National Library of Energy BETA

Sample records for manning squaw gap

  1. Lara Manning

    Broader source: Energy.gov [DOE]

    Lara Manning is the FY 2016-2017 ORSSAB Student Representative. She is a senior at Oak Ridge High School where her advanced placement studies in environmental science spurred her interest in...

  2. Aprun MAN Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aprun MAN Page Aprun MAN Page aprun -a arch -b -B -cc cpulist | keyword -cp cpuplacementfilename -d depth -D value -L nodelist -m sizeh|hs -n...

  3. One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August ...

  4. Gap Resolution

    Energy Science and Technology Software Center (OSTI)

    2009-06-16

    With the continued improvements of next generation DNA sequencing technologies and their advantages over traditional Sanger sequencing, the Joint Genome Institute (JGI) has modified its sequencing pipeline to take advantage of the benefits of such technologies. Currently, standard 454 Titanium, paired end 454 Titanium, and Illumina GAll data are generated for all microbial projects and then assembled using draft assemblies at a much greater throughput than before. However, it also presents us with new challenges.more » In addition to the increased throughput, we also have to deal with a larger number of gaps in the Newbler genome assemblies. Gaps in these assemblies are usually caused by repeats (Newbler collapses repeat copies into individual contigs, thus creating gaps), strong secondary structures, and artifacts of the PCR process (specific to 454 paired end libraries). Some gaps in draft assemblies can be resolved merely by adding back the collapsed data from repeats. To expedite gap closure and assembly improvement on large numbers of these assemblies, we developed software to address this issue.« less

  5. BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy (BioHydrogen) | Department of Energy One Man's Yardwaste is Another Man's Energy (BioHydrogen) BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's Energy (BioHydrogen) BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's Energy (BioHydrogen) This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic

  6. Aprun MAN Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aprun » Aprun MAN Page Aprun MAN Page aprun [-a arch ] [-b ] [-B] [-cc cpu_list | keyword ] [-cp cpu_placement_file_name ] [-d depth ] [-D value ] [-L node_list ] [-m size[h|hs] ] [-n pes ] [-N pes_per_node ][-F access mode ] [-q ] [-r cores][-S pes_per_numa_node ] [-sl list_of_numa_nodes ] [-sn numa_nodes_per_node ] [-ss ] [-T ] [-t sec ] executable [ arguments_for_executable ] IMPLEMENTATION Cray Linux Environment (CLE) DESCRIPTION To run an application on CNL compute nodes, use the

  7. Cascadia Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PENNEL BUFFALO LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON STATE LINE BELL BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR STADIUM HEART S HILINE ASH MARY GAYLORD BULL CREEK HALEY SHORT PINE HILLS W

  8. Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    PENNEL BUFFALO LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON STATE LINE BELL BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR STADIUM HEART S HILINE ASH MARY GAYLORD BULL CREEK HALEY SHORT PINE HILLS W

  9. ED F Man Holdings | Open Energy Information

    Open Energy Info (EERE)

    ED F Man Holdings Jump to: navigation, search Name: ED&F Man Holdings Place: England, United Kingdom Product: ED&F Man is a vertically integrated service provider, encompassing the...

  10. MAN Solar Millennium | Open Energy Information

    Open Energy Info (EERE)

    Solar Millennium Jump to: navigation, search Name: MAN Solar Millennium Place: Essen, Germany Zip: 45128 Sector: Solar Product: JV between MAN Ferrostaal and Solar Millennium to...

  11. Bridging Gaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bridging Gaps Bridging Gaps Analysis to identify issues, best practices, and recommendations Implementation of modernization, infrastructure planning, and sustainability efforts ...

  12. Groundwater Under Review Marathon Man

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Under Review Marathon Man NNSS team welcomes peer review of groundwater program. Nevada Teams compete in the National Science Bowl in Washington. NSTec runner finishes first Boston Marathon. See page 7. See page 6. NNSS Roads Getting a Fresh Makeover Highways, roads, parking lots - any place that has seen at least 60 years of traffic like the Nevada National Security Site (NNSS) has - will experience some normal wear and tear. That is why National Security Technologies (NSTec) is doing some

  13. SPARK GAP SWITCH

    DOE Patents [OSTI]

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  14. Fat Man Dropped on Nagasaki | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Fat Man Dropped on Nagasaki August 09, 1945 Fat Man Dropped on Nagasaki Nagasaki, Japan The implosion model plutonium bomb, called Fat Man, is dropped on Nagasaki, Japan....

  15. Fiber optic gap gauge

    DOE Patents [OSTI]

    Wood, Billy E.; Groves, Scott E.; Larsen, Greg J.; Sanchez, Roberto J.

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  16. MULTIPLE SPARK GAP SWITCH

    DOE Patents [OSTI]

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  17. Precision gap particle separator

    DOE Patents [OSTI]

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  18. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  19. MAN Ferrostaal Incorporated | Open Energy Information

    Open Energy Info (EERE)

    Incorporated Jump to: navigation, search Name: MAN Ferrostaal Incorporated Place: Cleveland Zip: 44122 Product: Project developer and engineering company and US-based operating...

  20. EERE Success Story-One Man's Trash, Another Man's Fuel: BMW Plant...

    Energy Savers [EERE]

    Plant Converts Landfill Gas to Hydrogen Fuel EERE Success Story-One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August 25, 2015 - 3:08pm ...

  1. GAP | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    GAP Environmental Assessment for Gap Material Plutonium - Transport, Receipt, and Processing The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), has prepared this Environmental Assessment for Gap Material Plutonium - Transport, Receipt, and Processing to evaluate the potential environmental impacts associated with transporting plutonium from foreign

  2. MAN or FA from n-butane

    SciTech Connect (OSTI)

    Di Cio, A.; Verde, L.

    1985-08-01

    Unsaturated polyester resins were first produced mostly from fumaric acid (FA) rather than from maleic anhydride (MAN). This is perfectly understandable if we consider that, using fumaric acid as raw material, polycondensates with a more homogeneous (less branched) structure are obtained, thus producing resins characterized by a more uniform and reproducible chemical and mechanical properties. Presently, for economical reasons, fumaric acid is used marginally as a MAN substitute in the production of polyester resins. These resins account for a major share (50%) of the overall MAN consumption in the U.S. and in Western Europe.

  3. Genius Man Announcement | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unveils High-Tech Superhero, GENIUS MAN Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to...

  4. MAN Ferrostaal AG | Open Energy Information

    Open Energy Info (EERE)

    AG Jump to: navigation, search Name: MAN Ferrostaal AG Place: Essen, Germany Zip: 45128 Sector: Solar Product: Germany-based firm that focuses on the development and realisation of...

  5. Jefferson Lab finds its man Mont (Inside Business) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesjefferson-lab-finds-its-man-mont-inside-business Jefferson Lab finds its man Mont Hugh Montgomery Hugh Montgomery, a British nuclear physicist...

  6. Bac-Man Laguna Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Bac-Man Laguna Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bac-Man Laguna Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  7. EERE Success Story-One Man's Trash, Another Man's Fuel: BMW Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Converts Landfill Gas to Hydrogen Fuel | Department of Energy One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel EERE Success Story-One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August 25, 2015 - 3:08pm Addthis A worker drives a material handling train powered by hydrogen fuel cells at the BMW plant in Greer, South Carolina. The plant is home to the world's largest fleet of fuel cell forklifts. | Photo courtesy of BMW

  8. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  9. Axial gap rotating electrical machine

    DOE Patents [OSTI]

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  10. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  11. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  12. FAQS Gap Analysis Qualification Card - Occupational Safety |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Safety FAQS Gap Analysis Qualification Card - Occupational Safety Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  13. FAQS Gap Analysis Qualification Card - Chemical Processing |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Processing FAQS Gap Analysis Qualification Card - Chemical Processing Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  14. Pneumatic gap sensor and method

    DOE Patents [OSTI]

    Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  15. Pneumatic gap sensor and method

    DOE Patents [OSTI]

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  16. Eight electrode optical readout gap

    DOE Patents [OSTI]

    Boettcher, Gordon E.; Crain, Robert W.

    1985-01-01

    A protective device for a plurality of electrical circuits includes a pluity of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  17. Eight electrode optical readout gap

    DOE Patents [OSTI]

    Boettcher, G.E.; Crain, R.W.

    1984-01-01

    A protective device for a plurality of electrical circuits includes a plurality of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  18. Pneumatic gap sensor and method

    SciTech Connect (OSTI)

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    This patent describes in a casting system which including an apparatus for monitoring the gap between a casting nozzle and a casting surface of a substrate during casting of molten material, wherein the molten material is provided through a channel of the casting nozzle for casting onto the casting surface of the substrate for solidification. It comprises: a pneumatic gap mounted at least partially within a cavity in the casting nozzle adjacent the channel and having a sensor face located within the gap between the nozzle and the casting surface of the substrate, means for supply gas under predetermined pressure to the inlet orifice; and means for measuring the pressure of the gas within the sensor chamber during casting procedures, whereby relative changes in the gap can be determined by corresponding changes in the measured pressure. This patent also describes a method for monitoring the gap between a casting nozzle and a casting surface of a substrate for continuous casting of molten material. It comprises: providing a casting nozzle with a channel for directing the flow of molten material, locating the nozzle and the casting surface is proximity with one another and having a predetermined gap there-between, and dressing the sensor face to correspond in conformation to the casting surface and to adjust the predetermined distance as desired; providing a molten material to the nozzle for casting onto and casting surface; supplying gas at a predetermined pressure to the inlet orifice of the sensor during casting procedures.

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another...

    Broader source: Energy.gov (indexed) [DOE]

    One Man's Yardwaste is Another Man's Energy (BioHydrogen) This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department ...

  20. Hydrothermal Exploration Data Gap Analysis Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Exploration Data Gap Analysis Update GTP Peer Review Lunch Presentation Westminster, CO Kate Young Dan Getman Ariel Esposito May 10, 2012 2 Data Gap Analysis PROJECT ...

  1. ABORT GAP CLEANING IN RHIC.

    SciTech Connect (OSTI)

    DREES,A.; AHRENS,L.; III FLILLER,R.; GASSNER,D.; MCINTYRE,G.T.; MICHNOFF,R.; TRBOJEVIC,D.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance.

  2. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  3. Pantex Falling Man - Independent Review Panel Report.

    SciTech Connect (OSTI)

    Bertolini, Louis; Brannon, Nathan; Olson, Jared; Price, Bernard; Wardle, Robert; Steinzig, Mike; Winfield, Michael

    2014-11-01

    Consolidated Nuclear Security (CNS) Pantex took the initiative to organize a Review Panel of subject matter experts to independently assess the adequacy of the Pantex Tripping Man Analysis methodology. The purpose of this report is to capture the details of the assessment including the scope, approach, results, and detailed Appendices. Along with the assessment of the analysis methodology, the panel evaluated the adequacy with which the methodology was applied as well as congruence with Department of Energy (DOE) standards 3009 and 3016. The approach included the review of relevant documentation, interactive discussion with Pantex staff, and the iterative process of evaluating critical lines of inquiry.

  4. Geohazards: Natural and man-made

    SciTech Connect (OSTI)

    McCall, G.J.H.; Laming, D.J.C.; Scott, S.C.

    1992-01-01

    This book of conference presentations from a meeting of the Geological Society of London in 1989 includes 20 papers grouped in 5 sections. Sections include the following: volcanos; earthquakes; landslides; quiet hazards such as sea-level changes and loss of soils or biodiversity; discussion of the question of what can be done to reduce such disasters. Interaction of man's activities to initiate disasters, to increase the scope of disasters and/or to mitigate them is included in a number of papers. In the fourth section a final paper provides a summary of the food-soil, energy-climate, waste-garbage, and water-contamination interactions.

  5. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, Christopher L.; Beaman, Joseph J.; Melgaard, David K.; Williamson, Rodney L.

    1999-01-01

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  6. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  7. Emplacement Gantry Gap Analysis Study

    SciTech Connect (OSTI)

    R. Thornley

    2005-05-27

    To date, the project has established important to safety (ITS) performance requirements for structures, systems, and components (SSCs) based on the identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Bases for License Application'' (NSDB) (BSC 2005 [DIRS 171512], Table A-11). Further, SSCs credited with performing safety functions are classified as ITS. In turn, assurance that these SSCs will perform as required is sought through the use of consensus codes and standards. This gap analysis is based on the design completed for license application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and final selection will not be determined until further design development has occurred. Therefore, for completeness, alternative designs currently under consideration will be discussed throughout this study. This gap analysis will evaluate each code and standard identified within the ''Emplacement Gantry ITS Standards Identification Study'' (BSC 2005 [DIRS 173586]) to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied, a gap is highlighted. This study will identify requirements to supplement or augment the code or standard to meet performance requirements. Further, this gap analysis will identify nonstandard areas of the design that will be subject to a design development plan. Nonstandard components and nonstandard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, assurance that an SSC will perform as required may not be readily sought though the use of consensus standards. This

  8. Air Gap Effects in LX-17

    SciTech Connect (OSTI)

    Souers, P C; Ault, S; Avara, R; Bahl, K L; Boat, R; Cunningham, B; Gidding, D; Janzen, J; Kuklo, D; Lee, R; Lauderbach, L; Weingart, W C; Wu, B; Winer, K

    2005-09-26

    Three experiments done over twenty years on gaps in LX-17 are reported. For the detonation front moving parallel to the gaps, jets of gas products were seen coming from the gaps at velocities greater than the detonation velocity. A case can be made that the jet velocity increased with gap thickness but the data is scattered. For the detonation front moving transverse to the gap, time delays were seen. The delays roughly increase with gap width, going from 0-70 ns at 'zero gap' to around 300 ns at 0.5-1 mm gap. Larger gaps of up to 6 mm width almost certainly stopped the detonation, but this was not proved. Real-time resolution of the parallel jets and determination of the actual re-detonation or failure in the transverse case needs to be done in future experiments.

  9. Electronic gap sensor and method

    DOE Patents [OSTI]

    Williams, Robert S.; King, Edward L.; Campbell, Steven L.

    1991-01-01

    An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.

  10. Electronic gap sensor and method

    DOE Patents [OSTI]

    Williams, R.S.; King, E.L.; Campbell, S.L.

    1991-08-06

    Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.

  11. Values and the quantum conception of man

    SciTech Connect (OSTI)

    Stapp, H.P.

    1995-06-01

    Classical mechanics is based upon a mechanical picture of nature that is fundamentally incorrect. It has been replaced at the basic level by a radically different theory: quantum mechanics. This change entails an enormous shift in one`s basic conception of nature, one that can profoundly alter the scientific image of man himself. Self-image is the foundation of values, and the replacement of the mechanistic self-image derived from classical mechanics by one concordant with quantum mechanics may provide the foundation of a moral order better suited to today`s times, a self-image that endows human life with meaning, responsibility, and a deeper linkage to nature as a whole.

  12. City of Manning, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Place: Iowa Phone Number: 712-655-3214 or (712) 655-2176 Website: www.manningia.commaintenance- Facebook: https:www.facebook.compagesManning-Chamber-of-Commerce...

  13. Closed Gap Enzen | Open Energy Information

    Open Energy Info (EERE)

    search Name: Closed Gap-Enzen Place: Bangalore, India Zip: 560 052 Product: Formed as a joint venture, Closed Gap-Enzen provides a new integrated meter enabling seamless customer...

  14. Spark gap with low breakdown voltage jitter

    DOE Patents [OSTI]

    Rohwein, Gerald J.; Roose, Lars D.

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  15. Spark gap with low breakdown voltage jitter

    DOE Patents [OSTI]

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  16. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  17. Photonic band gap structure simulator

    DOE Patents [OSTI]

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  18. Gap Assessment (FY 13 Update)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Getman, Dan

    2013-09-30

    To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. The original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for

  19. Gap between active and passive solar heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  20. Hydrothermal Exploration Data Gap Analysis Update

    Broader source: Energy.gov [DOE]

    Hydrothermal Exploration Data Gap Analysis presentation by Kate Young, Dan Getman, and Ariel Esposito at the 2012 Peer Review Meeting on May 10, 2012

  1. FAQS Gap Analysis Qualification Card Emergency Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  2. Drop short control of electrode gap

    DOE Patents [OSTI]

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  3. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, Loucas G.; McCorkle, Dennis L.; Hunter, Scott R.

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  4. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  5. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  6. Engine piston having an insulating air gap

    DOE Patents [OSTI]

    Jarrett, Mark Wayne; Hunold,Brent Michael

    2010-02-02

    A piston for an internal combustion engine has an upper crown with a top and a bottom surface, and a lower crown with a top and a bottom surface. The upper crown and the lower crown are fixedly attached to each other using welds, with the bottom surface of the upper crown and the top surface of the lower crown forming a mating surface. The piston also has at least one centrally located air gap formed on the mating surface. The air gap is sealed to prevent substantial airflow into or out of the air gap.

  7. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  8. Gap between jets at the LHC

    SciTech Connect (OSTI)

    Royon, Christophe

    2013-04-15

    We describe a NLL BFKL calculation implemented in the HERWIG MC of the gap between jets cross section, that represent a test of BFKL dynamics. We compare the predictions with recent measurements at the Tevatron and present predictions for the LHC. We also discuss the interesting process of looking for gap between jets in diffractive events when protons are detected in the ATLAS Forward Physics (AFP) detectors.

  9. Gas mixtures for spark gap closing switches (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Gas mixtures for spark gap closing switches Title: Gas mixtures for spark gap closing switches Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low ...

  10. Not normally manned compression platforms for the North Sea

    SciTech Connect (OSTI)

    Kumaran, K.S.

    1994-12-31

    Gas turbine driven gas compressors have been widely used on manned offshore facilities. Similarly unmanned gas turbine driven compressor stations have been in operation onshore with major gas transmission companies in Europe, North America and elsewhere. This paper summarizes a recent joint industry study to investigate the technical and economic feasibility of Not Normally Manned (NNM) Offshore Compression Facilities in terms of reliability, availability and maintainability. Classification of not normally manned (or unmanned) offshore facilities in the UK North Sea is in accordance with HSE Operations Notice 8. ON8 specifies criteria for offshore visits, visit hours and number of personnel on board for the operation of NNM platforms. This paper describes a typical Southern North Sea gas platform being considered for NNM compressor application. The conclusions from the study was that NNM compression is technically feasible with the facilities being able to provide an availability in excess of 98%. Life cycle costs were of the order of 70% of manned facilities thus significantly improving field development economics.

  11. Space nuclear reactor shields for manned and unmanned applications

    SciTech Connect (OSTI)

    McKissock, B.I.; Bloomfield, H.S.

    1994-09-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: Higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base.

  12. Code Gaps and Future Research Needs of Combustion Safety: Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code Gaps and Future Research Needs of Combustion Safety: Building America Expert Meeting Update Code Gaps and Future Research Needs of Combustion Safety: Building America Expert ...

  13. Development of Low Energy Gap and Fully Regioregular Polythienylenevin...

    Office of Scientific and Technical Information (OSTI)

    Gap and Fully Regioregular Polythienylenevinylene Derivative Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. ...

  14. Tuning the energy gap of conjugated polymer zwitterions for efficient...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells Citation Details In-Document Search Title: Tuning the energy gap...

  15. Olene Gap Space Heating Low Temperature Geothermal Facility ...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal...

  16. FAQS Gap Analysis Qualification Card - Technical Training | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Training FAQS Gap Analysis Qualification Card - Technical Training Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between ...

  17. FAQS Gap Analysis Qualification Card - Industrial Hygiene | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Hygiene FAQS Gap Analysis Qualification Card - Industrial Hygiene Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between ...

  18. FAQS Gap Analysis Qualification Card - Nuclear Safety Specialist...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Specialist FAQS Gap Analysis Qualification Card - Nuclear Safety Specialist Functional Area Qualification Standard Gap Analysis Qualification Cards outline the ...

  19. FAQS Gap Analysis Qualification Card - Quality Assurance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance FAQS Gap Analysis Qualification Card - Quality Assurance Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between ...

  20. Summary of Gaps and Barriers for Implementing Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies ...

  1. FAQS Gap Analysis Qualification Card - Senior Technical Safety...

    Office of Environmental Management (EM)

    Senior Technical Safety Manager FAQS Gap Analysis Qualification Card - Senior Technical Safety Manager Functional Area Qualification Standard Gap Analysis Qualification Cards ...

  2. Rapidity gap survival in central exclusive diffraction: Dynamical...

    Office of Scientific and Technical Information (OSTI)

    Rapidity gap survival in central exclusive diffraction: Dynamical mechanisms and uncertainties Citation Details In-Document Search Title: Rapidity gap survival in central exclusive ...

  3. CHP: Connecting the Gap between Markets and Utility Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, ...

  4. Homolumo gap from dynamical energy levels

    SciTech Connect (OSTI)

    Andric, I.; Jonke, L.; Jurman, D.; Nielsen, H. B.

    2009-11-15

    We introduce a dynamical matrix model where the matrix is interpreted as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show how a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest eigenvalue of the occupied single-fermion states and the lowest eigenvalue of the unoccupied single-fermion states. We describe the development of the gap in both the strong and weak coupling regimes, while for the intermediate coupling strength we expect formation of homolumo kinks.

  5. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.T.

    2014-03-01

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  6. Five Facts About the Gender Pay Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Over the past century, American women have made tremendous strides in increasing their labor market experience and their skills. On Equal Pay Day, however, we focus on a stubborn and troubling fact: Despite women’s gains, a large gender pay gap still exists.

  7. Spark gap device for precise switching

    DOE Patents [OSTI]

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  8. Spark gap device for precise switching

    DOE Patents [OSTI]

    Boettcher, Gordon E.

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  9. FINAL REPORT ON GDE GAP CELL

    SciTech Connect (OSTI)

    Herman, D.; Summers, W.; Danko, E.

    2009-09-28

    A project has been undertaken to develop an electrochemical cell and support equipment for evaluation of a gas diffusion electrode-based, narrow-electrolyte-gap anode for SO{sub 2} oxidation in the hydrogen production cycle of the hybrid sulfur (HyS) process. The project supported the HyS development program at the Savannah River National Lab (SRNL). The benefits of using a gas diffusion electrode in conjunction with the narrow anolyte gap are being determined through electrochemical polarization testing under a variety conditions, and by comparison to results produced by SRNL and others using anode technologies that have no anolyte gap. These test results indicate that the NGA cell has low resistance suitable for use in the HyS electrolyzer, exhibits good efficiency at high current densities compared to the direct feed HyS electrolyzer, and indicates robust performance in extended testing over 65 hours. Seepage episodes were mostly caused by port clogging, which can be mitigated in future designs through minor modifications to the hardware. Significant reductions in sulfur crossover have not yet been demonstrated in the NGA configuration compared to in-house direct feed testing, but corroborative sulfur layer analysis is as yet incomplete. Further testing in a single-pass anolyte configuration is recommended for complete evaluation of steady-state electrochemical efficiency and SO{sub 2} crossover in the narrow gap configuration.

  10. WIPP Workers Reach Two Million Man-Hours Without a Lost-Time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workers Reach Two Million Man-Hours Without a Lost-Time Accident CARLSBAD, N.M., February ... a safety milestone Feb. 19 by working two million man-hours without a lost-time accident. ...

  11. Dynamically Generated Mott Gap from Holography

    SciTech Connect (OSTI)

    Edalati, Mohammad; Leigh, Robert G.; Phillips, Philip W.

    2011-03-04

    In the fermionic sector of top-down approaches to holographic systems, one generically finds that the fermions are coupled to gravity and gauge fields in a variety of ways, beyond minimal coupling. In this Letter, we take one such interaction--a Pauli, or dipole, interaction--and study its effects on fermion correlators. We find that this interaction modifies the fermion spectral density in a remarkable way. As we change the strength of the interaction, we find that spectral weight is transferred between bands, and beyond a critical value, a gap emerges in the fermion density of states. A possible interpretation of this bulk interaction then is that it drives the dynamical formation of a (Mott) gap, in the absence of continuous symmetry breaking.

  12. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  13. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen Edward; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  14. Gap Assessment in the Emergency Response Community

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Burtner, Edwin R.; Pike, William A.; Peddicord, Annie M Boe; Minsk, Brian S.

    2010-09-27

    This report describes a gap analysis of the emergency response and management (EM) community, performed during the fall of 2009. Pacific Northwest National Laboratory (PNNL) undertook this effort to identify potential improvements to the functional domains in EM that could be provided by the application of current or future technology. To perform this domain-based gap analysis, PNNL personnel interviewed subject matter experts (SMEs) across the EM domain; to make certain that the analyses reflected a representative view of the community, the SMEs were from a variety of geographic areas and from various sized communities (urban, suburban, and rural). PNNL personnel also examined recent and relevant after-action reports and U.S. Government Accountability Office reports.

  15. Spark gap switch with spiral gas flow

    DOE Patents [OSTI]

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  16. Fabrication of photonic band gap materials

    DOE Patents [OSTI]

    Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming

    2002-01-15

    A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

  17. Bridging the Gaps on Prepaid Utility Service

    Broader source: Energy.gov [DOE]

    Prepaid utility service — which is an alternative payment option in which consumers buy a dollar amount of electricity, and utilities deduct energy usage from that balance as it is used — is one area where these changes converge. The Office of Electricity Delivery and Energy Reliability’s report entitled “Bridging the Gaps on Prepaid Utility Service” examines utilities’ and consumers’ experiences with prepay.

  18. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOE Patents [OSTI]

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  19. ROSS Skills, Knowledge, and Abilities Training Evaluation. Gaps and Recommendations

    SciTech Connect (OSTI)

    Ala, Maureen; Gruidl, Jeremiah; Buddemeier, Brooke

    2015-09-30

    This document describes the development of the ROSS SKAs, the cross-mapping of the SKAs to the available training, identifies gaps in the SKA and training, and provides recommendations to address those gaps.

  20. Interface Ferroelectric Transition near the Gap-Opening Temperature...

    Office of Scientific and Technical Information (OSTI)

    Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell ... Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-Doped SrTiO 3 ...

  1. Vehicle Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C.; Buttner, W.; Rivkin, C.

    2010-02-01

    This report identifies gaps in vehicle codes and standards and recommends ways to fill the gaps, focusing on six alternative fuels: biodiesel, natural gas, electricity, ethanol, hydrogen, and propane.

  2. Buffalo Gap 3 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    3 Wind Farm Jump to: navigation, search Name Buffalo Gap 3 Wind Farm Facility Buffalo Gap 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Coexistence of a pseudogap and a superconducting gap for the...

    Office of Scientific and Technical Information (OSTI)

    Coexistence of a pseudogap and a superconducting gap for the high - T c superconductor La ... Title: Coexistence of a pseudogap and a superconducting gap for the high - T c ...

  4. Optimization of perigee burns for manned interplanetary missions

    SciTech Connect (OSTI)

    Madsen, W.W.; Olson, T.S.; Siahpush, A.S.

    1991-01-01

    In choosing an engine concept for the rocket vehicle to be used for the initial manned exploration of Mars, the two main factors in the decision should be what can be feasibly built and flight qualified within approximately the next 20 years, and what level of engine performance is required to safely perform these missions. In order to reduce the overall cost in developing this next generation space transportation system, it would be desirable to have a single engine design that could be used for a broad class of missions (for example, cargo and piloted lunar and Mars missions, orbit transfers around the Earth, and robotic missions to the planets). The engine thrust that is needed for manned Mars missions is addressed in this paper. We find that these missions are best served by a thrust level around 75,000 lbf to 100,000 lbf, and a thrust-to-engine weight ratio of about three. This thrust level might best be obtained by clustering five 15,000 lbf or 20,000 lbf engines. It may be better to throttle the engines back from full power between perigee burns, rather than shutting down. 5 refs., 4 figs.

  5. Man-made objects cuing in satellite imagery

    SciTech Connect (OSTI)

    Skurikhin, Alexei N

    2009-01-01

    We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka's Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.

  6. Fact #609: February 8, 2010 The Transportation Petroleum Gap | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 09: February 8, 2010 The Transportation Petroleum Gap Fact #609: February 8, 2010 The Transportation Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2035, transportation petroleum consumption is expected to grow to more than 17 million barrels per day; at that time, the gap between U.S. production and transportation consumption will be

  7. FAQS Gap Analysis Qualification Card - Waste Management | Department of

    Office of Environmental Management (EM)

    Energy Technical Training FAQS Gap Analysis Qualification Card - Technical Training Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard. Technical Training Gap Analysis Qualification Card (83.77 KB) More Documents & Publications DOE-STD-1179-2004 DOE-HDBK-1078-94 FAQS Reference Guide - Technical Training Energy

    Waste Management FAQS Gap Analysis Qualification Card - Waste Management

  8. Functional Area Qualification Standard Gap Analysis Qualification Cards

    Broader source: Energy.gov [DOE]

    FAQS Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  9. Technical Standards, MELCOR - Gap Analysis - May 3, 2004 | Department of

    Office of Environmental Management (EM)

    Energy MELCOR - Gap Analysis - May 3, 2004 Technical Standards, MELCOR - Gap Analysis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: MELCOR Gap Analysis This report documents the outcome of an evaluation of the Software Quality Assurance (SQA) attributes of the MELCOR computer code for leak path factor applications, relative to established software requirements. This evaluation, a "gap analysis," is performed to meet Commitment 4.2.1.3 of the Department of

  10. Minority Serving Institutions (MSIs): Bridging the Gap between Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agencies and MSIs | Department of Energy Minority Serving Institutions (MSIs): Bridging the Gap between Federal Agencies and MSIs Minority Serving Institutions (MSIs): Bridging the Gap between Federal Agencies and MSIs Different Minority Serving institutions Minority Serving Institutions (MSIs): Bridging the Gap between Federal Agencies and MSIs (1.04 MB) More Documents & Publications Bridging the Gap Between Federal Agencies and MSIs Research and Services at the Alabama A&M

  11. Turbine blade tip gap reduction system

    SciTech Connect (OSTI)

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  12. Quantum chaos and thermalization in gapped systems

    SciTech Connect (OSTI)

    Rigol, Marcos [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Santos, Lea F. [Department of Physics, Yeshiva University, New York, New York 10016 (United States)

    2010-07-15

    We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.

  13. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  14. The Engineering Design of Man-Machine Interface for RTS

    SciTech Connect (OSTI)

    Yenn, T.-C.

    2002-02-26

    The purpose of this paper is to present the engineering design of the advanced Man-Machine Interface (MMI) of the Integrated system for Radwaste Treatment and Storage (RTS) facility in Institute of Nuclear Energy Research (INER) Taiwan, ROC. To build the RTS, a multi-function radwaste facility with a total storage of about 10,000 drums, is a five-year project starting in 2000 including intermediate activity waste treatment and combustible waste storage. The completed engineering design of the MMI is based on proven technologies and digital control systems, enhancing the radwaste management efficiency and reliability of operator's performance as well as assuring the dose exposure of personnel meeting the regulation standard. Over past few years, INER has accumulated extensive experience in the area of radwaste treatment and storage. Therefore, we are confident that we will complete this project with fulfillment of the requirements of RTS.

  15. Historical developments and perspectives in inorganic fiber toxicity in man

    SciTech Connect (OSTI)

    Selikoff, I.J. )

    1990-08-01

    The first patient known to have died from asbestosis (1900) began work in 1885, approximately 5 years after the industrial use of asbestos began in Britain. Mineral particles were found in his lungs. No special comment was made of their fibrous nature then nor when the first case was reported in 1924. The various neoplasms attributed to asbestos in the next decades posed an additional question: what influence did the fibrous shape of the particles have on carcinogenic potential The cogency of the problem was amplified by the identification in humans of asbestoslike neoplasms with a fiber other than asbestos (erionite) and by the production of such neoplasms in experimental animals with a variety of man-made inorganic fibers, often used as substitutes for asbestos. The lessons learned about asbestos may help guide us in evaluating current fiber problems.

  16. U.S. SOCOM Grand Challenge #3: NREL Technical Roadmap for a Man...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... other man-portable power systems, vehicles, and mobile ... Technical Approach B: H2 Fuel Cell + Peaking Battery ... are introduced to the (PEM) fuel cell poison the ...

  17. Engineering the Assembly of Heme Cofactors in Man-Made Proteins...

    Office of Scientific and Technical Information (OSTI)

    Title: Engineering the Assembly of Heme Cofactors in Man-Made Proteins Authors: Solomon, Lee A. ; Kodali, Goutham ; Moser, Christopher C. ; Dutton, P. Leslie Publication Date:...

  18. Elemental concentrations in bones from an ancient Egyptian mummy and from a recent man

    SciTech Connect (OSTI)

    Cholewa, M.; Kwiatek, W.M.; Jones, K.W.; Schidlovsky, G.; Paschoa, A.S.; Miller, S.C.; Pecotte, J.

    1986-06-01

    Differences in elemental concentrations in bones taken from an ancient Egyptian mummy and a contemporary man were investigated by using proton induced x-ray emission (PIXE) in combination with Rutherford backscattering (RBS). Remarkable differences were noticed in the Fe/Ca and Pb/Ca relative concentrations, which were consistently higher in the contemporary man. 5 refs., 2 figs., 2 tabs.

  19. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOE Patents [OSTI]

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1998-01-01

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap.

  20. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOE Patents [OSTI]

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1998-01-13

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap. 4 figs.

  1. Closing Gaps in Modeling Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closing Gaps in Modeling Multifamily Retrofits Closing Gaps in Modeling Multifamily Retrofits This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. cq6_closing_gaps_multifamily_dentz.pdf (1.61 MB) More Documents & Publications Critical Question #6: What are the Challenges and Solutions for Modeling Multifamily Buildings? Building America Webinar: Central Multifamily Water Heating Systems -

  2. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  3. Summary of Gaps and Barriers for Implementing Residential Building Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Strategies | Department of Energy Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado,

  4. Pseudogap and Superconducting Gap in High-Temperature Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pseudogap and Superconducting Gap in High-Temperature Superconductors Two decades after the discovery of first high temperature superconductors, the microscopic mechanism of high-Tc superconductivity remains elusive. In conventional superconductors, it has been well established that electrons form so-called "Cooper pairs" to give rise to superconductivity. The pair binding manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting

  5. FAQS Gap Analysis Qualification Card – Radiation Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  6. FAQS Gap Analysis Qualification Card – Civil Structural Engineering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  7. FAQS Gap Analysis Qualification Card – Construction Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  8. Info-Gap Analysis of Truncation Errors in Numerical Simulations...

    Office of Scientific and Technical Information (OSTI)

    Title: Info-Gap Analysis of Truncation Errors in Numerical Simulations. Authors: Kamm, James R. ; Witkowski, Walter R. ; Rider, William J. ; Trucano, Timothy Guy ; Ben-Haim, Yakov. ...

  9. Info-Gap Analysis of Numerical Truncation Errors. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Info-Gap Analysis of Numerical Truncation Errors. Authors: Kamm, James R. ; Witkowski, Walter R. ; Rider, William J. ; Trucano, Timothy Guy ; Ben-Haim, Yakov. Publication ...

  10. Catalysis by Design: Bridging the Gap between Theory and Experiments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between Theory and Experiments Catalysis by Design: Bridging the Gap between Theory and Experiments Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  11. GAPS Power Infrastructure Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pvt Ltd Jump to: navigation, search Name: GAPS Power & Infrastructure Pvt Ltd. Place: Mumbai, Maharashtra, India Zip: 400098 Sector: Biomass Product: Mumbai-based biomass project...

  12. FAQS Gap Analysis Qualification Card – Environmental Restoration

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  13. FAQS Gap Analysis Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  14. FAQS Gap Analysis Qualification Card – Facility Representative

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  15. FAQS Gap Analysis Qualification Card – Senior Technical Safety Manager

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  16. FAQS Gap Analysis Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  17. Catalysis by Design: Bridging the Gap Between Theory and Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Catalysis by Design: Bridging the Gap between Theory and Experiments Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel ...

  18. FAQS Gap Analysis Qualification Card – General Technical Base

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  19. Minority Serving Institutions (MSIs): Bridging the Gap between...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Bridging the Gap Between Federal Agencies and MSIs Research and Services at the Alabama A&M University Research Institute Office of Energy Efficiency ...

  20. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic...

  1. FAQS Gap Analysis Qualification Card – Mechanical Systems

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  2. FAQS Gap Analysis Qualification Card – Fire Protection Engineering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  3. Metallic photonic band-gap materials

    SciTech Connect (OSTI)

    Sigalas, M.M.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M.

    1995-10-15

    We calculate the transmission and absorption of electromagnetic waves propagating in two-dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there is substantial difference between the {ital s}- and {ital p}-polarized waves. The {ital p}-polarized waves exhibit behavior similar to the dielectric PBG`s. But, the {ital s}-polarized waves have a cutoff frequency below which there are no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but there are important differences related to the topology of the structure. For 3D structures with isolated metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG`s, while for 3D structures with the metal forming a continuous network (network topology), there is a cutoff frequency below which there are no propagating modes. The systems with the network topology may have some interesting applications for frequencies less than about 1 THz where the absorption can be neglected. We also study the role of the defects in the metallic structures.

  4. CaveMan Enterprise version 1.0 Software Validation and Verification.

    SciTech Connect (OSTI)

    Hart, David

    2014-10-01

    The U.S. Department of Energy Strategic Petroleum Reserve stores crude oil in caverns solution-mined in salt domes along the Gulf Coast of Louisiana and Texas. The CaveMan software program has been used since the late 1990s as one tool to analyze pressure mea- surements monitored at each cavern. The purpose of this monitoring is to catch potential cavern integrity issues as soon as possible. The CaveMan software was written in Microsoft Visual Basic, and embedded in a Microsoft Excel workbook; this method of running the CaveMan software is no longer sustainable. As such, a new version called CaveMan Enter- prise has been developed. CaveMan Enterprise version 1.0 does not have any changes to the CaveMan numerical models. CaveMan Enterprise represents, instead, a change from desktop-managed work- books to an enterprise framework, moving data management into coordinated databases and porting the numerical modeling codes into the Python programming language. This document provides a report of the code validation and verification testing.

  5. A man-made enhanced geothermal system (EGS) can extract the abundant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    man-made enhanced geothermal system (EGS) can extract the abundant heat resource tens of thousands of feet below the surface and put it to good use. This would require: With an ...

  6. DEPARTlIiIENT OF ENERGY EERE PROJECT MAN AG EMENT CENTER NEPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lAUIl) u.s. DEPARTlIiIENT OF ENERGY EERE PROJECT MAN AG EMENT CENTER NEPA DETERMINATION RECIPIENT:Ocean Engineering and Energy Systems Intemational, Inc. (OCEES) Page lof3 STATE: ...

  7. Jack Case ? the man who helped bring uranium machining to Y...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the man who helped bring uranium machining to Y-12 Most of you realize that Y-12 is basically a huge and very precise machine shop. For years it has been the nation's only uranium...

  8. To Bridge LEDs' Green Gap, Scientists Think Small

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Bridge LEDs' Green Gap, Scientists Think Small To Bridge LEDs' Green Gap, Scientists Think Small Nanostructures Half a DNA Strand-Wide Show Promise for Efficient LEDs April 4, 2014 Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 Nanostructures half the breadth of a DNA strand could improve the efficiency of light emitting diodes (LEDs), especially in the "green gap," a portion of the spectrum where LED efficiency plunges, simulations at the U.S. Department of Energy's

  9. Interface Ferroelectric Transition near the Gap-Opening Temperature...

    Office of Scientific and Technical Information (OSTI)

    Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-DopedSrTiO3Substrate Citation Details In-Document Search This...

  10. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  11. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  12. Enhanced Superconducting Gaps in Trilayer High-Temperature Bi...

    Office of Scientific and Technical Information (OSTI)

    ...-Temperature Bi (2) Sr (2) Ca (2) Cu (3) O (10+delta) Cuprate Superconductor Citation Details In-Document Search Title: Enhanced Superconducting Gaps in Trilayer High-Temperature ...

  13. Proper Sustainability: GAP Grant Proposal Work Plan Strategy Webinar

    Broader source: Energy.gov [DOE]

    In this webinar I will discuss the new GAP grant requirements for tribal environmental programs and strategies for crafting a work plan that focuses on capacity building activities.  My goal is to...

  14. Method for Creating Photonic Band Gap Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Creating Photonic Band Gap Materials Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Innovative microstructures that can direct light in a manner similar to the way semiconductors can influence electrons can be produced by creating what is termed a photonic band gap. These microstructures have the potential to change the way optoelectronic devices, such as photodiodes, LEDs, and integrated optical circuit elements, are designed and used. Ames Laboratory

  15. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V. Bogy, David B.

    2014-02-10

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  16. Bridging the Gap between Fundamental Physics and Chemistry and Applied

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Models for HCCI Engines | Department of Energy Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_assanis.pdf (1.42 MB) More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Modeling of HCCI and PCCI

  17. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest

  18. CHP: Connecting the Gap between Markets and Utility Interconnection and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tariff Practices, 2006 | Department of Energy Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 The adoption of combined heat and power (CHP) systems by American industries has made substantial strides in the last few years. The purpose of this report is threefold: one, to expose still existent barriers to entry for proposed CHP facilities; secondarily, to

  19. Hydrogeologic Model for the Gable Gap Area, Hanford Site

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Thorne, Paul D.; Williams, Bruce A.; Last, George V.; Thomas, Gregory S.; Thompson, Michael D.; Ludwig, Jami L.; Lanigan, David C.

    2010-09-30

    Gable Gap is a structural and topographic depression between Gable Mountain and Gable Butte within the central Hanford Site. It has a long and complex geologic history, which includes tectonic uplift synchronous with erosional downcutting associated with the ancestral Columbia River during both Ringold and Cold Creek periods, and by the later Ice Age (mostly glacial Lake Missoula) floods. The gap was subsequently buried and partially backfilled by mostly coarse-grained, Ice Age flood deposits (Hanford formation). Erosional remnants of both the Ringold Formation and Cold Creek unit locally underlie the high-energy flood deposits. A large window exists in the gap where confined basalt aquifers are in contact with the unconfined suprabasalt aquifer. Several paleochannels, of both Hanford and Ringold Formation age, were eroded into the basalt bedrock across Gable Gap. Groundwater from the Central Plateau presently moves through Gable Gap via one or more of these shallow paleochannels. As groundwater levels continue to decline in the region, groundwater flow may eventually be cut off through Gable Gap.

  20. Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to kF of the σ band that occur at some locations of the sample surface. As a result, the energy of thismore » excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  1. Amorphous copper tungsten oxide with tunable band gaps

    SciTech Connect (OSTI)

    Chen Le; Shet, Sudhakar; Tang Houwen; Wang Heli; Yan Yanfa; Turner, John; Al-Jassim, Mowafak; Ahn, Kwang-soon

    2010-08-15

    We report on the synthesis of amorphous copper tungsten oxide thin films with tunable band gaps. The thin films are synthesized by the magnetron cosputtering method. We find that due to the amorphous nature, the Cu-to-W ratio in the films can be varied without the limit of the solubility (or phase separation) under appropriate conditions. As a result, the band gap and conductivity type of the films can be tuned by controlling the film composition. Unfortunately, the amorphous copper tungsten oxides are not stable in aqueous solution and are not suitable for the application of photoelectrochemical splitting of water. Nonetheless, it provides an alternative approach to search for transition metal oxides with tunable band gaps.

  2. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect (OSTI)

    Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.

    2014-04-14

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  3. NGNP Project Regulatory Gap Analysis for Modular HTGRs

    SciTech Connect (OSTI)

    Wayne Moe

    2011-09-01

    The Next Generation Nuclear Plant (NGNP) Project Regulatory Gap Analysis (RGA) for High Temperature Gas-Cooled Reactors (HTGR) was conducted to evaluate existing regulatory requirements and guidance against the design characteristics specific to a generic modular HTGR. This final report presents results and identifies regulatory gaps concerning current Nuclear Regulatory Commission (NRC) licensing requirements that apply to the modular HTGR design concept. This report contains appendices that highlight important HTGR licensing issues that were found during the RGA study. The information contained in this report will be used to further efforts in reconciling HTGR-related gaps in the NRC licensing structure, which has to date largely focused on light water reactor technology.

  4. A Fixed Gap APPLE II Undulator for SLS

    SciTech Connect (OSTI)

    Schmidt, T.; Imhof, A.; Ingold, G.; Jakob, B.; Vollenweider, C.

    2007-01-19

    To vary the polarization vector of an APPLE II undulator continuously from 0 - 180 deg., all four magnet arrays need to be movable. Following the adjustable-phase undulator approach by R. Carr, a 3.4 m long fixed gap undulator for SLS with a gap of 11.6 mm has been constructed. It will be installed in fall 2006. The gap drive is replaced by a pair-wise shift of the magnet arrays to change the energy, while the polarization is changed by shifts of diagonal arrays. The high injection efficiency and standard operation top-up mode at the SLS allows this simplified undulator design. The design as well as the operational aspects will be discussed.

  5. Code System for Calculating Radiation Exposure to Man from Routine Release of Nuclear Reactor Liquid Effluents.

    Energy Science and Technology Software Center (OSTI)

    1980-02-29

    Version 00 LADTAP II calculates the radiation exposure to man from potable water, aquatic foods, shoreline deposits, swimming, boating, and irrigated foods, and also the dose to biota. Doses are calculated for both the maximum individual and for the population and are summarized for each pathway by age group and organ. It also calculates the doses to certain representative biota other than man in the aquatic environment such as fish, invertebrates, algae, muskrats, raccoons, herons,more » and ducks using models presented in WASH-1258.« less

  6. Can an Iron Man Suit Be Made?: Science Behind Superheroes | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Can an Iron Man Suit Be Made?: Science Behind Superheroes Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Can an Iron Man Suit Be Made?: Science Behind Superheroes Rick Arthur 2013.06.17 On Friday, I hosted a live Reddit Q&A on the Science Behind Superheroes along with several other GE researchers,

  7. Jefferson Lab Man Donates Bone Marrow to Save 12-Year-Old Boy | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Man Donates Bone Marrow to Save 12-Year-Old Boy Jefferson Lab Man Donates Bone Marrow to Save 12-Year-Old Boy April 22, 2002 Leon Reynolds: son, husband, father, former Marine and teacher, accelerator operator and most recently, bone marrow donor. Last month, Reynolds became Jefferson Lab's first person in corporate memory to become a marrow donor. He entered the National Marrow Donor Program (NMDP) registry on Oct. 11, 2000, when the Lab sponsored a bone marrow registry drive in

  8. Closing the Gender Gap in Energy Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closing the Gender Gap in Energy Policy Closing the Gender Gap in Energy Policy April 7, 2011 - 3:07pm Addthis Melanie A. Kenderdine Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis What are the key facts? There's not just a shortage of women in technical energy-related fields, there's also a shortage of women in energy policy. Women hold only 27 percent of the science and engineering jobs in the United States. Editor's Note: Join the conversation surrounding

  9. Special purpose modes in photonic band gap fibers

    DOE Patents [OSTI]

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  10. Multi-gap high impedance plasma opening switch

    DOE Patents [OSTI]

    Mason, R.J.

    1996-10-22

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

  11. Multi-gap high impedance plasma opening switch

    DOE Patents [OSTI]

    Mason, Rodney J.

    1996-01-01

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

  12. GAP Flow Measurements During the Mesoscale Alpine Programme

    SciTech Connect (OSTI)

    Mayr, G.; Armi, L.; Arnold, S.; Banta, Robert M.; Darby, Lisa S.; Durran, D. D.; Flamant, C.; Gabersek, S.; Gohm, A.; Mayr, R.; Mobbs, S.; Nance, L. B.; Vergeiner, I.; Vergeiner, J.; Whiteman, Charles D.

    2004-04-30

    This article provides an overview of the Gap Flow sub-program of the Mesoscale Alpine Programme, a major international meteorological field experiment conducted in the European Alps. The article describes the initial results of an investigation of the wind flow through the Brenner Pass gap in the east-west oriented central section of the European Alps under conditions of south foehn. The overview describes the objectives of the experiments, the instrumentation used for the field investigation, and the mesoscale model simulations. Initial findings of the scientific program are provided.

  13. 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Gaps in your Safety Program?

    Broader source: Energy.gov [DOE]

    2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Gaps in your Safety Program?

  14. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  15. Gaps and pseudogaps in perovskite rare earth nickelates

    SciTech Connect (OSTI)

    Allen, S. James; Ouellette, Daniel G.; Kally, James; Kozhanov, Alex; Hauser, Adam J.; Mikheev, Evgeny; Zhang, Jack Y.; Moreno, Nelson E.; Son, Junwoo; Stemmer, Susanne; Balents, Leon

    2015-06-01

    We report on tunneling measurements that reveal the evolution of the quasiparticle state density in two rare earth perovskite nickelates, NdNiO{sub 3} and LaNiO{sub 3}, that are close to a bandwidth controlled metal to insulator transition. We measure the opening of a sharp gap of ∼30 meV in NdNiO{sub 3} in its insulating ground state. LaNiO{sub 3}, which remains a correlated metal at all practical temperatures, exhibits a pseudogap of the same order. The results point to both types of gaps arising from a common origin, namely, a quantum critical point associated with the T = 0 K metal-insulator transition. The results support theoretical models of the quantum phase transition in terms of spin and charge instabilities of an itinerant Fermi surface.

  16. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion, chargemore » density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  17. Profile of single-pulsed ion beams in acceleration gap

    SciTech Connect (OSTI)

    Xiang, W.; Tang, P.Y.

    2006-03-15

    In an attempt to understand the characteristics of single-pulsed ion beams extracted from a miniature occluded-gas sources with electrodes of metallic hydride, a two-dimensional (2D) projected image of ion beams extracted from the single-pulsed occluded-gas source was captured using a digital charge-coupled device camera on a test bench. Based on image processing and the inverse Abel transform, the 2D integrally projected image with cylindrical symmetry was used to determine the profile of ion beams in the acceleration gap. The result shows that the radial beam profile in acceleration gap has a Gaussian-like shape, and the maximum beam intensity behind the plasma electrode is about 40% higher than that in front of the extraction electrode.

  18. First Operation of the Abort Gap Monitor for LHC

    SciTech Connect (OSTI)

    Lefevre, Thibaut; Bart Pedersen, Stephane; Boccardi, Andrea; Bravin, Enrico; Goldblatt, A.; Jeff, Adam; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-06

    The Large Hadron Collider (LHC) beam-dump system relies on extraction kickers that need 3 microseconds to rise to their nominal field. Since particles transiting the kickers during the rise will not be dumped properly, the proton population in this interval must always remain below quench and damage limits. A specific monitor to measure the particle population of this gap has been designed based on the detection of synchrotron radiation using a gated photomultiplier. Since the quench and damage limits change with the beam energy, the acceptable population in the abort gap and the settings of the monitor must adapt accordingly. This paper presents the design of the monitor, the calibration procedure and the detector performance with beam.

  19. Spark gap switch system with condensable dielectric gas

    DOE Patents [OSTI]

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  20. Gap soliton formation in a nonlinear anti-directional coupler

    SciTech Connect (OSTI)

    Ryzhov, M S; Maimistov, Andrei I

    2012-11-30

    We consider propagation of electromagnetic solitary waves in two tunnel-coupled waveguides. It is assumed that one of the waveguides is made of a positive-index dielectric, having a Kerr nonlinearity. The other waveguide is made of a linear optical metamaterial characterised by the so-called negative refraction. The gap soliton formation in such a system, which, as shown, has a threshold character, is studied numerically. (solitons)

  1. Bridging the Gaps of High-Tc Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bridging the Gaps of High-Tc Superconductor Since the discovery of high-temperature superconductor by Bednorz and Müller in 1986, this field has become one of the most important research topics in solid state physics. In the past 20 years many unconventional properties have been discovered in this new class of materials. These have challenged our conventional wisdom and driven the development of many novel theories. Among these discoveries, the most mysterious is probably the pseudogap

  2. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  3. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  4. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  5. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  6. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  7. Catalysis by Design: Bridging the Gap between Theory and Experiments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy between Theory and Experiments Catalysis by Design: Bridging the Gap between Theory and Experiments Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_narula.pdf (372.33 KB) More Documents & Publications Catalysts via First Principles Catalysts via First

  8. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOE Patents [OSTI]

    Lawson, R.N.; O'Malley, M.W.; Rohwein, G.J.

    A high voltage spark gap switch is disclosed including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  9. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOE Patents [OSTI]

    Lawson, Robert N.; O'Malley, Martin W.; Rohwein, Gerald J.

    1986-01-01

    A high voltage spark gap switch including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  10. Estimated dose to man from uranium milling via the terrestrial food-chain pathway

    SciTech Connect (OSTI)

    Rayno, D.R.

    1982-01-01

    One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources.

  11. The man who trains everyone on the bombs | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) The man who trains everyone on the bombs Monday, October 19, 2015 - 10:50am Mark Meyer, training coordinator and field engineer at Sandia. Mark Meyer, training coordinator and field engineer at Sandia National Laboratories. Over the past five years, Mark Meyer, training coordinator and field engineer at Sandia National Laboratories, has introduced thousands of people across the Department of Energy and Department of Defense nuclear enterprise to the inner workings of

  12. AmeriFlux CA-Man Manitoba - Northern Old Black Spruce (former BOREAS Northern Study Area)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Amiro, Brian [University of Manitoba

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Man Manitoba - Northern Old Black Spruce (former BOREAS Northern Study Area). Site Description - 55.880° N, 98.481° W, elevation of 259 m, Boreal coniferous: Black spruce; occasional larch present in poorly-drained areas. Groundcover is moss (feathermosses and Sphagnum), Labrador Tea, Vaccinium, and willows are a main component of the understory. It was established in 1993 as a BOREAS site.

  13. Preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt

    SciTech Connect (OSTI)

    Taylor, C.L.; O'Rourke, J.E.; Allirot, D.; O'Connor, K.

    1980-09-01

    This report presents results of a study leading to preconceptual designs for plugging boreholes, shafts, and tunnels to a nuclear waste repository in basalt. Beginning design criteria include a list of preferred plug materials and plugging machines that were selected to suit the environmental conditions, and depths, diameters, and orientations of the accesses to a nuclear waste repository in the Columbia River basalts located in eastern Washington State. The environmental conditions are described. The fiscal year 1979-1980 Task II work is presented in two parts: preliminary testing of materials for plugging of man-made accesses to a repository in basalt (described in a separate report); and preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt (described in this report). To fulfill the scope of the Task II work, Woodward-Clyde Consultants (WCC) was requested to: provide preconceptual systems for plugging boreholes, tunnels, and shafts in basalt; describe preconceptual borehole plugging equipment for placing the selected materials in man-made accesses; utilize the quality assurance program, program plan and schedule, and work plans previously developed for Task II; and prepare a preliminary report.

  14. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth...

    Office of Scientific and Technical Information (OSTI)

    Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides Citation Details In-Document Search Title: Pressure Dependence of the Charge-Density-Wave Gap in...

  15. Microsoft Word - EM_CM_3_Risk_Management_Best Practices and Gaps...

    Energy Savers [EERE]

    EMCM3RiskManagementBest Practices and Gaps.doc Microsoft Word - EMCM3RiskManagementBest Practices and Gaps.doc Microsoft Word - EMCM3RiskManagementBest Practices and...

  16. Surface Chemistry of GaP(001) and InP(001) in Contact with Water...

    Office of Scientific and Technical Information (OSTI)

    Surface Chemistry of GaP(001) and InP(001) in Contact with Water Citation Details In-Document Search Title: Surface Chemistry of GaP(001) and InP(001) in Contact with Water ...

  17. In-gap collective mode spectrum of the topological Kondo insulator...

    Office of Scientific and Technical Information (OSTI)

    In-gap collective mode spectrum of the topological Kondo insulator SmB 6 Title: In-gap collective mode spectrum of the topological Kondo insulator SmB 6 Authors: Fuhrman, W. T. ; ...

  18. Contrasting Behavior of GaP(001) and InP(001) at the Interface...

    Office of Scientific and Technical Information (OSTI)

    Contrasting Behavior of GaP(001) and InP(001) at the Interface with Water Citation Details In-Document Search Title: Contrasting Behavior of GaP(001) and InP(001) at the Interface ...

  19. Controlling electrode gap during vacuum arc remelting at low melting current

    DOE Patents [OSTI]

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-04-15

    An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

  20. Controlling electrode gap during vacuum arc remelting at low melting current

    DOE Patents [OSTI]

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1997-01-01

    An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.

  1. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOE Patents [OSTI]

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  2. Band gap narrowing in zinc oxide-based semiconductor thin films...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION; ALUMINIUM COMPOUNDS; BORON COMPOUNDS; CHARGE CARRIERS; CONCENTRATION RATIO; DENSITY; DOPED MATERIALS; ELECTRONIC STRUCTURE; ENERGY GAP; GALLIUM COMPOUNDS; INDIUM...

  3. Digital Architecture – Results From a Gap Analysis

    SciTech Connect (OSTI)

    Oxstrand, Johanna Helene; Thomas, Kenneth David; Fitzgerald, Kirk

    2015-09-01

    The digital architecture is defined as a collection of IT capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. The digital architecture can be thought of as an integration of the separate I&C and information systems already in place in NPPs, brought together for the purpose of creating new levels of automation in NPP work activities. In some cases, it might be an extension of the current communication systems, to provide digital communications where they are currently analog only. This collection of IT capabilities must in turn be based on a set of user requirements that must be supported for the interconnected technologies to operate in an integrated manner. These requirements, simply put, are a statement of what sorts of digital work functions will be exercised in a fully-implemented seamless digital environment and how much they will be used. The goal of the digital architecture research is to develop a methodology for mapping nuclear power plant operational and support activities into the digital architecture, which includes the development of a consensus model for advanced information and control architecture. The consensus model should be developed at a level of detail that is useful to the industry. In other words, not so detailed that it specifies specific protocols and not so vague that it is only provides a high level description of technology. The next step towards the model development is to determine the current state of digital architecture at typical NPPs. To investigate the current state, the researchers conducted a gap analysis to determine to what extent the NPPs can support the future digital technology environment with their existing I&C and IT structure, and where gaps exist with respect to the full deployment of technology over time. The methodology, result, and conclusions from the gap analysis are described in this report.

  4. Direct control of air gap flux in permanent magnet machines

    DOE Patents [OSTI]

    Hsu, John S.

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  5. Pulsed chemical HF laser with a large discharge gap

    SciTech Connect (OSTI)

    Azarov, M A; Klimuk, Evgenii A; Kutumov, Konstantin A; Troshchinenko, G A; Lacour, Bernard M

    2004-11-30

    The characteristics of the radiation emitted by an electric-discharge pulsed chemical HF laser with a discharge gap of 10 cm are studied. The discharge was stabilised by a semiconducting ferroelectric ceramic layer deposited on plane metal electrodes. The specific energy and technical efficiency were 3 J L{sup -1} and 3.4%, respectively, for a laser operating on a nonchain reaction in SF{sub 6}-H{sub 2} mixture and 25 J L{sup -1} and 26%, respectively, for a laser operating on a chain reaction in F{sub 2}-O{sub 2}-SF{sub 6}-H{sub 2} mixture. (lasers)

  6. Gap-dependent transitions of atmospheric microplasma in open air

    SciTech Connect (OSTI)

    Chu, Hong-Yu; Huang, Bo-Shiun

    2011-04-15

    We report on the gap dependence of the planar atmospheric microplasma in air. We investigate the transitions of the dielectric barrier discharge in open air, including the random walk filaments (plasma columns), localized filaments, stochastic filaments, and diffuse discharge. A star-shaped filamentary discharge pattern is observed after the formation of the localized filaments. The liquid drops found on the dielectric surface further become a confining pattern for star-shaped discharge. We also demonstrate the applications of the insulating pattern for the use of the plasma display in open air by the handwritten characters with UV adhesive.

  7. Energy Gaps and Interaction Blockade in Confined Quantum Systems

    SciTech Connect (OSTI)

    Capelle, K.; Borgh, M.; Kaerkkaeinen, K.; Reimann, S. M.

    2007-07-06

    We investigate universal properties of strongly confined particles that turn out to be dramatically different from what is observed for electrons in atoms and molecules. For a large class of harmonically confined systems, such as small quantum dots and optically trapped atoms, many-body particle addition and removal energies, and energy gaps, are accurately obtained from single-particle eigenvalues. Transport blockade phenomena are related to the derivative discontinuity of the exchange-correlation functional. This implies that they occur very generally, with Coulomb blockade being a particular realization of a more general phenomenon. In particular, we predict a van der Waals blockade in cold atom gases in traps.

  8. Low-pressure spark gap triggered by an ion diode

    DOE Patents [OSTI]

    Prono, D.S.

    1982-08-31

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  9. Low pressure spark gap triggered by an ion diode

    DOE Patents [OSTI]

    Prono, Daniel S.

    1985-01-01

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  10. STATES GOVERI TO :H. J. He&man, Chief, Tonaw&da Sub-Of&e DATE...

    Office of Legacy Management (LM)

    STATES GOVERI TO :H. J. He&man, Chief, Tonaw&da Sub-Of&e DATE: ,i; .; .c. sgmbo1: PPS:W:mjf .. ,i. -'. i:.. :: (PPS447-53) I ..-:;..c. ' ..I-,-.. . i .,,. " :, ,, .T. ....

  11. Thermally triggered phononic gaps in liquids at THz scale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.

    2016-01-14

    In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to themore » transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.« less

  12. Method and radial gap machine for high strength undiffused brushless operation

    DOE Patents [OSTI]

    Hsu, John S.

    2006-10-31

    A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). A method of non-diffused flux enhancement and flux weakening for a radial gap machine is also disclosed.

  13. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    SciTech Connect (OSTI)

    Inaoka, Takeshi Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  14. A man-made enhanced geothermal system (EGS) can extract the abundant heat resour

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    man-made enhanced geothermal system (EGS) can extract the abundant heat resource tens of thousands of feet below the surface and put it to good use. This would require: With an enhanced geothermal reservoir, you can generate power anywhere with hot rocks at depth! What makes EGS? + + Small pathways to conduct fluid through the hot rocks Fluid to carry heat from the rocks Abundant heat found in rocks at depth Abundant heat found in rocks at depth Limited pathways to conduct fluid Insufficient

  15. Manned balloons a calibration tool for air and space based remote sensing measurements in atmospheric research

    SciTech Connect (OSTI)

    Euskirchen, J.; Nebendahl, P.

    1996-10-01

    Remote sensing is accepted as a necessity in science, defense, environmental modelling and politics all over the world. Nevertheless there is sometimes low confidence in measured values achieved by remote sensing and measuring techniques. One of the authors developed sensors in the field of optics (especially visible and IR) and in application development in the field of thermography. Therefore we think that, for example, in the complex field of vertical profiles of photochemistry in gases and aerosols punctual in situ measurements from manned balloons can rise the confidence in values covering large areas achieved by plane or satellite carried scanners. Those values are necessary for global modelling. 5 refs.

  16. The Manning School Triumphs in Middle School Science Bowl - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manhattan Project The Manhattan Project A brief History of the Manhattan Project: Terrence R. Fehner and F.G. Gosling, The Manhattan Project, 2012, 10 p. The Manhattan Project.pdf (60.9 KB) More Documents & Publications Fehner and Gosling, Origins of the Nevada Test Site Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Gosling, The Manhattan Project: Making the Atomic Bomb NREL

    The Manning School

  17. Application of a neptune propulsion concept to a manned mars excursion. Master's thesis

    SciTech Connect (OSTI)

    Finley, C.J.

    1993-04-01

    NEPTUNE is a multimegawatt electric propulsion system. It uses a proven compact nuclear thermal rocket, NERVA, in a closed cycle with a magnetohydrodynamic (MHD) generator to power a magnetoplasmadynamic (MPD) thruster. This thesis defines constraints on an externally sourced propulsion system intended to carry out a manned Martian excursion. It assesses NEPTUNE's ability to conform to these constraints. Because an unmodified NEPTUNE system is too large, the thesis develops modifications to the system which reduce its size. The result is a far less proven, but more useful derivative of the unmodified NEPTUNE system.

  18. Allocatin of functions in man-machine systems: a perspective and literature review

    SciTech Connect (OSTI)

    Price, H. E.; Maisano, R. E.; Van Cott, H. P.

    1982-06-01

    This report reviews the literature relevant to allocation of functions and presents a procedure for the allocation process applicable to nuclear power plant control rooms. An historical perspective of man's relationship with technology is given as background. Methods and models that have been developed to aid the allocation process are then considered, followed by examples of real-world applications. The relationship of allocation of function to the system development process is outlined. The report then turns to the proposed procedure of the allocation process.

  19. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOE Patents [OSTI]

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  20. Voltage-matched, monolithic, multi-band-gap devices

    DOE Patents [OSTI]

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  1. Survivability of ancient man-made earthen mounds: implications for uranium mill tailings impoundments

    SciTech Connect (OSTI)

    Lindsey, C.G.; Mishima, J.; King, S.E.; Walters, W.H.

    1983-06-01

    As part of a study for the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory (PNL) is investigating long-term stabilization techniques for uranium mill impoundments. Part of this investigation involves the design of a rock armoring blanket (riprap) to mitigate wind and water erosion of the underlying soil cover, which in turn prevents exposure of the tailings to the environment. However, the need for the armoring blanket, as well as the blanket's effectiveness, depends on the stability of the underlying soil cap (radon suppression cover) and on the tailings themselves. Compelling evidence in archaeological records suggests that large man-made earthen structures can remain sound and intact for time periods comparable to those required for the stabilization of the tailings piles if properly constructed. We present archaeological evidence on the existence and survivability of man-made earthen and rock structures through specific examples of such structures from around the world. We also review factors contributing to their survival or destruction and address the influence of climate, building materials, and construction techniques on survivability.

  2. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweight and Propulsion Materials | Department of Energy Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials wr_ldvehicles.pdf (765.43 KB) More Documents & Publications WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials Summary of the Output from the VTP Advanced

  3. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  4. Fact #829: July 14, 2014 The Transportation Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 829: July 14, 2014 The Transportation Petroleum Gap Fact #829: July 14, 2014 The Transportation Petroleum Gap In 1989 petroleum consumption in the transportation sector surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. In 2009, however, the U.S. production of petroleum began to increase. The Energy Information Administration expects petroleum production to be nearly equal to transportation consumption by about 2020. When

  5. Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    While both wet and dry storage have been shown to be safe options for storing UNF, the focus of the program is on dry storage of commercial UNF at reactor or centralized locations. This report focuses on the knowledge gaps concerning extended storage identified in numerous domestic and international investigations and provides the UFDC’s gap description, any alternate gap descriptions, the rankings by the various organizations, evaluation of the priority assignment, and UFDC-recommended action based on the comparison.

  6. Technical Standards, MACCS2, Gap Analysis - May 3, 2004 | Department of

    Office of Environmental Management (EM)

    Energy MACCS2, Gap Analysis - May 3, 2004 Technical Standards, MACCS2, Gap Analysis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: MACCS2 Gap Analysis The MACCS2 software, for radiological dispersion and consequence analysis, is one of the codes designated for the toolbox. To determine the actions needed to bring the MACCS2 code into compliance with the SQA qualification criteria, and develop an estimate of the resources required to perform the upgrade, the

  7. Fact #560: March 2, 2009 The Transportation Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 0: March 2, 2009 The Transportation Petroleum Gap Fact #560: March 2, 2009 The Transportation Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2030, transportation petroleum consumption is expected to grow to nearly 17 million barrels per day; at that time, the gap between U.S. production and transportation consumption will be 3.7 million

  8. Fact #561: March 9, 2009 All Sectors' Petroleum Gap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: March 9, 2009 All Sectors' Petroleum Gap Fact #561: March 9, 2009 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2030, the gap is expected to be at least 9.2 million

  9. Fact #610: February 15, 2010 All Sectors' Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10: February 15, 2010 All Sectors' Petroleum Gap Fact #610: February 15, 2010 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2035, the gap is expected to be at

  10. ECOR VAP Flux Corrections, Gap-filling, and Results David R....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECOR VAP Flux Corrections, Gap-filling, and Results David R. Cook, Meredith Franklin, Donna J. Holdridge Argonne National Laboratory, Argonne, IL This work was supported by the...

  11. Experimental investigation of breakdown voltage characteristics of single-gap and multigap pseudosparks

    SciTech Connect (OSTI)

    Liu, C.J.; Rhee, M.J.

    1995-06-01

    Simple empirical scaling laws that can be applied universally are determined for breakdown voltage characteristics of single-gap and multigap pseudosparks. For the single-gap pseudospark, the breakdown voltage is found to be a function of the product of the gas pressure squared, the anode-cathode gap distance, and the hollow cavity diameter, p{sup 2}dD, and a function of the product pd for a gap distance less than and greater than three times the cavity diameter, respectively. For the multigap pseudospark, however, the breakdown voltage is found to be only a function of the product p{sup 2}dD.

  12. Fact #688: August 15, 2011 All Sectors' Petroleum Gap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 8: August 15, 2011 All Sectors' Petroleum Gap Fact #688: August 15, 2011 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2035, the gap is expected to be at least 9.6

  13. Millimeter image of the HL Tau Disk: gaps opened by planets?...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Millimeter image of the HL Tau Disk: gaps opened by planets? Authors: Li, Hui 1 + Show Author Affiliations Los Alamos National ...

  14. Stationary Fuel Cell Application Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C. W.; Rivkin, C. H.

    2010-09-01

    This report provides an overview of codes and standards related to stationary fuel cell applications and identifies gaps and resolutions associated with relative codes and standards.

  15. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

    Broader source: Energy.gov [DOE]

    Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed that gap in recent...

  16. Abrupt Onset of a Second Energy Gap at the Superconducting Transition...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; COPPER OXIDES; ENERGY GAP; FERMI LEVEL; QUASI PARTICLES; ...

  17. Operation of a small-gap undulator on the NSLS X-ray Ring

    SciTech Connect (OSTI)

    Stefan, P.M.; Krinsky, S.; Rakowsky, G.; Solomon, L.

    1995-02-01

    The authors report results of an on-going experiment being carried out in the X13 straight section of the NSLS X-ray Ring which explores the limits of the operation of small-gap undulators. In particular, they discuss the operation of a 16 mm period small-gap undulator. At an electron beam current of 300 mA the variable gap vacuum chamber has been closed to an inner aperture of 3.8 mm with no effect on the electron beam lifetime. Measurements of the output radiation spectrum at a magnet gap of 7.5 mm are described.

  18. Bridging the Gap-The Outcome of the Climate Conference in Copehagen...

    Open Energy Info (EERE)

    the Land Transport Sector AgencyCompany Organization: Bridging the Gap Sector: Energy, Land Focus Area: Transportation Topics: Policiesdeployment programs Resource Type:...

  19. Automated biometric access control system for two-man-rule enforcement

    SciTech Connect (OSTI)

    Holmes, J.P.; Maxwell, R.L. ); Henderson, R.W. )

    1991-01-01

    This paper describes a limited access control system for nuclear facilities which makes use of the eye retinal identity verifier to control the passage of personnel into and out of one or a group of security controlled working areas. This access control system requires no keys, cards or credentials. The user simply enters his Personal Identification Number (PIN) and takes an eye reading to request passage. The PIN does not have to be kept secret. The system then relies on biometric identity verification of the user, along with other system information, to make the decision of whether or not to unlock the door. It also enforces multiple zones control with personnel tracking and the two-man-rule.

  20. Assessment of clinical significance of anti-Ge in an untransfused man

    SciTech Connect (OSTI)

    Pearson, H.A.; Richards, V.L.; Wylie, B.R.; Bruce, D.; Watt, J.M.; Wilkie, D.; Kronenberg, H. )

    1991-03-01

    A 19-year-old, untransfused Melanesian man from Papua New Guinea was admitted to the hospital for repair of an atrial septal defect. His serum contained an alloantibody that reacted strongly on the indirect antiglobulin test and was identified as anti-Ge. Gerbich-negative blood was transfused following urgent surgery. A 51Cr red cell survival study performed 2 weeks after surgery yielded zero survival of Gerbich-positive cells after 24 hours. A monocyte-driven, antibody-dependent, cell-mediated cytotoxicity assay performed on both pretransfusion and posttransfusion serum samples and on concentrated serum showed less than 1 percent specific lysis of Gerbich-positive cells. This did not correlate with the indication of clinical significance predicted by the 51Cr study. Red cell adherence and phagocytosis, not evident in a monocyte monolayer assay using native serum, were demonstrable in 16 percent of monocytes by the use of concentrated serum.

  1. Mass gap for gravity localized on Weyl thick branes

    SciTech Connect (OSTI)

    Barbosa-Cendejas, N.; Santos, M. A. Reyes; Herrera-Aguilar, A.; Schubert, C.

    2008-06-15

    We consider thick brane configurations in a pure geometric Weyl integrable 5D space-time, a non-Riemannian generalization of Kaluza-Klein (KK) theory involving a geometric scalar field. Thus, the 5D theory describes gravity coupled to a self-interacting scalar field which gives rise to the structure of the thick branes. We continue the study of the properties of a previously found family of solutions which is smooth at the position of the brane but involves naked singularities in the fifth dimension. Analyzing their graviton spectrum, we find that a particularly interesting situation arises for a special case in which the 4D graviton is separated from the KK gravitons by a mass gap. The corresponding effective Schroedinger equation has a modified Poeschl-Teller potential and can be solved exactly. Apart from the massless 4D graviton, it contains one massive KK bound state, and the continuum spectrum of delocalized KK modes. We also discuss the mass hierarchy problem, and explicitly compute the corrections to Newton's law in the thin brane limit.

  2. Bridging the PSI Knowledge Gap: A Multi-Scale Approach

    SciTech Connect (OSTI)

    Wirth, Brian D

    2015-01-08

    Plasma-surface interactions (PSI) pose an immense scientific hurdle in magnetic confinement fusion and our present understanding of PSI in confinement environments is highly inadequate; indeed, a recent Fusion Energy Sciences Advisory Committee report found that 4 out of the 5 top five fusion knowledge gaps were related to PSI. The time is appropriate to develop a concentrated and synergistic science effort that would expand, exploit and integrate the wealth of laboratory ion-beam and plasma research, as well as exciting new computational tools, towards the goal of bridging the PSI knowledge gap. This effort would broadly advance plasma and material sciences, while providing critical knowledge towards progress in fusion PSI. This project involves the development of a Science Center focused on a new approach to PSI science; an approach that both exploits access to state-of-the-art PSI experiments and modeling, as well as confinement devices. The organizing principle is to develop synergistic experimental and modeling tools that treat the truly coupled multi-scale aspect of the PSI issues in confinement devices. This is motivated by the simple observation that while typical lab experiments and models allow independent manipulation of controlling variables, the confinement PSI environment is essentially self-determined with few outside controls. This means that processes that may be treated independently in laboratory experiments, because they involve vastly different physical and time scales, will now affect one another in the confinement environment. Also, lab experiments cannot simultaneously match all exposure conditions found in confinement devices typically forcing a linear extrapolation of lab results. At the same time programmatic limitations prevent confinement experiments alone from answering many key PSI questions. The resolution to this problem is to usefully exploit access to PSI science in lab devices, while retooling our thinking from a linear and de

  3. Filling Knowledge Gaps with Five Fuel Cycle Studies

    SciTech Connect (OSTI)

    Steven J. Piet; Jess Gehin; William Halsey; Temitope Taiwo

    2010-11-01

    During FY 2010, five studies were conducted of technology families’ applicability to various fuel cycle strategies to fill in knowledge gaps in option space and to better understand trends and patterns. Here, a “technology family” is considered to be defined by a type of reactor and by selection of which actinides provide fuel. This report summarizes the higher-level findings; the detailed analyses and results are documented in five individual reports, as follows: • Advanced once through with uranium fuel in fast reactors (SFR), • Advanced once through (uranium fuel) or single recycle (TRU fuel) in high temperature gas cooled reactors (HTGR), • Sustained recycle with Th/U-233 in light water reactors (LWRs), • Sustained recycle with Th/U-233 in molten salt reactors (MSR), and • Several fuel cycle missions with Fusion-Fission Hybrid (FFH). Each study examined how the designated technology family could serve one or more designated fuel cycle missions, filling in gaps in overall option space. Each study contains one or more illustrative cases that show how the technology family could be used to meet a fuel cycle mission, as well as broader information on the technology family such as other potential fuel cycle missions for which insufficient information was available to include with an illustrative case. None of the illustrative cases can be considered as a reference, baseline, or nominal set of parameters for judging performance; the assessments were designed to assess areas of option space and were not meant to be optimized. There is no implication that any of the cases or technology families are necessarily the best way to meet a given fuel cycle mission. The studies provide five examples of 1-year fuel cycle assessments of technology families. There is reasonable coverage in the five studies of the performance areas of waste management and uranium utilization. The coverage of economics, safety, and proliferation resistance and physical protection in

  4. Using gaps in N-body tidal streams to probe missing satellites

    SciTech Connect (OSTI)

    Ngan, W. H. W.; Carlberg, R. G.

    2014-06-20

    We use N-body simulations to model the tidal disruption of a star cluster in a Milky-Way-sized dark matter halo, which results in a narrow stream comparable to (but slightly wider than) Pal-5 or GD-1. The mean Galactic dark matter halo is modeled by a spherical Navarro-Frenk-White potential with subhalos predicted by the ΛCDM cosmological model. The distribution and mass function of the subhalos follow the results from the Aquarius simulation. We use a matched filter approach to look for 'gaps' in tidal streams at 12 length scales from 0.1 kpc to 5 kpc, which appear as characteristic dips in the linear densities along the streams. We find that, in addition to the subhalos' perturbations, the epicyclic overdensities (EOs) due to the coherent epicyclic motions of particles in a stream also produce gap-like signals near the progenitor. We measure the gap spectra—the gap formation rates as functions of gap length—due to both subhalo perturbations and EOs, which have not been accounted for together by previous studies. Finally, we project the simulated streams onto the sky to investigate issues when interpreting gap spectra in observations. In particular, we find that gap spectra from low signal-to-noise observations can be biased by the orbital phase of the stream. This indicates that the study of stream gaps will benefit greatly from high-quality data from future missions.

  5. Method and apparatus for controlling electrode gap during vacuum consumable arc remelting

    DOE Patents [OSTI]

    Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  6. Calculation of Radiation Dose to Man from Radionuclides in the Environment.

    Energy Science and Technology Software Center (OSTI)

    1981-02-17

    ARRRG permits rapid and consistent estimates of the radiation dose and dose commitment to man resulting from radioactive materials released to the environment. It is designed to calculate the dose and dose commitment following an accumulation of radionuclides in the environment from one year's ingestion of contaminated food products and from one year's external radiation exposure. ARRRG addresses aquatic exposure pathways. ARRRG can compute doses for five ingestion pathways such as fish, other aquatic animalsmore » or plants, or drinking water, as well as three external pathways: swimming, boating, or shoreline exposure. ARRRG calculates one-year doses and dose commitments from any one or combination of radionuclides for which sufficient biological data are available. As many as five of 23 possible organs and tissues, and mixtures of up to 100 radionuclides may be selected in any one case. The user may select up to 14 food categories with corresponding consumption rates, growing periods, and either irrigation rates or atmospheric deposition rates. These foods include various kinds of produce, grains, and animal products.« less

  7. Tumorigenicity of fine man-made fibers after intratracheal administrations to hamsters

    SciTech Connect (OSTI)

    Adachi, Shuichi; Takemoto, Kazuo ); Kimura, Kikuzi )

    1991-02-01

    Six types of man-made fibers were administered intratracheally (2.0 mg/animal each a week, for 5 weeks; total 10 mg/animal) to female Syrian hamsters that were observed histologically for 2 years after administration. The fibers were rock wool, fiberglass, potassium titanate fiber, calcium sulfate fiber, basic magnesium sulfate fiber, and metaphosphate fiber. Tumors were observed in hamsters that had received basic magnesium sulfate fiber (9/20), metaphosphate fiber (6/20), calcium sulfate fiber (3/20), and fiberglass (2/20) but not in the control, rock wool, or potassium titanate fiber groups. The primary sites of the tumors were not only in the pleural cavity but also in the intracelial organs, kidney, adrenal gland, bladder, and uterus. Only a few of the tumors were identified as mesotheliomas, by histological examination. In addition to neoplastic lesions, fibrosis, pleural thickening, and chronic inflammatory changes in the lungs were observed in the hamsters, but these changes appeared too mild to foster a pneumoconiosis such as asbestosis.

  8. Efficient Computation of Info-Gap Robustness for Finite Element Models

    SciTech Connect (OSTI)

    Stull, Christopher J.; Hemez, Francois M.; Williams, Brian J.

    2012-07-05

    A recent research effort at LANL proposed info-gap decision theory as a framework by which to measure the predictive maturity of numerical models. Info-gap theory explores the trade-offs between accuracy, that is, the extent to which predictions reproduce the physical measurements, and robustness, that is, the extent to which predictions are insensitive to modeling assumptions. Both accuracy and robustness are necessary to demonstrate predictive maturity. However, conducting an info-gap analysis can present a formidable challenge, from the standpoint of the required computational resources. This is because a robustness function requires the resolution of multiple optimization problems. This report offers an alternative, adjoint methodology to assess the info-gap robustness of Ax = b-like numerical models solved for a solution x. Two situations that can arise in structural analysis and design are briefly described and contextualized within the info-gap decision theory framework. The treatments of the info-gap problems, using the adjoint methodology are outlined in detail, and the latter problem is solved for four separate finite element models. As compared to statistical sampling, the proposed methodology offers highly accurate approximations of info-gap robustness functions for the finite element models considered in the report, at a small fraction of the computational cost. It is noted that this report considers only linear systems; a natural follow-on study would extend the methodologies described herein to include nonlinear systems.

  9. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    SciTech Connect (OSTI)

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce; Dobbins, John; Liu, Xianghong; Smolenski, Karl

    2014-09-15

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. These results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.

  10. Direct band gaps in multiferroic h-LuFeO{sub 3}

    SciTech Connect (OSTI)

    Holinsworth, B. S.; Mazumdar, D.; Musfeldt, J. L.; Brooks, C. M.; Mundy, J. A.; Das, H.; Fennie, C. J.; Cherian, J. G.; McGill, S. A.; Schlom, D. G.

    2015-02-23

    We measured the optical properties of epitaxial thin films of the metastable hexagonal polymorph of LuFeO{sub 3} by absorption spectroscopy, magnetic circular dichroism, and photoconductivity. Comparison with complementary electronic structure calculations reveals a 1.1 eV direct gap involving hybridized Fe 3d{sub z{sup 2}}+O 2p{sub z}→Fe d excitations at the Γ and A points, with a higher energy direct gap at 2.0 eV. Both charge gaps nicely overlap the solar spectrum.

  11. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  12. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  13. Fact #837: September 8, Gap between Net Imports and Total Imports of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum is Widening | Department of Energy 7: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Fact #837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Net imports of petroleum (total imports minus exports) were 6.2 million barrels per day in 2013 - the lowest since the 1980's (dark blue line). The widening gap between total imports (light blue line) and net imports (dark blue line) is due to an increase in exports of

  14. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    SciTech Connect (OSTI)

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ? ? 0.5?e, where ?e is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3?e and 0.6?e. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  15. "Bridging the Gaps on Prepaid Utility Service" Report Now Available |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy "Bridging the Gaps on Prepaid Utility Service" Report Now Available "Bridging the Gaps on Prepaid Utility Service" Report Now Available November 13, 2015 - 5:12pm Addthis The Office of Electricity Delivery and Energy Reliability has released a report entitled "Bridging the Gaps on Prepaid Utility Service" that examines utilities' and consumers' experiences with prepay which is an alternative payment option in which consumers buy a dollar

  16. Vacancy defects in as-grown and neutron irradiated GaP studied by positrons

    SciTech Connect (OSTI)

    Dlubek, G.; Bruemmer, O.; Polity, A.

    1986-08-18

    Positron lifetime and Doppler-broadening measurements have been used to study vacancy defects in n-italic-type GaP. Vacancies in the P sublattice with a concentration of some 10/sup 17/ cm/sup -3/ were observed in as-grwon GaP. The vacancies disappear during annealing at 500--800 /sup 0/C. In neutron-irradiated GaP positrons are trapped by Ga vacancies which anneal out in two stages situated at 300--550 /sup 0/C and 550--700 /sup 0/C.

  17. Generation of full polarization in ferromagnetic graphene with spin energy gap

    SciTech Connect (OSTI)

    Wu, Qing-Ping; Liu, Zheng-Fang E-mail: aixichen@ecjtu.edu.cn; Liu, Zhi-Min; Chen, Ai-Xi E-mail: aixichen@ecjtu.edu.cn; Xiao, Xian-Bo

    2014-12-22

    We propose a workable scheme for the generation of full spin polarization in ferromagnetic graphene system with strain or Rashba spin-orbit interaction. A spin energy gap can be opened in ferromagnetic graphene system in the presence of strain or Rashba spin-orbit interaction, leading to the full polarization in the spin energy gap. In addition, under the combined modulation of strain and Rashba spin-orbit interaction, the ferromagnetic graphene system can generate significantly large spin-polarized current with a full polarization in the spin energy gap. It is anticipated to apply such a phenomenon to design the electron spin devices based on the graphene.

  18. Fact #837: September 8, 2014 Gap between Net Imports and Total Imports of Petroleum is Widening – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #837: Gap between Net Imports and Total Imports of Petroleum is Widening

  19. Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs—Summary Report

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; Leo, R.; Perman, K.

    2013-07-01

    This document is a summarization of the report, Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs, the final report for phase 2 of the SPSP (DOE workforce study) project.

  20. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs.

  1. Fact #837: September 8, 2014 Gap between Net Imports and Total...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excel file with dataset for Fact 837: Gap between Net Imports and Total Imports of ... were Only 33% of U.S. Consumption in 2013 - Dataset Fact 839: September 22, 2014 ...

  2. Direct measurement of the spin gap in a quasi-one-dimensional...

    Office of Scientific and Technical Information (OSTI)

    Title: Direct measurement of the spin gap in a quasi-one-dimensional clinopyroxene: NaTiSi 2 O 6 Authors: Silverstein, Harlyn J. ; Smith, Alison E. ; Mauws, Cole ; Abernathy, ...

  3. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells. Overview and Gap Analysis

    SciTech Connect (OSTI)

    Remick, Robert; Wheeler, Douglas

    2010-09-01

    This report details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs.

  4. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  5. Contrasting Behavior of GaP(001) and InP(001) at the Interface...

    Office of Scientific and Technical Information (OSTI)

    at the Interface with Water Citation Details In-Document Search Title: Contrasting Behavior of GaP(001) and InP(001) at the Interface with Water Authors: Wood, B C ; ...

  6. Photonic band gap of a graphene-embedded quarter-wave stack

    SciTech Connect (OSTI)

    Fan, Yuancheng; Wei, Zeyong; Li, Hongqiang; Chen, Hong; Soukoulis, Costas M

    2013-12-10

    Here, we present a mechanism for tailoring the photonic band structure of a quarter-wave stack without changing its physical periods by embedding conductive sheets. Graphene is utilized and studied as a realistic, two-dimensional conductive sheet. In a graphene-embedded quarter-wave stack, the synergic actions of Bragg scattering and graphene conductance contributions open photonic gaps at the center of the reduced Brillouin zone that are nonexistent in conventional quarter-wave stacks. Such photonic gaps show giant, loss-independent density of optical states at the fixed lower-gap edges, of even-multiple characteristic frequency of the quarter-wave stack. The conductive sheet-induced photonic gaps provide a platform for the enhancement of light-matter interactions.

  7. Codes and Standards Gap Analysis Helps DOE Define Research Priorities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing gaps in codes and standards for alternative vehicle fuels, including hydrogen. Work was performed by the Hydrogen Technologies and Systems Center.

  8. Technical Barriers, Gaps,and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect (OSTI)

    Bianchi, Marcus V.A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program.

  9. Significant Reduction in NiO Band Gap Upon Formation of LixNi1...

    Office of Scientific and Technical Information (OSTI)

    Significant Reduction in NiO Band Gap Upon Formation of LixNi1-xO alloys: Applications To Solar Energy Conversion Citation Details In-Document Search Title: Significant Reduction ...

  10. Fact #837: September 8, Gap between Net Imports and Total Imports...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    day in 2013 - the lowest since the 1980's (dark blue line). The widening gap between total imports (light blue line) and net imports (dark blue line) is due to an increase in ...

  11. Optical Absorption and Band Gap Reduction in (Fe 1-x Cr x ) 2...

    Office of Scientific and Technical Information (OSTI)

    Broadening of the valence band due to hybridization of the O 2p states with Fe and Cr 3d states also contributes to band gap reduction. Authors: Wang, Yong ; Lopata, Kenneth ; ...

  12. The Band Gap of AlGaN Alloys (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The Band Gap of AlGaN Alloys Citation Details In-Document Search Title: The Band ... Publication Date: 1999-01-29 OSTI Identifier: 3336 Report Number(s): ...

  13. Universal versus Materials-Dependent Two-Gap Behaviour of the...

    Office of Scientific and Technical Information (OSTI)

    Universal versus Materials-Dependent Two-Gap Behaviour of ... Report Number(s): LBNL-4734E Journal ID: ISSN 0031-9007; ... Research Org: Ernest Orlando Lawrence Berkeley National ...

  14. Aerodynamic drag reduction apparatus for gap-divided bluff bodies such as tractor-trailers

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz

    2006-07-11

    An apparatus for reducing the aerodynamic drag of a bluff-bodied vehicle such as a tractor-trailer in a flowstream, the bluff-bodied vehicle of a type having a leading portion, a trailing portion connected to the leading portion, and a gap between the leading and trailing portions defining a recirculation zone. The apparatus is preferably a baffle assembly, such as a vertical panel, adapted to span a width of the gap between the leading and trailing portions so as to impede cross-flow through the gap, with the span of the baffle assembly automatically adjusting for variations in the gap width when the leading and trailing portions pivot relative to each other.

  15. CaveMan Version 3.0: A Software System for SPR Cavern Pressure Analysis

    SciTech Connect (OSTI)

    BALLARD,SANFORD; EHGARTNER,BRIAN L.

    2000-07-01

    The U. S. Department of Energy Strategic Petroleum Reserve currently has approximately 500 million barrels of crude oil stored in 62 caverns solution-mined in salt domes along the Gulf Coast of Louisiana and Texas. One of the challenges of operating these caverns is ensuring that none of the fluids in the caverns are leaking into the environment. The current approach is to test the mechanical integrity of all the wells entering each cavern approximately once every five years. An alternative approach to detecting cavern leaks is to monitor the cavern pressure, since leaking fluid would act to reduce cavern pressure. Leak detection by pressure monitoring is complicated by other factors that influence cavern pressure, the most important of which are thermal expansion and contraction of the fluids in the cavern as they come into thermal equilibrium with the host salt, and cavern volume reduction due to salt creep. Cavern pressure is also influenced by cavern enlargement resulting from salt dissolution following introduction of raw water or unsaturated brine into the cavern. However, this effect only lasts for a month or two following a fluid injection. In order to implement a cavern pressure monitoring program, a software program called CaveMan has been developed. It includes thermal, creep and salt dissolution models and is able to predict the cavern pressurization rate based on the operational history of the cavern. Many of the numerous thermal and mechanical parameters in the model have been optimized to produce the best match between the historical data and the model predictions. Future measurements of cavern pressure are compared to the model predictions, and significant differences in cavern pressure set program flags that notify cavern operators of a potential problem. Measured cavern pressures that are significantly less than those predicted by the model may indicate the existence of a leak.

  16. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect (OSTI)

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  17. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  18. Vacuum gaps with small tunnel currents at large electric field and its

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    potential applications for energy storage, charge storage and power supplies. | Stanford Synchrotron Radiation Lightsource Vacuum gaps with small tunnel currents at large electric field and its potential applications for energy storage, charge storage and power supplies. Friday, May 27, 2011 - 4:00pm SSRL Conference Room 137-226 Alfred Hubler, Department of Physics, University of Illinois, Urbana-Champaign We study tunnel currents and electric break down in vacuum gaps experimentally and

  19. Bridging the Gap: Helping Small Businesses With Big Ideas Develop New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries | Department of Energy Bridging the Gap: Helping Small Businesses With Big Ideas Develop New Industries Bridging the Gap: Helping Small Businesses With Big Ideas Develop New Industries October 25, 2011 - 3:59pm Addthis Semprius, solar panels shown above, announced that it is building a factory in Henderson, NC to manufacture its high concentration photovoltaic (HCPV) solar modules and is expected to create more than 250 full-time jobs over the next five years. Semprius, solar

  20. DOE - Office of Legacy Management -- Crooks Gap AEC Ore Buying Station - WY

    Office of Legacy Management (LM)

    0-02 Crooks Gap AEC Ore Buying Station - WY 0-02 FUSRAP Considered Sites Site: Crooks Gap AEC Ore Buying Station (WY.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites)

  1. Enhanced Superconducting Gaps in Trilayer High-Temperature Bi (2) Sr (2) Ca

    Office of Scientific and Technical Information (OSTI)

    (2) Cu (3) O (10+delta) Cuprate Superconductor (Journal Article) | SciTech Connect Enhanced Superconducting Gaps in Trilayer High-Temperature Bi (2) Sr (2) Ca (2) Cu (3) O (10+delta) Cuprate Superconductor Citation Details In-Document Search Title: Enhanced Superconducting Gaps in Trilayer High-Temperature Bi (2) Sr (2) Ca (2) Cu (3) O (10+delta) Cuprate Superconductor Authors: Ideta, S ; Takashima, K. ; Hashimoto, M. ; Yoshida, T. ; Fujimori, A. ; Anzai, H. ; Fujita, T. ; Nakashima, Y. ;

  2. Catalysis by Design: Bridging the Gap Between Theory and Experiments at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoscale Level | Department of Energy Between Theory and Experiments at Nanoscale Level Catalysis by Design: Bridging the Gap Between Theory and Experiments at Nanoscale Level Studies on a simple platinum-alumina system constitute a first step toward a "catalyst by design" approach. deer08_narula.pdf (273.18 KB) More Documents & Publications Catalysis by Design: Bridging the Gap between Theory and Experiments Catalyst by Design - Theoretical, Nanostructural, and Experimental

  3. Fundamental gaps with approximate density functionals: The derivative discontinuity revealed from ensemble considerations

    SciTech Connect (OSTI)

    Kraisler, Eli; Kronik, Leeor

    2014-05-14

    The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturally from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.

  4. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOE Patents [OSTI]

    Carlsten, B.E.; Haynes, W.B.

    1998-02-03

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used. 8 figs.

  5. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOE Patents [OSTI]

    Carlsten, Bruce E.; Haynes, William B.

    1998-01-01

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used.

  6. ANALYSIS OF THE AXIAL GAP VS FIBERBOARD MOISTURE CONTENT IN A 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Daugherty, W.

    2013-09-30

    The fiberboard assembly within a 9975 shipping package contains a modest amount of moisture, which can migrate to the cooler regions of the package when an internal heat load is present. Typically, this leads to increased moisture levels in the bottom fiberboard layers, along with elevated chloride levels which can leach from the fiberboard. Concerns have been raised that this condition could lead to corrosion of the stainless steel drum. It has been postulated that checking the axial gap at the top of the package against the current 1 inch maximum criterion provides a sufficient indication regarding the integrity of the fiberboard and drum. This report estimates the increase in axial gap that might be expected for a given moisture increase in the bottom fiberboard layers, and the likelihood that the increase will create a nonconforming condition that will lead to identification of the moisture increase. Using data relating the fiberboard moisture content with the degree of compaction under load, the present analysis indicates that the axial gap will increase by 0.282 inch as the bottom fiberboard layers approach the saturation point. This increase will cause approximately 58% of packages with otherwise nominal package component dimensions to fail the axial gap criterion, based on a survey of axial gap values recorded in K-Area surveillance activities. As the moisture content increases above saturation, the predicted increase in axial gap jumps to 0.405 inch, which would result in 92% or more of all packages failing the axial gap criterion. The data and analysis described in this report are specific to cane fiberboard. While it is expected that softwood fiberboard will behave similarly, such behavior has not yet been demonstrated.

  7. Effect of gaps on the performance of the vertically installed wet thermal insulator

    SciTech Connect (OSTI)

    Kim, S. H.; Kim, Y. I.; Park, C. T.; Choi, S.; Yoon, J.

    2012-07-01

    In SMART, the main flow path of the reactor coolant and the pressurizer partially share common walls in the reactor coolant system. To reduce this heat transfer, the wet thermal insulator (WTI) is installed on the inner wall of the pressurizer. The WTI is constituted of stacked thin stainless steel plates. The water layer width between the plates is chosen to suppress natural convection in each layer. The plates of the WTI require clearance for thermal expansion. When the WTI is installed on a vertical wall, this clearance might cause gaps at the top and bottom at the operating condition. In this study, we focused on the effect of gaps at the both ends on the WTI performance. A numerical simulation was conducted for an 8-layer WTI with gaps at the both ends. To compare with this, a simulation of a WTI without a gap, which is an ideal case, was also conducted. The simulation was conducted in a 2-dimensional manner by a commercial computational fluid dynamics code, FLUENT. The simulations showed that the WTI thermal performance was substantially decreased by a flow that circulated through the top and bottom gaps and water layers at the sides of the WTI. This circulation caused a high temperature difference between the wall and the circulating flow. To find a way to prevent this performance deterioration of the WTI we simulated several cases with the smaller gap heights. However, the flow circulation and the higher heat transfer rate were still observed even at a case with the smallest gap, which seems to be hardly achievable in a real installation. Another way of reducing the flow circulation was suggested and also simulated in this study. (authors)

  8. Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test

    SciTech Connect (OSTI)

    Lefrancois, A S; Lee, R S; Tarver, C M

    2006-06-07

    The Explosive Component Water Gap Test (ECWGT) in the Stanag 4363 has been recently investigated to assess the shock sensitivity of lead and booster components having a diameter less than 5 mm. For that purpose, Pentaerythritol Tetranitrate (PETN) based pellets having a height and diameter of 3 mm have been confined by a steel annulus of wall thickness 1-3.5 mm and with the same height as the pellet. 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally by many nations. Numerical simulations using Ignition and Growth model have been performed in this paper and have reproduced the experimental results for the steel confinement up to 2 mm thick and aluminum confinement. A stronger re-shock following the first input shock from the water is focusing on the axis due to the confinement. The double shock configuration is well-known to lead in some cases to shock desensitization.

  9. Band gap engineering for graphene by using Na{sup +} ions

    SciTech Connect (OSTI)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the ?* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}. The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}?0.70?eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  10. Gap solitons in rocking optical lattices and waveguides with undulating gratings

    SciTech Connect (OSTI)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2009-07-15

    We report results of a systematic analysis of the stability of one-dimensional solitons in a model including the self-repulsive or attractive cubic nonlinearity and a linear potential represented by a periodically shaking lattice, which was recently implemented in experiments with Bose-Einstein condensates. In optics, the same model applies to undulated waveguiding arrays, which are also available to the experiment. In the case of the repulsive nonlinearity, stability regions are presented, in relevant parameter planes, for fundamental gap solitons and their two-peak and three-peak bound complexes, in the first and second finite band gaps. In the model with the attractive nonlinearity, stability regions are produced for fundamental solitons and their bound states populating the semi-infinite gap. In the first finite and semi-infinite gaps, unstable solitons gradually decay into radiation, while, in the second finite band gap, they are transformed into more complex states, which may represent new species of solitons. For a large amplitude of the rocking-lattice drive, the model is tantamount to that with a 'flashing' lattice potential, which is controlled by periodic sequences of instantaneous kicks. Using this correspondence, we explain generic features of the stability diagrams for the solitons. We also derive a limit case of the latter system, in the form of coupled-mode equations with a 'flashing' linear coupling.

  11. CHARACTERIZING DETONATING LX-17 CHARGES CROSSING A TRANSVERSE AIR GAP WITH EXPERIMENTS AND MODELING

    SciTech Connect (OSTI)

    Lauderbach, L M; Souers, P C; Garcia, F; Vitello, P; Vandersall, K S

    2009-06-26

    Experiments were performed using detonating LX-17 (92.5% TATB, 7.5% Kel-F by weight) charges with various width transverse air gaps with manganin peizoresistive in-situ gauges present. The experiments, performed with 25 mm diameter by 25 mm long LX-17 pellets with the transverse air gap in between, showed that transverse gaps up to about 3 mm could be present without causing the detonation wave to fail to continue as a detonation. The Tarantula/JWL{sup ++} code was utilized to model the results and compare with the in-situ gauge records with some agreement to the experimental data with additional work needed for a better match to the data. This work will present the experimental details as well as comparison to the model results.

  12. Dome – like variation of the superconducting gap anisotropy in Fe-based superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prozorov, R.; Cho, K.; Kim, H.; Tanatar, M. A.

    2013-07-17

    Experiments performed on different iron-based superconductors suggest a variety of possible structures of the superconducting energy gap, both nodeless and nodal. To understand the pairing mechanisms, it is important to identify common features in the behavior of different materials. Measurements of the temperature - dependent London penetration depth provide important information on the structure of the superconducting gap. We show that despite significant differences between different iron - based superconductors, there is a universal trend: the gap is least anisotropic at the optimal doping and its anisotropy increases upon the departure towards underdoped and overdoped ends of the ''superconducting dome''.more » As a result, this trend is not related to the presence of the long-range magnetic order in the underdoped state.« less

  13. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOE Patents [OSTI]

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  14. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    SciTech Connect (OSTI)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We present structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.

  15. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore » structural and electrical characterization of SrZrxTi1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  16. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    SciTech Connect (OSTI)

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.; Ellison, Paul B.; Francis, M.; Gabor, John D.; Gauntt, R.; Henry, C.; Linthicum, R.; Luangdilok, W.; Lutz, R.; Paik, C.; Plys, M.; Rabiti, Cristian; Rempe, J.; Robb, K.; Wachowiak, R.

    2015-01-31

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  17. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    SciTech Connect (OSTI)

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  18. Local strain effect on the band gap engineering of graphene by a first-principles study

    SciTech Connect (OSTI)

    Gui, Gui; Booske, John; Ma, Zhenqiang E-mail: mazq@engr.wisc.edu; Morgan, Dane; Zhong, Jianxin E-mail: mazq@engr.wisc.edu

    2015-02-02

    We have systematically investigated the effect of local strain on electronic properties of graphene by first-principles calculations. Two major types of local strain, oriented along the zigzag and the armchair directions, have been studied. We find that local strain with a proper range and strength along the zigzag direction results in opening of significant band gaps in graphene, on the order of 10{sup ?1?}eV; whereas, local strain along the armchair direction cannot open a significant band gap in graphene. Our results show that appropriate local strain can effectively open and tune the band gap in graphene; therefore, the electronic and transport properties of graphene can also be modified.

  19. Integration of MEA Components-Status and Technology Gaps: A Stakeholder's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective | Department of Energy MEA Components-Status and Technology Gaps: A Stakeholder's Perspective Integration of MEA Components-Status and Technology Gaps: A Stakeholder's Perspective Presentation from U.S. DOE Fuel Cell Pre-Solicitation Workshop March 16-17, 2010 Denver, CO fuelcell_pre-solicitation_wkshop_mar10_debe.pdf (594.7 KB) More Documents & Publications DOE 2010 Fuel Cell Pre-Solicitation Workshop Agenda DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 5:

  20. Influence of discharge gap on the discharge stability in a short vacuum arc ion source

    SciTech Connect (OSTI)

    Chen, L.; Zhang, G. L.; Jin, D. Z.; Dai, J. Y.; Yang, L.

    2012-02-15

    The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.

  1. Formation of quantum spin Hall state on Si surface and energy gap scaling

    Office of Scientific and Technical Information (OSTI)

    with strength of spin orbit coupling (Journal Article) | SciTech Connect Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling Citation Details In-Document Search Title: Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator

  2. Temperature-dependent isovector pairing gap equations using a path integral approach

    SciTech Connect (OSTI)

    Fellah, M.; Allal, N. H.; Belabbas, M.; Oudih, M. R.; Benhamouda, N.

    2007-10-15

    Temperature-dependent isovector neutron-proton (np) pairing gap equations have been established by means of the path integral approach. These equations generalize the BCS ones for the pairing between like particles at finite temperature. The method has been numerically tested using the one-level model. It has been shown that the gap parameter {delta}{sub np} has a behavior analogous to that of {delta}{sub nn} and {delta}{sub pp} as a function of the temperature: one notes the presence of a critical temperature. Moreover, it has been shown that the isovector pairing effects remain beyond the critical temperature that corresponds to the pairing between like particles.

  3. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal A New Gap-Opening Mechanism in a Triple-Band Metal Print Wednesday, 23 February 2005 00:00 A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to

  4. Direct Observation of Energy-Gap Scaling Law in CdSe Quantum Dots with Positrons

    SciTech Connect (OSTI)

    Denison, Arthur Blanchard; Weber, M. H.; Lynn, K. G.; Barbiellini, B.; Sterne, P. A.

    2002-07-01

    CdSe quantum dot samples with sizes in the range of 1.8~6 nm in diameter were examined by positron annihilation spectroscopy. The results were compared to data obtained for single-crystal bulk CdSe. Evidence is provided that the positrons annihilate within the nanospheres. The annihilation line shape shows a smearing at the boundary of the Jones zone proportional to the widening of the band gap due to a reduction in the size of the quantum dots. The data confirm that the change in the band gap is inversely proportional to the square of the quantum dot diameter.

  5. U.S. Biofuels Industry: Mind the Gap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Industry: Mind the Gap U.S. Biofuels Industry: Mind the Gap This report was prepared is intended to provide an objective view of the evolving biofuels industry and many of its key participants. It is the second Year in ReviewŽ report created for use by an intended audience of industry, investor, policy maker, and regulator stakeholders. This report covers the 2-year period of 2008-2009. us_biofuels_industry_report.pdf (4.78 MB) More Documents & Publications Current State of the

  6. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    SciTech Connect (OSTI)

    Srinet, Gunjan Kumar, Ravindra Sajal, Vivek

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  7. Multi-gap Resistive Plate Chambers as a Time-of-Flight System for the PHENIX Experiment

    SciTech Connect (OSTI)

    Velkovska, Julia

    2013-12-08

    In this project a Time-of-Flight detector based on multi-gap resistive plate chambers was built and installed for the PHENIX experiment at RHIC.

  8. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

  9. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    SciTech Connect (OSTI)

    Li, Keyan; Kang, Congying [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1?x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1?x}O and Cd{sub x}Zn{sub 1?x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1?x}O and Ca{sub x}Zn{sub 1?x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereas the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.

  10. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect (OSTI)

    Souers, P C; Hernandez, A; Cabacungan, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.

  11. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, M.; Breizman, B. N.; Zheng, L. J.; Chen, Eugene Y.

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less

  12. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  13. Band-gap tailoring of ZnO by means of heavy Al doping

    SciTech Connect (OSTI)

    Sernelius, B.E.; Berggren, K.; Jin, Z.; Hamberg, I.; Granqvist, C.G.

    1988-06-15

    Films of ZnO:Al were produced by weakly reactive dual-target magnetron sputtering. Optical band gaps, evaluated from spectrophotometric data, were widened in proportion to the Al doping. The widening could be quantitatively reconciled with an effective-mass model for n-doped semiconductors, provided the polar character of ZnO was accounted for.

  14. Stability of S and Se induced reconstructions on GaP(001)(21) surface

    SciTech Connect (OSTI)

    Li , D. F.; Guo, Zhi C.; Xiao, Hai Yan; Zu, Xiaotao T.; Gao, Fei

    2010-10-15

    The structural and electronic properties of S- and Se- passivated GaP(001)(21) surfaces were studied using first-principles simulations. Our calculations showed that the most stable structure consists of a single chalcogen atom (S or Se) in the first crystal layer, which is bonded to two Ga atoms of the second layer, and the third P layer replaced by chalcogen atoms, similar to the passivation of GaAs(001)(21) surface by chalcogen atoms. The structural parameters were determined and the surface band characters and the local density of states were also analyzed. The results showed that the preferable structure has no surface states in the bulk band gap, but the energy band gaps of the S- and Se-adsorbed GaP(001) surfaces are 1.83eV and 1.63eV, respectively. The passivation effects for the S- and Se-adsorbed surfaces are similar to each other.

  15. Mid-gap phenomena in chalcogenide glasses and barrier-cluster-heating model

    SciTech Connect (OSTI)

    Banik, Ivan Kubliha, Marián; Lukovičová, Jozefa; Pavlendová, Gabriela

    2015-12-07

    The physical mechanism of photoluminescence spectrum formation of chalcogenide glasses (CHG) belongs to the important unsolved problems in physics of non-crystalline materials. Photoluminescence is an important means of the electron spectrum investigation. PL spectrum in CHG is produced mostly in the middle of the band gap, and its profile is normal - Gaussian. Several features of PL spectra in CHG is still a great mystery. The aim of the paper is to make reader acquainted with the new insight into the problem. In this article we also deal with the issue of clarifying the nature of mid-gap absorption. From the experiments it is known that after excitation of the glass As{sub 2}S{sub 3} (or As{sub 2}Se{sub 3}) with primary radiation from Urbach-tail region the glass will be able to absorb the photons of low energy (IR) radiation from mid-gap region of spectra. This low photon absorption without action of the primary excitation radiation of the higher photon energy is impossible. Mid-gap absorption yields boost in the photoluminescence. The paper gives the reader the new insights into some, until now, unexplained effects and contexts in chalcogenide glasses from the position of barrier-cluster-heating model.

  16. GaNPAs Solar Cells Lattice-Matched To GaP: Preprint

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; Kurtz, S.

    2002-05-01

    This conference paper describes the III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We propose the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct band-gaps in the range of 1.5 to 2.0 eV. We demonstrate the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and discuss the prospects for the development of monolithic high-efficiency multijunction solar cells based on silicon substrates.

  17. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    SciTech Connect (OSTI)

    Li, M.; Breizman, B. N.; Zheng, L. J.; Chen, Eugene Y.

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuum absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.

  18. Correlation of pulsar radio emission spectrum with peculiarities of particle acceleration in a polar gap

    SciTech Connect (OSTI)

    Kontorovich, V. M. Flanchik, A. B.

    2013-01-15

    The analytical expression for the frequency of radio emission intensity maximum in pulsars with free electron emission from the stellar surface has been found. Peculiarities of the electron acceleration in a polar gap are considered. The correlation between the high-frequency cutoff and low-frequency turnover in the radio emission spectrum of pulsars known from observations has been explained.

  19. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-24

    Complex doping schemes in R3Al5O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-bandmore » maximum (VBM). We consider two sets of compositions based on Lu3B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5O12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  20. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect (OSTI)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  1. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    SciTech Connect (OSTI)

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.; Maranas, Costas D.

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to

  2. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.; Maranas, Costas D.

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genesmore » and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary

  3. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOE Patents [OSTI]

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  4. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOE Patents [OSTI]

    Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  5. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOE Patents [OSTI]

    Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

    1995-04-11

    A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

  6. Band gaps and internal electric fields in semipolar short period InN/GaN superlattices

    SciTech Connect (OSTI)

    Gorczyca, I.; Skrobas, K.; Suski, T.; Christensen, N. E.; Svane, A.

    2014-06-09

    The electronic structures and internal electric fields of semipolar short-period mInN/nGaN superlattices (SLs) have been calculated for several compositions (m, n). Two types of SL are considered, (112{sup ¯}2) and (202{sup ¯}1), corresponding to growth along the wurtzite s2 and s6 directions, respectively. The results are compared to similar calculations for polar SLs (grown in the c-direction) and nonpolar SLs (grown in the a- and m-directions). The calculated band gaps for the semipolar SLs lie between those calculated for the nonpolar and polar SLs: For s2-SLs they fall slightly below the band gaps of a-plane SLs, whereas for s6-SLs they are considerably smaller.

  7. Simulation of impact of the Generic Accident-Resistant Packaging (GAP)

    SciTech Connect (OSTI)

    Slavin, A.M.

    1994-10-01

    Finite element simulations modelling impact of the Generic Accident-Resistant Packaging (GAP) have been performed. The GAP is a nuclear weapon shipping container that will be used by accident response groups from both the United States and the United Kingdom. The package is a thin-walled steel structure filled with rigid polyurethane foam and weighs approximately 5100 lbs when loaded. The simulations examined 250 ft/s impacts onto a rigid target at several orientations. The development of the finite element model included studies of modelling assumptions and material parameters. Upon completion of the simulation series, three full-scale impact tests were performed. A comparison of the simulation results to the test data is given. Differences between the results and data are examined, and possible explanations for the differences are discussed.

  8. Emergence of robust gaps in two-dimensional antiferromagnets via additional spin-1/2 probes

    SciTech Connect (OSTI)

    Ferreira, Aires; Lopes, J. Viana; Lopes dos Santos, J. M. B.

    2010-08-15

    We study the capacity of antiferromagnetic lattices of varying geometries to entangle two additional spin-1/2 probes. Analytical modeling of the quantum Monte Carlo data shows the appearance of a robust gap, allowing a description of entanglement in terms of probe-only states, even in cases where the coupling to the probes is larger than the gap of the spin lattice and cannot be treated perturbatively. We find a considerable enhancement of the temperature at which probe entanglement disappears as we vary the geometry of the bus and the coupling to the probes. In particular, the square Heisenberg antiferromagnet exhibits the best thermal robustness of all systems, whereas the three-leg ladder chain shows the best performance in the natural quantum ground state.

  9. Shape-controlled narrow-gap SnTe nanostructures: From nanocubes to nanorods and nanowires

    SciTech Connect (OSTI)

    Guo, Shaojun; Andrew F. Fidler; He, Kai; Su, Dong; Chen, Gen; Lin, Qianglu; Pietryga, Jeffrey M.; Klimov, Victor I.

    2015-11-06

    In this study, the rational design and synthesis of narrow-gap colloidal semiconductor nanocrystals (NCs) is an important step toward the next generation of solution-processable photovoltaics, photodetectors, and thermoelectric devices. SnTe NCs are particularly attractive as a Pb-free alternative to NCs of narrow-gap lead chalcogenides. Previous synthetic efforts on SnTe NCs have focused on spherical nanoparticles. Here we report new strategies for synthesis of SnTe NCs with shapes tunable from highly monodisperse nanocubes, to nanorods (NRs) with variable aspect ratios, and finally to long, straight nanowires (NWs). Reaction at high temperature quickly forms thermodynamically favored nanocubes, but low temperatures lead to elongated particles. Transmission electron microscopy studies of reaction products at various stages of the synthesis reveal that the growth and shape-focusing of monodisperse SnTe nanocubes likely involves interparticle ripening, while directional growth of NRs and NWs may be initiated by particle dimerization via oriented attachment.

  10. Laboratory Studies on Surface Sampling of Bacillus anthracis Contamination: Summary, Gaps, and Recommendations

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Amidan, Brett G.; Hu, Rebecca

    2011-11-28

    This report summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing, and analyzing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe, and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Other key parameters include the ability to calculate, following contamination incidents, the (1) estimates of Bacillus anthracis contamination, as well as the bias and uncertainties in the estimates, and (2) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed and recommendations are given for future studies.

  11. Bridging a gap between continuum-QCD and ab initio predictions of hadron observables

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis; Roberts, Craig D.

    2015-01-23

    Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCDs gauge sector coincides with that required in order to describe ground-state hadron observables usingmorea nonperturbative truncation of QCDs DysonSchwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.less

  12. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect (OSTI)

    Henry Hao-Chuan Kang

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  13. Band gap tuning in transition metal oxides by site-specific substitution

    DOE Patents [OSTI]

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  14. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect (OSTI)

    Souers, P C; Hernandez, A; Cabacungen, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.

  15. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies 2010 Residential Buildings Energy Efficiency Meeting Denver, Colorado - July 20 - 22, 2010 August 2010 Prepared by the National Renewable Energy Laboratory For the U.S. Department of Energy Building Technologies Program NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their

  16. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9072 September 2010 Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis Robert Remick National Renewable Energy Laboratory Douglas Wheeler DJW Technology, LLC National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No.

  17. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEHICLES TECHNOLOGIES OFFICE WORKSHOP REPORT: Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials February 2013 FINAL REPORT This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  18. July 16, 2008, Visiting Speakers Program - National Academy of Public Administration - Closing the Gap on Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 National Academy of Public Administration. All rights reserved. September 16, 2008. How Collaborative Technologies Are Revolutionizing The Way We Drive Change Closing the Gap on Transformation 2 © 2008 National Academy of Public Administration. All rights reserved. September 16, 2008. www.collaborationproject.org Thinking About Change Proactive Reactive Incremental Redirecting Adapting Overhauling Tuning Transformational Within the Frame Frame Bending Frame Breaking A Change is not a Change

  19. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    SciTech Connect (OSTI)

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were (deltaT/T/sub c/) = -0.07, for i/sub c/ and (deltaT/T/sub c/) = -0.03 for ..delta... The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the ..delta.. measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered.

  20. THE MIGRATION OF GAP-OPENING PLANETS IS NOT LOCKED TO VISCOUS DISK EVOLUTION

    SciTech Connect (OSTI)

    Duffell, Paul C.; MacFadyen, Andrew I.; Farris, Brian D.; Haiman, Zoltan; D'Orazio, Daniel J.

    2014-09-01

    Most standard descriptions of TypeII migration state that massive, gap-opening planets must migrate at the viscous drift rate. This is based on the idea that the disk is separated into an inner and outer region and gas is considered unable to cross the gap. In fact, gas easily crosses the gap on horseshoe orbits, nullifying this necessary premise which would set the migration rate. In this work, it is demonstrated using highly accurate numerical calculations that the actual migration rate is dependent on disk and planet parameters, and can be significantly larger or smaller than the viscous drift rate. In the limiting case of a disk much more massive than the secondary, the migration rate saturates to a constant that is sensitive to disk parameters and is not necessarily of the order of the viscous rate. In the opposite limit of a low-mass disk, the migration rate decreases linearly with disk mass. Steady-state solutions in the low disk mass limit show no pile-up outside the secondary's orbit, and no corresponding drainage of the inner disk.

  1. High pressures and the Kondo gap in Ce{sub 3}Bi{sub 4}Pt{sub 3}

    SciTech Connect (OSTI)

    Cooley, J.C.; Aronson, M.C.; Canfield, P.C.

    1997-03-01

    We have measured the electrical resistivity {rho}(T) of single crystals of Ce{sub 3}Bi{sub 4}Pt{sub 3} for temperatures from 1.2 to 300 K, and pressures from 1 bar to 145 kbar. The transport is dominated at high temperatures by excitations across a small activation gap {Delta}, which increases rapidly with pressure. The low-temperature transport involves variable range hopping among extrinsic states in the gap. The spatial extent of the in-gap states reflects coupling to conduction-electron states, and is strongly modified as pressure enhances {Delta}. Despite the strong pressure dependence of {Delta}, a direct correspondence between single-ion energetics and the measured gap is maintained, and the role of valence fluctuations is minimal even at the highest pressures. {copyright} {ital 1997} {ital The American Physical Society}

  2. Determing Degradation Of Fiberboard In The 9975 Shipping Package By Measuring Axial Gap

    SciTech Connect (OSTI)

    Hackney, E. R.; Dougherty, W. L.; Dunn, K. A.; Stefek, T. M

    2013-08-01

    Currently, thousands of model 9975 transportation packages are in use by the US Department of Energy (DOE); the design of which has been certified by DOE for shipment of Type B radioactive and fissile materials in accordance with Part 71, Title 10 Code of Federal Regulations (CFR), or 10 CFR 71, Packaging and Transportation of Radioactive Material. These transportation packages are also approved for the storage of DOE-STD-3013 containers at the Savannah River Site (SRS). As such, the 9975 has been continuously exposed to the service environment for a period of time greater than the approved transportation service life. In order to ensure the material integrity as specified in the safety basis, an extensive surveillance program is in place in K-Area Complex (KAC) to monitor the structural and thermal properties of the fiberboard of the 9975 shipping packages. The surveillance approach uses a combination of Non-Destructive Examination (NDE) field surveillance and Destructive Examination (DE) lab testing to validate the 9975 performance assumptions. The fiberboard in the 9975 is credited with thermal insulation, criticality control and resistance to crushing. During surveillance monitoring in KAC, an increased axial gap of the fiberboard was discovered on selected items packaged at Rocky Flats Environmental Technology Site (RFETS). Many of these packages were later found to contain excess moisture. Savannah River National Laboratory (SRNL) testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the fiberboard under storage conditions and during transport. In laboratory testing, the higher moisture content has been shown to correspond to higher total compaction of fiberboard material and compaction rate. The fiberboard height is reduced by compression of the layers. This change is observed directly in the axial gap between the flange and the air shield. The axial gap measurement is made during the pre

  3. Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect (OSTI)

    Bianchi, M. V. A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the opportunity cost of

  4. Calculation of Accumulated Radiation Doses to Man from Radionuclides Found in Food Products and from Radionuclides in the Environment.

    Energy Science and Technology Software Center (OSTI)

    1981-02-17

    PABLM calculates internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. It can be used to calculate accumulated doses to 23 possible body organs or tissues for any one or a combination of radionuclides. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in themore » environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. A chain decay scheme is used; it includes branching to account for transitions to and from isomeric states. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years.« less

  5. Phased Array Approach To Retrieve Gases, Liquids, Or Solids From Subsurface And Subaqueous Geologic Or Man-Made Formations

    DOE Patents [OSTI]

    Rynne, Timothy M.; Spadaro, John F.; Iovenitti, Joe L.; Dering, John P.; Hill, Donald G.

    1998-10-27

    A method of enhancing the remediation of contaminated soils and ground water, production of oil and gas, and production of any solid, gas, and/or liquid from subsurface geologic and man-made formations including the steps of estimating the geometric boundaries of the region containing the material to be recovered, drilling a recovery well(s) into subsurface in a strategic location to recover the material of interest, establishing multiple sources of acoustical power in an array about and spaced-apart from the surface or at various depths below the surface in a borehole(s) and/or well(s), directing a volume of acoustical excitation from the sources into the region containing the material to be recovered, the excitation in the form of either controllable sinusoidal, square, pulsed, or various combinations of these three waveforms, and controlling the phasing, frequency, power, duration, and direction of these waveforms from the sources to increase and control the intensity of acoustical excitation in the region of the material to be recovered to enhance. the recovery of said material from the recovery well(s). The invention will augment any technology affecting the removal of materials from the subsurface.

  6. Photonic band gaps in three-dimensional network structures with short-range order

    SciTech Connect (OSTI)

    Liew, Seng Fatt; Noh, Heeso; Yang, Jin-Kyu; Schreck, Carl F.; Dufresne, Eric R.; O'Hern, Corey S.; Cao, Hui

    2011-12-15

    We present a systematic study of photonic band gaps (PBGs) in three-dimensional (3D) photonic amorphous structures (PASs) with short-range order. From calculations of the density of optical states (DOS) for PASs with different topologies, we find that tetrahedrally connected dielectric networks produce the largest isotropic PBGs. Local uniformity and tetrahedral order are essential to the formation of PBGs in PASs, in addition to short-range geometric order. This work demonstrates that it is possible to create broad, isotropic PBGs for vector light fields in 3D PASs without long-range order.

  7. Radial-Gap Permanent Magnet Motor and Drive Research FY 2004

    SciTech Connect (OSTI)

    McKeever, J.W.

    2005-02-11

    The objective of this task was to study permanent magnet (PM) radial-gap traction drive systems that could meet the U.S. Department of Energy FreedomCAR Program's 2010 goals to expose weaknesses or identify strengths. Initially, the approach was to compare attributes such as physical deformations during operation, performance (torque, power, efficiency versus speed), material requirements (strength), material costs, manufacturability, weight, power density, specific power, reliability, and drivability for specific motors. Three motors selected were the commercially available 60-kW radial-gap surface-mounted PM motor manufactured by UQM Technologies, Inc.; a hypothetical PM motor with rotor-supported magnets similar to the Honda MCF-21; and Delphi's automotive electric machine drive motor, whose rotor is a ferromagnetic cylinder, held at one end by a shaft that supports the magnets on its inner surface. Potential problems have appeared related to PM motors, such as (1) high no-load spin losses and high operational power losses, probably from eddy current losses in the rotor; (2) the undemonstrated dual mode inverter control (DMIC) for driving a brushless dc motor (BDCM) (UQM and Delphi motors); (3) uncertainty about the potential for reducing current with DMIC; and (4) uncertainty about the relation between material requirements and maximum rotor speed. Therefore, the approach was changed to study in detail three of the comparison attributes: drivability, performance, and material requirements. Drivability and related problems were examined by demonstrating that DMIC may be used to drive an 18-pole 30-kW PM motor to 6000 rpm, where the maximum electrical frequency is 900 Hz. An available axial-gap test motor with 18 poles was used because its control is identical to that of a radial gap PM motor. Performance was analytically examined, which led to a derivation showing that DMIC controls a PM motor so that the motor uses minimum current to produce any power

  8. Note: The design of thin gap chamber simulation signal source based on field programmable gate array

    SciTech Connect (OSTI)

    Hu, Kun; Wang, Xu; Li, Feng; Jin, Ge; Lu, Houbing; Liang, Futian

    2015-01-15

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability.

  9. U.S. Gap Analysis to Support Extended Storage of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Hanson, Brady D.; Alsaed, Abdelhalim -.; Stockman, Christine T.; Sorenson, Ken B.

    2012-06-27

    Dry storage of used nuclear fuel in the United States will continue until a disposition pathway is chosen and implemented. As such, the duration of dry storage will be much longer than originally anticipated. This paper reviews the methodology used in and the results of an analysis to determine the technical data gaps that need to be addressed to assure the continued safe and secure storage of used nuclear fuel for extended periods. Six high priority and eleven medium priority mechanisms were identified that may degrade the safety functions of the dry storage structures, systems, and components.

  10. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  11. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  12. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  13. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  14. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  15. Bridging the Gap between Scientific Data Producers and Consumers: A Provenance Approach

    SciTech Connect (OSTI)

    Stephan, Eric G.; Pinheiro da Silva, Paulo; Kleese van Dam, Kerstin

    2013-06-03

    Despite the methodical and painstaking efforts made by scientists to record their scientific findings and protocols, a knowledge gap problem continues to persist today between producers of scientific results and consumers because technology is performing the exchange of data as opposed to scientists making direct contact. Provenance is a means to formalize how this knowledge is transferred. However, for it to be meaningful to scientists, the provenance research community needs continued contributions from the scientific community to extend and leverage provenance-based vocabularies and technology from the provenance community. Going forward the provenance community must also be vigilant to meet scalability needs of data intensive science

  16. Analysis of plasma-magnetic photonic crystal with a tunable band gap

    SciTech Connect (OSTI)

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A. [Department of Physics and Plasma Research Institute of Tarbiat Moallem University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2013-04-15

    In this paper, electromagnetic wave propagation through the one-dimensional plasma-magnetic photonic crystal in the presence of external magnetic field has been analyzed. The dispersion relation, transmission and reflection coefficients have been obtained by using the transfer matrix method. It is investigated how photonic band gap of photonic crystals will be tuned when both dielectric function {epsilon} and magnetic permeability {mu} of the constitutive materials, depend on applied magnetic field. This is shown by one dimensional photonic crystals consisting of plasma and ferrite material layers stacked alternately.

  17. Inverse Design of Mn-based ternary p-type wide-gap oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZnO is an important prototypical wide-gap oxide semiconductor. The discrepancy between band- structure theory and ARPES is removed by a correction for the Zn-d band energy in GW calculations. Significance and Impact The present approach improves the capability for property prediction and design of energy materials. Benchmarking Band-Structure Calculations Against Angular-Resolved Photoemission Spectroscopy (ARPES) for ZnO L.Y. Lim, S. Lany, Y.J. Chang, E. Rotenberg, A. Zunger, M.F. Toney,

  18. Low jitter spark gap switch for repetitively pulsed parallel capacitor banks

    SciTech Connect (OSTI)

    Rohwein, G. J.

    1980-01-01

    A two-section air insulated spark gap has been developed for switching multi-kilojoule plus-minus charged parallel capacitor banks which operate continuously at pulse rates up to 20 pps. The switch operates with less than 2 ns jitter, recovers its dielectric strength within 2 to 5 ms and has not shown degraded performance in sequential test runs totaling over a million shots. Its estimated life with copper electrodes is > 10/sup 7/ shots. All preliminary tests indicate that the switch is suitable for continuous running multi-kilojoule systems operating to at least 20 pps.

  19. Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I) Susanne Brooks, Brent Elswick, and R. Neal Elliott March 2006 Report Number IE062 ©American Council for an Energy-Efficient Economy 1001 Connecticut Avenue, NW, Suite 801, Washington, D.C. 20036 (202) 429-8873 phone, (202) 429-2248 fax, http://aceee.org Web site CHP: Connecting the Gap, ACEEE Contents

  20. Superconducting gap evolution in overdoped BaFe₂(As1-xPx)₂ single crystals through nanocalorimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-18

    We report on specific heat measurements on clean overdoped BaFe₂(As1-xPx)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T|T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces tillmore » a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γr, all samples however show similar behavior [γr(H) - γr (H = 0)∝ Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less

  1. ACCRETION OF GAS ONTO GAP-OPENING PLANETS AND CIRCUMPLANETARY FLOW STRUCTURE IN MAGNETIZED TURBULENT DISKS

    SciTech Connect (OSTI)

    Uribe, A. L. [University of Chicago, Chicago, IL 60637 (United States); Klahr, H.; Henning, Th., E-mail: uribe@oddjob.uchicago.edu [Max-Planck-Institut fuer Astronomie, Heidelberg (Germany)

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an {alpha}-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is {alpha}{sub MHD} = 10{sup -3}, we find the accretion rate onto the planet to be M-dot {approx}2 Multiplication-Sign 10{sup -6}M{sub J} yr{sup -1} for a gap surface density of 12 g cm{sup -2}. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent {alpha} parameter.

  2. Periodic dielectric structure for production of photonic band gap and devices incorporating the same

    DOE Patents [OSTI]

    Ho, Kai-Ming; Chan, Che-Ting; Soukoulis, Costas

    1994-08-02

    A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.

  3. Shape-controlled narrow-gap SnTe nanostructures: From nanocubes to nanorods and nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Shaojun; Andrew F. Fidler; He, Kai; Su, Dong; Chen, Gen; Lin, Qianglu; Pietryga, Jeffrey M.; Klimov, Victor I.

    2015-11-06

    In this study, the rational design and synthesis of narrow-gap colloidal semiconductor nanocrystals (NCs) is an important step toward the next generation of solution-processable photovoltaics, photodetectors, and thermoelectric devices. SnTe NCs are particularly attractive as a Pb-free alternative to NCs of narrow-gap lead chalcogenides. Previous synthetic efforts on SnTe NCs have focused on spherical nanoparticles. Here we report new strategies for synthesis of SnTe NCs with shapes tunable from highly monodisperse nanocubes, to nanorods (NRs) with variable aspect ratios, and finally to long, straight nanowires (NWs). Reaction at high temperature quickly forms thermodynamically favored nanocubes, but low temperatures lead tomore » elongated particles. Transmission electron microscopy studies of reaction products at various stages of the synthesis reveal that the growth and shape-focusing of monodisperse SnTe nanocubes likely involves interparticle ripening, while directional growth of NRs and NWs may be initiated by particle dimerization via oriented attachment.« less

  4. Laboratory studies on surface sampling of Bacillus anthracis contamination: summary, gaps, and recommendations

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Amidan, Brett G.; Hu, Rebecca

    2012-12-01

    This article summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing, and analyzing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe, and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Other key parameters include the ability to calculate, following contamination incidents, the 1) estimates of Bacillus anthracis contamination, as well as the bias and uncertainties in the estimates, and 2) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed. Recommendations are given for future evaluations of data from existing studies and possible new studies.

  5. Mid-Gap Electronic States in Zn1 xMnxO

    SciTech Connect (OSTI)

    Johnson, Claire A.; Kittilstved, Kevin R.; Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.; Salley, G. Mackay; Gamelin, Daniel R.

    2010-09-02

    Electronic absorption, magnetic circular dichroism, photoconductivity, and valence-band X-ray photoelectron (XPS) spectroscopic measurements were performed on epitaxial Zn1 xMnxO films to investigate the origin of the new mid-gap band that appears upon introduction of Mn2+ into the ZnO lattice. Absorption and MCD spectroscopies reveal Mn2+-related intensity at energies below the first excitonic transition of ZnO, tailing well into the visible energy region, with an onset at ~2.2 eV. Photoconductivity measurements show that excitation into this visible band generates mobile charge carriers, consistent with assignment as a Mn2+/3+ photoionization transition. XPS measurements reveal the presence of occupied Mn2+ levels just above the valence-band edge, supporting this assignment. Magnetic circular dichroism measurements additionally show a change in sign and large increase in magnitude of the excitonic Zeeman splitting in Zn1 xMnxO relative to ZnO, suggesting that sp-d exchange in Zn1 xMnxO is not as qualitatively different from those in other II-VI diluted magnetic semiconductors as has been suggested. The singular electronic structure feature of Zn1 xMnxO is its Mn2+/3+ ionization level within the gap, and the influence of this level on other physical properties of Zn1 xMnxO is discussed.

  6. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    2016-05-11

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  7. Low temperature synthesis of Ru–Cu alloy nanoparticles with the compositions in the miscibility gap

    SciTech Connect (OSTI)

    Martynova, S.A.; Filatov, E.Yu.; Korenev, S.V.; Kuratieva, N.V.; Sheludyakova, L.A.; Plusnin, P.E.; Shubin, Yu.V.; Slavinskaya, E.M.; Boronin, A.I.

    2014-04-01

    A complex salt [Ru(NH{sub 3}){sub 5}Cl][Cu(C{sub 2}O{sub 4}){sub 2}H{sub 2}O]—the precursor of nanoalloys combining ruthenium and copper was prepared. It crystallizes in the monoclinic space group P2{sub 1}/n. Thermal properties of the prepared salt were examined in different atmospheres (helium, hydrogen, oxygen). Thermal decomposition of the precursor in inert atmosphere was thoroughly examined and the intermediate products were characterized. Experimental conditions for preparation of copper-rich (up to 12 at% of copper) metastable solid solution Cu{sub x}Ru{sub 1−x} (based on Ru structure) were optimized, what is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range. Catalytic properties of copper–ruthenium oxide composite were tested in catalytic oxidation of CO. - Highlights: • We synthesized new precursor of CuRu metastable nanoalloys. • Thermal properties of the prepared salt were examined in different atmospheres. • Thermodestruction mechanism of precursor are studied. • Cu{sub 0.12}Ru{sub 0.88} nanoalloy with the compositions in the miscibility gap is obtained. • Catalytic conversion of CO on copper–ruthenium oxide composite were examined.

  8. ManManhattan.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  9. Aprun MAN Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... nid00029. (core affinity 3) This example runs all PEs on NUMA node 1: % aprun -n 8 -sl 1 .xthi | sort Application 225119 resources: utime 0s, stime 0s Hello from rank 0, ...

  10. Gap solitons and Bloch waves of interacting bosons in one-dimensional optical lattices: From the weak- to the strong-interaction limits

    SciTech Connect (OSTI)

    Xu, T.F.; Guo, X.M.; Jing, X.L.; Wu, W.C.; Liu, C.S.

    2011-04-15

    We study the gap solitons and nonlinear Bloch waves of interacting bosons in one-dimensional optical lattices, taking into account the interaction from the weak to the strong limits. It is shown that composition relation between the gap solitons and nonlinear Bloch waves exists for the whole span of the interaction strength. The linear stability analysis indicates that the gap solitons are stable when their energies are near the bottom of the linear Bloch band gap. By increasing the interaction strength, the stable gap solitons can become unstable. It is argued that the stable gap solitons can easily be formed in a weakly interacting system with energies near the bottom of the lower-level linear Bloch band gaps.

  11. Man-made marine debris and sea turtle strandings on beaches of the upper Texas and southwestern Louisiana coasts, June 1987 through September 1989. Technical memo

    SciTech Connect (OSTI)

    Duronslet, M.J.; Revera, D.B.; Stanley, K.M.

    1991-02-01

    The upper Texas and southwestern Louisiana coastlines were divided into six sampling zones to survey the amounts, types and rates of accumulation of man-made marine debris, the number of sea turtle strandings, the incidence of sea turtle entanglements in marine debris and the incidence of ingestion of such debris by sea turtles. From June 1987 through September 1989, 473 sample plots were examined for marine debris. Significant differences were detected in mean number of debris items per 100 sq m of beach sampled by year, zone and month. Significant differences in mean weight of debris items per 100 sq m of beach sampled were detected by month and zone. Both number and weights (per 100 sq m) of debris were lowest in the winter months. Number per 100 sq m was greatest in August while weight per 100 sq m peaked in May. Tar balls and plastic items were the most frequently encountered marine debris items. Wooden items had the highest average weights while tar balls and polystyrene foam were the lightest items collected. A total of 171 sea turtles stranded on the surveyed beaches during the study. Of 26 gastrointestinal tracts examined, 16 had ingested some form of man-made debris. Six turtles were entangled in man-made debris and 9 were live stranded.

  12. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect (OSTI)

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup ?}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1?x}Cd{sub x}Te, and In{sub 1?x}Ga{sub x}As{sub y}P{sub 1?y} lattice matched to InP, as example of IIIV compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  13. Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer

    SciTech Connect (OSTI)

    Trifonov, T.; Marsal, L.F.; Pallares, J.; Rodriguez, A.; Alcubilla, R.

    2004-11-15

    We investigate different aspects of the absolute photonic band gap (PBG) formation in two-dimensional photonic structures consisting of rods covered with a thin dielectric film. Specifically, triangular and honeycomb lattices in both complementary arrangements, i.e., air rods drilled in silicon matrix and silicon rods in air, are studied. We consider that the rods are formed of a dielectric core (silicon or air) surrounded by a cladding layer of silicon dioxide (SiO{sub 2}), silicon nitride (Si{sub 3}N{sub 4}), or germanium (Ge). Such photonic lattices present absolute photonic band gaps, and we study the evolution of these gaps as functions of the cladding material and thickness. Our results show that in the case of air rods in dielectric media the existence of dielectric cladding reduces the absolute gap width and may cause complete closure of the gap if thick layers are considered. For the case of dielectric rods in air, however, the existence of a cladding layer can be advantageous and larger absolute PBG's can be achieved.

  14. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  15. Airflow-terrain interactions through a mountain gap, with an example of eolian activity beneath an atmospheric hydraulic jump

    SciTech Connect (OSTI)

    Gaylord, D.R.; Dawson, P.J.

    1987-09-01

    The integration of atmospheric soundings from a fully instrumented aircraft with detailed sedimentary and geomorphic analyses of eolian features in the Ferris dune field of south-central Wyoming lends insight into the manner in which topography interacts with airflow to modify eolian activity. Topographically modified airflow results in zones of airflow deceleration, acceleration, and enhanced atmospheric turbulence, all of which influence the surface morphology and sedimentology. Extreme lateral confluence of prevailing airflow produces accelerated, unidirectional winds. These winds correlate with unusually continuous and elongate parabolic dunes that extend into a mountain gap (Windy Gap). Persistently heightened winds produced at the entrance to Windy Gap have resulted in a concentration of active sand dunes that lack slipfaces. Common development of a strongly amplified atmospheric wave analogous to a hydraulic jump in the gap contributes to the formation of a variety of eolian features that mantle the surface of Windy Gap and the Ferris dune field tail. Heightened, unidirectional winds in this zone promote grain-size segregation, the formation of elongated and aligned sand drifts, climbing and falling dunes, elongate scour streaks, and parabolic dunes that have low-angle (< 20/sup 0/) cross-stratification. Deflation of bedrock and loose sediment has been enhanced in the zone of maximum turbulence beneath the hydraulic jump.

  16. Strategies to Address Identified Education Gaps in the Preparation of a National Security Workforce

    SciTech Connect (OSTI)

    2008-06-30

    This report will discuss strategies available to address identified gaps and weaknesses in education efforts aimed at the preparation of a skilled and properly trained national security workforce.The need to adequately train and educate a national security workforce is at a critical juncture. Even though there are an increasing number of college graduates in the appropriate fields, many of these graduates choose to work in the private sector because of more desirable salary and benefit packages. This is contributing to an inability to fill vacant positions at NNSA resulting from high personnel turnover from the large number of retirements. Further, many of the retirees are practically irreplaceable because they are Cold War scientists that have experience and expertise with nuclear weapons.

  17. Photonic-band-gap effects in two-dimensional polycrystalline and amorphous structures

    SciTech Connect (OSTI)

    Yang, Jin-Kyu; Noh, Heeso; Liew, Seng-Fatt; Schreck, Carl; Guy, Mikhael I.; O'Hern, Corey S.; Cao, Hui

    2010-11-15

    We study numerically the density of optical states (DOS) in two-dimensional photonic structures with short-range positional order and observe a transition from polycrystalline to amorphous photonic systems. In polycrystals, photonic band gaps (PBGs) are formed within individual domains, which leads to a depletion of the DOS similar to that in periodic structures. In amorphous photonic media, the domain sizes are too small to form PBGs, thus the depletion of the DOS is weakened significantly. The critical domain size that separates the polycrystalline and amorphous regimes is determined by the attenuation length of Bragg scattering, which depends not only on the degree of positional order but also the refractive-index contrast of the photonic material. Even with relatively low-refractive-index contrast, we find that modest short-range positional order in photonic structures enhances light confinement via collective scattering and interference.

  18. Particle Image Velocimetry Measurements and Analysis of Bypass Data for a Scaled 6mm Gap

    SciTech Connect (OSTI)

    J.R. Wolf; T.E. Conder; R.R. Schultz

    2012-09-01

    The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments will use optical techniques, primarily particle image velocimetry (PIV) in the INL Matched Index of Refraction (MIR) flow system.

  19. Measurement of positive direct current corona pulse in coaxial wire-cylinder gap

    SciTech Connect (OSTI)

    Yin, Han Zhang, Bo He, Jinliang Wang, Wenzhuo

    2014-03-15

    In this paper, a system is designed and developed to measure the positive corona current in coaxial wire-cylinder gaps. The characteristic parameters of corona current pulses, such as the amplitude, rise time, half-wave time, and repetition frequency, are statistically analyzed and a new set of empirical formulas are derived by numerical fitting. The influence of space charges on corona currents is tested by using three corona cages with different radii. A numerical method is used to solve a simplified ion-flow model to explain the influence of space charges. Based on the statistical results, a stochastic model is developed to simulate the corona pulse trains. And this model is verified by comparing the simulated frequency-domain responses with the measured ones.

  20. A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides

    SciTech Connect (OSTI)

    Hur, Ji-Hyun E-mail: jeonsh@korea.ac.kr; Lee, Dongsoo; Jeon, Sanghun E-mail: jeonsh@korea.ac.kr

    2015-11-16

    A model that describes bilayered bipolar resistive random access memory (BL-ReRAM) switching in oxide with a large band gap is presented. It is shown that, owing to the large energy barrier between the electrode and thin oxide layer, the electronic conduction is dominated by trap-assisted tunneling. The model is composed of an atomic oxygen vacancy migration model and an electronic tunneling conduction model. We also show experimentally observed three-resistance-level switching in Ru/ZrO{sub 2}/TaO{sub x} BL-ReRAM that can be explained by the two types of traps, i.e., shallow and deep traps in ZrO{sub 2}.

  1. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    SciTech Connect (OSTI)

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentum calculations with 1 Fe per unit cell.

  2. Air-gap gating of MgZnO/ZnO heterostructures

    SciTech Connect (OSTI)

    Tambo, T.; Falson, J. Kozuka, Y.; Maryenko, D.; Tsukazaki, A.; Kawasaki, M.

    2014-08-28

    The adaptation of air-gap dielectric based field-effect transistor technology to controlling the MgZnO/ZnO heterointerface confined two-dimensional electron system (2DES) is reported. We find it possible to tune the charge density of the 2DES via a gate electrode spatially separated from the heterostructure surface by a distance of 5??m. Under static gating, the observation of the quantum Hall effect suggests that the charge carrier density remains homogeneous, with the 2DES in the 3?mm square sample the sole conductor. The availability of this technology enables the exploration of the charge carrier density degree of freedom in the pristine sample limit.

  3. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  4. The recovery of glow-plasma structure in atmospheric radio frequency microplasmas at very small gaps

    SciTech Connect (OSTI)

    Zhang Yuantao; Shang Wanli

    2011-11-15

    In atmospheric radio frequency discharges at 13.56 MHz, with the electrode gap reduced, the sheath region eventually occupies a main portion of the electrode spacing and the bulk plasma region is significantly compressed. The computational results in this letter based on a one-dimensional fluid model show that by increasing the excitation frequency over 13.56 MHz, the traditional glow-plasma structure could gradually recover even at very small sizes with a well defined quasineutral plasma region, and the electron density is improved but the electric fields in sheath region are reduced. This study indicates that the excitation frequency can be used to modulate the discharge structure and then tailor the plasma-surface interaction in atmospheric microplasmas.

  5. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; Lopez, Daniel; Blumberg, Girsh; Aksyuk, Vladimir

    2015-08-12

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermoreslits.less

  6. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    SciTech Connect (OSTI)

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called ?-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, ? pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentum calculations with 1 Fe per unit cell.

  7. Rapidity gap survival in central exclusive diffraction: Dynamical mechanisms and uncertainties

    SciTech Connect (OSTI)

    Strikman, Mark; Weiss, Christian

    2009-01-01

    We summarize our understanding of the dynamical mechanisms governing rapidity gap survival in central exclusive diffraction, pp -> p + H + p (H = high-mass system), and discuss the uncertainties in present estimates of the survival probability. The main suppression of diffractive scattering is due to inelastic soft spectator interactions at small pp impact parameters and can be described in a mean-field approximation (independent hard and soft interactions). Moderate extra suppression results from fluctuations of the partonic configurations of the colliding protons. At LHC energies absorptive interactions of hard spectator partons associated with the gg -> H process reach the black-disk regime and cause substantial additional suppression, pushing the survival probability below 0.01.

  8. A versatile optical junction using photonic band-gap guidance and self collimation

    SciTech Connect (OSTI)

    Gupta, Man Mohan; Medhekar, Sarang

    2014-09-29

    We show that it is possible to design two photonic crystal (PC) structures such that an optical beam of desired wavelength gets guided within the line defect of the first structure (photonic band gap guidance) and the same beam gets guided in the second structure by self-collimation. Using two dimensional simulation of a design made of the combination of these two structures, we propose an optical junction that allows for crossing of two optical signals of same wavelength and same polarization with very low crosstalk. Moreover, the junction can be operated at number of frequencies in a wide range. Crossing of multiple beams with very low cross talk is also possible. The proposed junction should be important in future integrated photonic circuits.

  9. Nonlinear optical response of semiconductor-nanocrystals-embedded photonic band gap structure

    SciTech Connect (OSTI)

    Liao, Chen; Zhang, Huichao; Tang, Luping; Zhou, Zhiqiang; Lv, Changgui; Cui, Yiping; Zhang, Jiayu

    2014-04-28

    Colloidal CdSe/ZnS core/shell nanocrystals (NCs), which were dispersed in SiO{sub 2} sol, were utilized to fabricate a SiO{sub 2}:NCs/TiO{sub 2} all-dielectric photonic band gap (PBG) structure. The third-order nonlinear refractive index (n{sub 2}) of the PBG structure was nearly triple of that of the SiO{sub 2}:NCs film due to the local field enhancement in the PBG structure. The photoinduced change in refractive index (Δn) could shift the PBG band edge, so the PBG structure would show significant transmission modification, whose transmission change was ∼17 folds of that of the SiO{sub 2}:NCs film. Under excitation of a 30 GW/cm{sup 2} femtosecond laser beam, a transmission decrease of 80% was realized.

  10. Research Gaps and Technology Needs in Development of PHM for Passive AdvSMR Components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2014-01-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically due to losses in economy of scale, thus, there is increased motivation to reduce the controllable operations and maintenance (O&M) costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components. state-of-the-art in PHM.

  11. Research gaps and technology needs in development of PHM for passive AdvSMR components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Henagar, Chuck H. Jr.; Coble, Jamie B.; Bond, Leonard J.

    2014-02-18

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  12. Band gap narrowing in zinc oxide-based semiconductor thin films

    SciTech Connect (OSTI)

    Kumar, Jitendra E-mail: akrsri@gmail.com; Kumar Srivastava, Amit E-mail: akrsri@gmail.com

    2014-04-07

    A simple expression is proposed for the band gap narrowing (or shrinkage) in semiconductors using optical absorption measurements of spin coated 1 at. % Ga-doped ZnO (with additional 0–1.5 at. % zinc species) thin films as ΔE{sub BGN} = Bn{sup 1/3} [1 − (n{sub c}/n){sup 1/3}], where B is the fitting parameter, n is carrier concentration, and n{sub c} is the critical density required for shrinkage onset. Its uniqueness lies in not only describing variation of ΔE{sub BGN} correctly but also allowing deduction of n{sub c} automatically for several M-doped ZnO (M: Ga, Al, In, B, Mo) systems. The physical significance of the term [1 − (n{sub c}/n){sup 1/3}] is discussed in terms of carrier separation.

  13. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentummore » calculations with 1 Fe per unit cell.« less

  14. Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel

    SciTech Connect (OSTI)

    Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.

    2012-08-28

    The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to its superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.

  15. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    SciTech Connect (OSTI)

    Carbajo, Juan; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Schmidt, Rodney Cannon; Thomas, Justin; Wei, Tom; Sofu, Tanju; Ludewig, Hans; Tobita, Yoshiharu; Ohshima, Hiroyuki; Serre, Frederic

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  16. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    SciTech Connect (OSTI)

    Vuichard, N.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.

  17. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    SciTech Connect (OSTI)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  18. First-principles study of direct and narrow band gap semiconducting β -CuGaO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. Inmore » conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  19. In situ controlled heteroepitaxy of single-domain GaP on As-modified Si(100)

    SciTech Connect (OSTI)

    Supplie, Oliver May, Matthias M.; Kleinschmidt, Peter; Nägelein, Andreas; Paszuk, Agnieszka; Brückner, Sebastian; Hannappel, Thomas

    2015-12-01

    Metalorganic vapor phase epitaxy of III-V compounds commonly involves arsenic. We study the formation of atomically well-ordered, As-modified Si(100) surfaces and subsequent growth of GaP/Si(100) quasisubstrates in situ with reflection anisotropy spectroscopy. Surface symmetry and chemical composition are measured by low energy electron diffraction and X-ray photoelectron spectroscopy, respectively. A two-step annealing procedure of initially monohydride-terminated, (1 × 2) reconstructed Si(100) in As leads to a predominantly (1 × 2) reconstructed surface. GaP nucleation succeeds analogously to As-free systems and epilayers free of antiphase disorder may be grown subsequently. The GaP sublattice orientation, however, is inverted with respect to GaP growth on monohydride-terminated Si(100)

  20. Band gap tuning of epitaxial SrTiO{sub 3-δ}/Si(001) thin films through strain engineering

    SciTech Connect (OSTI)

    Cottier, Ryan J.; Steinle, Nathan A.; Currie, Daniel A.; Theodoropoulou, Nikoleta

    2015-11-30

    We investigate the effect of strain and oxygen vacancies (V{sub O}) on the crystal and optical properties of oxygen deficient, ultra-thin (4–30 nm) films of SrTiO{sub 3-δ} (STO) grown heteroepitaxially on p-Si(001) substrates by molecular beam epitaxy. We demonstrate that STO band gap tuning can be achieved through strain engineering and show that the energy shift of the direct energy gap transition of SrTiO{sub 3-δ}/Si films has a quantifiable dimensional and doping dependence that correlates well with the changes in crystal structure.

  1. CEPAN method of analyzing creep collapse of oval cladding. Volume 5. Evaluation of interpellet gap formation and clad collapse in modern PWR fuel rods

    SciTech Connect (OSTI)

    Adams, W.M.; Fisher, H.D.; Litke, H.J.; Mordarski, W.J.

    1985-04-01

    This report presents the results from a review of interpellet-gap formation, ovality, creepdown and clad collapse data in modern PWR fuel rods. Conclusions are reached regarding the propensity of modern PWR fuel to form such gaps and to undergo clad collapse. CEPAN, a creep-collapse predictor approved by the NRC in 1976, has been reformulated to include the creep analysis of cladding with finite interpellet gaps. The basis for this reformulation is discussed in detail. The model previously used in the calculation of the augmentation factor, a peak linear heat rate penalty due to the presence of interpellet gaps within the fuel rod, has been modified to incorporate gap-formation statistics from modern fuel. Finnally, the benefits of the limited gap formation and the CEPAN reformulation for the licensing of modern PWR fuel rods are evaluated.

  2. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  3. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vuichard, N.; Papale, D.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robustmore » method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.« less

  4. Spatial variation of dosimetric leaf gap and its impact on dose delivery

    SciTech Connect (OSTI)

    Kumaraswamy, Lalith K.; Schmitt, Jonathan D.; Bailey, Daniel W.; Xu, Zheng Zheng; Podgorsak, Matthew B.

    2014-11-01

    Purpose: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. Methods: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. Results: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.30.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. Conclusions: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width

  5. The benzene metabolite trans,trans-muconaldehyde blocks gap junction intercellular communication by cross-linking connexin43

    SciTech Connect (OSTI)

    Rivedal, Edgar Leithe, Edward

    2008-11-01

    Benzene is used at large volumes in many different human activities. Hematotoxicity and cancer-causation as a result of benzene exposure was recognized many years ago, but the mechanisms involved remain unclear. Aberrant regulation of gap junction intercellular communication (GJIC) has been linked to both cancer induction and interference with normal hematopoietic development. We have previously suggested that inhibition of GJIC may play a role in benzene toxicity since benzene metabolites were found to block GJIC, the ring-opened trans,trans-muconaldehyde (MUC) being the most potent metabolite. In the present work we have studied the molecular mechanisms underlying the MUC-induced inhibition of gap junctional communication. We show that MUC induces cross-linking of the gap junction protein connexin43 and that this is likely to be responsible for the induced inhibition of GJIC, as well as the loss of connexin43 observed in Western blots. We also show that glutaraldehyde possesses similar effects as MUC, and we compare the effects to that of formaldehyde. The fact that glutaraldehyde and formaldehyde have been associated with induction of leukemia as well as disturbance of hematopoiesis, strengthens the possible link between the effect of MUC on gap junctions, and the toxic effects of benzene.

  6. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements

    DOE Patents [OSTI]

    Guha, Subhendu; Ovshinsky, Stanford R.

    1990-02-02

    A method of fabricating doped microcrystalline semiconductor alloy material which includes a band gap widening element through a glow discharge deposition process by subjecting a precursor mixture which includes a diluent gas to an a.c. glow discharge in the absence of a magnetic field of sufficient strength to induce electron cyclotron resonance.

  7. Fully gapped superconductivity in In-doped topological crystalline insulator Pb0.5Sn0.5Te

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Guan; Gu, G. D.; Du, Zengyi; Fang, Delong; Yang, Huan; Zhong, R. D.; Schneeloch, J.; Wen, Hai -Hu

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb0.5Sn0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb0.5Sn0.5)0.7In0.3Te is produced by In doping in Pb0.5Sn0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb0.5Sn0.5)0.7In0.3Te on a (001)-oriented surface. The spectrum can be well fitted by an anisotropic s-wave gap function of Δ =more » 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.« less

  8. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    SciTech Connect (OSTI)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  9. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    SciTech Connect (OSTI)

    Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences ?a, ?b, ?c between theory and experiment were as small as 0.020, 0.051, and 0.022, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z???? and Z???? transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to ?3 ???, ?1 ???, and ?2 ??? transitions, respectively. ?-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2pcarboxyl, C 2pside chain, and C 2pcarboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex

  10. Field-induced Gap and Quantized Charge Pumping in Nano-helix

    SciTech Connect (OSTI)

    Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-02-15

    We propose several novel physical phenomena based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. Similar idea can be applied to 'geometrically' constructing one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  11. Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy

    SciTech Connect (OSTI)

    Singh, Sandeep Kumar Peeters, F. M.; Neek-Amal, M.

    2014-02-21

    The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C{sub N{sub c}} X{sub N{sub x}} (X = F or H). We studied GNFs with 10 < N{sub c} < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Δ between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N{sub c}, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy.

  12. Bayesian-information-gap decision theory with an application to CO2 sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    O'Malley, D.; Vesselinov, V. V.

    2015-09-04

    Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO2 sequestration.« less

  13. Bayesian-information-gap decision theory with an application to CO2 sequestration

    SciTech Connect (OSTI)

    O'Malley, D.; Vesselinov, V. V.

    2015-09-04

    Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to address model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO2 sequestration.

  14. An evaluation of the environmental impact assessment system in Vietnam: The gap between theory and practice

    SciTech Connect (OSTI)

    Clausen, Alison; Vu, Hoang Hoa; Pedrono, Miguel

    2011-03-15

    Vietnam has one of the fastest growing economies in the world and has achieved significant socio-economic development in recent years. However this growth is placing increased pressure on an already depleted natural environment. Environmental impact assessment (EIA) is recognised by the Government and international organizations as an important tool in the management of the impacts of future development on the country's natural resource base. The Government's commitment to EIA has been demonstrated through the development and adoption of the Law on Environment Protection (Revised) in 2005 which sets out the requirements for EIA and which represents a major step in the development of a robust legislative framework for EIA in Vietnam. The Law on Environment Protection (Revised) 2005 has now been operational for several years and we have undertaken an evaluation of the resulting EIA system in Vietnam. We argue that while significant improvements have been achieved in the EIA policy framework, an important gap remains between EIA theory and practice. We contend that the basis of the current EIA legislation is strong and that future developments of the EIA system in Vietnam should focus on improving capacity of EIA practitioners rather than further substantial legislative change. Such improvements would allow the Vietnamese EIA system to emerge as an effective and efficient tool for environmental management in Vietnam and as a model EIA framework for other developing countries.

  15. Results of two LANL [beta]=0.175, 350-MHZ, 2-GAP spoke cavities

    SciTech Connect (OSTI)

    Tajima, T.; Edwards, R. L.; Gentzlinger, R.C.; Krawczyk, F. L.; Ledford, J. E.; Liu, Jianfei; Montoya, D. I.; Roybal, R. J.; Schrage, D. L.; Shapiro, A. H.; Barni, D.; Bosotti, A.; Pagani, C. D.

    2003-01-01

    Two {beta} = 0.175, 350 MHz, 2-gap superconducting (SC) spoke cavities were fabricated in industry under the Advanced Accelerator Applications (AAA) project for the transmutation of nuclear waste. These cavities are promising candidates for the accelerating structures between a RFQ and the elliptical SC cavities for proton and heavy ion linacs. Since their delivery in July 2002, they have been tested in terms of mechanical properties, low-temperature performance, i.e., Qo-Eaccc urves at 4 K and 2 K, surface resistance dependence on temperature and for multipacting (MP). The two cavities achieved accelerating fields of 13.5 MV/m and 13.0 MV/m as compared to the required field of 7.5 MV/m with enough margin for the quality factor. These cavities seem to need more time to condition away MP than elliptical cavities, but MP does not occur once the cavity is conditioned and kept at 4 K. The length of the 103 mm-diameter nominal coupler port was found to be too short for the penetrating field.

  16. Expected Performance of the LHC Synchrotron-Light Telescope (BSRT) and Abort-Gap Monitor (BSRA)

    SciTech Connect (OSTI)

    Fisher, Alan; ,

    2010-06-07

    This Report presents calculations of the synchrotron light from proton and lead-ion beams in the LHC at all energies from 0.45 to 7 TeV. It computes the emission from three sources: the uniform-field region of the D3 dipole, the dipole's edge field, and the short undulator just upstream. Light emitted at or near visible wavelengths is assessed for making optical measurements of transverse beam profiles and for monitoring the emptiness of the abort gap in the fill pattern. There is sufficient light for both applications, although both species pass through energy ranges in the ramp with small photon counts. Effects limiting image resolution are examined, including geometric optics, depth of field, and diffraction. The Report also considers recent suggestions that the undulator, intended to supplement the dipole for low energies, should not be ramped off at high energies and perhaps should not be used at all. We conclude that the undulator is essential at low energy for both species, but that it is possible to leave the undulator on at the cost of some blurring at intermediate energies.

  17. Supercondutivity at 9K in Mo5PB2 with evidence for multiple gaps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGuire, Michael A.; Parker, David S.

    2016-02-09

    Superconductivity is observed with critical temperatures near 9 K in the tetragonal compound Mo5PB2. This material adopts the Cr5B3 structure type common to superconducting Nb5Si3–xBx, Mo5SiB2, and W5SiB2, which have critical temperatures of 5.8–7.8 K. We have synthesized polycrystalline samples of the compound, made measurements of electrical resistivity, magnetic susceptibility, and heat capacity, and performed first-principles electronic structure calculations. The highest Tc value (9.2 K) occurs in slightly phosphorus rich samples, with composition near Mo5P1.1B1.9, and the upper critical field Hc2 at T = 0 is estimated to be ≈17 kOe. Together, the measurements and band-structure calculations indicate intermediate couplingmore » (λ=1.0), phonon mediated superconductivity. Here, the temperature dependence of the heat capacity and upper critical field Hc2 below Tc suggest multiple superconducting gaps may be present.« less

  18. Method for implantation of high dopant concentrations in wide band gap materials

    DOE Patents [OSTI]

    Usov, Igor; Arendt, Paul N.

    2009-09-15

    A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.

  19. Ultra-high speed permanent magnet axial gap alternator with multiple stators

    DOE Patents [OSTI]

    Hawsey, Robert A.; Bailey, J. Milton

    1991-01-01

    An ultra-high speed, axial gap alternator that can provide an output to a plurality of loads, the alternator providing magnetic isolation such that operating conditions in one load will not affect operating conditions of another load. This improved alternator uses a rotor member disposed between a pair of stator members, with magnets disposed in each of the rotor member surfaces facing the stator members. The magnets in one surface of the rotor member, which alternate in polarity, are isolated from the magnets in the other surface of the rotor member by a disk of magnetic material disposed between the two sets of magents. In the preferred embodiment, this disk of magnetic material is laminated between two layers of non-magnetic material that support the magnets, and the magnetic material has a peripheral rim that extends to both surfaces of the rotor member to enhance the structural integrity. The stator members are substantially conventional in construction in that equally-spaced and radially-oriented slots are provided, and winding members are laid in these slots. A unit with multiple rotor members and stator members is also described.

  20. Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap

    SciTech Connect (OSTI)

    Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.

    2015-03-28

    Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.

  1. Modeling of Gap Closure in Uranium-Zirconium Alloy Metal Fuel - A Test Problem

    SciTech Connect (OSTI)

    Simunovic, Srdjan; Ott, Larry J; Gorti, Sarma B; Nukala, Phani K; Radhakrishnan, Balasubramaniam; Turner, John A

    2009-10-01

    Uranium based binary and ternary alloy fuel is a possible candidate for advanced fast spectrum reactors with long refueling intervals and reduced liner heat rating [1]. An important metal fuel issue that can impact the fuel performance is the fuel-cladding gap closure, and fuel axial growth. The dimensional change in the fuel during irradiation is due to a superposition of the thermal expansion of the fuel due to heating, volumetric changes due to possible phase transformations that occur during heating and the swelling due to fission gas retention. The volumetric changes due to phase transformation depend both on the thermodynamics of the alloy system and the kinetics of phase change reactions that occur at the operating temperature. The nucleation and growth of fission gas bubbles that contributes to fuel swelling is also influenced by the local fuel chemistry and the microstructure. Once the fuel expands and contacts the clad, expansion in the radial direction is constrained by the clad, and the overall deformation of the fuel clad assembly depends upon the dynamics of the contact problem. The neutronics portion of the problem is also inherently coupled with microstructural evolution in terms of constituent redistribution and phase transformation. Because of the complex nature of the problem, a series of test problems have been defined with increasing complexity with the objective of capturing the fuel-clad interaction in complex fuels subjected to a wide range of irradiation and temperature conditions. The abstract, if short, is inserted here before the introduction section. If the abstract is long, it should be inserted with the front material and page numbered as such, then this page would begin with the introduction section.

  2. Calibration Monitoring for Sensor Calibration Interval Extension: Gaps in the Current Science Base

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-10-09

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. International application of calibration monitoring has shown that sensors may operate for longer periods within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. Online monitoring (OLM) can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of OLM for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This paper summarizes a recent state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and OLM algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several technical needs were identified, including an understanding of the impacts of sensor degradation on measurements for both conventional and emerging sensors; the quantification of uncertainty in online calibration assessment; determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity.

  3. Moderate forest disturbance as a stringent test for gap and big-leaf models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bond-Lamberty, Benjamin; Fisk, Justin P.; Holm, Jennifer; Bailey, Vanessa L.; Bohrer, Gil; Gough, Christopher

    2015-01-27

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models – Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models – could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experimentmore » in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.« less

  4. Operation of a test bed axial-gap brushless dc rotor with a superconducting stator

    SciTech Connect (OSTI)

    McKeever, J.W.; Sohns, C.W.; Schwenterly, S.W.; Young, R.W. Sr.; Campbell, V.W.; Hickey, M.H.; Ott, G.W.; Bailey, J.M.

    1993-08-01

    A variable-speed axial-gap motor with a stator consisting of four liquid helium cooled superconducting electromagnets (two pole pairs) was built and proof tested up to 608 rpm in November 1990 as a tool for joint industry-laboratory evaluation of coils fabricated from high-temperature oxide superconductors. A second rotor was fabricated with improved materia winding configuration, and wire type, and the drive system was modified to eliminate current spiking. The modified motor was characterized to design speed, 188 rad/s (1800 rpm), to acquire a performance baseline for future comparison with that of high-temperature superconducting (HIS) wire. As it becomes commercially available, HTS wire will replace the low-temperature electromagnet wire in a stator modified to control wire temperatures between 4 K and 77 K. Measurements of the superconducting electromagnetic field and locked rotor torque as functions of cryocurrent and dc current through two phases of the rotor, respectively, provided data to estimate power that could be developed by the rotor. Back emf and parasitic mechanical and electromagnetic drag torques were measured as functions of angular velocity to calculate actual rotor power developed and to quantify losses, which reduce the motor`s efficiency. A detailed measurement of motor power at design speed confirmed the developed power equation. When subsequently operated at the 33-A maximum available rotor current, the motor delivered 15.3 kill (20.5 hp) to the load. In a final test, the cryostat was operated at 2500 A, 200 A below its critical current. At rotor design current of 60 A and 2500 A stator current, the extrapolated developed power would be 44.2 kill (59.2 hp) with 94% efficiency.

  5. Moderate forest disturbance as a stringent test for gap and big-leaf models

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Fisk, Justin P.; Holm, Jennifer; Bailey, Vanessa L.; Bohrer, Gil; Gough, Christopher

    2015-01-27

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models – Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models – could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.

  6. Halftoning band gap of InAs/InP quantum dots using inductively coupled argon plasma-enhanced intermixing

    SciTech Connect (OSTI)

    Nie, D.; Mei, T.; Xu, C. D.; Dong, J. R.

    2006-09-25

    Inductively coupled argon plasma-enhanced intermixing of InAs/InP quantum dots grown on InP substrate is investigated. Intermixing is promoted by the near-surface defects generated by plasma exposure in annealing at a temperature of 600 deg. C for 30 s. The annealing results in a maximum differential band-gap blueshift of 106 nm but a thermal shift of only 10 nm. Band-gap halftones are obtained by controlling the amount of near-surface defects via wet chemical etching on the plasma-exposed InP cap layer. No degradation of quantum-dot crystal quality due to the process has been observed as evidenced by photoluminescence intensity.

  7. Experimental investigation on plasma parameter profiles on a wafer level with reactor gap lengths in an inductively coupled plasma

    SciTech Connect (OSTI)

    Kim, Ju-Ho; Chung, Chin-Wook; Kim, Young-Cheol

    2015-07-15

    The gap length effect on plasma parameters is investigated in a planar type inductively coupled plasma at various conditions. The spatial profiles of ion densities and the electron temperatures on the wafer level are measured with a 2D probe array based on the floating harmonic method. At low pressures, the spatial profiles of the plasma parameters rarely changed by various gap lengths, which indicates that nonlocal kinetics are dominant at low pressures. However, at relatively high pressures, the spatial profiles of the plasma parameter changed dramatically. These plasma distribution profile characteristics should be considered for plasma reactor design and processing setup, and can be explained by the diffusion of charged particles and the local kinetics.

  8. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    SciTech Connect (OSTI)

    Raghu, S. Subramanya, K. Sharanappa, C. Mini, V. Archana, K. Sanjeev, Ganesh Devendrappa, H.

    2014-04-24

    The effects of gamma (γ) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with γ dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation.

  9. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEHICLE TECHNOLOGIES OFFICE WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials February 2013 FINAL REPORT This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  10. The effects of gaps between bridge foils and PETN as a function of PETN density and specific surface area

    SciTech Connect (OSTI)

    Phillips, D; Roeske, F; Burnham, A

    2007-06-26

    X-ray computer tomography scans of artificially aged PETN seem to indicate shrinkage of material and, by extension, an increased high explosive density, resulting in potential separation of the HE from the header/bridge foil. We have investigated these phenomena by mimicking this shrinkage of material (load density). Thus, we have evaluated various induced gaps between the exploding bridge foil and the PETN in our custom detonators by changing both specific surface area - recognizing crystal morphology changes - and load density. Analyses for these data include absolute function time relative to bridge burst and careful evaluation of the detonation wave breakout curvature, using an electronic streak camera for wave capture, in cases where the bridge foil (exploding bridge wire - EBW style) initiation successfully traverses the gap (a 'go' condition). In addition, a fireset with subnanosecond trigger jitter was used for these tests allowing easy comparison of relative 'go' function times. Using the same test matrix and fine-tuning the induced gap, a second, smaller subset of these experiments were performed to provide additional insight as to what conditions we might expect detonator anomalies/failure.

  11. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    SciTech Connect (OSTI)

    Heo, Sung; Cho, Eunseog; Lee, Hyung-Ik; Park, Gyeong Su; Kang, Hee Jae; Nagatomi, T.; Choi, Pyungho; Choi, Byoung-Deog

    2015-07-15

    The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS) and high-energy resolution REELS (HR-REELS). HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS) energy was located at approximately 4.2 eV above the valence band maximum (VBM) and the surface band gap width (E{sub g}{sup S}) was approximately 6.3 eV. The bulk F center (F{sub B}) energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were F{sub S} and F{sub B}, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ) for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  12. Percolation Cooling of the Three Mile Island Unit 2 Lower Head by Way of Thermal Cracking and Gap Formation

    SciTech Connect (OSTI)

    Thomsen, K.L.

    2002-01-15

    Two partial models have been developed to elucidate the Three Mile Island Unit 2 lower head coolability by water percolation from above into the thermally cracking debris bed and into a gap between the debris and the wall. The bulk permeability of the cracked top crust is estimated based on simple fracture mechanics and application of Poiseuille's law to the fractures. The gap is considered as an abstraction representing an initially rugged interface, which probably expanded by thermal deformation and cracking in connection with the water ingress. The coupled flow and heat conduction problem for the top crust is solved in slab geometry based on the two-phase Darcy equations together with quasi-steady mass and energy conservation equations. The resulting water penetration depth is in good agreement with the depth of the so-called loose debris bed. The lower-head and bottom-crust problem is treated analogously by a two-dimensional axisymmetric model. The notion of a gap is maintained as a useful concept in the flow analysis. Simulations show that a central hot spot with a peak wall temperature of 1075 to 1100 deg. C can be obtained, but the quenching rates are not satisfactory. It is concluded that a three-dimensional model with an additional mechanism to explain the sudden water ingress to the hot spot center would be more appropriate.

  13. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses

    SciTech Connect (OSTI)

    Dong, Na; Zhu, Yongqun; Lu, Qiuhe; Hu, Liyan; Zheng, Yuqing; Shao, Feng

    2012-10-10

    Rab GTPases are frequent targets of vacuole-living bacterial pathogens for appropriate trafficking of the vacuole. Here we discover that bacterial effectors including VirA from nonvacuole Shigella flexneri and EspG from extracellular Enteropathogenic Escherichia coli (EPEC) harbor TBC-like dual-finger motifs and exhibits potent RabGAP activities. Specific inactivation of Rab1 by VirA/EspG disrupts ER-to-Golgi trafficking. S. flexneri intracellular persistence requires VirA TBC-like GAP activity that mediates bacterial escape from autophagy-mediated host defense. Rab1 inactivation by EspG severely blocks host secretory pathway, resulting in inhibited interleukin-8 secretion from infected cells. Crystal structures of VirA/EspG-Rab1-GDP-aluminum fluoride complexes highlight TBC-like catalytic role for the arginine and glutamine finger residues and reveal a 3D architecture distinct from that of the TBC domain. Structure of Arf6-EspG-Rab1 ternary complex illustrates a pathogenic signaling complex that rewires host Arf signaling to Rab1 inactivation. Structural distinctions of VirA/EspG further predict a possible extensive presence of TBC-like RabGAP effectors in counteracting various host defenses.

  14. Sedimentology of the Mesaverde Formation at Rifle Gap, Colorado and implications for gas-bearing intervals in the subsurface

    SciTech Connect (OSTI)

    Lorenz, J.C.

    1982-03-01

    The exposures of the Mesaverde Formation at Rifle Gap, Colorado, are of a regressive series of marine to fluvial deposits about 1650 m (5000 ft) thick. Grading up out of the marine Mancos Shale, the blanket shoreline sandstones of the Corcoran, Cozzette, and Rollins Sandstones record substages of the regression as delta lobes were activated and abandoned in northwestern Colorado during Late Cretaceous time. The overlying coals, sandstones, and carbonaceous mudstones were deposited on the paludal lower delta plain behind the shoreline. Meandering fluvial systems prograded over the paludal deposits. These systems deposited point-bar sandstones and overbank mudstones and siltstones in composite meander-belt trends, some of which are now gas-bearing, low-permeability reservoirs. Reorientation of the paleogeography during the Laramide orogeny (contemporaneous with fluvial deposition) probably changed the orientation of the meander belt trends. The uppermost sandstones at Rifle Gap, including the Ohio Creek conglomerate, are interpreted as shoreline deposits of a transgression that has been previously unrecognized in the area. Most of the record of this transgression has been destroyed by pre-Eocene erosion. The outcrops at Rifle Gap provide a basis for interpreting subsurface deposis in the Department of Energy's Western Gas Sands Project Multi-Well Experiment, 12 miles away.

  15. Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition

    SciTech Connect (OSTI)

    Rai, R. C.; Guminiak, M.; Wilser, S.; Cai, B.; Nakarmi, M. L.

    2012-04-01

    We report the surface, structural, electronic, and optical properties of the epitaxial ZnO thin films grown on (0001) sapphire substrate at 600 deg. C by an electron-beam deposition technique. ZnO thin films have been deposited in an oxygen environment and post-deposition annealed to improve the stoichiometry and the crystal quality. In order to investigate the free exciton binding energy and the temperature dependence of the energy bandgap, we carried out variable temperature (78-450 K) transmittance measurements on ZnO thin films. The absorption data below the energy bandgap have been modeled with the Urbach tail and a free exciton, while the data above the gap have been modeled with the charge transfer excitations. The exciton binding energy is measured to be E{sub 0}= 64 {+-} 7 meV, and the energy band gaps of the ZnO film are measured to be E{sub g}-tilde 3.51 and 3.48 eV at 78 and 300 K, respectively. The temperature dependence of the energy gap has been fitted with the Varshni model to extract the fitting parameters {alpha}= 0.00020 {+-} 0.00002 eV/K, {beta}= 325 {+-} 20 K, and E{sub g} (T = 0 K) = 3.516 {+-} 0.0002 eV.

  16. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jin; He, Chaoyu; Meng, Lijun; Xiao, Huaping; Tang, Chao; Wei, Xiaolin; Kim, Jinwoong; Kioussis, Nicholas; Stocks, G. Malcolm; Zhong, Jianxin

    2015-09-14

    Here, we report that two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tunedmore » up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.« less

  17. Strategy and gaps for modeling, simulation, and control of hybrid systems

    SciTech Connect (OSTI)

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob; Kinoshita, Robert; Mesina, George L.; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    , dynamic energy systems requires multiple simulation tools, potentially developed in several programming languages and resolved on separate time scales. Whereas further investigation and development of hybrid concepts will provide a more complete understanding of the joint computational and physical modeling needs, this report highlights areas in which co-simulation capabilities are warranted. The current development status, quality assurance, availability and maintainability of simulation tools that are currently available for hybrid systems modeling is presented. Existing gaps in the modeling and simulation toolsets and development needs are subsequently discussed. This effort will feed into a broader Roadmap activity for designing, developing, and demonstrating hybrid energy systems.

  18. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  19. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong; Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.

  20. In situ study of atomic layer deposition Al{sub 2}O{sub 3} on GaP (100)

    SciTech Connect (OSTI)

    Dong, H.; Brennan, B.; Qin, X.; Hinkle, C. L.; Kim, J.; Wallace, R. M.; Zhernokletov, D. M.

    2013-09-16

    The interfacial chemistry of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} on chemically treated GaP (100) has been studied using in situ X-ray photoelectron spectroscopy. A “self-cleaning” effect for Ga-oxide upon exposure to trimethylaluminum is seen to be efficient on the native oxide and chemically treated surfaces. The phosphorus oxide chemical states are seen to change during the ALD process, but the total concentration of P-oxides is seen to remain constant throughout the ALD process.

  1. Plasmon-polariton and ⟨n⟨ = 0 non-Bragg gaps in 1D Cantor photonic superlattices

    SciTech Connect (OSTI)

    Meja-Salazar, J. R.; Porras-Montenegro, N.; Reyes-Gmez, E.; Cavalcanti, S. B.; Oliveira, L. E.

    2014-05-15

    We have used the transfer-matrix approach for one-dimensional Cantor photonic superlattices, and studied the plasmon-polariton modes for a multilayered system composed by alternating layers of positive and dispersive materials. Results indicate that the corresponding plasmon-polariton modes, which show up for oblique incidence, strongly depend on the Cantor step, and the plasmon-polariton subbands are associated with the number of metamaterial layers contained in the elementary cell. Moreover, we have studied the ⟨n⟩ = 0 non-Bragg gap in such fractal photonic superlattices and characterized its behavior as function of the steps of the Cantor series.

  2. June 11, 2009, HSS/Union Task Meeting on 2009 HSS/Union Task Progress - Assessing Training Gaps in ORPS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Gaps Using DOE's Occurrence Reporting and Processing System (ORPS) HSS/Union Meeting June 11, 2009 2 Highlights Training is a contributing cause in about 15% of DOE operational events (about 150 per year) * Poor management practices are the most common training cause * Poor training programs are next (cited about 50 times per year) Of ORPS-reported injuries, about 17% had training as a contributing cause (101 of 594) * About 30 per year HS-30 will develop a report with a few more

  3. Experimental demonstration of line-width modulation in plasmonic lithography using a solid immersion lens-based active nano-gap control

    SciTech Connect (OSTI)

    Lee, Won-Sup; Kim, Taeseob; Choi, Guk-Jong; Lim, Geon; Joe, Hang-Eun; Gang, Myeong-Gu; Min, Byung-Kwon; Park, No-Cheol; Moon, Hyungbae; Kim, Do-Hyung; Park, Young-Pil

    2015-02-02

    Plasmonic lithography has been used in nanofabrication because of its utility beyond the diffraction limit. The resolution of plasmonic lithography depends on the nano-gap between the nanoaperture and the photoresist surface—changing the gap distance can modulate the line-width of the pattern. In this letter, we demonstrate solid-immersion lens based active non-contact plasmonic lithography, applying a range of gap conditions to modulate the line-width of the pattern. Using a solid-immersion lens-based near-field control system, the nano-gap between the exit surface of the nanoaperture and the media can be actively modulated and maintained to within a few nanometers. The line-widths of the recorded patterns using 15- and 5-nm gaps were 47 and 19.5 nm, respectively, which matched closely the calculated full-width at half-maximum. From these results, we conclude that changing the nano-gap within a solid-immersion lens-based plasmonic head results in varying line-width patterns.

  4. Band gap estimation from temperature dependent Seebeck measurementDeviations from the 2e|S|{sub max}T{sub max} relation

    SciTech Connect (OSTI)

    Gibbs, Zachary M.; Kim, Hyun-Sik; Wang, Heng; Snyder, G. Jeffrey

    2015-01-12

    In characterizing thermoelectric materials, electrical and thermal transport measurements are often used to estimate electronic band structure properties such as the effective mass and band gap. The Goldsmid-Sharp band gap, E{sub g}?=?2e|S|{sub max}T{sub max}, is a tool widely employed to estimate the band gap from temperature dependent Seebeck coefficient measurements. However, significant deviations of more than a factor of two are now known to occur. We find that this is when either the majority-to-minority weighted mobility ratio (A) becomes very different from 1.0 or as the band gap (E{sub g}) becomes significantly smaller than 10 k{sub B}T. For narrow gaps (E{sub g}???6 k{sub B}T), the Maxwell-Boltzmann statistics applied by Goldsmid-Sharp break down and Fermi-Dirac statistics are required. We generate a chart that can be used to quickly estimate the expected correction to the Goldsmid-Sharp band gap depending on A and S{sub max}; however, additional errors can occur for S?

  5. Effect of surface viscosity, anchoring energy, and cell gap on the response time of nematic liquid crystals

    SciTech Connect (OSTI)

    Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.; Evangelista, L.R.; Zola, R.S.

    2014-07-15

    An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (?{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that ??d{sup b}, where b=2 is observed only for strongly anchored cells, while for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscositys effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. The results are numerically verified. Surface viscosity is crucial for thin and weak anchored cells. The effect on optical time and pretilt angle is also studied.

  6. Electronic Structures, Bonding Configurations, and Band-Gap-Opening Properties of Graphene Binding with Low-Concentration Fluorine

    SciTech Connect (OSTI)

    Duan, Yuhua; Stinespring, Charter D.; Chorpening, Benjamin

    2015-06-18

    To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine above the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the porbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.

  7. Simulating Interface Growth and Defect Generation in CZT – Simulation State of the Art and Known Gaps

    SciTech Connect (OSTI)

    Henager, Charles H.; Gao, Fei; Hu, Shenyang Y.; Lin, Guang; Bylaska, Eric J.; Zabaras, Nicholas

    2012-11-01

    This one-year, study topic project will survey and investigate the known state-of-the-art of modeling and simulation methods suitable for performing fine-scale, fully 3-D modeling, of the growth of CZT crystals at the melt-solid interface, and correlating physical growth and post-growth conditions with generation and incorporation of defects into the solid CZT crystal. In the course of this study, this project will also identify the critical gaps in our knowledge of modeling and simulation techniques in terms of what would be needed to be developed in order to perform accurate physical simulations of defect generation in melt-grown CZT. The transformational nature of this study will be, for the first time, an investigation of modeling and simulation methods for describing microstructural evolution during crystal growth and the identification of the critical gaps in our knowledge of such methods, which is recognized as having tremendous scientific impacts for future model developments in a wide variety of materials science areas.

  8. Electronic Structures, Bonding Configurations, and Band-Gap-Opening Properties of Graphene Binding with Low-Concentration Fluorine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duan, Yuhua; Stinespring, Charter D.; Chorpening, Benjamin

    2015-06-18

    To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine abovemore » the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the porbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.« less

  9. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    SciTech Connect (OSTI)

    Bai Xianchen; Yang Jianhua; Zhang Jiande

    2012-08-15

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  10. Wide band gap p-type nanocrystalline CuBO{sub 2} as a novel UV photocatalyst

    SciTech Connect (OSTI)

    Santra, S.; Das, N.S.; Chattopadhyay, K.K.

    2013-07-15

    Graphical abstract: - Highlights: CuBO{sub 2} nanocrystals were synthesized by solgel route. The products have been characterized to confirm the formation of CuBO{sub 2}. Photocatalytic activity of this material is reported for the first time. - Abstract: Wide band gap copper based delafossite CuBO{sub 2} nanocrystalline powders of different particle sizes were synthesized via solgel route. Structural characterization was performed using X-ray diffraction (XRD) and transmission electron microscopy (TEM) which confirmed good crystallinity and proper phase formation of the samples. Compositional analysis was carried out by energy dispersive X-ray studies (EDX), whereas field emission scanning electron microscopy revealed morphological information of the samples. The photocatalytic performance of this delafossite material was studied for the first time with a standard photocatalytic set-up and the photocatalytic efficiency was found to increase with decreasing particle size. The LangmuirHinshelwood photocatalytic rate constants increased considerably for the samples synthesized at different pH from 2.75 to 0.5; which eventually varied particle size. The efficient photocatalytic performance, found for the first time here, will make this novel p-type wide band gap semiconductor a truly multifunctional material.

  11. Two-dimensional topological crystalline insulator phase in Sb/Bi planar honeycomb with tunable Dirac gap

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsu, Chia -Hsiu; Huang, Zhi -Quan; Crisostomo, Christian P.; Yao, Liang -Zi; Chuang, Feng -Chuan; Liu, Yu -Tzu; Wang, Baokai; Hsu, Chuang -Han; Lee, Chi -Cheng; Lin, Hsin; et al

    2016-01-14

    We predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror Chern numbers, indicating that the system can host topologically protected edge states. Our computations show that the electronic spectrum of a planar Sb/Bi nanoribbon with armchair or zigzag edges contains two Dirac cones within the band gap and an even number of edge bands crossing themore » Fermi level. Lattice constant of the planar Sb honeycomb is found to nearly match that of hexagonal-BN. As a result, the Sb nanoribbon on hexagonal-BN exhibits gapped edge states, which we show to be tunable by an out-of the-plane electric field, providing controllable gating of edge state important for device applications.« less

  12. Properties of Wide-Gap Chalcopyrite Semiconductors for Photovoltaic Applications: Final Report, 8 July 1998 -- 17 October 2001

    SciTech Connect (OSTI)

    Rockett, A.

    2003-07-01

    The objectives of this project were to obtain a fundamental understanding of wide-gap chalcopyrite semiconductors and photovoltaic devices. Information to be gathered included significant new fundamental materials data necessary for accurate modeling of single- and tandem-junction devices, basic materials science of wider-gap chalcopyrite semiconductors to be used in next-generation devices, and practical information on the operation of devices incorporating these materials. Deposition used a hybrid sputtering and evaporation method shown previously to produce high-quality epitaxial layers of Cu(In,Ga)Se2 (CIGS). Materials analysis was also provided to assist members of the National CIS Team, of which, through this contract, we were a member. Solar cells produced from resulting single-crystal epitaxial layers in collaboration with various members of the CIS Team were used to determine the factors limiting performance of the devices based on analysis of the results. Because epitaxial growth allows us to determine the surface orientation of our films specifically by choice of the substrate surface on which the film is grown, a major focus of the project concerned the nature of (110)-oriented CIGS films and the performance of solar cells produced from these films. We begin this summary with a description of the results for growth on (110) GaAs, which formed a basis for much of the work ultimately conducted under the program.

  13. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    SciTech Connect (OSTI)

    Michael David Petersen

    2001-05-01

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn,Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  14. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    SciTech Connect (OSTI)

    Michael David Petersen

    2001-06-27

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn, Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  15. One Man's Trash is Another Man's Fuel | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Dennis A. Smith Director, National Clean Cities The average American throws away more than 900 pounds of trash every year. Organic waste degrading in landfills produces methane gas ...

  16. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy - Oral Presentation

    SciTech Connect (OSTI)

    Flynn, Kristen

    2015-08-19

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  17. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy

    SciTech Connect (OSTI)

    Flynn, Kristen

    2015-08-18

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  18. Unified Nusselt- and Sherwood-number correlations in axisymmetric finite-gap stagnation and rotating-disk flows

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coltrin, Michael E.; Kee, Robert J.

    2016-06-18

    This paper develops a unified analysis of stagnation flow heat and mass transport, considering both semi-infinite domains and finite gaps, with and without rotation of the stagnation surface. An important objective is to derive Nusselt- and Sherwood-number correlations that represent heat and mass transport at the stagnation surface. The approach is based on computationally solving the governing conservation equations in similarity form as a boundary-value problem. The formulation considers ideal gases and incompressible fluids. The correlated results depend on fluid properties in terms of Prandtl, Schmidt, and Damkohler numbers. Heterogeneous chemistry at the stagnation surface is represented as a singlemore » first-order reaction. A composite Reynolds number represents the combination of stagnation flows with and without stagnation-surface rotation.« less

  19. Physics of band-gap formation and its evolution in the pillar-based phononic crystal structures

    SciTech Connect (OSTI)

    Pourabolghasem, Reza; Mohammadi, Saeed; Eftekhar, Ali Asghar; Adibi, Ali; Khelif, Abdelkrim

    2014-07-07

    In this paper, the interplay of Bragg scattering and local resonance is theoretically studied in a phononic crystal (PnC) structure composed of a silicon membrane with periodic tungsten pillars. The comparison of phononic band gaps (PnBGs) in three different lattice types (i.e., square, triangular, and honeycomb) with different pillar geometries shows that different PnBGs have varying degrees of dependency on the lattice symmetry based on the interplay of the local resonances and the Bragg effect. The details of this interplay is discussed. The significance of locally resonating pillars, specially in the case of tall pillars, on PnBGs is discussed and verified by examining the PnBG position and width in perturbed lattices via Monte Carlo simulations. It is shown that the PnBGs caused by the local resonance of the pillars are more resilient to the lattice perturbations than those caused by Bragg scattering.

  20. Conductivity and optical band gaps of polyethylene oxide doped with Li{sub 2}SO{sub 4} salt

    SciTech Connect (OSTI)

    Chapi, Sharanappa Raghu, S. Subramanya, K. Archana, K. Mini, V. Devendrappa, H.

    2014-04-24

    The conductivity and optical properties of Li{sub 2}SO{sub 4} doped polyethylene oxide (PEO) films were studied. The polymer electrolyte films are prepared using solution casting technique. The material phase change was confirmed by X-ray diffraction (XRD) technique. Optical absorption study was conducted using UV- Vis. Spectroscopy in the wavelength range 190–1100nm on pure and doped PEO films. The direct and indirect optical band gaps were found decreased from 5.81–4.51eV and 4.84–3.43eV respectively with increasing the Li{sub 2}SO{sub 4}. The conductivity found to increases with increasing the dopant concentration due to strong hopping mechanism at room temperature.

  1. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    SciTech Connect (OSTI)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-07-07

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  2. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    SciTech Connect (OSTI)

    Zaytsev, Kirill I. Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O.; Gorelik, Vladimir S.

    2014-06-07

    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  3. SDSS J001153.08–064739.2, A cataclysmic variable with an evolved donor in the period gap

    SciTech Connect (OSTI)

    Rebassa-Mansergas, A.; Parsons, S. G.; Schreiber, M. R.; Copperwheat, C. M.; Justham, S.; Gänsicke, B. T.; Marsh, T. R.; Dhillon, V. S.

    2014-07-20

    Secondary stars in cataclysmic variables (CVs) follow a well-defined period-density relation. Thus, canonical donor stars in CVs are generally low-mass stars of spectral type M. However, several CVs have been observed containing secondary stars that are too hot for their inferred masses. This particular configuration can be explained if the donor stars in these systems underwent significant nuclear evolution before they reached contact. In this paper, we present SDSS J001153.08–064739.2 as an additional example belonging to this peculiar type of CV and discuss in detail its evolutionary history. We perform spectroscopic and photometric observations and make use of available Catalina Real-Time Transient Survey photometry to measure the orbital period of SDSS J001153.08–064739.2 as 2.4 hr and estimate the white dwarf (M{sub wd} > 0.65 M{sub ☉}) and donor star (0.21 M{sub ☉} < M{sub don} < 0.45 M{sub ☉}) masses, the mass ratio (q = 0.32 ± 0.08), the orbital inclination (47° < i < 70°); derive an accurate orbital ephemeris (T{sub 0} = 2453383.578(1) + E × 0.10028081(8)); and report the detection of an outburst. We show that SDSS J001153.08–064739.2 is one of the most extreme cases in which the donor star is clearly too hot for its mass. SDSS J001153.08–064739.2 is therefore not only a peculiar CV containing an evolved donor star, but also an accreting CV within the period gap. Intriguingly, approximately half of the total currently observed sample of these peculiar CVs are located in the period gap with nearly the same orbital period.

  4. Observational Study Designs for Comparative Effectiveness Research: An Alternative Approach to Close Evidence Gaps in Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Goulart, Bernardo H.L.; Ramsey, Scott D.; Parvathaneni, Upendra

    2014-01-01

    Comparative effectiveness research (CER) has emerged as an approach to improve quality of care and patient outcomes while reducing healthcare costs by providing evidence to guide healthcare decisions. Randomized controlled trials (RCTs) have represented the ideal study design to support treatment decisions in head-and-neck (H and N) cancers. In RCTs, formal chance (randomization) determines treatment allocation, which prevents selection bias from distorting the measure of treatment effects. Despite this advantage, only a minority of patients qualify for inclusion in H and N RCTs, which limits the validity of their results to the broader H and N cancer patient population seen in clinical practice. Randomized controlled trials often do not address other knowledge gaps in the management of H and N cancer, including treatment comparisons for rare types of H and N cancers, monitoring of rare or late toxicity events (eg, osteoradionecrosis), or in some instances an RCT is simply not feasible. Observational studies, or studies in which treatment allocation occurs independently of investigators' choice or randomization, may address several of these gaps in knowledge, thereby complementing the role of RCTs. This critical review discusses how observational CER studies complement RCTs in generating the evidence to inform healthcare decisions and improve the quality of care and outcomes of H and N cancer patients. Review topics include a balanced discussion about the strengths and limitations of both RCT and observational CER study designs; a brief description of design and analytic techniques to handle selection bias in observational studies; examples of observational studies that inform current clinical practices and management of H and N cancers; and suggestions for relevant CER questions that could be addressed by an observational study design.

  5. TaqMan PCR Simulator

    Energy Science and Technology Software Center (OSTI)

    2007-05-01

    TaqSim simulates various types of PRC reactions, including multiplex reactions. Given a set of primers and dearch databases, TaqSim identifies amplicons that match user defined criteria and can generate output files in a number of formats allowing it to serve as a front-end or back-end for other software.

  6. Materials Man (Release) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnerships form the foundation of the ARC. He emphasizes the importance of alliances that have been forged among Jefferson Lab, NASA Langley Research Center and ARC's...

  7. GaP ring-like nanostructures on GaAs (100) with In{sub 0.15}Ga{sub 0.85}As compensation layers

    SciTech Connect (OSTI)

    Prongjit, Patchareewan Pankaow, Naraporn Boonpeng, Poonyasiri Thainoi, Supachok Panyakeow, Somsak Ratanathammaphan, Somchai

    2013-12-04

    We present the fabrication of GaP ring-like nanostructures on GaAs (100) substrates with inserted In{sub 0.15}Ga{sub 0.85}As compensation layers. The samples are grown by droplet epitaxy using solid-source molecular beam epitaxy. The dependency of nanostructural and optical properties of GaP nanostructures on In{sub 0.15}Ga{sub 0.85}As layer thickness is investigated by ex-situ atomic force microscope (AFM) and photoluminescence (PL). It is found that the characteristics of GaP ring-like structures on GaAs strongly depend on the In{sub 0.15}Ga{sub 0.85}As layer thickness.

  8. Man o' War Mutation in UDP-α-D-Xylose Synthase Favors the Abortive Catalytic Cycle and Uncovers a Latent Potential for Hexamer Formation

    SciTech Connect (OSTI)

    Walsh, Jr., Richard M.; Polizzi, Samuel J.; Kadirvelraj, Renuka; Howard, Wesley W.; Wood, Zachary A.

    2015-03-17

    The man o’ war (mow) phenotype in zebrafish is characterized by severe craniofacial defects due to a missense mutation in UDP-α-D-xylose synthase (UXS), an essential enzyme in proteoglycan biosynthesis. The mow mutation is located in the UXS dimer interface ~16 Å away from the active site, suggesting an indirect effect on the enzyme mechanism. We have examined the structural and catalytic consequences of the mow mutation (R236H) in the soluble fragment of human UXS (hUXS), which shares 93% sequence identity with the zebrafish enzyme. In solution, hUXS dimers undergo a concentration-dependent association to form a tetramer. Sedimentation velocity studies show that the R236H substitution induces the formation of a new hexameric species. Using two new crystal structures of the hexamer, we show that R236H and R236A substitutions cause a local unfolding of the active site that allows for a rotation of the dimer interface necessary to form the hexamer. The disordered active sites in the R236H and R236A mutant constructs displace Y231, the essential acid/base catalyst in the UXS reaction mechanism. The loss of Y231 favors an abortive catalytic cycle in which the reaction intermediate, UDP-α-D-4-keto-xylose, is not reduced to the final product, UDP-α-D-xylose. Surprisingly, the mow-induced hexamer is almost identical to the hexamers formed by the deeply divergent UXS homologues from Staphylococcus aureus and Helicobacter pylori (21% and 16% sequence identity, respectively). The persistence of a latent hexamer-building interface in the human enzyme suggests that the ancestral UXS may have been a hexamer.

  9. SU-E-T-628: Effect of Dose Rate and Leakage Correction for Dosimetric Leaf Gap Measurement

    SciTech Connect (OSTI)

    Feng, W; Chu, A; Chi, Y; Hu, J

    2014-06-15

    Purpose: To study the dose rate response of Mapcheck and quantify/correct dose rate/leakage effect on IMRT QA. Evaluate the dose rate/leakage effect on dosimetric leaf gap (DLG) measurement. Methods: Varian Truebeam Linac with HD120 MLC was used for all measurement, it is capable to adjust dose rate from 600MU/min to 5MU/min. Fluke Advanced Therapy Doisemter and PTW 30013 Farmer chamber for chamber measurement; SunNuclear Mapcheck2 with 5cm total buildup for diode measurement. DLG was measured with both chamber and diode.Diode response was measured by varies dose rate, while fixed mapcheck setup and total MU. MLC Leakage was measured with both chamber and diode. Mapcheck measurement was saved as movie file (mcm file), which include measurement updated every 50mSec. The difference between intervals can be converted to dose and dose rate and leakage response correction can be applied to them. Results: DLG measurement results with chamber and diode were showed as follows, the DLG value is 0.36 vs. 0.24mm respectively. Diode dose rate response drops from 100% at 600MU/min to 95.5% at 5MU/min as follows. MLC Leakage measured with diode is 1.021%, which is 9% smaller than 1.112% from chamber measurement. By apply the dose rate and leakage correction, the residue error reduced 2/3. Conclusions: Diode has lower response at lower dose rate, as low as 4.5% for 5MU/min; diode has lower energy response for low energy too, 5% lower for Co-60 than 6MV. It partially explains the leakage difference of 9% between chamber and diode. Lower DLG with diode is because of the lower response at narrower gap, in Eclipse however DLG need to increase to makeup lower response, which is over correction for chamber though. Correction can reduce error by 2/3, the rest 1/3 can be corrected by scatter effect, which is under study.

  10. Significant Reduction in NiO Band Gap upon Formation of LixNi1?xO Alloys: Applications to Solar Energy Conversion

    SciTech Connect (OSTI)

    Alidoust, Nima; Toroker, Maytal; Keith, John A.; Carter, Emily A.

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ?1.52.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiOs large band gap (?4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ?2.0 eV when NiO is alloyed with Li2O. We show that LixNi1?xO alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiOs desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode.

  11. Experimental test of whether electrostatically charged micro-organisms and their spores contribute to the onset of arcs across vacuum gaps

    SciTech Connect (OSTI)

    Grisham, L. R.; Halle, A. von; Carpe, A. F.; Gilton, K. R.; Rossi, Guy; Stevenson, T. N.

    2013-12-15

    Recently it was proposed [L. R. Grisham et al. Phys. Plasmas 19, 023107 (2012)] that one of the initiators of vacuum voltage breakdown between conducting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which then become electrostatically charged when an electric potential is applied across the vacuum gap. This note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maximum operating voltage across a gap between two metallic conductors in a vacuum, comparing cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each case preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance.

  12. Photoelectron emission yield experiments on evolution of sub-gap states in amorphous In-Ga-Zn-O thin films with post deposition hydrogen treatment

    SciTech Connect (OSTI)

    Hayashi, Kazushi Hino, Aya; Tao, Hiroaki; Ochi, Mototaka; Goto, Hiroshi; Kugimiya, Toshihiro

    2015-09-14

    Total photoyield emission spectroscopy (TPYS) was applied to study the evolution of sub-gap states in hydrogen-treated amorphous In-Ga-Zn-O (a-IGZO) thin films. The a-IGZO thin films were subjected to hydrogen radicals and subsequently annealed in ultra-high vacuum (UHV) conditions. A clear onset of the electron emission was observed at around 4.3 eV from the hydrogen-treated a-IGZO thin films. After successive UHV annealing at 300 °C, the onset in the TPYS spectra was shifted to 4.15 eV, and the photoelectron emission from the sub-gap states was decreased as the annealing temperature was increased. In conjunction with the results of thermal desorption spectrometer, it was deduced that the hydrogen atoms incorporated in the a-IGZO thin films induced metastable sub-gap states at around 4.3 eV from vacuum level just after the hydrogenation. It was also suggested that the defect configuration was changed due to the higher temperature UHV annealing, and that the hydrogen atoms desorbed with the involvement of Zn atoms. These experiments produced direct evidence to show the formation of sub-gap states as a result of hydrogen incorporation into the a-IGZO thin films.

  13. Experimental Test Of Whether Electrostatically Charged Micro-organisms And Their Spores Contribute To The Onset Of Arcs Across Vacuum Gaps

    SciTech Connect (OSTI)

    none,; Grisham, Larry R.

    2014-02-24

    Recently it was proposed [L.R. Grisham, A. vonHalle, A.F. Carpe, Guy Rossi, K.R. Gilton, E.D. McBride, E.P. Gilson, A. Stepanov, T.N. Stevenson, Physics of Plasma 19 023107 (2012)] that one of the initiators of vacuum voltage breakdown between condu cting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which tnen become electrostatically charged when an electric potential is applied across the vacuum gap. The note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maxium operating voltage across a gap between two metallic conductors in a vacuum, comparing cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance

  14. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stulberg, Michael J.; Huang, Qi

    2015-10-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regionsmore »of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.« less

  15. A TaqMan-based multiplex qPCR assay and DNA extraction method for phylotype IIB sequevars 1&2 (select agent) strains of Ralstonia solanacearum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stulberg, Michael J.; Huang, Qi

    2015-10-01

    Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regionsmore » of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Moreover, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum.« less

  16. Migration of Nuclear Shell Gaps Studied in the d({sup 24}Ne,p{gamma}){sup 25}Ne Reaction

    SciTech Connect (OSTI)

    Catford, W. N.; Timis, C. N.; Baldwin, T. D.; Gelletly, W.; Pain, S. D.; Lemmon, R. C.; Pucknell, V. P. E.; Warner, D. D.; Labiche, M.; Orr, N. A.; Achouri, N. L.; Chapman, R.; Amzal, N.; Burns, M.; Liang, X.; Spohr, K.; Freer, M.; Ashwood, N. I.

    2010-05-14

    The transfer of neutrons onto {sup 24}Ne has been measured using a reaccelerated radioactive beam of {sup 24}Ne to study the (d,p) reaction in inverse kinematics. The unusual raising of the first 3/2{sup +} level in {sup 25}Ne and its significance in terms of the migration of the neutron magic number from N=20 to N=16 is put on a firm footing by confirmation of this state's identity. The raised 3/2{sup +} level is observed simultaneously with the intruder negative parity 7/2{sup -} and 3/2{sup -} levels, providing evidence for the reduction in the N=20 gap. The coincident gamma-ray decays allowed the assignment of spins as well as the transferred orbital angular momentum. The excitation energy of the 3/2{sup +} state shows that the established USD shell model breaks down well within the sd model space and requires a revised treatment of the proton-neutron monopole interaction.

  17. Radiation response analysis of wide-gap p-AlInGaP for superhigh-efficiency space photovoltaics

    SciTech Connect (OSTI)

    Khan, Aurangzeb; Marupaduga, S.; Anandakrishnan, S.S.; Alam, M.; Ekins-Daukes, N.J.; Lee, H.S.; Sasaki, T.; Yamaguchi, M.; Takamoto, T.; Agui, T.; Kamimura, K.; Kaneiwa, M.; Imazumi, M.

    2004-11-29

    We present here the direct observation of the majority and minority carrier defects generation from wide-band-gap (2.04 eV) and thick (2 {mu}m) p-AlInGaP diodes and solar cells structures before and after 1 MeV electron irradiation by deep level transient spectroscopy (DLTS). One dominant hole-emitting trap H1 (E{sub V}+0.37{+-}0.05 eV) and two electron-emitting traps, E1 (E{sub C}-0.22{+-}0.04 eV) and E3 (E{sub C}-0.78{+-}0.05 eV) have been observed in the temperature range, which we could scan by DLTS. Detailed analysis of the minority carrier injection annealing experiment reveals that the H1 center has shown the same annealing characteristics, which has been previously observed in all phosphide-based materials such as InP, InGaP, and InGaAsP. The annealing property of the radiation-induced defects in p-AlInGaP reveals that multijunction solar cells and other optoelectronic devices such as light-emitting diodes based on this material could be considerably better to Si and GaAs in a radiation environment.

  18. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect (OSTI)

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  19. Research on high-efficiency, multiple-gap, multijunction, amorphous-silicon-based alloy thin-film solar cells

    SciTech Connect (OSTI)

    Guha, S. )

    1989-06-01

    This report presents results of research on advancing our understanding of amorphous-silicon-based alloys and their use in small-area multijunction solar cells. The principal objectives of the program are to develop a broad scientific base for the chemical, structural, optical, and electronic properties of amorphous-silicon-based alloys; to determine the optimum properties of these alloy materials as they relate to high-efficiency cells; to determine the optimum device configuration for multijunction cells; and to demonstrate proof-of-concept, multijunction, a-Si-alloy-based solar cells with 18% efficiency under standard AM1.5 global insolation conditions and with an area of at least 1 cm{sup 2}. A major focus of the work done during this reporting period was the optimization of a novel, multiple-graded structure that enhances cell efficiency through band-gap profiling. The principles of the operation of devices incorporating such a structure, computer simulations of those, and experimental results for both single- and multijunction cells prepared by using the novel structure are discussed in detail. 14 refs., 35 figs., 7 tabs.

  20. Empirical determination of the energy band gap narrowing in p{sup +} silicon heavily doped with boron

    SciTech Connect (OSTI)

    Yan, Di Cuevas, Andres

    2014-11-21

    In the analysis of highly doped silicon, energy band gap narrowing (BGN) and degeneracy effects may be accounted for separately, as a net BGN in conjunction with Fermi-Dirac statistics, or lumped together in an apparent BGN used with Boltzmann statistics. This paper presents an experimental study of silicon highly doped with boron, with the aim of evaluating the applicability of previously reported BGN models. Different boron diffusions covering a broad range of dopant densities were prepared, and their characteristic recombination current parameters J{sub 0} were measured using a contactless photoconductance technique. The BGN was subsequently extracted by matching theoretical simulations of carrier transport and recombination in each of the boron diffused regions and the measured J{sub 0} values. An evaluation of two different minority carrier mobility models indicates that their impact on the extraction of the BGN is relatively small. After considering possible uncertainties, it can be concluded that the BGN is slightly larger in p{sup +} silicon than in n{sup +} silicon, in qualitative agreement with theoretical predictions by Schenk. Nevertheless, in quantitative terms that theoretical model is found to slightly underestimate the BGN in p{sup +} silicon. With the two different parameterizations derived in this paper for the BGN in p{sup +} silicon, both statistical approaches, Boltzmann and Fermi-Dirac, provide a good agreement with the experimental data.

  1. First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O₃ solid solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; Bennett, Joseph W.; Grinberg, Ilya; Rappe, Andrew M.

    2011-12-15

    Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn1/3Nb2/3)O₃ and Pb(Mg1/3Nb2/3)O₃, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies can have a significant impactmore » on both the conduction and valence band energies, in some cases lowering the band gap by ≈0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.« less

  2. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  3. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  4. Ability of the Confined Explosive Component Water Gap Test STANAG 4363 to Assess the Shock Sensitivity of MM-Scale Detonators

    SciTech Connect (OSTI)

    Lefrancois, A S; Roeske, F; Benterou, J; Tarver, C M; Lee, R S; Hannah, B

    2006-02-10

    The Explosive Component Water Gap Test (ECWGT) has been validated to assess the shock sensitivity of lead and booster components having a diameter larger than 5 mm. Several countries have investigated by experiments and numerical simulations the effect of confinement on the go/no go threshold for Pentaerythritol Tetranitrate (PETN) pellets having a height and diameter of 3 mm, confined by a steel annulus of wall thickness 1-3.5 mm. Confinement of the PETN by a steel annulus of the same height of the pellet with 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally. Recent numerical simulations using Ignition and Growth model [1] for the PETN Pellet have reproduced the experimental results for the steel confinement up to 2 mm thick [2]. The presence of a stronger re-shock following the first input shock from the water and focusing on the axis have been identified in the pellet due to the steel confinement. The double shock configuration is well-known to lead in some cases to shock desensitization. This work presents the numerical simulations using Ignition and Growth model for LX16 (PETN based HE) and LX19 (CL20 based HE) Pellets [3] in order to assess the shock sensitivity of mm-scale detonators. The pellets are 0.6 mm in diameter and 3 mm length with different type of steel confinement 2.2 mm thick and 4.7 mm thick. The influence of an aluminum confinement is calculated for the standard LX 16 pellet 3 mm in diameter and 3 mm in height. The question of reducing the size of the donor charge is also investigated to small scale the test itself.

  5. Structure and band gap determination of irradiation-induced amorphous nano-channels in LiNbO{sub 3}

    SciTech Connect (OSTI)

    Sachan, R. Pakarinen, O. H.; Chisholm, M. F.; Liu, P.; Patel, M. K.; Zhang, Y.; Wang, X. L.; Weber, W. J.

    2015-04-07

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization: (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with electronic energy loss of ions. Energetic Kr ions ({sup 84}Kr{sup 22} with 1.98?GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2 10{sup 10} ions/cm{sup 2}, which results in the formation of individual ion tracks with a penetration depth of ?180??m. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO{sub 3}, resulting in increases in track diameter of a factor of ?2 with depth. This diameter increase with electronic energy loss is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.

  6. Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; Patel, Maulik; Chisholm, Matthew F.; Zhang, Yanwen; Wang, Xuelin; Weber, William J.

    2015-04-01

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions (84Kr22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x1010 ions/cm2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less

  7. Bridging the Gap between Theory and Experiments - Nano-structural Changes in Supported Catalysts under Operating Conditions

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Allard Jr, Lawrence Frederick; Blom, Douglas Allen; Debusk, Melanie Moses

    2008-01-01

    Computational approaches have been limited to examining catalytic processes using models that have been greatly simplified in comparison to real catalysts. Experimental studies, especially on emission treatment catalysts, have primarily focused on fully formulated systems. Thus, there remains a knowledge gap between theory and experiments. We combine the power of theory and experiment for atomistic design of catalytically active sites that can translate the fundamental insights gained directly to a catalyst system suitable for technical deployment. In this article, we describe our results on a model platinum-alumina catalyst that is a common constituent of emission treatment catalysts such as three-way, NO/dx trap, oxidation, and HC-SCR catalysts. We present theoretical and experimental studies of the oxidation and reactivity of Pt catalyst clusters towards O, CO, and NO/dx. Our theoretical studies indicate that the reaction energetics are strongly dependent on the size of the clusters as well as the extent of oxidation of the clusters, and the energetics of CO and NO oxidation may be more favorable on the oxidized clusters than metallic clusters because of the weakened adsorption of O, CO and NO. Experimentally, we have observed that the aberration-corrected HA-ADF STEM images of Pt/gg-alumina support show that there are single atoms, 2-3 atom clusters, and several 10-20 atom clusters of Pt. We also found that the Pt particles size has an impact on CO oxidation initiation and completion temperatures. Substrate effects were studied for equivalent Pt particle size distributions on both gu-alumina and gg-alumina supports. Particle size effects were investigated on Pt/gg-alumina catalysts with Pt particle size distribution centered at 1 nm and 12 nm, respectively. We will describe our results on substrate and Pt particle size effects. In addition, we will also present our study of nano-structural changes in model catalysts on exposure to various reaction conditions.

  8. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  9. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect (OSTI)

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  10. Frequencies of the geodesic acoustic mode and Alfvn gap modes in high-q{sup 2}? plasmas with non-circular cross section

    SciTech Connect (OSTI)

    Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Yakovenko, Yu. V.; National University of Kyiv Mohyla Academy, Vul. Skovorody 2, Kyiv 04070

    2013-12-15

    This work generalizes recent results [O. P. Fesenyuk et al., Plasma Phys. Controlled Fusion 54, 085014 (2012)] to plasmas with elongated cross section. It suggests new expressions for the frequencies of the geodesic acoustic mode and Alfvn gap modes in tokamaks, with a large ratio of the plasma pressure to the magnetic field pressure and a large safety factor (q?1, which takes place in discharges with reversed-shear configuration and, especially, in hollow-current discharges)

  11. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  12. A non-uniform three-gap buncher cavity with suppression of transverse-electromagnetic mode leakage in the triaxial klystron amplifier

    SciTech Connect (OSTI)

    Qi, Zumin; Zhang, Jun Zhong, Huihuang; Zhu, Danni; Qiu, Yongfeng

    2014-01-15

    The triaxial klystron amplifier is an efficient high power relativistic klystron amplifier operating at high frequencies due to its coaxial structure with large radius. However, the coaxial structures result in coupling problems among the cavities as the TEM mode is not cut-off in the coaxial tube. Therefore, the suppression of the TEM mode leakage, especially the leakage from the buncher cavity to the input cavity, is crucial in the design of a triaxial klystron amplifier. In this paper, a non-uniform three-gap buncher cavity is proposed to suppress the TEM mode leakage. The cold cavity analysis shows that the non-uniform three-gap buncher cavity can significantly suppress the TEM mode generation compared to a uniform three-gap buncher cavity. Particle-in-cell simulation shows that the power leakage to the input cavity is less than 1.5 of the negative power in the buncher cavity and the buncher cavity can efficiently modulate an intense relativistic electron beam free of self-oscillations. A fundamental current modulation depth of 117% is achieved by employing the proposed non-uniform buncher cavity into an X-band triaxial amplifier, which results in the high efficiency generation of high power microwave.

  13. Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor application

    SciTech Connect (OSTI)

    Zhu, Y.; Jain, N.; Hudait, M. K.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, A. K.

    2013-01-14

    The experimental study of the valence band offset ({Delta}E{sub v}) of a mixed As/Sb type-II staggered gap GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterostructure used as source/channel junction of n-channel tunnel field effect transistor (TFET) grown by molecular beam epitaxy was investigated by x-ray photoelectron spectroscopy (XPS). Cross-sectional transmission electron micrograph shows high crystalline quality at the source/channel heterointerface. XPS results demonstrate a {Delta}E{sub v} of 0.39 {+-} 0.05 eV at the GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterointerface. The conduction band offset was calculated to be {approx}0.49 eV using the band gap values of source and channel materials and the measured valence band offset. An effective tunneling barrier height of 0.21 eV was extracted, suggesting a great promise for designing a metamorphic mixed As/Sb type-II staggered gap TFET device structure for low-power logic applications.

  14. Universal heat conduction in Ce1-xYbxCoIn5: Evidence for robust nodal d-wave superconducting gap

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Petrovic, C.; Dong, J. K.; Lum, I. K.; Zhang, J.; Hong, X. C.; He, L. P.; Wang, K. F.; Ma, Y. C.; Maple, M. B.; et al

    2016-02-01

    In the heavy-fermion superconductor Ce1-xYbxCoIn5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x ≈ 0.07 (nominal value xnom = 0.2). Here we present systematic thermal conductivity measurements on Ce1-xYbxCoIn5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term κ0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce1-xYbxCoIn5. Similar universal heat conduction is also observed in the CeCo(In1–yCdy)5 system. Furthermore, these results reveal a robust nodal d-wave gap inmore » CeCoIn5 upon Yb or Cd doping.« less

  15. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    SciTech Connect (OSTI)

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei; Gao, Weiwei; Abtew, Tesfaye A.; Zhang, Peihong E-mail: wqzhang@mail.sic.ac.cn; Beijing Computational Science Research Center, Beijing 100084 ; Zhang, Wenqing E-mail: wqzhang@mail.sic.ac.cn; School of Chemistry and Chemical Engineering and Sate Key Laboratory of Coordination Chemistry, Nanjing University, Jiangsu 210093

    2013-11-14

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within 0.2 eV.

  16. Optical absorption and band gap reduction in (Fe1-xCrx)2O3 solid solutions: A first-principles study

    SciTech Connect (OSTI)

    Wang, Yong; Lopata, Kenneth A.; Chambers, Scott A.; Govind, Niranjan; Sushko, Petr V.

    2013-12-02

    We provide a detailed theoretical analysis of the character of optical transitions and band gap reduction in (Fe1-xCrx)2O3 solid solutions using extensive periodic model and embedded cluster calculations. Optical absorption bands for x = 0.0, 0.5, and 1.0 are assigned on the basis of timedependent density functional theory (TDDFT) calculations. A band-gap reduction of as much as 0.7 eV with respect to that of pure ?-Fe2O3 is found. This result can be attributed to predominantly two effects: (i) the higher valence band edge for x ? 0.5, as compared to those in pure ?-Fe2O3 and ?-Cr2O3, and, (ii) the appearance of Cr ? Fe dd transitions in the solid solutions. Broadening of the valence band due to hybridization of the O 2p states with Fe and Cr 3d states also contributes to band gap reduction.

  17. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Troia, Matthew J.; McManamay, Ryan A.

    2016-06-12

    sampling biases. Lastly, this comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys.« less

  18. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Estimation of radiation dose to man resulting from biotic transport: the BIOPORT/MAXI1 software package. Volume 5

    SciTech Connect (OSTI)

    McKenzie, D.H.; Cadwell, L.L.; Gano, K.A.; Kennedy, W.E. Jr.; Napier, B.A.; Peloquin, R.A.; Prohammer, L.A.; Simmons, M.A.

    1985-10-01

    BIOPORT/MAXI1 is a collection of five computer codes designed to estimate the potential magnitude of the radiation dose to man resulting from biotic transport processes. Dose to man is calculated for ingestion of agricultural crops grown in contaminated soil, inhalation of resuspended radionuclides, and direct exposure to penetrating radiation resulting from the radionuclide concentrations established in the available soil surface by the biotic transport model. This document is designed as both an instructional and reference document for the BIOPORT/MAXI1 computer software package and has been written for two major audiences. The first audience includes persons concerned with the mathematical models of biological transport of commercial low-level radioactive wastes and the computer algorithms used to implement those models. The second audience includes persons concerned with exercising the computer program and exposure scenarios to obtain results for specific applications. The report contains sections describing the mathematical models, user operation of the computer programs, and program structure. Input and output for five sample problems are included. In addition, listings of the computer programs, data libraries, and dose conversion factors are provided in appendices.

  19. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect (OSTI)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  20. Propagation or failure of detonation across an air gap in an LX-17 column: continuous time-dependent detonation or shock speed using the Embedded Fiber Optic (EFO) technique

    SciTech Connect (OSTI)

    Hare, D E; Chandler, J B; Compton, S M; Garza, R G; Grimsley, D A; Hernandez, A; Villafana, R J; Wade, J T; Weber, S R; Wong, B M; Souers, P C

    2008-01-16

    The detailed history of the shock/detonation wave propagation after crossing a room-temperature-room-pressure (RTP) air gap between a 25.4 mm diameter LX-17 donor column and a 25.4 mm diameter by 25.4 mm long LX-17 acceptor pellet is investigated for three different gap widths (3.07, 2.08, and 0.00 mm) using the Embedded Fiber Optic (EFO) technique. The 2.08 mm gap propagated and the 3.07 mm gap failed and this can be seen clearly and unambiguously in the EFO data even though the 25.4 mm-long acceptor pellet would be considered quite short for a determination by more traditional means such as pins.