Powered by Deep Web Technologies
Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Manufacturing of Protected Lithium Electrodes for Advanced Lithium...  

Broader source: Energy.gov (indexed) [DOE]

Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries, April 2013 Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air,...

2

Manufacturing of Protected Lithium Electrodes for Advanced Batteries |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small Modular ReactorsNuclearManufacturingDepartment

3

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

4

Advances in lithium-ion batteries  

E-Print Network [OSTI]

Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

Kerr, John B.

2003-01-01T23:59:59.000Z

5

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

6

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator FY 2012 Annual Progress Report for Energy Storage R&D...

7

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries...

8

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

9

Advanced Materials Manufacturing | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

existing manufacturing industries and result in creative new products. Stronger, more corrosion-resistant and lower cost steel alloys are being developed and commercialized to...

10

Innovative Manufacturing Initiative Recognition Day, Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

11

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

12

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

13

Advanced Manufacture of Reflectors  

SciTech Connect (OSTI)

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

14

Advanced Materials Manufacturing | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced Material

15

Advanced Manufacturing Office Overview  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE Workshop:

16

Ohio Advanced Energy Manufacturing Center  

SciTech Connect (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

17

Advanced Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings, Better Plants Clean Energy Manufacturing Initiative Combined Heat and Power Innovative Manufacturing Initiative National Network for Manufacturing Innovation...

18

Advanced Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing

19

Process for manufacturing a lithium alloy electrochemical cell  

DOE Patents [OSTI]

A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

Bennett, William R. (North Olmstead, OH)

1992-10-13T23:59:59.000Z

20

Welcome and Advanced Manufacturing Partnership (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components  

E-Print Network [OSTI]

Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

Wisconsin at Madison, University of

22

Research on advanced photovoltaic manufacturing technology  

SciTech Connect (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

23

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

es089kerr2011o.pdf More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

24

Advanced Cathode Material Development for PHEV Lithium Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate...

25

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

26

Advanced Cathode Material Development for PHEV Lithium Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: High Energy Novel...

27

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

28

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

29

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

using Advanced Lithium Batteries and Ultracapacitors onusing advanced lithium batteries having energy densities ofA number of lithium batteries and ultracapacitors have been

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

30

EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing...  

Broader source: Energy.gov (indexed) [DOE]

4: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn,...

31

Wind Program Manufacturing Research Advances Processes and Reduces...  

Energy Savers [EERE]

Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

32

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...  

Broader source: Energy.gov (indexed) [DOE]

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Presentation slides from the joint Fuel Cell...

33

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION  

E-Print Network [OSTI]

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

Schumacher, Russ

34

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

35

Advanced Materials Manufacturing (AMM) Session  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE1 |

36

Advanced Manufacturing: Using Composites for Clean Energy  

Broader source: Energy.gov [DOE]

Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

37

Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)  

E-Print Network [OSTI]

Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM) Mission Statement: The Center for Advanced Design and Manufacturing of Integrated Microfluidics will develop design tools microfluidics targeting costeffective, quick, and easy diagnosis of the environment, agriculture, and human

Mease, Kenneth D.

38

ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...  

Energy Savers [EERE]

More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

39

Advanced Manufacturing Office | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing Office

40

Advanced Methods for Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced ManufacturingMethods

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Manufacturing Office (Formerly Industrial Technologies Program) |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance PatentDepartment of Energy Manufacturing

42

Advanced Manufacturing Use Cases and Early Results in GENI Infrastructure  

E-Print Network [OSTI]

for controlling remote processes in manufacturing facilities. In addition, there is a need to suitably configureAdvanced Manufacturing Use Cases and Early Results in GENI Infrastructure Alex Berryman, Prasad to advanced manufacturing communities are exciting prospects due to the growth of the global marketplace

Calyam, Prasad

43

Manufacturability Study and Scale-Up for Large Format Lithium...  

Broader source: Energy.gov (indexed) [DOE]

contributions out of over 40 in FY1314 * Selected publications 1. J. Li, B.L. Armstrong, J. Kiggans, C. Daniel, and D.L. Wood, "Lithium Ion Cell Performance Enhancement...

44

Welcome and Advanced Manufacturing Partnership (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

45

Advanced(Manufacturing(and( Innova2on(in(Chemicals(  

E-Print Network [OSTI]

Advanced(Manufacturing(and( Innova2on(in(Chemicals( Management( The(Case(of(Green(0129(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((A(Federal(Green(pursue(the(goals(of(the(Na2onal(Export(Ini2a2ve( · To(enhance(the(Advanced(Manufacturing(Ini2a2ve( · To

Magee, Joseph W.

46

Innovative Manufacturing Initiative Recognition Day, Advanced...  

Broader source: Energy.gov (indexed) [DOE]

infrastructure Education and training Policy EEREAMO Focus * Manufacturing in the US * GDP and employment enhancement * Energy efficiency and clean energy industry * Energy...

47

E-Print Network 3.0 - advanced manufacturing concepts Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies... process technologies, reliable measurements, and standards will advance PEM fuel cell manufacturing... and manufacturing ... Source: DOE Office of Energy...

48

E-Print Network 3.0 - advanced manufacturing processes Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cycle time. Investigate new manufacturing processes... advance the development and optimization of manufacturing processes. Mathematical models and modeling... on ......

49

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

E-Print Network [OSTI]

: Manufacturing Energy and Carbon Footprint, derived from 2006 MECS #12;Management Structure and Project Execution, aqueous-based processes). Develop broadly applicable, manufacturing processes that reduce energy intensity-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

50

Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL Low-Cost

51

E-Print Network 3.0 - advanced ceramic manufacturing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced ceramic manufacturing Page: << < 1 2 3 4 5 > >> 1 STEVENS INSTITUTE OF...

52

Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation  

E-Print Network [OSTI]

1 Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation PON successful applicants after the Notice of Proposed Awards to confirm this role and obtain any additional definition of "manufacturing equipment?" For example, would purchases of tooling or assembly line equipment

53

Advanced Manufacturing Partnership | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the...

54

Advanced Blade Manufacturing Project - Final Report  

SciTech Connect (OSTI)

The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

POORE, ROBERT Z.

1999-08-01T23:59:59.000Z

55

advanced manufacturing office | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE's industrial technical assistance efforts are critical to the deployment of existing and future advanced energy efficiency technologies, as well as energy management...

56

Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220  

SciTech Connect (OSTI)

The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

Smith, D.L.; Mattas, R.F. [comps.

1997-07-01T23:59:59.000Z

57

ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES  

SciTech Connect (OSTI)

FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

Yakovleva, Marina

2012-12-31T23:59:59.000Z

58

Qualifying Advanced Energy Manufacturing Investment Tax Credit  

Broader source: Energy.gov [DOE]

2013 Update: Phase II of the Qualifying Advanced Energy Project is open. Required concept papers are due to the U.S. Department of Energy (DOE) by April 9, 2013. The U.S. DOE will review concept...

59

Advanced Manufacturing Office Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE

60

Advanced Blade Manufacturing | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021 Advance PatentBlade

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Drivetrain Manufacturing | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021 AdvanceConversion

62

Advanced Battery Manufacturing Facilities and Equipment Program |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative Records Schedule1-006 AdvanceDepartment of

63

Advanced Battery Manufacturing Facilities and Equipment Program |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative Records Schedule1-006 AdvanceDepartment

64

advanced manufacturing office | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,Amine Solvent FormulationAdvanced

65

Advanced Materials and Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced MaterialMaterials and

66

Sandia National Laboratories: Advanced Manufacturing Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguardsEngineersSandia/NewAdvanced Light

67

Sandia National Laboratories: Advanced Manufacturing Innovation Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguardsEngineersSandia/NewAdvanced

68

Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte  

Broader source: Energy.gov [DOE]

Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

69

Materials/manufacturing element of the Advanced Turbine System Program  

SciTech Connect (OSTI)

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

1994-08-01T23:59:59.000Z

70

Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

Not Available

2012-03-01T23:59:59.000Z

71

MANUFACTURING Manufacturing and Biomanufacturing  

E-Print Network [OSTI]

process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

Magee, Joseph W.

72

Advanced Manufacturing Office Update, September 2014 | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 2014 Advanced ManufacturingSeptember

73

Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

74

E-Print Network 3.0 - advanced manufacturing day Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- the Center for Advanced Vehicular Systems... Studies 12;CAVS-E AGC Anel Corporation Armstrong World Industries Atlas Manufacturing AZZ Calvert Ceco... Armor Halter Marine...

75

E-Print Network 3.0 - advanced blade manufacturing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of relatively low-cost composite materials and current manufacturing... and aerodynamic performance of advanced ... Source: Fuerschbach, Phillip - Joining and Coating...

76

Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana  

SciTech Connect (OSTI)

Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

Mitchell, Zane Windsor [University of Southern Indiana; Gordon, Scott Allen [University of Southern Indiana

2014-08-04T23:59:59.000Z

77

E-Print Network 3.0 - advanced manufacturing technology Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies... technologies; reliable measurements; and standards will advance PEM fuel cell manufacturing. Figure 3... ... Source: DOE Office of Energy Efficiency and...

78

Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems  

SciTech Connect (OSTI)

Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

McHugh, K.M.

1994-12-31T23:59:59.000Z

79

Purdue, GE Collaborate On Advanced Manufacturing | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the production side. For manufacturing operations the size of GE's, just a 1 percent improvement in manufacturing productivity would save 500 million." GE and Purdue have been...

80

"Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet)  

SciTech Connect (OSTI)

A technology developed at the National Renewable Energy Laboratory has sparked a start-up company that has attracted funding from the Advanced Projects Research Agency-Energy (ARPA-E). Planar Energy, Inc. has licensed NREL's "buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so, they could provide a significant boost to the emerging market for electric and plug-in hybrid vehicles.

Not Available

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Lithium Power Inc ALP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis, LA)AdobeFuel CellLithium Power

82

National Center for Advanced Information Components Manufacturing. Program summary report, Volume II  

SciTech Connect (OSTI)

The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, program history, summaries of the technical projects, and key program accomplishments.

NONE

1996-10-01T23:59:59.000Z

83

Evaluation of potential performance additives for the advanced lithium bromide chiller  

SciTech Connect (OSTI)

The effectiveness and stability of potential heat-and-mass transfer (performance) additives for an advanced lithium bromide (LiBr) chiller were evaluated in a series of experimental studies. These studies of additive effectiveness and stability were necessary because many currently used performance additives decompose at the high generator temperatures (220{degrees}C to 260{degrees}C) desired for this particular advanced LiBr chiller. For example, one common performance additive, 2-ethyl-l-hexanol (2EH), reacts with the corrosion inhibitor, lithium chromate (Li{sub 2}CrO{sub 4}), even at moderate generator temperatures ({ge}180{degrees}C). These stability problems can be mitigated by using less reactive corrosion inhibitors such as lithium molybdate (Li{sub 2}MoO{sub 4}) and by using more stable performance additives such as 1-heptanol (HEP) or 1H,1H,7H-dodecafluoro-1-heptanol (DFH). There seems to be a trade-off between additive stability and effectiveness: the most effective performance additives are not the most stable additives. These studies indicate that HEP or DFH may be effective additives in the advanced LiBr chiller if Li{sub 2}MoO{sub 4} is used as a corrosion inhibitor.

Reiner, R.H.; Del Cul, W.; Perez-Blanco, H.; Ally, M.R.; Zaltash, A.

1991-04-01T23:59:59.000Z

84

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems  

Broader source: Energy.gov [DOE]

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

85

Private-Public Partnerships for U.S. Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Government Large Manufacturing Companies Small & Medium Enterprise (SMEs) Start-ups Industry Network of IMIs 2013 State of the Union Announcement National Network for...

86

ISO9000 BASED ADVANCED QUALITY APPROACH FOR CONTINUOUS IMPROVEMENT OF MANUFACTURING PROCESSES  

E-Print Network [OSTI]

improvement, Modelling 1. INTRODUCTION The importance of Total Quality Management TQM has been considerably in order to advance towards total quality. Advance can be developed on different levelsISO9000 BASED ADVANCED QUALITY APPROACH FOR CONTINUOUS IMPROVEMENT OF MANUFACTURING PROCESSES DEEB

Boyer, Edmond

87

Polymer Electrolytes for Advanced Lithium Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | Department of EnergyDepartmentAdvanced

88

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative  

Energy Savers [EERE]

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact...

89

MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science and  

E-Print Network [OSTI]

MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science Samueli School of Engineering University of California Irvine 3D printing or Additive Manufacturing in different shapes. 3D printing is also considered distinct from traditional machining techniques, which

Mease, Kenneth D.

90

Enabling manufacturing flexibility issue resolution in advanced vehicle development  

E-Print Network [OSTI]

Manufacturing Flexibility is a broad term used to describe a metric that can be measured in many different ways. Current industry experts agree that Flexibility is one of the key measures that will help the automotive ...

Tomlin, Grace C. (Grace Catherine)

2008-01-01T23:59:59.000Z

91

Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.  

SciTech Connect (OSTI)

An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr. (,; .); Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

2007-07-01T23:59:59.000Z

92

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

93

Advancing manufacturing technology that is imperative to prevent...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industry is a cornerstone of the American economy and embodies the innovation and productivity that have allowed the United States to be the dominant leader in advanced...

94

AMO's New Institute for Advanced Composites Manufacturing Innovation...  

Energy Savers [EERE]

as strong and twice as light as the lightest metals. These advanced materials have the potential to transform products ranging from wind turbines to automobiles. This new...

95

Internal resistance variances in lithium-ion batteries and implications in manufacturing  

E-Print Network [OSTI]

This thesis addresses issues in manufacturing that lead to cell DC internal resistance (DCIR) variance, provides an overview of generally accepted cell degradation mechanisms and modeling techniques associated with IR as ...

Gogoana, Radu

2012-01-01T23:59:59.000Z

96

Advanced Sensors, Controls and Platforms for manufacturing (ASCPM)  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergy Advanced Research ProjectsAdvanced

97

Advanced Manufacturing Office FY14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance PatentDepartment of Energy ADVANCED

98

Advanced Manufacturing Office Update, March 2015 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015 InformationAGuideforAdvancedJanuary 2015

99

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

100

Advanced Technology Vehicles Manufacturing (ATVM) Loan Program | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvancedNuclearof Energy

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Manufacturing Office in DOE Multimaterial Joining Workshop  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE1 | Energy

102

Advanced Manufacturing Office FY 2016 Budget At-A-Glance  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021Fossil EnergyAdvanced

103

Advanced Manufacturing Office Update, January 2015 | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021FossilJanuary 2015 Advanced

104

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of1: Oracle JavaSoftwareAdvanced

105

Advanced Manufacturing Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance PatentDepartment of Energy

106

Advancing manufacturing technology that is imperative to prevent erosion of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScriptingAdvancingEnergyour

107

Advanced Manufacturing Office and Potential Technologies for Clean Energy Manufacturing Innovation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE1 | Energy

108

Coated Silicon Nanowires as Anodes in Lithium Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

Watts, David James

2014-01-01T23:59:59.000Z

109

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

Zhu, Jianxin

2014-01-01T23:59:59.000Z

110

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

111

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

112

E-Print Network 3.0 - advanced lithium titanate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California Institute of Technology Collection: Materials Science 92 Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates...

113

Advanced manufacturing  

SciTech Connect (OSTI)

Lonnie Love is breaking new ground in three-dimensional printing and training the upcoming scientists and engineers whose creations may be limited only by their imaginations.

Love, Lonnie

2014-07-14T23:59:59.000Z

114

Advanced manufacturing  

ScienceCinema (OSTI)

Lonnie Love is breaking new ground in three-dimensional printing and training the upcoming scientists and engineers whose creations may be limited only by their imaginations.

Love, Lonnie

2014-07-15T23:59:59.000Z

115

The advanced manufacturing science and technology program. FY 95 Annual Report  

SciTech Connect (OSTI)

This is the Fiscal Year 1995 Annual Report for the Advanced Manufacturing Science and Technology (AMST) sector of Los Alamos Tactical Goal 6, Industrial Partnering. During this past fiscal year, the AMST project leader formed a committee whose members represented the divisions and program offices with a manufacturing interest to examine the Laboratory`s expertise and needs in manufacturing. From a list of about two hundred interest areas, the committee selected nineteen of the most pressing needs for weapon manufacturing. Based upon Los Alamos mission requirements and the needs of the weapon manufacturing (Advanced Design and Production Technologies (ADaPT)) program plan and the other tactical goals, the committee selected four of the nineteen areas for strategic planning and possible industrial partnering. The areas selected were Casting Technology, Constitutive Modeling, Non-Destructive Testing and Evaluation, and Polymer Aging and Lifetime Prediction. For each area, the AMST committee formed a team to write a roadmap and serve as a partnering technical consultant. To date, the roadmaps have been completed for each of the four areas. The Casting Technology and Polymer Aging teams are negotiating with specific potential partners now, at the close of the fiscal year. For each focus area we have created a list of existing collaborations and other ongoing partnering activities. In early Fiscal Year 1996, we will continue to develop partnerships in these four areas. Los Alamos National Laboratory instituted the tactical goals for industrial partnering to focus our institutional resources on partnerships that enhance core competencies and capabilities required to meet our national security mission of reducing the nuclear danger. The second industry sector targeted by Tactical Goal 6 was the chemical industry. Tactical Goal 6 is championed by the Industrial Partnership Office.

Hill, J. [comp.

1996-03-01T23:59:59.000Z

116

Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries  

Broader source: Energy.gov [DOE]

Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

117

Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries  

E-Print Network [OSTI]

Modeling of Lithium Batteries. Kluwer Academic Publishers,of interest for lithium batteries. Therefore, we can use y =and J. Newman, Advances in Lithium-Ion Batteries, ch.

Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

118

Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers  

SciTech Connect (OSTI)

Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

Hale, Steve

2013-09-11T23:59:59.000Z

119

Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries  

SciTech Connect (OSTI)

Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

120

Corrosion inhibition in lithium bromide absorption fluid for advanced and current absorption cycle machines  

SciTech Connect (OSTI)

This paper presents the results of a novel corrosion inhibitor that exhibits improved protection of carbon steel over the inhibitors currently in practice. This inhibitor, formulated in 65 wt% lithium bromide solution, offers excellent corrosion protection to carbon steel. Corrosion rates were determined using autoclave coupon testing. The corrosion rate in the 300 F to 450 F range was found to be low (1 to 4 mils per year), and the product also showed very low hydrogen generation (0.03 mg/in.{sup 2} of carbon steel per week). The metal was protected with a stable and adherent film.

Verma, S.K.; Mekhjian, M.S.; Sandor, G.R.; Nakada, N.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

Lithium-Ion Batteries Yuan Yang, Guangyuan Zheng, Sumohan Misra,§ Johanna Nelson,§ Michael F. Toney for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 as the cathode material for rechargeable lithium-ion batteries with high specific energy. INTRODUCTION

Cui, Yi

122

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect (OSTI)

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

123

Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture  

SciTech Connect (OSTI)

This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF-ternary catalyst materials for higher performance, documents enhanced durability under multiple types of accelerated tests by factors of 10x to 50x over conventional catalysts, & demonstrates their performance & durability in large area MEA FC stack tests. The PEMFC ion exchange membrane is the other key functioning FC component on which work was completed. While improvements have been made to standard PFSA type membranes, they still require humidification to achieve adequate proton conductivity & so their use at elevated temperatures & drier operating conditions is limited. Membranes with increased durability & conductivity under hotter, drier conditions allow the use of FC's in many applications, particularly automotive. Towards this goal, 2 approaches were pursued in the work reported here. The first part was designed for immediate application at drier conditions & operating temperatures between 85C and 120C, focused on the development of a membrane based on a low equivalent weight (EW), perfluorinated sulfonic acid (PFSA) ionomer for good ionic conductivity at low humidification, & the use of stabilizing additives for improved oxidative stability. The ionomer used was developed at 3M & has a shorter acid containing side-chain than the Nafion™ ionomer. This ionomer also has a higher T? & higher modulus than that of a Nafion™ membrane of the same EW, allowing lower EW ionomers to be prepared with very good mechanical properties. In addition, more than 50 stabilizing additives were evaluated in ex-situ, Fenton’s tests & more than 10 of these were incorporated into membranes & evaluated in accelerated FC tests. This work led to thin (25-30 micron) cast membranes with substantially improved conductivity & durability under simulated automotive conditions, compared to membranes currently available. The 2nd body of membrane work was focused on developing & characterizing 3 approaches for making new PEM's for operation under hot (>120C) & dry (dew point <80C) FC conditions: inorganic materials with enhanced proton conductivity, polymer matrices swollen with lo

Debe, Mark K.

2007-09-30T23:59:59.000Z

124

IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS  

SciTech Connect (OSTI)

Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

Xiaodi Huang; Richard Gertsch

2005-02-04T23:59:59.000Z

125

E-Print Network 3.0 - advanced optical manufacturing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Circuits Charles W. Stirk and Demetri Psaltis Summary: on the characteristics of optoelectronic devices and holographic optical elements. The analysis holds the manufacturing......

126

V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels  

SciTech Connect (OSTI)

The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

2012-10-01T23:59:59.000Z

127

COURSE DEGREE PAGE ADVANCED MANUFACTURE: TECHNOLOGY & SYSTEMS MSc/PgDip/PgCert 35  

E-Print Network [OSTI]

MANUFACTURING & CRYSTALISATION MSc 108 COUNSELLING/COUNSELLING SKILLS MSc/PgDip/PGCERT 85 CREATIVE WRITING MRes, PALAEOGRAPHIC & HERALDIC STUDIES MSc/PgDip/PgCert 66 GEOENVIRONMENTAL ENGINEERING MRes 29 GLOBAL ENERGY

Strathclyde, University of

128

Manufacturing technologies  

SciTech Connect (OSTI)

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

129

E-Print Network 3.0 - advanced manufacturing applications Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EERE Advanced ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

130

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

131

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

132

E-Print Network 3.0 - accumulateurs au lithium Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

au lithium Search Powered by Explorit Topic List Advanced Search Sample search results for: accumulateurs au lithium Page: << < 1 2 3 4 5 > >> 1 ACCUMULATEUR LECTRIQUE...

133

Designation Order No. 00-12.00 to the Executive Director of Loan Programs and Director of the Advanced Technology Vehicles Manufacturing Incentive Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Secretary or Energy designates each of the Executive Director of Loan Programs and the Director of the Advanced Technology Vehicles Manufacturing Incentive Program, as their designee, as the term is used in the Internal Revenue Manual, Part 11, Chapter 3, Section 29.6, acting separately to request tax delinquency account status and other tax related information from the Internal Revenue Service, pursuant to 26 U .S.C. 6103(1)(3), for applicants to the Department's Advanced Technology Vehicles Manufacturing Incentive Program under Section 136 of the Energy Independence and Security Act of2007 (P. L. 110-140), as amended.

2010-04-30T23:59:59.000Z

134

Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting  

SciTech Connect (OSTI)

GE Lighting Solutions will develop precise and efficient manufacturing techniques for the “remote phosphor” platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

2012-03-31T23:59:59.000Z

135

Next generation grinding spindle for cost-effective manufacture of advanced ceramic components  

SciTech Connect (OSTI)

Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

Kovach, J.A.; Laurich, M.A.

2000-01-01T23:59:59.000Z

136

Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250 Rev. 05 Oak09 U . SThe March 23,AdvancedWorkshop:

137

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS  

E-Print Network [OSTI]

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

Magee, Joseph W.

138

Posted 10/18/11 MANUFACTURING ENGINEER  

E-Print Network [OSTI]

manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

Heller, Barbara

139

Hydrogen, lithium, and lithium hydride production  

DOE Patents [OSTI]

A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

2014-03-25T23:59:59.000Z

140

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Liquid Lithium Wall Experiments in CDX-U R. Majeski,  

E-Print Network [OSTI]

Liquid Lithium Wall Experiments in CDX-U R. Kaita, a R. Majeski, a S. Luckhardt, b R. Doerner, b M ABSTRACT The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used

California at Los Angeles, University of

142

Studies on Lithium Manganese Rich MNC Composite Cathodes  

Broader source: Energy.gov (indexed) [DOE]

America Inc. 3 Presentation name Project Objectives - Relevance Undertake advanced materials research in the area of high energy (capacity) electrode materials for lithium-ion...

143

Expanded North Carolina Lithium Facility Opens, Boosting U.S...  

Broader source: Energy.gov (indexed) [DOE]

plug-in hybrids and other advanced clean energy technologies grows worldwide, rare earth elements and other critical materials, including lithium, are facing increasing global...

144

E-Print Network 3.0 - all-solid-state lithium secondary Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: all-solid-state lithium secondary Page: << < 1 2 3 4 5 > >> 1 Preface to bLithium isotope...

145

Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design  

E-Print Network [OSTI]

Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of lithium ion batteries has all but made them the ...

Jasinski, Samuel Anthony

2008-01-01T23:59:59.000Z

146

Lithium Local Pseudopotential Using  

E-Print Network [OSTI]

Lithium Local Pseudopotential Using DFT Sergio Orozco Student Advisor: Chen Huang Faculty Mentor Lithium LPS Test Lithium LPS #12;Density Functional Theory (DFT) Successful quantum mechanical approach (1979) #12;Building LPS for Lithium Create a LPS using NLPS density for Lithium Test LPS by comparing

Petta, Jason

147

Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana CollegeManagerInnovative Gasification

148

Polymers For Advanced Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

Barriers: -(1) Energy density -(2) Safety -(3) Low cycle fife. * Partners: ANL, ALS (at LBNL) and NCEM (at LBNL) Objectives * A) Develop cost-effective method for creating...

149

Polymers For Advanced Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

* FY10 funding: 390 K * FY 11 funding: 550 K * No contractors Budget Barriers * Lead: LBNL Partners Overview Milestones Month-Year Milestone Mar-11 Electrochemical...

150

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility.  

E-Print Network [OSTI]

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer.Controllingthecollectionandminimizingthetrappingofchargecarriersattheseboundariesiscrucialtoefficiency. Materials interface engineering for solution-processed photovoltaics Michael Graetzel1 , René A. J. Janssen2

151

Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology  

SciTech Connect (OSTI)

This project was a subtask of Energy Saving Melting and Revert Reduction Technology (�¢����Energy SMARRT�¢���) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU�¢����s/year and 6.46 trillion BTU�¢����s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

Harry Littleton; John Griffin

2011-07-31T23:59:59.000Z

152

Designing a National Network for Manufacturing Innovation  

E-Print Network [OSTI]

Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

153

The Advanced Manufacturing Partnership and the Advanced Manufacturing Program Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe 21st Century TruckAPRIL

154

The Advanced Manufacturing Partnership and the Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlow RoomTexas Clean EnergyDepartment

155

An Environmental and Economic Trade-off Analysis of Manufacturing Process Chains to Inform Decision Making for Sustainability  

E-Print Network [OSTI]

Manufacturing. (2011). Sustainability framework model.for Advanced Manufacturing (NACFAM) Sustainability FrameworkScreenshot of NACFAM Sustainability Framework tool (National

Robinson, Stefanie L.

2013-01-01T23:59:59.000Z

156

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09T23:59:59.000Z

157

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1983-01-01T23:59:59.000Z

158

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18T23:59:59.000Z

159

California Geothermal Power Plant to Help Meet High Lithium Demand...  

Energy Savers [EERE]

High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some...

160

Integrated Manufacturing for Advanced MEAs  

SciTech Connect (OSTI)

This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOE’s 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

2007-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sandia National Laboratories: advanced manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZparts ofprocess

162

Advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvances in

163

Fast, Low Cost Method for Manufacturing Porous Structures for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Find More Like This Return to Search Fast, Low Cost Method for Manufacturing Porous Structures for Fuel Cells, Catalysts and Filtration...

164

Manufacturing Ecosystems and Keystone Technologies (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

Culver, Special Assistant to Program Manager, Advanced Manufacturing Office (AMO) Kelly Visconti, AAAS Science & Technology Policy Fellow, AMO DR. LEO CHRISTODOULOU: I would...

165

Clean Energy Manufacturing Initiative Midwest Regional Summit...  

Office of Environmental Management (EM)

Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Characterization of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHSS)...

166

clean energy manufacturing | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American...

167

Department of Energy to Invest $50 Million to Advance Domestic...  

Office of Environmental Management (EM)

to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal Department of Energy to Invest 50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot...

168

Report to the President on Ensuring American Leadership in Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report to the President on Ensuring American Leadership in Advanced Manufacturing Report to the President on Ensuring American Leadership in Advanced Manufacturing...

169

Lithium Ion Production NDE  

E-Print Network [OSTI]

Lithium Ion Electrode Production NDE and QC Considerations David Wood, Debasish Mohanty, Jianlin Li, and Claus Daniel 12/9/13 EERE Quality Control Workshop #12;2 Presentation name Lithium Ion Electrode to be meaningful and provide electrode and cell QC. #12;3 Presentation name New Directions in Lithium Ion Electrode

170

Lithium ion sources  

E-Print Network [OSTI]

HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion

Roy, Prabir K.

2014-01-01T23:59:59.000Z

171

Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity  

E-Print Network [OSTI]

The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

Hill, Richard Lee, Sr

2011-01-01T23:59:59.000Z

172

Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density  

E-Print Network [OSTI]

Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries Keywords: Lithium-ion batteries Model-based design Optimization Physics based reformulated model a b s t r for porous electrodes that are commonly used in advanced batteries such as lithium-ion systems. The approach

Subramanian, Venkat

173

ATS materials/manufacturing  

SciTech Connect (OSTI)

The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

1997-11-01T23:59:59.000Z

174

ICME & MGI Big Area Additive Manufacturing  

E-Print Network [OSTI]

ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

175

Manufacturing Research & Development for Systems that will  

E-Print Network [OSTI]

focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

176

Systems, Inc. Manufacturing Program Manager  

E-Print Network [OSTI]

70819 #12;Advanced Energy Systems, Inc. Outline ·Introduction ·Accomplishments Phase I ·Technical Approach - Second Year ·Manufacturing Schedule Assessment -Top Level Phase II #12;Advanced Energy Systems Design and FEA of 5 cell RF Cavity, He Vessel, Power Coupler, & Cryostat -Interfaces to external piping

177

Advanced Reciprocating Engine Systems  

Broader source: Energy.gov [DOE]

The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

178

Argonne, Western Lithium to develop lithium carbonate for multiple...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory as a step toward the commercialization of lithium carbonate from the Company's Kings Valley Lithium Project located in Humboldt County, Nevada, USA. Under the agreement,...

179

Lithium purification technique  

DOE Patents [OSTI]

A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

Keough, Robert F. (Richland, WA); Meadows, George E. (Richland, WA)

1985-01-01T23:59:59.000Z

180

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

Wilcox, James D.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Working with U.S. Manufacturers to Succeed in Global Markets (Poster)  

SciTech Connect (OSTI)

Poster created for the Advanced Manufacturing Office to be used at meetings, presentations, and exhibits. The Advanced Manufacturing Office (AMO) fosters advanced manufacturing innovation, facilitates public and private partnerships, and drives rapid deployment of technologies to help manufacturers: Save energy and money, Reduce environmental impacts, Enhance workforce development, and Improve national energy security and competitiveness throughout the supply chain.

Not Available

2012-06-01T23:59:59.000Z

182

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

Energy Savers [EERE]

Florida, factory, which will produce advanced lithium-ion batteries to power electric vehicles and other applications. Saft America estimates it will create nearly 280...

183

The use of slow strain rate technique for studying stress corrosion cracking of an advanced silver-bearing aluminum-lithium alloy  

SciTech Connect (OSTI)

In the present study, stress corrosion cracking (SCC) behavior of naturally aged advanced silver-bearing Al-Li alloy in NaCl solution was investigated using slow strain rate test (SSRT) method. The SSRT’s were conducted at different strain rates and applied potentials at room temperature. The results were discussed based on percent reductions in tensile elongation in a SCC-causing environment over those in air tended to express the SCC susceptbility of the alloy under study at T3. The SCC behavior of the alloy was also discussed based on the microstructural and fractographic examinations.

Frefer, Abdulbaset Ali; Raddad, Bashir S. [Department of Mechanical and Industrial Engineering/Tripoli University, Tripoli (Libya); Abosdell, Alajale M. [Department of Mechanical Engineering/Mergeb University, Garaboli (Libya)

2013-12-16T23:59:59.000Z

184

Additive Manufacturing: Implications on Research and Manufacturing  

E-Print Network [OSTI]

Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

Crawford, T. Daniel

185

Rechargeable lithium-ion cell  

DOE Patents [OSTI]

The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

1999-01-01T23:59:59.000Z

186

Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation  

E-Print Network [OSTI]

Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation through a Glass-Bottom Boat BRETT L and reactivities, we were drawn to lithium hexamethyldisilazide (LiHMDS; (Me3Si)2NLi) by its promi- nence principles of lithium ion coordination chemistry.2 Understanding how solvation influences organolithium

Collum, David B.

187

Lithium Diisopropylamide-Mediated Ortholithiations: Lithium Chloride Catalysis  

E-Print Network [OSTI]

Lithium Diisopropylamide-Mediated Ortholithiations: Lithium Chloride Catalysis Lekha Gupta, 2008 Ortholithiations of a range of arenes mediated by lithium diisopropylamide (LDA) in THF at -78 °C protocols with unpurified commercial samples of n-butyl- lithium to prepare LDA or commercially available

Collum, David B.

188

E-Print Network 3.0 - ambulance vehicles manufactured Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vehicles manufactured Search Powered by Explorit Topic List Advanced Search Sample search results for: ambulance vehicles manufactured Page: << < 1 2 3 4 5 > >> 1 A DYNAMIC MODEL...

189

E-Print Network 3.0 - activated manufacturing architecture Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing architecture Search Powered by Explorit Topic List Advanced Search Sample search results for: activated manufacturing architecture Page: << < 1 2 3 4 5 > >> 1 North...

190

2013 Solid-State Lighting Manufacturing R&D Workshop Presentations...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturability and Quality Jose Sierra, Lighting Science The Next Step in Optics Manufacturing Imro Wong, LUXeXceL Advanced Materials and Methods for Luminaires Brad...

191

The Future of Manufacturing Takes Shape: 3D Printed Car on Display...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lead, Advanced Manufacturing Office Additive manufacturing - often referred to as 3D printing - is a revolutionary way to design and build products. Until now, 3D printing has...

192

Lithium Insertion Chemistry of Some Iron Vanadates  

E-Print Network [OSTI]

in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sébastien

Patoux, Sebastien; Richardson, Thomas J.

2008-01-01T23:59:59.000Z

193

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

Doyle, C.M.

2010-01-01T23:59:59.000Z

194

Lithium Insertion Chemistry of Some Iron Vanadates  

E-Print Network [OSTI]

G.Pistoia (Eds. ), Lithium batteries, Science & Technology,Keywords: Lithium batteries, iron vanadates, insertionelectrode materials for lithium batteries, (mostly layered

Patoux, Sebastien; Richardson, Thomas J.

2008-01-01T23:59:59.000Z

195

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

196

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

197

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

2008-01-01T23:59:59.000Z

198

Liquid Lithium Wall Experiments in CDXU R. Kaita, a R. Majeski, a S. Luckhardt, b R. Doerner, b M. Finkenthal, c H. Ji, a H. Kugel, a  

E-Print Network [OSTI]

Liquid Lithium Wall Experiments in CDX­U R. Kaita, a R. Majeski, a S. Luckhardt, b R. Doerner, b M ABSTRACT The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance is intensely heated and well diagnosed, and an extensive liquid lithium plasma­facing surface will be used

199

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

200

Register Now for AMO's Workshop on Composite Manufacturing  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fiber Reinforced Polymer Composite Manufacturing Workshop “Save the Date”  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Advanced Manufacturing Office plans to host a Fiber Reinforced Polymer Composite Manufacturing Workshop in the Washington D.C. area on Monday January 13, 2014.

202

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

203

Dynamics of Solvent Exchange in Organolithium Reagents. Lithium as a Center of Chirality1  

E-Print Network [OSTI]

Dynamics of Solvent Exchange in Organolithium Reagents. Lithium as a Center of Chirality1 Hans J slow enough for direct NMR observation.3,4 However, the detailed nature of interactions with ethers advance was the recent report by Lucht and Collum that individual ether solvates of a lithium amide can

Reich, Hans J.

204

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi2-yHyO.xM'O2.(1-x)Li1-zHzMO2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi2-yHy.xM'O2.(1-x)Li1-zHzMO2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi2M'O3.(1-x)LiMO2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

2010-06-08T23:59:59.000Z

205

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

206

Liquid Lithium Wall Experiments in CDX-U  

SciTech Connect (OSTI)

The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. Sputtering and erosion tests are currently underway in the PISCES device at the University of California at San Diego (UCSD). To complement this effort, plasma interaction questions in a toroidal plasma geometry will be addressed by a proposed new groundbreaking experiment in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The CDX-U plasma is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used for the first time with a toroidal plasma. Since CDX-U is a small ST, only approximately1 liter or less of lithium is required to produce a toroidal liquid lithium limiter target, leading to a quick and cost-effective experiment.

R. Doerner; R. Kaita; R. Majeski; S. Luckhardt; et al

1999-10-01T23:59:59.000Z

207

Green Manufacturing  

SciTech Connect (OSTI)

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31T23:59:59.000Z

208

Lithium battery management system  

DOE Patents [OSTI]

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

209

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

210

Hydrogen Outgassing from Lithium Hydride  

SciTech Connect (OSTI)

Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

2006-04-20T23:59:59.000Z

211

Resource Consumption in Additive Manufacturing with a PSS Approach.  

E-Print Network [OSTI]

??Since the 1980’s, additive manufacturing (AM) has gradually advanced from rapid prototyping applications towards fabricating end consumer products. Many small companies may prefer accessing AM… (more)

Nopparat, Nanond; Kianian, Babak; Thompson, Anthony

2012-01-01T23:59:59.000Z

212

Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes...

213

Proceedings: EPRI Manufactured Gas Plants 2003 Forum  

SciTech Connect (OSTI)

The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

None

2004-02-01T23:59:59.000Z

214

Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries  

E-Print Network [OSTI]

References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

Yang, Li

2014-01-01T23:59:59.000Z

215

Polymer Electrolytes for Advanced Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

funding: 1300K * Funding received in FY08 and FY09: 700K Budget Barriers * Lead: LBNL * Technology licensed to Seeo, Inc. (Practical aspects of barriers are being addressed...

216

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate  

E-Print Network [OSTI]

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate David A. Scrymgeour and Venkatraman Gopalan Department of Materials Science, lithium niobate and lithium tantalate. The contributions to the domain- wall energy from polarization

Gopalan, Venkatraman

217

Roll-to-Roll Electrode Processing and Materials NDE for Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary Batteries In-situ characterization and diagnostics of mechanical degradation in electrodes...

218

Roll-to-Roll Electrode Processing and Materials NDE for Advanced...  

Energy Savers [EERE]

and Materials NDE for Advanced Lithium Secondary Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

219

Micro-and nanoscale domain engineering in lithium niobate and lithium tantalate  

E-Print Network [OSTI]

Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate Vladimir Ya. Shur investigation of the domain evolution in lithium niobate and lithium tantalate during backswitched electric sources based on quasi-phase matching.11 Lithium niobate LiNbO3 (LN) and lithium tantalate LiTaO3 (LT

Byer, Robert L.

220

Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana CollegeManagerInnovative GasificationOffice

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

Angell, C.A.; Liu, C.

1996-04-09T23:59:59.000Z

222

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

1996-01-01T23:59:59.000Z

223

Advanced Combustion  

SciTech Connect (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

224

Recent advances and issues in development of silicon carbide composites for fusion applications  

SciTech Connect (OSTI)

Radiation-resistant advanced silicon carbide composites (SiC/SiC) have been developed as a promising candidate of the high-temperature operating advanced fusion DEMO reactor. With the completion of the “proof-of-principle” phase in development of “nuclear-grade” SiC/SiC, the R&D on SiC/SiC is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in 1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, 2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and 3) irradiation effects were specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength were specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

Nozawa, T.; Hinoki, Tetsuya; Hasegawa, Akira; Kohyama, Akira; Katoh, Yutai; Snead, Lance L.; Henager, Charles H.; Hegeman, Hans

2009-04-30T23:59:59.000Z

225

Aluminum-lithium alloys -- the next generation  

SciTech Connect (OSTI)

The advantages of aluminum-lithium (Al-Li) alloys, such as low density and high modulus, have been well documented in the last 15 years, but their impact on the aerospace market has fallen short of initial expectations. However, vacuum refining processes have now been developed at Comalco Aluminium Ltd., Melbourne, Australia, that provide improved mechanical properties. In addition, the patented technology allows higher levels of lithium, which results in higher stiffness and lower densities. For example, alloys with 3.3% lithium and very low amounts of hydrogen and alkali metal impurities demonstrate good mechanical properties. It also exhibits good weldability, as shown in results of varestraint'' testing, which evaluates the tendency to crack during welding. The high purity of these VacLite alloys ensures that grain boundary fracture is minimized, and cleavage fracture is reduced almost to the limit of detectability. Furthermore, advanced vacuum techniques using electron beam melting at 10[sup [minus]5] torr may eventually reduce impurities to a level at which fracture occurs only in a ductile, transgranular manner.

Webster, D. (Advanced Material Development, Saratoga, CA (United States))

1994-05-01T23:59:59.000Z

226

Manufacturing Battle Creek  

E-Print Network [OSTI]

Computer simulation Facilities design Finite element analysis Green manufacturing Industrial materialsManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

de Doncker, Elise

227

Expanding U.S.-based Lithium-ion Battery Manufacturing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

228

Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with Secretary Chu CelebratePiSeparator |

229

Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with Secretary Chu CelebratePiSeparator

230

Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with Secretary Chu CelebratePiSeparatorSeparator

231

Solid Lithium Ion Conducting Electrolytes Suitable for Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment2) 1/8 5/15/11Solicitingcontinuted)

232

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

233

TODAY: Secretary Chu and Senator Stabenow to Announce Advanced...  

Energy Savers [EERE]

Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan...

234

WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced...  

Broader source: Energy.gov (indexed) [DOE]

America, Inc. to retool their Smyrna, Tennessee factory to build advanced electric automobiles and an advanced battery manufacturing facility. The two projects are expected to...

235

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

236

Sputter deposition of lithium silicate - lithium phosphate amorphous electrolytes  

SciTech Connect (OSTI)

Thin films of an amorphous lithium-conducting electrolyte were deposited by rf magnetron sputtering of ceramic targets containing Li{sub 4}SiO{sub 4} and Li{sub 3}PO{sub 4}. The lithium content of the films was found to depend more strongly on the nature and composition of the targets than on many other sputtering parameters. For targets containing Li{sub 4}SiO{sub 4}, most of the lithium was found to segregate away from the sputtered area of the target. Codeposition using two sputter sources achieves a high lithium content in a controlled and reproducible film growth. 10 refs., 4 figs.

Dudney, N.J.; Bates, J.B.; Luck, C.F. (Oak Ridge National Lab., TN (USA)); Robertson, J.D. (Kentucky Univ., Lexington, KY (USA). Dept. of Chemistry)

1991-01-01T23:59:59.000Z

237

EERE Partner Testimonials - Phil Roberts, California Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phil Roberts, California Lithium Battery (CalBattery) EERE Partner Testimonials - Phil Roberts, California Lithium Battery (CalBattery) Addthis Text Version The words "Office of...

238

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

239

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

240

Lithium-based electrochromic mirrors  

E-Print Network [OSTI]

LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson*with pure antimony films. Electrochromic cycling speed andand silver. INTRODUCTION Electrochromic devices that exhibit

Richardson, Thomas J.; Slack, Jonathan L.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Swinburne University of Technology Advanced Manufacturing Centre  

E-Print Network [OSTI]

Daylight analysis South facade #12;Sustainable Design ­ Bioclimatic Section Thermal Labyrinth Greywater #12;Sustainable Design ­ Lessons from Nature Building as a Machine Using power of the sun "Passive, hybrid and multifunctional systems" #12;Environmental Sustainability ­ Climate Responsive

Liley, David

242

Request for Information (RFI): Advanced Manufacturing Office...  

Energy Savers [EERE]

or pursue the project or ideas discussed. The purpose of this RFI is to solicit feedback from industry, academia, research laboratories, government agencies, and other...

243

Manufacture of Advanced Battery Metal Containers & Components  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

244

Advanced Manufacturing Office | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Car: A Team Effort in Innovation Printing a Car: A Team Effort in Innovation 3D printing moves from prototype to the factory floor. In 44 hours an AMO team from Local...

245

Advanced Technology Vehicles Manufacturing Incentive Program | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdwardDepartment of Energyof

246

A National Strategic Plan For Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-CylinderContinuousDepartmentPotential

247

Advanced Battery Manufacturing Facilities and Equipment Program |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative Records Schedule1-006

248

Advanced Manufacturing Initiative Improves Turbine Blade Productivity |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE2011 DOE Hydrogen and1 DOESystem at

249

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE2011 DOE Hydrogen and1 DOESystem

250

Advance Patent Waiver W(A)2009-039 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advance Patent Waiver W(A)2010-007 Advance Patent Waiver W(A)2012-034 Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion...

251

Lithium Research Status and PlansLithium Research Status and Plans Charles H. Skinner, PPPL  

E-Print Network [OSTI]

Lithium Research Status and PlansLithium Research Status and Plans Charles H. Skinner, PPPL Robert February 3-5, 2010 #12;NSTX PAC-27 ­ Lithium Research Status and Plans 2/15February 3-5, 2010 NSTX lithium research is an integral part of a program to develop lithium as a PFC concept for magnetic fusion NSTX w

Princeton Plasma Physics Laboratory

252

Solid lithium-ion electrolyte  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-02-10T23:59:59.000Z

253

Solid lithium-ion electrolyte  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-01-01T23:59:59.000Z

254

Effects of Carbonate Solvents and Lithium Salts on Morphology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic...

255

ELLIPSOMETRY OF SURFACE LAYERS ON LEAD AND LITHIUM  

E-Print Network [OSTI]

Surface Layers on Lead and Lithium By Richard Dudley Peterssulfuric acid and and lithium to water, Acid concentrationsbeen observed in the reaction of lithium with water vapor. i

Peters, Richard Dudley

2011-01-01T23:59:59.000Z

256

ELLIPSOMETRY OF SURFACE LAYERS ON LEAD AND LITHIUM  

E-Print Network [OSTI]

rate. The corrosion reaction between lithium and water vaporOpen Circuit Corrosion Bo Lithium, , L A~ueous Electrolytecalculated representing corrosion of lithium in water vapor,

Peters, Richard Dudley

2011-01-01T23:59:59.000Z

257

Redox shuttle additives for overcharge protection in lithium batteries  

E-Print Network [OSTI]

Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

Richardson, Thomas J.; Ross Jr., P.N.

1999-01-01T23:59:59.000Z

258

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

Liu, Jun

2010-01-01T23:59:59.000Z

259

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network [OSTI]

for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

260

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

E-Print Network [OSTI]

MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

Kerr, John B.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

On the fracture toughness of advanced materials  

E-Print Network [OSTI]

toughness of advanced materials ?? By Maximilien E. LauneyAbstract: Few engineering materials are limited by theirare manufactured from materials that are comparatively low

Launey, Maximilien E.

2009-01-01T23:59:59.000Z

262

The Advancements of Cementitious Materials Through Nanotechnology.  

E-Print Network [OSTI]

??A literature review on the influence of the advancements in nanotechnology on the properties and performance of cementitious materials is presented. The manufacturing, chemistry and… (more)

Vegesna, Mohana M 1992-

2013-01-01T23:59:59.000Z

263

The advancements of cementitious materials through nanotechnology.  

E-Print Network [OSTI]

??A literature review on the influence of the advancements in nanotechnology on the properties and performance of cementitious materials is presented. The manufacturing, chemistry and… (more)

Vegesna, Mohana M.

2013-01-01T23:59:59.000Z

264

Lithium niobate explosion monitor  

DOE Patents [OSTI]

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

1990-01-09T23:59:59.000Z

265

Lithium niobate explosion monitor  

DOE Patents [OSTI]

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

266

RRR Niobium Manufacturing Experience  

SciTech Connect (OSTI)

ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

Graham, Ronald A. [ATI Wah Chang, An Allegheny Technologies Company, Albany, Oregon 97321 (United States)

2007-08-09T23:59:59.000Z

267

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

for implementing green manufacturing”. Trans. of NAMRI/SME,the imple- mentation of green manufacturing, where a wedgemanufacturing scope of the assessment. While it is always important in the development of green

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

268

Lithium ion conducting ionic electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

1996-01-01T23:59:59.000Z

269

Anodes for rechargeable lithium batteries  

DOE Patents [OSTI]

A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

2003-01-01T23:59:59.000Z

270

Lithium Reagents DOI: 10.1002/anie.200603038  

E-Print Network [OSTI]

Lithium Reagents DOI: 10.1002/anie.200603038 Lithium Diisopropylamide: Solution Kinetics Keywords: kinetics · lithium diisopropylamide · metalation · solvent effects · synthesis design D. B: lithium diiso- propylamide (LDA). LDA has played a profound role in organic synthesis, serving as the base

Collum, David B.

271

Electromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999  

E-Print Network [OSTI]

to avoid corrosion or fire. Lithium's high electrical conductivity may possibly permit efficient, compactElectromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999 6-1 CHAPTER 6: ELECTROMAGNETICALLY RESTRAINED LITHIUM BLANKET Contributors Robert Woolley #12;Electromagnetically Restrained Lithium

California at Los Angeles, University of

272

A Lithium Superionic Sulfide Cathode for Lithium-Sulfur Batteries  

SciTech Connect (OSTI)

This work presents a facile synthesis approach for core-shell structured Li2S nanoparticles, which have Li2S as the core and Li3PS4 as the shell. This material functions as lithium superionic sulfide (LSS) cathode for long-lasting, energy-efficient lithium-sulfur (Li-S) batteries. The LSS has an ionic conductivity of 10-7 S cm-1 at 25 oC, which is 6 orders of magnitude higher than that of bulk Li2S (~10-13 S cm-1). The high lithium-ion conductivity of LSS imparts an excellent cycling performance to all-solid Li-S batteries, which also promises safe cycling of high-energy batteries with metallic lithium anodes.

Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

2013-01-01T23:59:59.000Z

273

Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes  

SciTech Connect (OSTI)

BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

None

2010-07-01T23:59:59.000Z

274

Cyanoethylated compounds as additives in lithium/lithium batteries  

DOE Patents [OSTI]

The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

Nagasubramanian, Ganesan (Albuquerque, NM)

1999-01-01T23:59:59.000Z

275

Hollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients  

E-Print Network [OSTI]

of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients MEP · MANUFACTURING EXTENSION PARTNERSHIP NationalInstituteofStandardsandTechnology March2013

Perkins, Richard A.

276

Advanced Polymer Processing Facility  

SciTech Connect (OSTI)

Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

Muenchausen, Ross E. [Los Alamos National Laboratory

2012-07-25T23:59:59.000Z

277

Establishing a virtual manufacturing environment for military robots  

E-Print Network [OSTI]

Recent advances in the robotics industry have given the military an opportunity to capitalize on industry's innovation. Not only has core robotics technology improved but robotics manufacturing technology has also made ...

Andersen, Ryan J. (Ryan John)

2007-01-01T23:59:59.000Z

278

Characterization of Cathode Materials for Rechargeable Lithium Batteries using Synchrotron Based In Situ X-ray Techniques  

SciTech Connect (OSTI)

The emergence of portable telecommunication, computer equipment and ultimately hybrid electric vehicles has created a substantial interest in manufacturing rechargeable batteries that are less expensive, non-toxic, operate for longer time, small in size and weigh less. Li-ion batteries are taking an increasing share of the rechargeable battery market. The present commercial battery is based on a layered LiCoO{sub 2} cathode and a graphitized carbon anode. LiCoO{sub 2} is expensive but it has the advantage being easily manufactured in a reproducible manner. Other low cost layered compounds such as LiNiO{sub 2}, LiNi{sub 0.85}Co{sub 0.15}O{sub 2} or cubic spinels such as LiMn{sub 2}O{sub 4} have been considered. However, these suffer from cycle life and thermal stability problems. Recently, some battery companies have demonstrated a new concept of mixing two different types of insertion compounds to make a composite cathode, aimed at reducing cost and improving self-discharge. Reports clearly showed that this blending technique can prevent the decline in ·capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and phase transitions for these composite cathodes. Understanding the structure and structural changes of electrode materials during the electrochemical cycling is the key to develop better .lithium ion batteries. The successful commercialization of the· lithium-ion battery is mainly built on the advances in solid state chemistry of the intercalation compounds. Most of the progress in understanding the lithium ion battery materials has been obtained from x-ray diffraction studies. Up to now, most XRD studies on lithium-ion battery materials have been done ex situ. Although these ex situ XRD studies have provided important information· about the structures of battery materials, they do face three major problems. First of all, the pre-selected charge (discharge) states may not be representative for the full picture of the structural changes during charge (discharge). In other words, the important information might be missed for those charge (discharge) states which were not selected for ex situ XRD studies. Secondly, the structure of the sample may have changed after removed from the cell. Finally, it is impossible to use the ex situ XRD to study the dynamic effects during high rate charge-discharge, which is crucial for the application of lithium-ion batteries for electric vehicle. A few in situ studies have been done using conventional x-ray tube sources. All of the in situ XRD studies using conventional x-ray tube sources have been done in the reflection mode in cells with beryllium windows. Because of the weak signals, data collection takes a long time, often several hundred hours for a single charge-discharge cycle. This long time data collection is not suitable for dynamic studies at all. Furthermore, in the reflection mode, the x-ray beam probes mainly the surface layer of the cathode materials. Iri collaboration with LG Chemical Ltd., BNL group designed and constructed the cells for in situ studies. LG Chemical provided several blended samples and pouch cells to BNL for preliminary in situ study. The LG Chemical provided help on integrate the blended cathode into these cells. The BNL team carried out in situ XAS and XRD studies on the samples and pouch cells provided by LG Chemical under normal charge-discharge conditions at elevated temperature.

Yang, Xiao-Qing

2007-05-23T23:59:59.000Z

279

Rotational Mixing and Lithium Depletion  

E-Print Network [OSTI]

I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

Pinsonneault, M H

2010-01-01T23:59:59.000Z

280

E-Print Network 3.0 - automobile manufacturing plant Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: automobile manufacturing plant Page: << < 1 2 3 4 5 > >> 1 Welding Technology Program Director:...

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - automobile part manufacturers Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: automobile part manufacturers Page: << < 1 2 3 4 5 > >> 1 Welding Technology Program Director:...

282

RELATING MICROSTRUCTURE TO PROCESS VARIABLES IN BEAM-BASED ADDITIVE MANUFACTURING OF INCONEL 718.  

E-Print Network [OSTI]

??The advancement of laser or electron beam-based additive manufacturing requires the ability to control solidification microstructure. Previous work combined analytical point source solutions and nonlinear… (more)

Thompson, John Ryan

2014-01-01T23:59:59.000Z

283

Air breathing lithium power cells  

DOE Patents [OSTI]

A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

Farmer, Joseph C.

2014-07-15T23:59:59.000Z

284

Development of Lithium Deposition Techniques for TFTR  

SciTech Connect (OSTI)

The ability to increase the quantity of lithium deposition into TFTR beyond that of the Pellet Injector while minimizing perturbations to the plasma provides interesting experimental and operational options. Two additional lithium deposition tools were developed for possible application during the 1996 Experimental Schedule: a solid lithium target probe for real-time deposition, and a lithium effusion oven for deposition between discharges. The lithium effusion oven was operated in TFTR to deposit lithium on the Inner Limiter in the absence of plasma. This resulted in the third highest power TFTR discharge.

Gorman, J.; Johnson, D.; Kugel, H.W.; Labik, G.; Lemunyan, G.; et al

1997-10-01T23:59:59.000Z

285

Development of lithium deposition techniques for TFTR  

SciTech Connect (OSTI)

The ability to increase the quantity of lithium deposition into TFTR beyond that of the Pellet Injector while minimizing perturbations to the plasma provides interesting experimental and operational options. Two additional lithium deposition tools were developed for possible application during the 1996 Experimental Schedule: a solid lithium target probe for real-time deposition, and a lithium effusion oven for deposition between discharges. The lithium effusion oven was operated in TFTR to deposit lithium on the Inner Limiter in the absence of plasma. This resulted in the third highest power TFTR discharge.

Kugel, H.W.; Gorman, J.; Johnson, D.; Labik, G.; Lemunyan, G.; Mansfield, D.; Timberlake, J.; Vocaturo, M.

1997-10-01T23:59:59.000Z

286

Enabling Manufacturing Research through Interoperability  

E-Print Network [OSTI]

sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

2009-01-01T23:59:59.000Z

287

Materials and Manufacturing  

E-Print Network [OSTI]

Environmental Assurance Anne Meinhold Unprecedented Accomplishments in the Use of Aluminum-Lithium Alloy Preston is the solution. Other times, the design must accommodate the limitations of materials properties. The design requirements, and written procedures. Nondestructive testing depends on incident or input energy that interacts

288

Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide (LiHMDS)  

E-Print Network [OSTI]

Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide, and 13C NMR spectroscopic studies of 6Li-15N labeled lithium hexamethyldisilazide ([6Li,15N]- Li ligand structure and lithium amide aggregation state is a complex and sensitive function of amine alkyl

Collum, David B.

289

SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM  

E-Print Network [OSTI]

@ Pergamon SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM performed on powdered and single crystal lithium niobate of defectivecongruent composition (48.4%LirO;51.6% NbrOr) using a magnetic field strength of 7.05 Tesla with the aim to distinguish between a lithium

Bluemel, Janet

290

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries  

E-Print Network [OSTI]

on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium

Cui, Yi

291

Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method  

DOE Patents [OSTI]

A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

Bates, John B. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

292

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

293

Michael Thackery on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Michael Thackery

2010-01-08T23:59:59.000Z

294

(Lithium and lead-lithium corrosion and chemistry)  

SciTech Connect (OSTI)

Presentations on Mass Transport Processes in Li/Fe-12Cr-1MoVW Steel,'' A Lower Temperature Lithium Purification Process Incorporating Warm Trapping','' and Kinetic Analysis of Corrosion in Pb-17 at. % Li and Comparison to Pure Lithium'' were given by the traveler at the 1989 European Workshop on Lithium and Lead-Lithium Corrosion and Chemistry in Vienna, Austria. The European effort in lead-lithium appeared to be continuing unabated with a future focus on deposition and surface products reactions that can lead to corrosion control. The temperature gain realized from the use of ferritic/martensitic steels instead of austenitic steels in Pb-17 at. % Li appears to be 25--50{degrees}C. The traveler also visited the European Community's Joint Research Centre at Ispra to discuss Fe-Mn-Cr steels. He presented a seminar on Recent ORNL Results on the Development of Fe-Mn-Cr Steels,'' and toured the liquid metal laboratories. Our developmental Fe-Mn-Cr steels, which are compositionally tailored for shallow land burial, would not qualify as low activation'' materials per European standards. Because of both this and the poor sensitization resistance of these steels, our alloy development strategy for reduced activation materials should be critically reviewed.

Tortorelli, P.F.

1989-10-09T23:59:59.000Z

295

Locating Chicago Manufacturing  

E-Print Network [OSTI]

Renaissance Council, is among the nation's leading public high schools focused on manufac- turing area's econ- omy, including how important manufacturing is to that economy, which manufac- turing

Illinois at Chicago, University of

296

Manufacturing | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

297

Acoustics by additive manufacturing:.  

E-Print Network [OSTI]

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance… (more)

Setaki, F.

2012-01-01T23:59:59.000Z

298

SSL Manufacturing Roadmap  

Broader source: Energy.gov [DOE]

Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

299

Additive Manufacturing: Going Mainstream  

Broader source: Energy.gov [DOE]

Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

300

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Multi-layered, chemically bonded lithium-ion and lithium/air batteries  

SciTech Connect (OSTI)

Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

2014-05-13T23:59:59.000Z

302

E-Print Network 3.0 - advanced micromachined microphone Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

integrated circuit fabrication technology to the manufacture of micromechanical, optical, electrochemical Summary: , micromachined ultrasonic transducers; advanced computer aided...

303

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

304

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

305

Magnetism in Lithium–Oxygen Discharge Product  

SciTech Connect (OSTI)

Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

2013-05-13T23:59:59.000Z

306

Heterogeneous lithium niobate photonics on silicon substrates  

E-Print Network [OSTI]

Heterogeneous lithium niobate photonics on silicon substrates Payam Rabiei,1,* Jichi Ma,1 Saeed-confined lithium niobate photonic devices and circuits on silicon substrates is reported based on wafer bonding high- performance lithium niobate microring optical resonators and Mach- Zehnder optical modulators

Fathpour, Sasan

307

COSMOLOGICAL LITHIUM PROBLEM: A DIFFERENT APPROACH  

E-Print Network [OSTI]

LITHIUM 7Li sources BBN cosmic-ray interactions (ingredients: shock waves, magnetic field, chargedCOSMOLOGICAL LITHIUM PROBLEM: A DIFFERENT APPROACH Tijana Prodanovi, University of Novi Sad Tamara Observations - boxes 4He ­ OK D ­ right on! 7Li ­ problem! Factor of 3-4 discrepancy! LITHIUM PROBLEM

?umer, Slobodan

308

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

309

Anode materials for lithium-ion batteries  

DOE Patents [OSTI]

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

310

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

311

The Primordial Lithium Problem  

E-Print Network [OSTI]

Big-bang nucleosynthesis (BBN) theory, together with the precise WMAP cosmic baryon density, makes tight predictions for the abundances of the lightest elements. Deuterium and 4He measurements agree well with expectations, but 7Li observations lie a factor 3-4 below the BBN+WMAP prediction. This 4-5\\sigma\\ mismatch constitutes the cosmic "lithium problem," with disparate solutions possible. (1) Astrophysical systematics in the observations could exist but are increasingly constrained. (2) Nuclear physics experiments provide a wealth of well-measured cross-section data, but 7Be destruction could be enhanced by unknown or poorly-measured resonances, such as 7Be + 3He -> 10C^* -> p + 9B. (3) Physics beyond the Standard Model can alter the 7Li abundance, though D and 4He must remain unperturbed; we discuss such scenarios, highlighting decaying Supersymmetric particles and time-varying fundamental constants. Present and planned experiments could reveal which (if any) of these is the solution to the problem.

Brian D. Fields

2012-03-15T23:59:59.000Z

312

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT  

E-Print Network [OSTI]

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 14, No. 4, Fall 2012, pp. 495­511 ISSN 1523 research directions, expanding upon the key points raised by Green [Green LV (2012) The vital role of operations analysis in improving healthcare delivery. Manufacturing Service Oper. Management 14

Boucherie, Richard J.

313

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT  

E-Print Network [OSTI]

;Green and Soares: Note Manufacturing & Service Operations Management 9(1), pp. 54­61, © 2007 INFORMS 55MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 9, No. 1, Winter 2007, pp. 54­61 issn 1523-Dependent Waiting Time Probabilities in M t /M/s t Queuing Systems Linda V. Green Graduate School of Business

Soares, JoĂŁo LuĂ­s Cardoso

314

Science&TechnologyHighlights As the world's lightest metal, lithium is well positioned to meet  

E-Print Network [OSTI]

, strategic investments have been made in metal-air, aluminum-ion, and all solid-state batteries; safety, light- weight, high-energy density, lithium ion batteries are attractive for plug-in hybrid and battery for battery R&D at ORNL. Traditionally, battery technology was driven by electrochemical advance- ments

Pennycook, Steve

315

Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow  

E-Print Network [OSTI]

Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W.B. Gu and C.Y. Wang GATE Center of Excellence for Advanced Energy Storage Department of Mechanical are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves

Wang, Chao-Yang

316

One dimensional Si/Sn -based nanowires and nanotubes for lithium-ion energy storage materials  

E-Print Network [OSTI]

One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials Nam of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs to their uneven energy production. From this perspective, the interest in energy storage technology is on the rise

Cui, Yi

317

Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation  

E-Print Network [OSTI]

for clean sustainable energy, newer lithium ion batteries with higher energy density, higher power density challenges associated with fossil fuels. Although renewable or sustainable energy including solar, wind,9 and to harvest the clean and sustainable energy such as solar, wind and tidal energy.10­12 Advanced energy

Cao, Guozhong

318

Spatial periphery of lithium isotopes  

SciTech Connect (OSTI)

The spatial structure of lithium isotopes is studied with the aid of the charge-exchange and (t, p) reactions on lithium nuclei. It is shown that an excited isobaric-analog state of {sup 6}Li (0{sup +}, 3.56MeV) has a halo structure formed by a proton and a neutron, that, in the {sup 9}Li nucleus, there is virtually no neutron halo, and that {sup 11}Li is a Borromean nucleus formed by a {sup 9}Li core and a two-neutron halo manifesting itself in cigar-like and dineutron configurations.

Galanina, L. I., E-mail: galan_lidiya@mail.ru; Zelenskaja, N. S. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

2013-12-15T23:59:59.000Z

319

Liquid Lithium Experiments in CDX-U  

SciTech Connect (OSTI)

The initial results of experiments involving the use of liquid lithium as a plasma facing component in the Current Drive Experiment-Upgrade (CDX-U) are reported. Studies of the interaction of a steady-state plasma with liquid lithium in the Plasma Interaction with Surface and Components Experimental Simulator (PISCES-B) are also summarized. In CDX-U a solid or liquid lithium covered rail limiter was introduced as the primary limiting surface for spherical torus discharges. Deuterium recycling was observed to be reduced, but so far not eliminated, for glow discharge-cleaned lithium surfaces. Some lithium influx was observed during tokamak operation. The PISCES-B results indicate that the rates of plasma erosion of lithium can exceed predictions by an order of magnitude at elevated temperatures. Plans to extend the CDX-U experiments to large area liquid lithium toroidal belt limiters are also described.

R. Majeski; R. Doerner; R. Kaita; G. Antar; J. Timberlake; et al

2000-11-15T23:59:59.000Z

320

Solid solution lithium alloy cermet anodes  

DOE Patents [OSTI]

A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

Richardson, Thomas J.

2013-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

322

Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1998-08-01T23:59:59.000Z

323

Manufacturing Renaissance: Return of manufacturing to western countries.  

E-Print Network [OSTI]

??Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers… (more)

Kianian, Babak; Larsson, Tobias

2013-01-01T23:59:59.000Z

324

Lithium Loaded Glass Fiber Neutron Detector Tests  

SciTech Connect (OSTI)

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).

Ely, James H.; Erikson, Luke E.; Kouzes, Richard T.; Lintereur, Azaree T.; Stromswold, David C.

2009-11-12T23:59:59.000Z

325

LITHIUM--1997 46.1 By Joyce A. Ober  

E-Print Network [OSTI]

LITHIUM--1997 46.1 LITHIUM By Joyce A. Ober After decades as the world's leading producer of lithium and its compounds, the United States was surpassed in 1997 when Chile became the world's largest lithium carbonate producer. Both lithium carbonate operations at the Salar de Atacama produced during

326

Manufacturing Licenses Available | Tech Transfer | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deposition Manufacturing 201303127 Methods and Materials for Room Temperature Polymer Additive Manufacturing 201303140 Reactive Polymer Fused Deposition Manufacturing 201303151...

327

"Technology Wedges" for Implementing Green Manufacturing  

E-Print Network [OSTI]

issues in green design and manufacturing." ManufacturingFOR IMPLEMENTING GREEN MANUFACTURING David Dornfeld BerkeleyCalifornia KEYWORDS Green Manufacturing, Technology,

Dornfeld, David; Wright, Paul

2007-01-01T23:59:59.000Z

328

Lithium Ephedrate-Mediated Addition of a Lithium Acetylide to a Ketone: Solution Structures and Relative Reactivities of Mixed  

E-Print Network [OSTI]

Lithium Ephedrate-Mediated Addition of a Lithium Acetylide to a Ketone: Solution Structures-1301 ReceiVed April 30, 1997. ReVised Manuscript ReceiVed NoVember 26, 1997 Abstract: Addition of lithiumLi and 13C NMR spectroscopies reveal lithium cyclopropylacetylide in THF to be a dimer

Collum, David B.

329

Anode material for lithium batteries  

DOE Patents [OSTI]

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Westmont, IL); Amine, Khalil (Downers Grove, IL)

2012-01-31T23:59:59.000Z

330

Anode material for lithium batteries  

DOE Patents [OSTI]

Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Downers Grove, IL)

2008-06-24T23:59:59.000Z

331

Lithium-loaded liquid scintillators  

DOE Patents [OSTI]

The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

Dai, Sheng (Knoxville, TN); Kesanli, Banu (Mersin, TR); Neal, John S. (Knoxville, TN)

2012-05-15T23:59:59.000Z

332

Anode material for lithium batteries  

DOE Patents [OSTI]

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Oak Brook, IL)

2011-04-05T23:59:59.000Z

333

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration...

334

Advance Patent Waiver W(A)2012-011  

Broader source: Energy.gov [DOE]

This is a request by RAYMOND TINNERMAN MANUFACTURING INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005438.

335

CIMplementation™: Evaluating Manufacturing Automation  

E-Print Network [OSTI]

management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

Krakauer, J.

336

Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis  

E-Print Network [OSTI]

coefficients in order to build a high-level, yet accurate state of charge prediction model. Moreover, this work utilizes automotive grade lithium-based batteries for realistic outcomes in the electrified vehicle realm. The fourth chapter describes an advanced...

Hausmann, Austin Joseph

2012-08-31T23:59:59.000Z

337

Lithium Diisopropylamide: Oligomer Structures at Low Ligand Concentrations  

E-Print Network [OSTI]

Lithium Diisopropylamide: Oligomer Structures at Low Ligand Concentrations Jennifer L. Rutherford-dimensional 6Li and 15N NMR spectroscopic studies of lithium diisopropylamide (LDA) solvated ligand concentrations are discussed. Introduction Spectroscopic studies of lithium amides at low ligand

Collum, David B.

338

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

339

Model Reformulation and Design of Lithium-ion Batteries  

E-Print Network [OSTI]

987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

Subramanian, Venkat

340

Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries  

E-Print Network [OSTI]

A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

Moore, Charles J. (Charles Jacob)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.  

SciTech Connect (OSTI)

Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

2010-01-01T23:59:59.000Z

342

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO2.(1-x)Li2M'O3 in which 0

Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

2006-11-14T23:59:59.000Z

343

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

344

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

345

ENDOR study of Cr3 centers substituting for lithium in lithium niobate  

E-Print Network [OSTI]

ENDOR study of Cr3ż centers substituting for lithium in lithium niobate G. Malovichko,1, * V centers in lithium niobate crystals were investigated with the help of electron nuclear double resonance and the parameters of hyperfine and quadrupole interactions were determined. It is found that Cr3 substitutes for Li

Malovichko, Galina

346

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery  

E-Print Network [OSTI]

to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our needed for safe and high power Li-ion batteries. VC 2011 American Institute of Physics. [doi:10Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam

Endres. William J.

347

Development of Large Format Lithium Ion Cells with Higher Energy...  

Broader source: Energy.gov (indexed) [DOE]

Large Format Lithium Ion Cells with Higher Energy Density Development of Large Format Lithium Ion Cells with Higher Energy Density 2013 DOE Hydrogen and Fuel Cells Program and...

348

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

349

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...  

Office of Environmental Management (EM)

Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

350

Interface Modifications by Anion Acceptors for High Energy Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Abstract: Li-rich, Mn-rich...

351

EV Everywhere Batteries Workshop - Next Generation Lithium Ion...  

Energy Savers [EERE]

Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

352

Linking Ion Solvation and Lithium Battery Electrolyte Properties...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Linking Ion Solvation and Lithium Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen...

353

Molecular Structure and Stability of Dissolved Lithium Polysulfide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stability of Dissolved Lithium Polysulfide Species. Molecular Structure and Stability of Dissolved Lithium Polysulfide Species. Abstract: Ability to predict the solubility and...

354

Designing Silicon Nanostructures for High Energy Lithium Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

355

New lithium-based ionic liquid electrolytes that resist salt...  

Energy Savers [EERE]

lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

356

EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

357

Examining Hysteresis in Lithium- and Manganese-Rich Composite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hysteresis in Lithium- and Manganese-Rich Composite Cathode Materials Examining Hysteresis in Lithium- and Manganese-Rich Composite Cathode Materials 2013 DOE Hydrogen and Fuel...

358

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2013 DOE...

359

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

360

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

362

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2012 DOE Hydrogen and...

363

Diagnostic Studies on Lithium Battery Cells and Cell Components...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

364

Development of High Energy Lithium Batteries for Electric Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

365

Vehicle Technologies Office Merit Review 2014: High Energy Lithium...  

Broader source: Energy.gov (indexed) [DOE]

High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

366

Additives and Cathode Materials for High-Energy Lithium Sulfur...  

Broader source: Energy.gov (indexed) [DOE]

Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

367

Thermodynamic Investigations of Lithium- and Manganese-Rich Transition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides 2013 DOE...

368

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...  

Energy Savers [EERE]

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

369

Optimization of mesoporous carbon structures for lithium&ndash...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mesoporous carbon structures for lithium–sulfur battery applications. Optimization of mesoporous carbon structures for lithium–sulfur battery applications. Abstract:...

370

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

371

Exploring the interaction between lithium ion and defective graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. Exploring the interaction between lithium ion and defective...

372

Electrode materials and lithium battery systems  

DOE Patents [OSTI]

A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

Amine, Khalil (Downers Grove, IL); Belharouak, Ilias (Westmont, IL); Liu, Jun (Naperville, IL)

2011-06-28T23:59:59.000Z

373

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

374

ORNL microscopy directly images problematic lithium dendrites...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

375

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

376

Ternary compound electrode for lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

Raistrick, Ian D. (Menlo Park, CA); Godshall, Ned A. (Stanford, CA); Huggins, Robert A. (Stanford, CA)

1982-01-01T23:59:59.000Z

377

Ternary compound electrode for lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

1980-07-30T23:59:59.000Z

378

Categorical Exclusion 4577: Lithium Isotope Separation & Enrichment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This is entirely a paper study. The scope of this Cooperative Rssearch and development (CRADA) is to: 1) systematically review existing potential lithium enrichment processes, 2)...

379

Developing a Lower Cost and Higher Energy Density Alternative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Advanced Batteries ADVANCED MANUFACTURING OFFICE Developing a Lower Cost and Higher Energy Density Alternative to Lithium-Ion Batteries Introduction As the world moves toward...

380

Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments  

SciTech Connect (OSTI)

The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

2001-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrolytes for lithium ion batteries  

DOE Patents [OSTI]

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

382

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

383

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

384

Next Generation Power Electronics National Manufacturing Innovation Institute  

Broader source: Energy.gov [DOE]

The Next Generation Power Electronics National Manufacturing Innovation Institute will focus on wide bandgap (WBG) semiconductors - the same materials used in LED light fixtures and many flat screen TVs. The Institute will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years. This Institute is one of three new innovation hubs announced by President Obama in his 2013 State of the Union address and part of the National Network for Manufacturing Innovation (NNMI).

385

Lithium Ceramic Blankets for Russian Fusion Reactors and Influence of Breeding Operation Mode on Parameters of Reactor Tritium Systems  

SciTech Connect (OSTI)

Russian controlled fusion program supposes development of a DEMO reactor design and participation in ITER Project. A solid breeder blanket of DEMO contains a ceramic lithium orthosilicate breeder and a beryllium multiplier. Test modules of the blanket are developed within the scope of ITER activities. Experimental models of module tritium breeding zones (TBZ), materials and fabrication technology of the TBZ, tritium reactor systems to analyse and process gas released from lithium ceramics are being developed. Two models of tritium breeding and neutron multiplying elements of the TBZ have been designed, manufactured and tested in IVV-2M nuclear reactor. Initial results of the in-pile experiments and outcome of lithium ceramics irradiation in a water-graphite nuclear reactor are considered to be a data base for development of the test modules and initial requirements for DEMO tritium system design. Influence of the tritium release parameters and hydrogen concentration in a purge gas on parameters of reactor system are discussed.

Kapyshev, Victor K.; Chernetsov, Mikhail Yu.; Zhevotov, Sergej I.; Kersnovskij, Alexandr Yu.; Kolbasov, Boris N.; Kovalenko, Victor G.; Paltusov, Nikolaj P.; Sernyaev, Georgeij A.; Sterebkov, Juri S.; Zyryanov, Alexej P. [A.A. Bochvar Institute of Inorganic Materials (Russian Federation)

2005-07-15T23:59:59.000Z

386

XPS analysis of lithium surface and modification of surface state for uniform deposition of lithium  

SciTech Connect (OSTI)

The surface modification of lithium deposited at various current densities in propylene carbonate containing 1.0 ml dm{sup {minus}3} LiClO{sub 4} was performed by addition of various amounts of HF into the electrolyte, in order to investigate the effect of the HF addition on the surface reaction of lithium. XPS and SEM analyses showed that the surface state of lithium was influenced by the concentration of HF and the electrodeposition current. These two parameters are related to the chemical reaction rate of the lithium surface with HF and the electrodeposition rate of lithium, respectively. The surface modification was highly effective in suppressing lithium dendrite formation when the chemical reaction rate with HF was greater than the electrochemical deposition rate of lithium.

Kanamura, K.; Shiraishi, S.; Takehara, Z. [Kyoto Univ. (Japan)

1995-12-31T23:59:59.000Z

387

Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles  

SciTech Connect (OSTI)

A gamma-free neutron-sensitive scintillator is needed to enhance radiaition sensing and detection for nonproliferation applications. Such a scintillator would allow very large detectors to be placed at the perimeter of spent-fuel storage facilities at commercial nuclear power plants, so that any movement of spontaneously emitted neutrons from spent nuclear fuel or weapons grade plutonium would be noted in real-time. This task is to demonstrate that the technology for manufacturing large panels of fluor-doped plastic containing lithium-6 phosphate nanoparticles can be achieved. In order to detect neutrons, the nanoparticles must be sufficiently small so that the plastic remains transparent. In this way, the triton and alpha particles generated by the capture of the neutron will result in a photon burst that can be coupled to a wavelength shifting fiber (WLS) producing an optical signal of about ten nanoseconds duration signaling the presence of a neutron emitting source.

Steven Wallace

2007-08-28T23:59:59.000Z

388

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network [OSTI]

This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing...

Fiorino, D. P.

389

Developments in lithium-ion battery technology in the Peoples Republic of China.  

SciTech Connect (OSTI)

Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

Patil, P. G.; Energy Systems

2008-02-28T23:59:59.000Z

390

An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells  

SciTech Connect (OSTI)

Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

Liu, Hua Kun, E-mail: hua@uow.edu.au

2013-12-15T23:59:59.000Z

391

Lithium electric dipole polarizability M. Puchalski  

E-Print Network [OSTI]

Lithium electric dipole polarizability M. Puchalski Faculty of Chemistry, Adam Mickiewicz, 00-681 Warsaw, Poland The electric dipole polarizability of the lithium atom in the ground state phenomena, such as van der Waals interactions in ultra-cold collisions [1­3] and Bose- Einstein condensation

Pachucki, Krzysztof

392

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

393

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

394

Michael Thackeray on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Thackeray, Michael

2013-04-19T23:59:59.000Z

395

Bimetallic Cathode Materials for Lithium Based Batteries  

E-Print Network [OSTI]

Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries for implantable cardiac defibrillators (ICDs) are based on the Lithium/Silver vanadium oxide (SVO, Ag2V4O11

396

Bio-Manufacturing: A Strategic clean energy manufacturing opportunity  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

397

NSTX Liquid Lithium Divertor (LLD) Design Status and Plans  

E-Print Network [OSTI]

NSTX Liquid Lithium Divertor (LLD) Design Status and Plans Office of Science H. W. Kugel, PPPL Design Status and Plans (Kugel) 2July 28, 2008 Motivation for NSTX Lithium Research · NSTX research with solid lithium is aimed initially towards using liquid lithium to control density, edge collisionality

Princeton Plasma Physics Laboratory

398

Intense Lithium Streams in Tokamaks 1 Leonid E. Zakharov,  

E-Print Network [OSTI]

Intense Lithium Streams in Tokamaks 1 Leonid E. Zakharov, Princeton University, Princeton Plasma. Temperature of the streams. 2. Lithium jets. 3. Injection into vacuum chamber. 4. Propulsion inside the vacuum chamber. 5. Stability of the lithium streams. 6. Expulsion of the lithium. 7. Summary. PRINCETON PLASMA

Zakharov, Leonid E.

399

Impact of Lithium Availability on Vehicle Electrification (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the relationship between electric drive vehicles and the availability of lithium.

Neubauer, J.

2011-07-01T23:59:59.000Z

400

Lithium Iron Phosphate Composites for Lithium Batteries | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'NeillFuelsLaboratory Lithium Iron

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Abstract: Suppressing lithium (Li)...

402

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

the lithium- transition metal electrostatic interaction. Thecation electrostatic interactions. 1 Lithium ions occupy theinteractions or by inhibiting the complete removal of lithium

Wilcox, James D.

2010-01-01T23:59:59.000Z

403

Studies of ionic liquids in lithium-ion battery test systems  

E-Print Network [OSTI]

are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-01-01T23:59:59.000Z

404

Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries Guoying Chen,protection agents in lithium batteries is relatively new,in rechargeable lithium batteries with a variety of

Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

405

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries. Electrochim. ActaFacing Rechargeable Lithium Batteries. Nature 2001, 414,for Rechargeable Lithium Batteries Using Electroactive

Patel, Shrayesh

2013-01-01T23:59:59.000Z

406

A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries  

E-Print Network [OSTI]

for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

Stone, Gregory Michael

2012-01-01T23:59:59.000Z

407

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principles

Lin, Feng

2014-01-01T23:59:59.000Z

408

Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni  

E-Print Network [OSTI]

Cathode Materials for Lithium Batteries, 2003, Massachusettsfor Rechargeable Lithium Batteries: Part 1-Substitution withelectrode materials for lithium batteries because of their

Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

2004-01-01T23:59:59.000Z

409

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

Burke, Andrew

2009-01-01T23:59:59.000Z

410

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowIntroduction Rechargeable lithium batteries are known forfor rechargeable lithium batteries. When impregnated into a

Chen, Guoying

2010-01-01T23:59:59.000Z

411

Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries  

E-Print Network [OSTI]

Laser Deposition for Lithium Batteries Seung-Wan Song, a, *in rechargeable lithium batteries. Introduction Sb-in rechargeable lithium batteries. Two advantages of

Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

2003-01-01T23:59:59.000Z

412

Electrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

controlling these two properties is the mag- nitude of interaction between the active and the inactiveElectrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries C. Y. Wang,a, * Y. S. Meng,b, * G. Ceder,c, *,z and Y. Lia,d,z a Advanced Materials

Ceder, Gerbrand

413

Additive Manufacturing for Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE)

Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

414

J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides  

E-Print Network [OSTI]

J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides with Lithium 2,2,6,6-Tetramethylpiperidide(LiTMP) Patricia L. Hall, James H. Gilchrist, Aidan T. Harrison]-lithiumdi-tert-butylamide and conformationally locked [6Li]-lithium2,2,4,6,6-pentamethylpiperidide shed further light

Collum, David B.

415

Bolt Manufacture: Process Selection  

E-Print Network [OSTI]

file · Selective Laser Sintering (SLS) 3 D P i ti· 3-D Printing · Light Engineered Net Shaping (LENS Processes and Systems Prof. J.S. Colton © GIT 2009 20 #12;3D Printing Process (Soligen) ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 21 #12;3D Printing Head (Soligen)3D Printing

Colton, Jonathan S.

416

Manufacturing High Temperature Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE

417

Manufacturing Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWater ConservationDepartmentEnergy Manufacturing Energy6

418

Manufacturing Tech Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Tech Team Manufacturing Tech Team Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy...

419

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

for Implementing Green Manufacturing”, NAMRI Trans. , 35,Strategies for Green Manufacturing,” Proc. 4th CIRPAnd, in specific green manufacturing? This will depend on

Dornfeld, David

2011-01-01T23:59:59.000Z

420

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network [OSTI]

Strategies for Green Manufacturing, " Proceedings HighFH), Implementing green manufacturing, as the first stepASME, Evanston, IL, Green Manufacturing uk/sustainability/

Dornfeld, David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Appropriate use of Green Manufacturing Frameworks  

E-Print Network [OSTI]

for Implementing Green Manufacturing,” Trans. North AmericanAppropriate use of Green Manufacturing Frameworks C. Reich-for sustainable or green manufacturing systems and products,

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2010-01-01T23:59:59.000Z

422

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

for implementing green manufacturing,” Trans. North AmericaStrategies for Green Manufacturing,” Proc. of the 4th CIRPAppropriate Use of Green Manufacturing Frameworks,” Proc. of

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

423

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

Operation Strategies for Green Manufacturing, Proceedings ofSymposium on Green Manufacturing and Applications (ISGMAfor implementing green manufacturing. Transactions of NAMRI/

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

424

Precision and Energy Usage for Additive Manufacturing  

E-Print Network [OSTI]

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

425

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

2010): “Sustainable Manufacturing – Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as “the creation of manufacturing products that use materials and processes

Dornfeld, David

2011-01-01T23:59:59.000Z

426

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , “Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

427

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network [OSTI]

mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

Dornfeld, David

2010-01-01T23:59:59.000Z

428

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing – Greening Processes, Systemsor impact low Most  sustainable Increase process efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

429

Phostech Lithium | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: Energy ResourcesPhilippines:SanPhostech Lithium

430

Development of Polymer Electrolytes for Advanced Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

* Barriers: (1) Energy density (2) Safety (3) Low cycle life * Partners: * ANL, ALS (at LBNL) and NCEM (at LBNL) Objectives * A) Develop cost-effective method for creating...

431

Advanced titania nanostructures and composites for lithium ion battery  

E-Print Network [OSTI]

. Wei Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA Z. Guo (&) Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA e-mail: zhanhu.guo@lamar.edu 123 J Mater Sci (2012) 47:2519­2534 DOI 10.1007/s10853

Guo, John Zhanhu

432

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Broader source: Energy.gov (indexed) [DOE]

Johnson). * Providing samples for analysis by Dielectric Relaxation( Penn State and Neutron Scattering(NIST) Future Work * Continued Synthesis of polyelectrolyte materials -...

433

Advanced Cathode Material Development for PHEV Lithium Ion Batteries |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels CostEnergy

434

Advanced Cathode Material Development for PHEV Lithium Ion Batteries |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuels CostEnergyDepartment of

435

Polymers For Advanced Lithium Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | Department ofProceedings | Department2 DOE

436

Polymers For Advanced Lithium Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | Department ofProceedings | Department2 DOE1

437

Nanotube Arrays for Advanced Lithium-ion Batteries - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering OfSilica forNanotechnologyExposures

438

Advanced Lithium Ion Battery Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4TCombustionOptimizingCMWG

439

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Broader source: Energy.gov (indexed) [DOE]

* Marshal Smart (JPLABR), Brett Lucht (URI) - New Electrolyte evaluation. * DOE Fuel Cell Technologies Program - New polyelectrolyte material synthesis and Applied Science...

440

Development of Polymer Electrolytes for Advanced Lithium Batteries  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Manufacturing: Principles and Recent June 28 July 1, 2011  

E-Print Network [OSTI]

) June 29, 2011 Wednesday (Solar Panels) 8:30 ­ 9:00 Introduction of Solar Energy - Steven Danyluk in algae biofuel production, overview of various photovoltaic solar cell technologies and manufacturing:30 ­ 17:30 Design of Advanced Heat-transfer fluids for Concentrated Solar Power - Amy Sun, Sandia (SNL

MacIver, Malcolm A.

442

Towards the manufacturing of microfluidic devices : fluid flow in multilayer devices as a test case  

E-Print Network [OSTI]

In this work, the area of microfluidics is analyzed for advances that could be made in the manufacturing of a microfluidic device, and then one area - the alignment of multilayer devices - is selected for greater focus. ...

Korb, Samuel N. (Samuel Noaa), 1984-

2006-01-01T23:59:59.000Z

443

Lithium abundances in exoplanet-hosts stars  

E-Print Network [OSTI]

Exoplanet-host stars (EHS) are known to present surface chemical abundances different from those of stars without any detected planet (NEHS). EHS are, on the average, overmetallic compared to the Sun. The observations also show that, for cool stars, lithium is more depleted in EHS than in NEHS. The overmetallicity of EHS may be studied in the framework of two different scenarii. We have computed main sequence stellar models with various masses, metallicities and accretion rates. The results show different profiles for the lithium destruction according to the scenario. We compare these results to the spectroscopic observations of lithium.

M. Castro; S. Vauclair; O. Richard; N. C. Santos

2008-03-20T23:59:59.000Z

444

Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl Carbamates: Role of  

E-Print Network [OSTI]

Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl of the lithium diisopropylamide (LDA)-mediated anionic Fries rearrangements of aryl carbamates are described, an LDA-lithium phenolate mixed dimer, and homoaggregated lithium phenolates. The highly insoluble

Collum, David B.

445

3-D Nano-Fiber Manufacturing by Controlled Pulling of Liquid Polymers using Nano-Probes  

E-Print Network [OSTI]

3-D Nano-Fiber Manufacturing by Controlled Pulling of Liquid Polymers using Nano-Probes Amrinder S) nano-scale manufacturing tools in this paper. Commercially available Atomic Force Microscope (AFM) systems are mainly limited to 1-D or 2-D manipulation tasks, and advanced 3-D nano

Sitti, Metin

446

Hollings Manufacturing Extension Partnership: A Commercialization Collaborator  

E-Print Network [OSTI]

to process improvements to green manufacturing. MEP also works with partners at the state and federal levelsHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING to successfully commercialize federal technologies #12;The Manufacturing Extension Partnership

Perkins, Richard A.

447

Manufacturing Demonstration Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL

448

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

449

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

450

Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries  

E-Print Network [OSTI]

Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

Kam, Kinson

2012-01-01T23:59:59.000Z

451

Lithium-cation conductivity and crystal structure of lithium diphosphate  

SciTech Connect (OSTI)

The electrical conductivity of lithium diphosphate Li{sub 4}P{sub 2}O{sub 7} has been measured and jump-like increasing of ionic conductivity at 913 K has been found. The crystal structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction at 300–1050 K. At 913 K low temperature triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one, space group P2{sub 1}/n, a=8.8261(4) Ĺ, b=5.2028(4) Ĺ, c=13.3119(2) Ĺ, ?=104.372(6)°. The migration maps of Li{sup +} cations based on experimental data implemented into program package TOPOS have been explored. It was found that lithium cations in both low- and high temperature forms of Li{sub 4}P{sub 2}O{sub 7} migrate in three dimensions. Cross sections of the migrations channels extend as the temperature rises, but at the phase transition point have a sharp growth showing a strong “crystal structure – ion conductivity” correlation. -- Graphical abstract: Crystal structure of Li{sub 4}P{sub 2}O{sub 7} at 950 K. Red balls represent oxygen atoms; black lines show Li{sup +} ion migration channels in the layers perpendicular to [001] direction. Highlights: • Structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction. • At 913 K triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one. • The migration maps of Li{sup +} implemented into program package TOPOS have been explored. • Cross sections of the migrations channels at the phase transition have a sharp growth.

Voronin, V.I., E-mail: voronin@imp.uran.ru [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Sherstobitova, E.A. [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Blatov, V.A., E-mail: blatov@samsu.ru [Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Ac.Pavlov Street 1, 443011 Samara (Russian Federation); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shekhtman, G.Sh., E-mail: shekhtman@ihte.uran.ru [Institute of High Temperature Electrochemistry Urals Branch RAS, Akademicheskaya 20, 620990 Ekaterinburg (Russian Federation)

2014-03-15T23:59:59.000Z

452

Lithium ion battery with improved safety  

DOE Patents [OSTI]

A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

2006-04-11T23:59:59.000Z

453

Solid State Thin Film Lithium Microbatteries  

E-Print Network [OSTI]

Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

Shi, Z.

454

NSTX Plasma Response to Lithium Coated Divertor  

SciTech Connect (OSTI)

NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

2011-01-21T23:59:59.000Z

455

Layered electrodes for lithium cells and batteries  

DOE Patents [OSTI]

Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

Johnson, Christopher S. (Naperville, IL); Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Kahaian, Arthur J. (Chicago, IL); Kim, Jeom-Soo (Naperville, IL)

2008-04-15T23:59:59.000Z

456

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

457

Lithium Circuit Test Section Design and Fabrication  

SciTech Connect (OSTI)

The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

Godfroy, Thomas; Garber, Anne; Martin, James [NASA Marshall Space Flight Center, Nuclear Systems Engineering Analysis, Huntsville, Alabama 35812 (United States)

2006-01-20T23:59:59.000Z

458

Electrode for a lithium cell  

DOE Patents [OSTI]

This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Dees, Dennis W. (Downers Grove, IL)

2008-10-14T23:59:59.000Z

459

Predissociation dynamics of lithium iodide  

E-Print Network [OSTI]

The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li+ and LiI+ ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V=650(20) reciprocal cm. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

Schmidt, H; Stienkemeier, F; Bogomolov, A S; Baklanov, A V; Reich, D M; Skomorowski, W; Koch, C P; Mudrich, M

2015-01-01T23:59:59.000Z

460

Glass for sealing lithium cells  

DOE Patents [OSTI]

Glass compositions resistant to corrosion by lithium cell electrolyte and having an expansion coefficient of 45 to 85 x 10/sup -70/C/sup -1/ have been made with SiO/sub 2/, 25 to 55% by weight; B/sub 2/O/sub 3/, 5 to 12%; Al/sub 2/O/sub 3/, 12 to 35%; CaO, 5 to 15%; MgO, 5 to 15%; SrO, 0 to 10%; and La/sub 2/O/sub 3/, 0 to 5%. Preferred compositions within that range contain 3 to 8% SrO and 0.5 to 2.5% La/sub 2/O/sub 3/.

Leedecke, C.J.

1981-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

462

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

463

advanced mn-base additives: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Madison, University of 3 MAE SEMINAR Recent advances in Additive Manufacturing3D Printing Technologies, Material Science and Engineering Websites Summary: MAE SEMINAR Recent...

464

Manufacturing Spotlight: Boosting American Competitiveness  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

465

Manufacturing Demonstration Facility Technology Collaborations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from industry to assess applicability of new technologies that can reduce manufacturing energy intensity or produce new, energy-efficient products. As part of the technology...

466

Manufacturing development of low activation vanadium alloys  

SciTech Connect (OSTI)

General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

Smith, J.P.; Johnson, W.R.; Baxi, C.B.

1996-10-01T23:59:59.000Z

467

Liquid Lithium Divertor and Scrape-Off-Layer Interactions on the National Spherical Torus Experiment: 2010 ? 2013 Progress Report  

SciTech Connect (OSTI)

The implementation of the liquid Lithium Divertor (LLD) in NSTX presented a unique opportunity in plasma-material interactions studies. A high density Langmuir Probe (HDLP) array utilizing a dense pack of triple Langmuir probes was built at PPPL and the electronics designed and built by UIUC. It was shown that the HDLP array could be used to characterize the modification of the EEDF during lithium experiments on NSTX as well as characterize the transient particle loads during lithium experiments as a means to study ELMs. With NSTX being upgraded and a new divertor being installed, the HDLP array will not be used in NSTX-U. However UIUC is currently helping to develop two new systems for depositing lithium into NSTX-U, a Liquid Lithium Pellet Dripper (LLPD) for use with the granular injector for ELM mitigation and control studies as well as an Upward-Facing Lithium Evaporator (U-LITER) based on a flash evaporation system using an electron beam. Currently UIUC has Daniel Andruczyk Stationed at PPPL and is developing these systems as well as being involved in preparing the Materials Analysis Particle Probe (MAPP) for use in LTX and NSTX-U. To date the MAPP preparations have been completed. New sample holders were designed by UIUC?s Research Engineer at PPPL and manufactured at PPPL and installed. MAPP is currently being used on LTX to do calibration and initial studies. The LLPD has demonstrated that it can produce pellets. There is still some adjustments needed to control the frequency and particle size. Equipment for the U-LITER has arrived and initial test are being made of the electron beam and design of the U-LITER in progress. It is expected to have these ready for the first run campaign of NSTX-U.

None

2013-08-27T23:59:59.000Z

468

Deproto-metallation using mixed lithium-zinc and lithium-copper bases and computed CH acidity of 2-substituted quinolines  

E-Print Network [OSTI]

Deproto-metallation using mixed lithium-zinc and lithium-copper bases and computed CH acidity of 2 corresponding iodo derivatives or 2-chlorophenyl ketones using the lithium-zinc or the lithium using the lithium-zinc base. With 3-pyridyl, 2-furyl and 2-thienyl substituents, the reaction took place

Boyer, Edmond

469

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China,  

E-Print Network [OSTI]

, but growing through the recycling of lithium batteries. Import Sources (1994-97): Chile, 96%; and other, 4 lithium salts from battery recycling and lithium hydroxide monohydrate from former Department of Energy102 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production

470

Mitigating Performance Degradation of High-Energy Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Mitigating Performance Degradation of High-Energy Lithium-Ion Cells 2013 DOE Hydrogen and Fuel Cells Program and...

471

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply...

472

Novel Lithium Ion Anode Structures: Overview of New DOE BATT...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects 2011 DOE Hydrogen and Fuel Cells...

473

Molecular Structures of Polymer/Sulfur Composites for Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life. Molecular Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long...

474

Development of Large Format Lithium Ion Cells with Higher Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

475

Lithium-based inorganic-organic framework materials  

E-Print Network [OSTI]

This dissertation describes research into lithium-based inorganic-organic frameworks, which has led to an increased understanding of the structural diversity and properties of these materials. The crystal structures of 11 new forms of lithium...

Yeung, Hamish Hei-Man

2013-01-01T23:59:59.000Z

476

Shell Model for Atomistic Simulation of Lithium Diffusion in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed MnTi Oxides. Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed MnTi Oxides. Abstract: Mixed...

477

Lithium-ion batteries having conformal solid electrolyte layers  

DOE Patents [OSTI]

Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

Kim, Gi-Heon; Jung, Yoon Seok

2014-05-27T23:59:59.000Z

478

Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Abstract: In this paper,...

479

Design of novel lithium storage materials with a polyanionic framework  

E-Print Network [OSTI]

Lithium ion batteries for large-scale applications demand a strict safety standard from a cathode material during operating cycles. Lithium manganese borate (LiMnBO?) that crystallizes into a hexagonal or monoclinic framework ...

Kim, Jae Chul, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

480

Electrochemical Isotope Effect and Lithium Isotope Separation Jay R. Black,  

E-Print Network [OSTI]

results showing a large lithium isotope separation due to electrodeposition. The fractionation is tunable lithium were plated from solutions of 1 M LiClO4 in propylene carbonate (PC) on planar nickel electrodes

Mcdonough, William F.

Note: This page contains sample records for the topic "manufacture advanced lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

LITHIUM--2002 46.1 By Joyce A. Ober  

E-Print Network [OSTI]

domestic producer of lithium carbonate from brine is Chemetall Foote's operation in Nevada. Nevada brines enriched in lithium chloride, which averaged about 300 parts per million (ppm) when Foote Mineral Co. (the

482

Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.  

SciTech Connect (OSTI)

The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

Gohar, Y.; Smith, D. L.

1999-10-07T23:59:59.000Z

483

Design for manufacturability Design verification  

E-Print Network [OSTI]

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

484

Petrick Technology Trends Of Manufacturing  

E-Print Network [OSTI]

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: · that firms sophisticated modeling and simulation of both new products and production processes; · that additive

485

Lithium based electrochemical cell systems having a degassing agent  

DOE Patents [OSTI]

A lithium based electrochemical cell system includes a positive electrode; a negative electrode; an electrolyte; and a degassing agent.

Hyung, Yoo-Eup (Naperville, IL); Vissers, Donald R. (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2012-05-01T23:59:59.000Z

486

Methods for making lithium vanadium oxide electrode materials  

DOE Patents [OSTI]

A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

Schutts, Scott M. (Menomonie, WI); Kinney, Robert J. (Woodbury, MN)

2000-01-01T23:59:59.000Z

487

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network [OSTI]

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

488

Proposal on Lithium Wall Experiment (LWX) on PBXM 1  

E-Print Network [OSTI]

Proposal on Lithium Wall Experiment (LWX) on PBX­M 1 Leonid E. Zakharov, Princeton University; OUTLINE 1. Mini­conference on Lithium walls and low recycling regime. 2. PBX­M Capabilities. 3. Motivation "Lithium covered walls and low recycling regimes in toka­ maks". APS meeting, October 23­27, 2000, Quebec

Zakharov, Leonid E.

489

Lithium-Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons  

E-Print Network [OSTI]

Lithium-Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons Dana Krepel and Oded Hod on lithium adsorption sites at the surface of graphene and nanoribbons thereof are investigated. The effects, bare lithium adsorption turns armchair graphene nanoribbons metallic and their zigzag counterparts half

Hod, Oded

490

Lithium Diisopropylamide Solvated by Hexamethylphosphoramide: Substrate-Dependent  

E-Print Network [OSTI]

Lithium Diisopropylamide Solvated by Hexamethylphosphoramide: Substrate-Dependent Mechanisms-1301 Received February 9, 2006; E-mail: dbc6@cornell.edu Abstract: Lithium diisopropylamide of lithium-ion solvation at a molecular level of resolution.5 Our interest in HMPA stems from studies

Collum, David B.

491

Lithium acetate transformation of yeast Maitreya Dunham August 2004  

E-Print Network [OSTI]

Lithium acetate transformation of yeast Maitreya Dunham August 2004 Original protocol from Katja until the OD600 is around 0.7-0.8 (~7 hours). Spin down the cells. Resuspend in 5 ml lithium acetate mix. Spin. Resuspend in 0.5 ml lithium acetate mix. Transfer to an eppendorf tube. Incubate 60 minutes

Dunham, Maitreya

492

Lithium Diisopropylamide-Mediated Enolization: Catalysis by Hemilabile Ligands  

E-Print Network [OSTI]

Lithium Diisopropylamide-Mediated Enolization: Catalysis by Hemilabile Ligands Antonio Ramirez of a lithium diisopropylamide (LDA)-mediated ester enolization. Hemilabile amino ether MeOCH2CH2NMe2, binding-based catalysis are thwarted by the occlusion of the catalyst on the lithium salt products and byproducts (eq 1

Collum, David B.

493

Use of Lithium Hexafluoroisopropoxide as a Mild Base for  

E-Print Network [OSTI]

Use of Lithium Hexafluoroisopropoxide as a Mild Base for Horner-Wadsworth-Emmons Olefination The weak base lithium 1,1,1,3,3,3-hexafluoroisopropoxide (LiHFI) is shown to be highly effective of base-sensitive substrates, leading to the discovery that lithium 1,1,1,3,3,3-hexafluoroisopropoxide (Li

494

Description: Lithium batteries are used daily in our work  

E-Print Network [OSTI]

Description: Lithium batteries are used daily in our work activities from flashlights, cell phones containing one SureFire 3-volt non-rechargeable 123 lithium battery and one Interstate 3-volt non-rechargeable 123 lithium battery. A Garage Mechanic had the SureFire flashlight in his shirt pocket with the lens

495

The Lithium-Ion Cell: Model, State Of Charge Estimation  

E-Print Network [OSTI]

The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor degradation mechanisms of a Li-ion cell based on LiCoO2", Journal of Power Sources #12;Lithium ions and e and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher

Schenato, Luca

496

Stabilization of tokamak plasma by lithium streams L. E. Zakharov,  

E-Print Network [OSTI]

a stabilization mechanism independent of the plasma properties. 2. Interaction of lithium streams with externalStabilization of tokamak plasma by lithium streams L. E. Zakharov, Princeton Plasma Physics-boundary magnetohydrodynamic instabilities in tokamaks by liquid lithium streams driven by magnetic propulsion is formulated

497

Stabilization of tokamak plasma by lithium streams L. E. Zakharov,  

E-Print Network [OSTI]

a stabilization mechanism independent of the plasma properties. 2 Interaction of lithium streams with externalStabilization of tokamak plasma by lithium streams L. E. Zakharov, Princeton Plasma Physics-boundary magnetohydrodynamic instabilities in tokamaks by liquid lithium streams driven by magnetic propulsion is formulated

Zakharov, Leonid E.

498

Author's personal copy Reactivity of lithium exposed graphite surface  

E-Print Network [OSTI]

on the surface [18]. Hence the effect of lithium on plasma­wall interactions is expected to dependAuthor's personal copy Reactivity of lithium exposed graphite surface S.S. Harilal a, *, J in fusion devices [1­5]. For example, wall conditioning with thin lithium layers gives rise to low hydrogen

Harilal, S. S.

499

Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering  

E-Print Network [OSTI]

Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering 70 Ma · Overview of the Marine Lithium Cycle · Analytical Challenges · 68 Million Year Seawater Lithium Isotope Record (Forams) · Interpretation Standard: NIST L-SVEC Li (SRM 8545) #12;100 Ma Climate

Paytan, Adina

500

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries  

E-Print Network [OSTI]

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries R. Edwin Garci´a,a, *,z microstructure. Experi- mental measurements are reproduced. Early models for lithium-ion batteries were developed Institute of Technology, Cambridge, Massachusetts 01239-4307, USA The properties of rechargeable lithium

GarcĂ­a, R. Edwin