturing Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE FY 2017 BUDGET AT-A-GLANCE The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. What We Do The Advanced Manufacturing Offce uses an integrated approach that relies on three

  5. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  6. Demonstration of thermal control, microstructure control, defect mitigation and process parameter database generation for Ti-6Al-4V Direct Digital Manufacturing - Understanding defect mitigation and process parameter database generation for direct digital manufacturing

    SciTech Connect (OSTI)

    Dehoff, Ryan R.; Sridharan, Niyanth; Dinwiddie, Ralph; Robson, Alan; Jordan, Brian; Chaudhary, Anil; Babu, Sudarsanam Suresh

    2015-09-01

    Researchers from Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) worked with Applied Optimization (AO) to understand and evaluate the propensity for defect formation in builds manufactured using DM3D-POM laser direct metal deposition. The main aim of this collaboration was to understand the character of powder jet behavior as a function of the nozzle parameters such as cover gas, carrier gas, and shaping gas. In order to evaluate the sensitivities of the parameters used in model, various experiments were performed with in-situ monitoring of the powder stream characteristics using a high speed camera. A wide variety of conditions while keeping the hopper motor rpm constant, including laser power and travel speed were explored. The cross sections of the deposits were characterized using optical microscopy.

  7. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz-; Chourey, Aashish

    2010-08-01

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  8. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laser-sintering) Optomec LENS MR-7 Sciaky EBAM 68 Non-metal additive manufacturing Powder bed FORMIGA P 110 PolyJet 3D ... Fused deposition modeling print technology MakerBot ...

  9. Hydroprocessing catalyst manufacture

    SciTech Connect (OSTI)

    Lostaglio, V.J.; Carruthers, J.D.

    1985-01-01

    Hydroprocessing catalysts for the oil-refining industry have undergone significant improvements since the oil shortages of the late 1970's. Spurred by the need for refiners to process heavy, sour feeds, catalyst manufacturers have developed technology to meet these changing demands. Current manufacturing techniques in the production of substrate and final catalyst are reviewed. New approach to the production of resid hydrotreatment catalysts are considered.

  10. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  11. The President's Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the ...

  12. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Aggregate Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate

  13. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect (OSTI)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the inter-aggregate and intra-aggregate pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger

  14. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  15. Processing Materials Devices and Diagnostics for Thin Film Photovoltaics: Fundamental and Manufacturability Issues; Final Report, 5 September 2001 - 31 May 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20-45545 April 2009 Processing Materials Devices and Diagnostics for Thin Film Photovoltaics: Fundamental and Manufacturability Issues Final Report 1 March 2005 - 30 November 2008 R.W. Birkmire, W.N. Shafarman, E. Eser, S.S. Hegedus, B.E. McCandless, K.D. Dobson, and S. Bowden University of Delaware Newark, Delaware National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy

  16. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A.

    2010-05-12

    As the original magnet designer and manufacturer of ORNLs 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNLs Materials Processing Groups and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  17. Small file aggregation in a parallel computing system

    DOE Patents [OSTI]

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang

    2014-09-02

    Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.

  18. additive manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  19. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  20. Statistical circuit simulation with measurement-based active device models: Implications for process control and IC manufacturability

    SciTech Connect (OSTI)

    Root, D.E.; McGinty, D.; Hughes, B.

    1995-12-31

    This paper presents a new approach to statistical active circuit design which unifies device parametric-based process control and non-parametric circuit simulation. Predictions of circuit sensitivity to process variation and yield-loss of circuits fabricated in two different GaAs IC processes are described. The simulations make use of measurement-based active device models which are not formulated in terms of conventional parametric statistical variables. The technique is implemented in commercially available simulation software (HP MDS).

  1. Public Sector Energy Efficiency Aggregation Program

    Broader source: Energy.gov [DOE]

    Please note that, like all Illinois Energy Now programs, the Aggregation Program is subject to the state appropriation process, and no funds can be committed or released until a final budget is...

  2. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila; Ucok, Ibrahim

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  3. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  4. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  5. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  6. Modeling and simulation of CVD processes for manufacturing ceramic composites. Final report, 30 September 1994-25 June 1995

    SciTech Connect (OSTI)

    Adjerid, S.; Flaherty, J.E.; Hudson, J.B.; Shephard, M.S.; Webster, B.E.

    1995-06-29

    A chemical vapor deposition (CVD) process used to coat crystal sapphire fibers with B-Al2O3 has been mathematically modelled and numerically simulated using adaptive finite element software. This software system is applicable for solving transient and steady partial differential equations and is capable of automatic mesh generation, mesh-order variation, and/or mesh refinement.

  7. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Manufacturing Plan for Aminosilicone-based CO{sub 2} Absorption Material

    SciTech Connect (OSTI)

    Vogt, Kirkland

    2013-02-01

    A commercially cost effective manufacturing plan was developed for GAP-1m, the aminosilicone-based part of the CO{sub 2} capture solvent described in DE-FE0007502, and the small-scale synthesis of GAP-1m was confirmed. The plan utilizes a current intermediate at SiVance LLC to supply the 2013-2015 needs for GE Global Research. Material from this process was supplied to GE Global Research for evaluation and creation of specifications. GE Global Research has since ordered larger quantities (60 liters) for the larger scale evaluations that start in first quarter, 2013. For GE’s much larger future commercial needs, an improved, more economical pathway to make the product was developed after significant laboratory and literature research. Suppliers were identified for all raw materials.

  8. Teichert Aggregates | Open Energy Information

    Open Energy Info (EERE)

    Wind Facility Status In Service Owner Teichert Aggregates Developer Foundation Windpower Energy Purchaser Teichert Aggregates Location South of Tracy CA Coordinates...

  9. Thin-Film Solar Cell Manufacturing

    Broader source: Energy.gov [DOE]

    In this b-roll, thin-film photovoltaic cells are manufactured and deployed in Arizona. Steps shown in the manufacturing process include the screen printing of conductive material onto laminated...

  10. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  11. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  12. Solar Manufacturing Projects | Department of Energy

    Office of Environmental Management (EM)

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  13. Photovoltaic Cell And Manufacturing Process

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  14. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Manufacturing is how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Manufacturing is the lifeblood of the American economy -- providing jobs

  15. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Success Stories Manufacturing Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing technologies and processes for more efficient energy management systems create big opportunities for energy savings and new jobs in manufacturing. Explore EERE's manufacturing success stories below. July 7, 2016 A pilot-scale polymerization reactor sits in the middle, with the ACOMP system on the left side and the control interface on the right

  16. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  17. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    SciTech Connect (OSTI)

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  18. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    SciTech Connect (OSTI)

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  19. Chapter 6 — Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This chapter examines the opportunities for improvements in energy and materials utilization within three spaces: individual manufacturing processes and unit operations; goods-producing facilities, including manufacturing business processes; and manufacturing supply chains and manufactured goods, including impacts from all phases of the product life cycle.

  20. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Laser Manufacturing at GE Global Research Learn how laser sintering, an additive laser manufacturing process practiced at GE Global Research, makes parts from metal powder. You Might Also Like Munich_interior_V 10 Years ON: From

  1. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  2. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and ...

  3. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To increase acceptance of additive manufacturing as a viable processing method, pathways ... Included in this Gordon style workshop will be panel discussions with the invited ...

  4. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Consumption Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption This case ...

  5. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of ...

  6. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  7. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    ...sitesdefaultfilesmicrositesostppcast-advanced-manufacturing-june2011.pdf. Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Collaboration and ...

  8. Solar Manufacturing Technology 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. This second round of SolarMat, announced on October 22, 2014, funds nine photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost

  9. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  10. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  11. Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy

  12. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  13. Manufacturing Innovation and Scale-up

    Broader source: Energy.gov [DOE]

    The SunShot Initiative funds cutting-edge research and development that will help the solar industry to reach specific manufacturing-related cost goals and supports cost-cutting advances in the solar supply chain, across system components, and in manufacturing processes. SunShot works to de-risk both near and long-term innovations in the private sector as well as manufacturing-oriented consortia.

  14. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  15. Low Temperature PEM Fuel Cell Manufacturing Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project  Cost drivers were identified for the following: * MEA * Plates * Balance of Plant (BOP) * Fuel Processing Manufacturing Fuel Cell Project - Phase 1 Note that this presentation will be MEA centric as this is the working group I represent...  MEA Cost Drivers Identified: Identifying MEA Cost Drivers * The MEA was readily identified as the major cost driver in a 10 kW

  16. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect (OSTI)

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  17. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  18. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  19. A General Relationship between Disorder, Aggregation, and Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Conjugated Polymers | Stanford Synchrotron Radiation Lightsource A General Relationship between Disorder, Aggregation, and Charge Transport in Conjugated Polymers Monday, September 23, 2013 The potential for combining low-cost manufacturing and mechanical robustness with engineering of specific opto-electronic properties has recently spurred great interest in semiconducting polymers. Consequently, devices based on organic semiconductors have reached significant milestones such as ~10%

  20. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Increasing U.S. Market Share in Solar Photovoltaic Manufacturing Close From 2000 to 2010, global shipments of solar cells and modules grew 53%, a wave that China and Taiwan rode to increase their combined market share from less than 2% to 54%. Meanwhile, U.S. market share

  1. Manufacturing Innovation Topics Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  2. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013. Fuel Cell Manufacturing (2.61 MB) ...

  3. WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Workshops » WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 The Advanced Manufacturing Office (AMO) held a workshop in Portland, Oregon on January 6-7, 2016. The topic of this 2 day workshop was Sustainable Manufacturing. This workshop included discussions featuring topics such as Developing and Using Alternative Feedstocks; Reduction of Waste in Manufacturing Processes; End of Life Product Management; Materials, Energy

  4. Welcome! Presentation: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 | Energy Efficiency and Renewable Energy eere.energy.gov Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Breakout Instructions January 13, 2014 Advanced Manufacturing Office (AMO) manufacturing.energy.gov 6 Breakout Objectives Let's dig deeper: * Manufacturing Process Technologies - Blue Teams A and B (e.g. lay-up techniques, out of the autoclave, novel cure techniques, resin infusion, pultrusion, SMC, tooling, machining) * Enabling Technologies and Approaches -

  5. Manufacturing Pre-Solicitation Transcript

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY HYDROGEN PROGRAM MANUFACTURING R&D PRE-SOLICITATION MEETING FRIDAY, MAY 18, 2007 CRYSTAL GATEWAY MARRIOTT 1700 JEFFERSON DAVIS HIGHWAY SALONS 5 AND 6 ARLINGTON, VA. 22202 2 A G E N D A 1:00 p.m. Welcome and Opening Remarks JoAnn Milliken, Chief Engineer, U.S. DOE Hydrogen Program 1:05 p.m. FOA Application Process and Anticipated Timeline Jill Gruber, Project Officer, U.S. DOE Hydrogen Program, Golden Field Office 1:30 p.m. Manufacturing FOA Proposed Scope and Topics Pete

  6. The Economics of Big Area Addtiive Manufacturing

    SciTech Connect (OSTI)

    Post, Brian; Lloyd, Peter D; Lindahl, John; Lind, Randall F; Love, Lonnie J; Kunc, Vlastimil

    2016-01-01

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupled with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.

  7. Save the Date: DOE EERE AMO Workshop to Discuss Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    parties on how to develop smaller, simpler equipment and step-change improvements in manufacturing processes. These improved processes will have fewer steps and be capable of...

  8. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  9. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Chad Duty, Ph.D. Technical Lead Additive Manufacturing Roll-to-Roll Processing June 26, 2012 2 Managed by ...

  10. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. The Advanced Manufacturing Partnership and the

  11. Clean Energy Manufacturing Initiative News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative News Clean Energy Manufacturing Initiative News June 23, 2016 Energy Department Announces Up to $70 Million for New REMADE in America Institute The Energy Department is requesting proposals for a new Clean Energy Manufacturing Innovation Institute focused on improving technologies and processes to achieve cost parity of recycled and waste materials with primary feedstocks, while improving material efficiency in manufacturing processes. June 20, 2016 FACT

  12. DOE Announces Selections for SSL Manufacturing R&D (Round 3)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Recipient: k-Space Associates (Dexter, MI) Title: Optical Metrology for Volume OLED Manufacturing Summary: Most monitoring of the OLED layers during the manufacturing process ...

  13. Advanced Manufacturing Office FY 2017 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About Us » Advanced Manufacturing Office FY 2017 Budget At-A-Glance Advanced Manufacturing Office FY 2017 Budget At-A-Glance The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. AMO FY17

  14. Depletion Aggregation > Batteries & Fuel Cells > Research > The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries & Fuel Cells In This Section Battery Anodes Battery Cathodes Depletion Aggregation Membranes Depletion Aggregation We are exploring a number of synthetic strategies to ...

  15. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  16. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For instance, the following parts have already been manufactured additively: 179 Structure parts for unmanned aircraft by SAAB Avitronics 15, 16; 180 Special tools for ...

  17. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  18. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  19. Aggregate Transfers Last 8 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Last 8 Days Aggregate Transfers Last 8 Days These plots show the aggregate bandwidth statistics for the past eight days with the most recent day shown first. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) BW (Both Systems) Last edited: 2011-04-04 10:44:03

  20. Smart Manufacturing Institute Industry Day Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Workshop - September 29-30, 2015 WORKSHOP: HIGH VALUE ROLL TO ROLL (HV R2R) MANUFACTURING INNOVATION, DECEMBER 2-3, 2015 Fiber Reinforced Polymer Composite ...

  1. Advanced Manufacturing Office Peer Review Final Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 28-29, 2015 ... Difficult Materials LLC 10:10 - 10:30 am Coatings and Process Development Reduced PPG Industries, Inc. Energy Automotive ...

  2. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  3. Manufacturing Process Optimization to Improve Stability, Yield and Efficiency of CdS/CdTe PV Devices: Final Report, December 2004 - January 2009

    SciTech Connect (OSTI)

    Sampath, W. S.; Enzenroth, A.; Barth, K.

    2009-03-01

    The research by Colorado State University advances the understanding of device stability, efficiency, and process yield for CdTe PV devices.

  4. Reuse of industrial sludge as pelletized aggregate for concrete

    SciTech Connect (OSTI)

    Tay, J.H.; Hong, S.Y.; Show, K.Y.

    2000-03-01

    Industrial sludge is generated at a rate of 100 metric tons/day, from a copper slag recycling plant. The industrial sludge is currently being landfilled. However, limited availability of landfill sites has raised the need of an alternative disposal. A renewed interest in converting the industrial sludge into construction materials has been prompted to achieve a viable disposal option in saving the depleting natural resources of raw materials as well as the environment. This study describes the use of sintered sludge pellets as a complete replacement for regular granite aggregates in concrete. The pelletized sludge was fired to a temperature of 1,135 C at which the sintering process occurs, producing a hard fused basalt-like mass. In comparison with normal granite aggregates, the sintered sludge pellets display a higher aggregate strength, a higher porosity, and a lower aggregate density that manifests attributes better than that required of construction aggregates. The concrete cast with the pelletized aggregates achieved a compressive strength of 38.5 N/mm{sup 2} after 28 days and was comparable to the control specimen. Leaching tests conducted on the sludge pellets and concrete showed that all leachate contamination levels determined using the column leaching test are within acceptable ranges after 130 days of stabilization. The experimental results indicated that a complete replacement of conventional aggregates with sintered sludge pellets for structural concrete is both technically and environmentally feasible.

  5. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  6. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  7. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  8. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  9. Anomaly Detection In Additively Manufactured Parts Using Laser Doppler Vibrometery

    SciTech Connect (OSTI)

    Hernandez, Carlos A.

    2015-09-29

    Additively manufactured parts are susceptible to non-uniform structure caused by the unique manufacturing process. This can lead to structural weakness or catastrophic failure. Using laser Doppler vibrometry and frequency response analysis, non-contact detection of anomalies in additively manufactured parts may be possible. Preliminary tests show promise for small scale detection, but more future work is necessary.

  10. Processing Materials Devices and Diagnostics for Thin Film Photovoltaics: Fundamental and Manufacturability Issues; Final Report, 5 September 2001 - 31 May 2008

    SciTech Connect (OSTI)

    Birkmire, R. W.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E.; Dobson, K. D.; Bowden, S.

    2009-04-01

    The critical issues addressed in this study on CIGS, CdTe, and a-Si modules will provide the science and engineering basis for developing viable commercial processes and improved module performance.

  11. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  12. Fuel Cell Technologies Manufacturing Research and Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Within the Office of Energy Efficiency and Renewable Energy (EERE), the Fuel Cell Technologies Office (FCTO) supports manufacturing research and development (R&D) activities to improve processes and reduce the cost of components and systems for hydrogen production, delivery, and storage over the

  13. Wind Turbine Manufacturing Transforms with Three-Dimensional Printing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Turbine Manufacturing Transforms with Three-Dimensional Printing Wind Turbine Manufacturing Transforms with Three-Dimensional Printing May 19, 2016 - 12:57pm Addthis From medical devices to airplane components, three-dimensional (3-D) printing (also called additive manufacturing) is transforming the manufacturing industry. Now, research that supports the Energy Department's Atmosphere to Electrons (A2e) initiative is applying 3-D-printing processes to create wind turbine

  14. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Manufacturing Photo of scientific equipment in laboratory setting. NREL's in-line diagnostics help industry identify defects in fuel cell components. This small-scale manufacturing line at NREL's Energy Systems Integration Facility can convey fuel cell component materials at speeds of 100 feet per minute. NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high-volume manufacturing processes to enable higher production volumes, increased reliability,

  15. DOE Manufacturing Pre-Solicitation Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Pre-Solicitation Workshop DOE Manufacturing Pre-Solicitation Workshop The U.S. Department of Energy (DOE) held a Manufacturing Pre-Solicitation Workshop in Arlington, Va., on May 18, 2007. Workshop participants reviewed the application process and discussed proposed topics for a research and development funding opportunity to advance manufacturing technologies for hydrogen and fuel cell systems. The workshop was held in conjunction with the DOE Hydrogen Program's 2007 Annual Merit

  16. Customer Aggregation: An Opportunity for Green Power?

    SciTech Connect (OSTI)

    Holt, E.; Bird, L.

    2001-02-26

    We undertook research into the experience of aggregation groups to determine whether customer aggregation offers an opportunity to bring green power choices to more customers. The objectives of this report, therefore, are to (1) identify the different types of aggregation that are occurring today, (2) learn whether aggregation offers an opportunity to advance sales of green power, and (3) share these concepts and approaches with potential aggregators and green power advocates.

  17. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  18. Renewable Energy Manufacturing Program

    Broader source: Energy.gov [DOE]

    Note: The initial application deadline for the Renewable Energy Manufacturing Program is June 30, 2016. Applications will be accepted following that date only if there are remaining funds available...

  19. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  20. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  1. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    SciTech Connect (OSTI)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, III, Harry M.; Phelps, Tommy

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  2. Upcoming Funding Opportunity for Tower Manufacturing and Installation...

    Energy Savers [EERE]

    and Lower Cost of Energy" intends to support partnerships that lead to innovative designs and processes for wind turbine tower manufacturing and turbine system installation. ...

  3. HPC4Mfg: Boosting American Competiveness in Clean Energy Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    industrial products and processes-including paper manufacturing, food drying, and 3D printing aerospace parts-with the goal of dramatically reducing production costs and ...

  4. Manufacturing R&D Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and ...

  5. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process heating plays a key role in producing steel, aluminum, and glass and in ... More Documents & Publications Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  6. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Broader source: Energy.gov (indexed) [DOE]

    Total Onsite Electricity Export 1 Manufacturing Energy and Carbon Footprint Sector: Iron and Steel (NAICS 3311,3312) Onsite Generation Process Energy Machine-Driven Systems Fans ...

  7. Develop Roll-to-Roll Manufacturing Process of ZrO2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    SciTech Connect (OSTI)

    Joshi, Pooran C.; Compton, Brett G.; Li, Jianlin; Jellison, Jr, Gerald Earle; Duty, Chad E; Chen, Zhiyun

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  8. The Capital Intensity of Photovoltaics Manufacturing

    SciTech Connect (OSTI)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  9. Alternative Interconnect Manufacturing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lead Performer: Vadient Optics LLC - Eugene, OR DOE Total Funding: $150,000 Project Term: February 22, 2016 - November 21, 2016 Funding Type: SBIR PROJECT OBJECTIVE Vadient Optics proposes to develop and demonstrate a practical commercial manufacturing route for its flexible, low-cost additive manufacturing process used to efficiently fabricate complex and highly efficient light-extraction optics for a variety of SSL products. The proposed approach will allow inkjet-print fabrication of

  10. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...