Sample records for manhattan project sites

  1. Historic Manhattan Project Sites at Los Alamos

    ScienceCinema (OSTI)

    McGehee, Ellen

    2014-05-22T23:59:59.000Z

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.

  2. Manhattan Project Sites at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and aHistoric Manhattan Project

  3. Manhattan Project | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manhattan Project Manhattan Project Manhattan Project New Manhattan Project Interactive Website The Department of Energy traces its origins to World War II and the Manhattan...

  4. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    SciTech Connect (OSTI)

    Kennedy, Ellen P.; Harvey, David W.

    2006-09-08T23:59:59.000Z

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  5. Manhattan Project Historical Resources | Department of Energy

    Energy Savers [EERE]

    the best detailed published accounts of the Manhattan Project.and are available at major libraries. In July 2013, the Department launched The Manhattan Project: Resources, a...

  6. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-09-01T23:59:59.000Z

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  7. Manhattan Project Signature Facilities | Department of Energy

    Energy Savers [EERE]

    Trinity test. July 15, 1945. New Manhattan Project Interactive Website The Department of Energy, in the mid-1990s, developed a list of eight Manhattan Project properties that were...

  8. Manhattan Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek Join usProject » ManhattanProject

  9. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Fuel Cell Manhattan Project Manufacturing Fuel Cell Manhattan Project The Office of Naval Research recently sponsored and completed the Manufacturing Fuel Cell...

  10. Manhattan Project: Site Map

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In the Laboratory

  11. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    SciTech Connect (OSTI)

    Marceau, Thomas E. [Mission Support Alliance, Richland, WA (United States); Watson, Thomas L. [Mission Support Alliance, Richland, WA (United States)

    2013-11-13T23:59:59.000Z

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  12. Manhattan Project Historical Resources | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek Join usProject » Manhattan Project

  13. Manhattan Project Signature Facilities | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek Join usProject » Manhattan

  14. Special Resource Study/Environmental Assessment for Manhattan...

    Energy Savers [EERE]

    Special Resource StudyEnvironmental Assessment for Manhattan Project Sites, DOEEA-1868 (September 2010) Special Resource StudyEnvironmental Assessment for Manhattan Project...

  15. Manhattan Project Historical Resources | Department of Energy

    Office of Environmental Management (EM)

    historical resources. These include histories, websites, reports and document collections, and exhibits and tours. Histories produced by the Department include The Manhattan...

  16. Manhattan Project: About the Site

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD ModelWidgetA NOTE

  17. The Manhattan Project National Security History Series

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success StoriesInvestigationsThe FederalHydrogenTheManhattan

  18. Manhattan Project | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a ComplexMaersk LineManhattan

  19. EDITORIAL ESSAY A "Manhattan Project" for climate change?

    E-Print Network [OSTI]

    Oppenheimer, Michael

    and oil) with low-emission or carbon-free energy alternatives, but also replacing much change mitigation takes at least decades. The Manhattan Project was top-secret, centrally planned, high-priority, well-funded and beyond the reach of Congressional inspection. Moreover, participating private companies

  20. President Roosevelt Establishes Manhattan Project | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergy use isDiscusses SolarSecuritySecurity

  1. Recovery Act Helps Y-12 Exceed Cleanup Goal at Manhattan Project...

    National Nuclear Security Administration (NNSA)

    Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era Building | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  2. The Manhattan Project: Science in the Second World War

    SciTech Connect (OSTI)

    Gosling, F.G.

    1990-08-01T23:59:59.000Z

    The Manhattan Project: Science in the Second World War'' is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details of the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  3. The Manhattan Project: Making the Atomic Bomb. 1999 edition.

    SciTech Connect (OSTI)

    Gosling, F.G.

    1999-01-01T23:59:59.000Z

    ``The Manhattan Project: Making the Atomic Bomb`` is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  4. Manhattan Project NHP Photo Gallery | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your Next Road Trip Fuel EfficientManhattan Project NHP

  5. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    SciTech Connect (OSTI)

    GERBER MS

    2009-04-28T23:59:59.000Z

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  6. Manhattan Project Sites at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll LoveMail andAboutBudgetGallery »

  7. Manhattan Project: How to Navigate this Site

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,F Reactor Plutonium

  8. NIEHS CENTER FOR ENVIRONMENTAL HEALTH IN NORTHERN MANHATTAN ANNOUNCEMENT for PILOT PROJECT GRANTS

    E-Print Network [OSTI]

    Grishok, Alla

    NIEHS CENTER FOR ENVIRONMENTAL HEALTH IN NORTHERN MANHATTAN ANNOUNCEMENT for PILOT PROJECT GRANTS for Environmental Health is seeking innovative and promising pilot projects in all areas of environmental health on the thematic goals of the Center, namely, air pollution, oxidative damage, epigenetics and genetic

  9. NIEHS CENTER FOR ENVIRONMENTAL HEALTH IN NORTHERN MANHATTAN ANNOUNCEMENT for PILOT PROJECT GRANTS

    E-Print Network [OSTI]

    Qian, Ning

    NIEHS CENTER FOR ENVIRONMENTAL HEALTH IN NORTHERN MANHATTAN ANNOUNCEMENT for PILOT PROJECT GRANTS for Environmental Health is seeking innovative and promising pilot projects in all areas of environmental health on the thematic goals of the Center, namely, air pollution, oxidative damage, epigenetics, genetic susceptibility

  10. MANHATTAN PROJECT NATIONAL HISTORICAL PARK | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek Join us forDepartment ofMANHATTAN

  11. Impacts of the Cerro Grande fire on Homestead era and Manhattan Project properties at Los Alamos National Laboratory.

    SciTech Connect (OSTI)

    McGehee, E. D. (Ellen D.); Isaacson, J. (John)

    2001-01-01T23:59:59.000Z

    In May of 2000, the Cerro Grande Fire burned approximately 8,000 acres of Department of Energy (DOE) managed land at the Los Alamos National Laboratory (LANL). Although the fire was generally of low intensity, it impacted a significant number of LANL's cultural resources. Historic wooden properties were affected more heavily than prehistoric archaeological sites. This paper will provide an overview of the Homestead and Manhattan Project Periods at LANL and will discuss the effects of the Cerro Grande Fire on historic wooden properties. Post-fire cultural resource management issues will also be discussed.

  12. Oppenheimer's Box of Chocolates: Remediation of the Manhattan Project Landfill at Los Alamos National Laboratory - 12283

    SciTech Connect (OSTI)

    Allen, Donald L.; Ramsey, Susan S.; Finn, Kevin P.; Chaloupka, Allan B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01T23:59:59.000Z

    Material Disposal Area B (MDA B) is the oldest radioactive waste disposal facility at Los Alamos National Laboratory. Operated from 1944-48, MDA B was the disposal facility for the Manhattan Project. Recognized as one of the most challenging environmental remediation projects at Los Alamos, the excavation of MDA B received $110 million from the American Recovery and Reinvestment Act of 2009 to accelerate this complex remediation work. Several factors combined to create significant challenges to remediating the landfill known in the 1940's as the 'contaminated dump'. The secrecy surrounding the Manhattan Project meant that no records were kept of radiological materials and chemicals disposed or of the landfill design. An extensive review of historical documents and interviews with early laboratory personnel resulted in a list of hundreds of hazardous chemicals that could have been buried in MDA B. Also, historical reports of MDA B spontaneously combusting on three occasions -with 50-foot flames and pink smoke spewing across the mesa during the last incident in 1948-indicated that hazardous materials were likely present in MDA B. To complicate matters further, though MDA B was located on an isolated mesa in the 1940's, the landfill has since been surrounded by a Los Alamos commercial district. The local newspaper, hardware store and a number of other businesses are located directly across the street from MDA B. This close proximity to the public and the potential for hazardous materials in MDA B necessitated conducting remediation work within protective enclosures. Potential chemical hazards and radiological inventory were better defined using a minimally intrusive sampling method called direct push technology (DPT) prior to excavation. Even with extensive sampling and planning the project team encountered many surprises and challenges during the project. The one area where planning did not fail to meet reality was safety. There were no serious worker injuries and the minor injuries recorded were those common to construction type activities. Extensive monitoring along the site boundary demonstrated that no hazardous chemicals were released and radiological dose to the public was within administrative limits. More than three years of effort by the LANL project team went into the planning for remediation of Material Disposal Area B. Hundreds of historical documents were reviewed; retired personnel were extensively interviewed and noninvasive techniques were used to characterize the site. The information collected was incorporated into the safety requirements, cost estimate, schedule and primary execution plan for the project. Ultimately the waste volume managed by the project approached 40000 m{sup 3}, more than double the original project estimate. This increase had a major impact on both project cost and schedule. Nuclear safety requirements for the project were based on an estimated MDA B radionuclide inventory of 12 PE-Ci. When excavation was complete over 123 PE-Ci had been removed from the trenches. The radionuclide inventory at MDA B was an order of magnitude higher than estimated. Work at MDA B could not have proceeded without the safety basis exemption from DOE-HQ. The one area where planning did not fail to meet reality was safety. There were no serious worker injuries and the minor injuries recorded were those common to construction type activities. Extensive monitoring along the site boundary demonstrated that no hazardous chemicals were released and radiological dose to the public was within administrative limits. (authors)

  13. MANHATTAN PROJECT NATIONAL HISTORICAL PARK | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sites, including Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, New Mexico. For over a decade, the Department, in cooperation with other Federal agencies, state...

  14. Special Resource Study/Environmental Assessment for Manhattan Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report: IG-0900 December 6, 2013Sites,

  15. Background report for the formerly utilized Manhattan Engineer District/Atomic Energy Commission sites program

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    The Department of Energy is conducting a program to determine radiological conditions at sites formerly used by the Army Corps of Engineers' Manhattan Engineer District and the Atomic Energy Commission in the early years of nuclear energy development. Also included in the program are sites used in the Los Alamos plutonium development program and the Trinity atomic bomb test site. Materials, equipment, buildings, and land became contaminated, primarily with naturally occurring radioactive nuclides. They were later decontaminated in accordance with the standards and survey methods in use at that time. Since then, however, radiological criteria, and proposed guidelines for release of such sites for unrestricted use have become more stringent as research on the effects of low-level radiation has progressed. In addition, records documenting some of these decontamination efforts cannot be found, and the final radiological conditions of the sites could not be adequately determined from the records. As a result, the Formerly Utilized Sites Program was initiated in 1974 to identify these formerly used sites and to reevaluate their radiological status. This report covers efforts through June 1980 to determine the radiological status of sites for which the existing conditions could not be clearly defined. Principal contractor facilities and associated properties have already been identified and activities are continuing to identify additional sites. Any new sites located will probably be subcontractor facilities and areas used for disposal of contractor waste or equipment; however, only limited information regarding this equipment and material has been collected to date. As additional information becomes available, supplemental reports will be published.

  16. The early development of neutron diffraction: Science in the wings of the Manhattan Project

    SciTech Connect (OSTI)

    Mason, Thom [ORNL] [ORNL; Gawne, Timothy J [ORNL] [ORNL; Nagler, Stephen E [ORNL] [ORNL; Nestor, Margaret Boone {Bonnie} [ORNL; Carpenter, John M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurements of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst, and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor.

  17. Manhattan Project truck unearthed at landfill cleanup site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll LoveMail andAboutBudgetGallery

  18. The Manhattan Project By Terrence R. Fehner and F.G. Gosling

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success StoriesInvestigationsThe FederalHydrogenTheManhattan

  19. NEPA and NHPA- successful decommissioning of historic Manhattan Project properties at Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    McGehee, E.D.; Pendergrass, A.K.

    1997-05-21T23:59:59.000Z

    This paper describes experiences at Los Alamos National Laboratory during the process of planning and executing decommissioning and decontamination activities on a number of properties constructed as part of the Manhattan project. Many of these buildings had been abandoned for many years and were in deteriorating condition, in addition to being contaminated with asbestos, lead based paints and high explosive residues. Due to the age and use of the structures they were evaluated against criteria for the National Register of Historic Places. This process is briefly reviewed, along with the results, as well as actions implemented as a result of the condition and safety of the structures. A number of the structures have been decontaminated and demolished. Planning is still ongoing for the renovation of one structure, and the photographic and drawing records of the properties is near completion.

  20. AWEA Wind Project Siting Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

  1. Manhattan Project: Events

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE899 06 Revision 0U7114- .

  2. The Manhattan Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand WaterThe Future isThe IronThe The

  3. Manhattan Project: Events Images

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1Army

  4. Manhattan Project: People

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary of WarPeople

  5. Manhattan Project: Photo Gallery

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary of

  6. Manhattan Project: Places

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary ofGeneralPlaces

  7. Manhattan Project: Processes

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary1945

  8. Manhattan Project: Resources

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary1945Schematic

  9. Manhattan Project: Science

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In the Laboratory Particle

  10. The Walls Come Tumbling Down: Decontamination and Demolition of 29 Manhattan Project and Cold War-Era Buildings and Structures at Los Alamos National Laboratory-12301

    SciTech Connect (OSTI)

    Chaloupka, Allan B.; Finn, Kevin P.; Parsons, Duane A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01T23:59:59.000Z

    When the nation's top scientists and military leaders converged on Los Alamos, New Mexico in the 1943, to work on the Manhattan Project, the facilities they used to conduct their top-secret work were quickly constructed and located in the middle of what eventually became the Los Alamos town site. After one of these early facilities caught on fire, it seemed wise to build labs and production facilities farther away from the homes of the town's residents. They chose to build facilities on what was then known as Delta Prime (DP) Mesa and called it Technical Area 21, or TA-21. With wartime urgency, a number of buildings were built at TA-21, some in as little as a few months. Before long, DP Mesa was populated with several nondescript metal and cinder-block buildings, including what became, immediately following the war, the world's first plutonium production facility. TA-21 also housed labs that used hazardous chemicals and analyzed americium, tritium and plutonium. TA-21 was a bustling center of research and production for the next several decades. Additional buildings were built there in the 1960's, but by the 1990's many of them had reached the end of their service lives. Labs and offices were moved to newer, more modern buildings. When Los Alamos National Laboratory received $212 million in funding from the American Recovery and Reinvestment Act in July 2009 for environmental cleanup projects, about $73 million of the funds were earmarked to decontaminate and demolish 21 of the old buildings at TA-21. Although some D and D of TA-21 buildings was performed in the 1990's, many of the facilities at DP Site remained relatively untouched for nearly three decades following their final operational use. In 2006, there were over three dozen buildings or structures on the mesa to be removed so that soil cleanup could be completed (and the land made available for transfer and reuse). The total footprint of buildings across the mesa was approximately 18,580 m{sup 2} (200,000 ft{sup 2}). The initially approved baseline for the ARRA D and D Project was to remove 22 buildings and structures that included approximately 14,680 m{sup 2} (158,000 ft{sup 2}) of footprint. By employing efficiencies during subcontracting, demolition, and waste segregation, the savings allowed an additional 1,580 m{sup 2} (17,000 ft{sup 2}) of footprint to be removed using ARRA funds. Additionally, the lessons learned from this experience were used to apply NNSA funding to the removal of six additional non-contaminated buildings and structures. In the end, 29 buildings and structures, including stacks, cooling towers and tanks, were removed from the mesa. The entire DP East area was cleared of buildings and sub-grade structures and the soils cleaned to residential standards. The total footprint reduction at TA-21 as a result of this effort was in excess of 17,650 m{sup 2} (190,000 ft{sup 2}). The use of a Laboratory self-performance team to start demolition of non-contaminated structures resulted in steady work performance early in the project while subcontracts were being put in place to perform more complicated abatement and contaminated demolition activities. Most importantly, there were no serious worker injuries and the minor injuries recorded were those common to construction type activities. Extensive monitoring along the site boundary demonstrated that no hazardous chemicals or radioactive contamination were released and radiological dose to the public was negligible. The ARRA demolition activities were completed six months in advance of the deadline for employing ARRA funds. Additionally, over 17,585 m{sup 3} (23,000 yds{sup 3}) of building demolition debris was safely removed from DP Mesa. All of the major buildings have been removed, unencumbered access to the SWMUs that are required to be cleaned up by the Consent Order with the state of New Mexico, has been achieved, and a significant portion of the mesa has been prepared to support a process that will eventually transfer this land from federal government control for further use. (authors)

  11. Workers Safely Tear Down Towers at Manhattan Project Site | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads|ofEvents »SSLEnergy Workers Safely Tear Down Towers

  12. Radiation Protection Considerations at USACE Formerly Utilized Sites Remedial Action Program (FUSRAP) Projects

    SciTech Connect (OSTI)

    Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

    2008-07-01T23:59:59.000Z

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) was initially authorized by Congress in 1974. FUSRAP was enacted to address residual radioactive contamination associated with numerous sites across the U.S. at which radioactive material (primarily Uranium ores and related milling products) had been processed in support of the nation's nuclear weapons program dating back to the Manhattan Project and the period immediately following World War II. In October 1997, Congress transferred the management of this program from the Department of Energy to the United States Corp of Engineers. Through this program, the Corps addresses the environmental remediation of certain sites once used by DOE's predecessor agencies, the Manhattan Engineer District and the Atomic Energy Commission. The waste at FUSRAP sites consists mainly of low levels of uranium, thorium and radium, along with some mixed wastes. Upon completion of remedial activities, these sites are transferred to DOE for long-term stewardship activities. This paper presents and contrasts the radiological conditions and recent monitoring results associated with five large ongoing FUSRAP projects including Maywood, N.J.; the Linde site near Buffalo, N.Y.; Colonie in Albany N.Y. and the St Louis, Mo. airport and downtown sites. The radiological characteristics of soil and debris at each site and respective regulatory clean up criteria is presented and contrasted. Some differences are discussed in the radiological characteristics of material at some sites that result in variations in radiation protection monitoring programs. Additionally, summary data for typical personnel radiation exposure monitoring results are presented. In summary: 1. The FUSRAP projects for which data and observations are reported in this paper are considered typical of the radiological nature of FUSRAP sites in general. 2. These sites are characterized by naturally occurring uranium and thorium series radionuclides in soil and debris, at concentrations typically < E4 pCi/ gram total activity. 3. Although external exposure rates are generally low resulting in few exposures above background, occasional 'hot spots' are observed in the 1- 10 mR / hr range or higher. However personnel and general area external exposure monitoring programs consistently demonstrate very low potential for external exposure at theses sites. 4. Potential for airborne exposure is controlled by wetting and misting techniques during excavation and movement of materials. Air sampling and bioassay programs confirm low potential for airborne exposure of workers at these sites. 5. Radiation protection and health physics monitoring programs as implemented at these sites ensure that exposures to personal are maintained ALARA. (authors)

  13. Manhattan Project: Espionage and the Manhattan Project, 1940-1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1Army parade, LosKlaus

  14. Manhattan Project: The Manhattan Project and the Second World War,

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest Berliner talks

  15. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chief Scientist. There, he was responsible for proton exchange membrane (PEM) fuel cell technology assessment and advanced development, as well as technical initiatives within...

  16. Manhattan Project National Historical Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    movement toward realizing the park. U.S. Senator Jeff Bingaman D-NM sponsored and Lamar Alexander R-TN, Maria Cantwell D-WA, Pete Domenici R-NM, and Patty Murray D-WA...

  17. The Manhattan Project -- Its Story

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youThe Discovery of Archaea, the76Ge neutrinoless

  18. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006) |Footprints Scopeto DOE Fuel

  19. Manhattan Project: Difficult Choices, 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1 GOES

  20. Manhattan Project: Einstein's Letter, 1939

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1

  1. Manhattan Project: Sources and Notes

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In the LaboratorySOURCES AND

  2. Manhattan Project: The Venona Intercepts

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest

  3. Near-Site Transportation Infrastructure Project

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N. (Nuclear Assurance Corp., Norcross, GA (United States)) [Nuclear Assurance Corp., Norcross, GA (United States)

    1992-02-01T23:59:59.000Z

    There are 122 commercial nuclear facilities from which spent nuclear fuel will be accepted by the Federal Waste Management System (FWMS). Since some facilities share common sites and some facilities are on adjacent sites, 76 sites were identified for the Near-Site Transportation Infrastructure (NSTI) project. The objective of the NSTI project was to identify the options available for transportation of spent-fuel casks from each of these commercial nuclear facility sites to the main transportation routes -- interstate highways, commercial rail lines and navigable waterways available for commercial use. The near-site transportation infrastructure from each site was assessed, based on observation of technical features identified during a survey of the routes and facilities plus data collected from referenced information sources. The potential for refurbishment of transportation facilities which are not currently operational was also assessed, as was the potential for establishing new transportation facilities.

  4. LTS Project Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedure Doc.LTS In TheProject

  5. Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServices » GuidanceProgramsProjects

  6. Northeast Oregon Hatchery Project, Final Siting Report.

    SciTech Connect (OSTI)

    Watson, Montgomery

    1995-03-01T23:59:59.000Z

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  7. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    NONE

    2001-08-31T23:59:59.000Z

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  8. Site and Operations Overview 1-1 1. Site and Operations Overview

    E-Print Network [OSTI]

    Pennycook, Steve

    responsibility on April 1, 2000. BWXT Y-12, LLC, was awarded the contract to manage the Y-12 National Security (ORR), a government-owned, contractor-operated facility, contains three major operating sites: the Y-12 the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret

  9. Manhattan Project: The Manhattan Engineer District, 1945-1946

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest Berliner talks to

  10. Luxury condos : an analysis of sales price and hotel amenities in Manhattan

    E-Print Network [OSTI]

    Dolan, Amelia Jane

    2011-01-01T23:59:59.000Z

    The purpose of this research project is to examine the market pricing behavior of condos with hotel amenities in the Manhattan condo market. To do this, data was compiled from multiple sources to track variations in price ...

  11. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    NONE

    2002-09-30T23:59:59.000Z

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  12. Site and Operations Overview 1-1 1. Site and Operations Overview

    E-Print Network [OSTI]

    Pennycook, Steve

    Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret of Energy. In 1999, a new contractor, UT-Battelle, LLC, was awarded the contract to manage the Oak Ridge

  13. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY

    E-Print Network [OSTI]

    COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation RESEARCH INSTITUTE REMEDIATION PROJECT SUMMARY Page Two May 15, 2007 The revised Remedial Investigation

  14. City of Manhattan Beach Community Development

    E-Print Network [OSTI]

    the City of Manhattan Beach adoption of our local more stringent energy efficiency standards. In accordance that the California Energy Commission approve the local energy efficiency standards amendments as attached. PleaseCity of Manhattan Beach Community Development Phone: (310) 802-5500 FAX: (310) 802-5501 TDD: (310

  15. CSMRI SITE PROJECT SUMMARY September 2010

    E-Print Network [OSTI]

    to the EPA action a tailings pond had been operated in that portion of the Site. The new well detected

  16. Coupled Site Characterization and Foundation Analysis Research Project

    E-Print Network [OSTI]

    Horvath, John S.

    Engineering Department Bronx, New York, U.S.A. March 2000 #12;Coupled Site Characterization and Foundation Engineering Department Bronx, NY 10471-4098 U.S.A. e-mail: #12;iii Coupled SiteCoupled Site Characterization and Foundation Analysis Research Project: Rational Selection

  17. Site Observational Work Plan for the UMTRA Project Site at Shiprock, New Mexico. Revision

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is one of the first documents for developing an approach for achieving ground water compliance at the site. This SOWP applies Shiprock site information to a regulatory compliance framework, which identifies strategies for meeting ground water compliance at the site. The compliance framework was developed in the UMTRA ground water programmatic environmental impact statement.

  18. Events leading to the Manhattan Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or fission when bombarded with neutrons, proving that Fermi had actually witnessed nuclear fission. This major leap in understanding was quickly assimilated by scientists in every...

  19. The Manhattan Project: Making the atomic bomb

    SciTech Connect (OSTI)

    Gosling, F.G.

    1994-09-01T23:59:59.000Z

    This article is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of US government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  20. The Manhattan Project: An Interactive History

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youThe Discovery of Archaea, the76Ge neutrinoless

  1. The Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewable Energy, U.S. DepartmentTechnologyEnergy5TheThe

  2. Manhattan Project: A Note on Sources

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD ModelWidgetA NOTE ON

  3. Manhattan Project: Atomic Bombardment, 1932-1938

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD ModelWidgetA NOTESolvay

  4. Manhattan Project: Atomic Discoveries, 1890s-1939

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD ModelWidgetA

  5. Manhattan Project: Enter the Army, 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1Army parade, Los

  6. Manhattan Project: Evaluations of Trinity, July 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1Army parade,Leslie

  7. Manhattan Project: Fission Comes to America, 1939

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1ArmyErnestTheExcerpt

  8. Manhattan Project: Groves and the MED, 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,

  9. Manhattan Project: Informing the Public, August 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,F Reactor PlutoniumImplosionThe

  10. Manhattan Project: More Piles and Plutonium, 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,F Reactor"Met Lab"

  11. Manhattan Project: More Uranium Research, 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,F Reactor"Met

  12. Manhattan Project: Nuclear Proliferation, 1949-Present

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,F Reactor"MetBernard

  13. Manhattan Project: Nuclear Proliferation, 1949-Present

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,F

  14. Manhattan Project: Nuclear Proliferation, 1949-Present

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary of War Henry L.

  15. Manhattan Project: Nuclear Proliferation, 1949-Present

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary of War Henry L.Joe

  16. Manhattan Project: Picking Horses, November 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary ofGeneral Leslie

  17. Manhattan Project: The Maud Report, 1941

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest Berliner talksThe

  18. Manhattan Project: Y-12 Construction, 1943

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWestAmerican

  19. Near-Site Transportation Infrastructure Project. Final report

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)] [Nuclear Assurance Corp., Norcross, GA (United States)

    1992-02-01T23:59:59.000Z

    There are 122 commercial nuclear facilities from which spent nuclear fuel will be accepted by the Federal Waste Management System (FWMS). Since some facilities share common sites and some facilities are on adjacent sites, 76 sites were identified for the Near-Site Transportation Infrastructure (NSTI) project. The objective of the NSTI project was to identify the options available for transportation of spent-fuel casks from each of these commercial nuclear facility sites to the main transportation routes -- interstate highways, commercial rail lines and navigable waterways available for commercial use. The near-site transportation infrastructure from each site was assessed, based on observation of technical features identified during a survey of the routes and facilities plus data collected from referenced information sources. The potential for refurbishment of transportation facilities which are not currently operational was also assessed, as was the potential for establishing new transportation facilities.

  20. Atoms in Appalachia. Historical report on the Clinch River Breeder Reactor site

    SciTech Connect (OSTI)

    Schaffer, D

    1982-01-01T23:59:59.000Z

    The background information concerning the acquisition of the land for siting the Clinch River Breeder Reactor is presented. Historical information is also presented concerning the land acquisition for the Oak Ridge facilities known as the Manhattan Project during World War II.

  1. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01T23:59:59.000Z

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  2. UMTRA (Uranium Mill Tailings Remedial Action) Project site management manual

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs.

  3. Site observational work plan for the UMTRA Project site at Falls City, Texas

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Produced by the US Department of Energy (DOE), this site observational work plan (SOWP) will be used to determine site-specific activities to comply with the US Environmental Protection Agency (EPA) ground water standards at this Uranium Mill Tailings Remedial Action (UMTRA) Project site. The purpose of the SOWP is to recommend a site-specific ground water compliance strategy at the Falls City UMTRA Project site. The Falls City SOWP presents a comprehensive summary of site hydrogeological data, delineates a conceptual model of the aquifer system, and discusses the origins of milling-related ground water contamination. It also defines the magnitude of ground water contamination, potential environmental and health risks associated with ground water contamination and data gaps, and targets a proposed compliance strategy.

  4. Site observational work plan for the UMTRA Project Site at Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared this initial site observational work plan (SOWP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Grand Junction, Colorado. This SOWP is one of the first UMTRA Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards (40 CFR Part 192, as amended by 60 FR 2854) for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement (PEIS). This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The DOE goal is to use the observational method to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation based on the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards.

  5. Licensing plan for UMTRA project disposal sites. Final [report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC`s acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information.

  6. Site observational work plan for the UMTRA project site at Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer.

  7. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  8. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect (OSTI)

    None Available

    2000-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  9. Site observational work plan for the UMTRA Project site at Spook, Wyoming

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS).

  10. What Explains Manhattan's Declining Share of Residential Construction?

    E-Print Network [OSTI]

    DAVIDOFF, THOMAS

    2007-01-01T23:59:59.000Z

    Share of Residential Construction? Thomas Davido? ? June 20,market. Residential construction in Manhattan has fallento total US residential construction over the last 45 years.

  11. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  12. Site characterization plan for the W-058 Project

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-09-01T23:59:59.000Z

    The objective of this preoperational study plan is to characterize the proposed pipeline route for the Cross-Site Transfer System (W-058). The purpose of this study is to meet the requirements set forth in US Department of Energy (DOE) Order 5400.1, Chapter 4, (DOE 1990). The W-058 pipeline is intended to replace the existing Cross-Site Transfer System (H-2-43056). The proposed route for the W-058 project will be reviewed to provide information on documented waste sites and potentially to identify any undocumented hazards that may currently exist along the proposed route. Historical records will be researched for pertinent information. Health Physics personnel will perform a ``walk-down`` radiological survey of the proposed path. A sampling plan will be generated and will consist of actual drilling of boreholes to allow field screening for radionuclides and/or chemical contamination and the collection of samples at selected sites for laboratory analyses. The information generated from this combined effort will establish existing/potential contamination levels, aid in developing personnel safety requirements, assist in determining the need for any changes in the proposed route prior to installation/construction of the new pipeline, and satisfy the requirements of a preoperational baseline for the project.

  13. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action(UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1996). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will be evaluated in the site-specific environmental assessment to determine potential environmental impacts and provide stakeholders a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  14. SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS

    SciTech Connect (OSTI)

    Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

    2012-07-15T23:59:59.000Z

    Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

  15. Site observational work plan for the UMTRA Project site at Riverton, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the first document for the UMTRA Ground Water Project to address site-specific activities to meet compliance with the U.S. Environmental Protection Agency (EPA) proposed ground water standards (52 FR 36000 (1987)). In support of the activities the regulatory framework and drivers are presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. A combination of the two compliance strategies that will be recommended for this site are no remediation with the application of alternate concentration levels (ACL) and natural flushing in conjunction with institutional controls. ACLs are to be applied to constituents that occur at concentrations above background levels but which are essential nutrients and occur within nutritional ranges and/or have very low toxicity and high dietary intake rates compared to the levels detected in the ground water. The essential premise of natural flushing is that ground water movement and natural attenuation processes will reduce the detected contamination to background levels within 1 00 years. These two recommended compliance strategies were evaluated by applying Riverton site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement. There are three aquifers beneath the site: a surficial unconfined aquifer, a middle semiconfined aquifer, and a deeper confined aquifer. The milling-related contamination at the site has affected both the surficial and semiconfined aquifers, although the leaky shale aquifers separating these units limits the downward migration of contamination into the semiconfined aquifer. A shale aquitard separates the semiconfined aquifer from the underlying confined aquifer which has not been contaminated by milling-related constituents.

  16. Site observational work plan for the UMTRA Project site at Ambrosia Lake, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Ambrosia Lake Uranium Mill Tailings Remedial Action (UMTRA) Project site is within the Grants Mineral Belt and was one of numerous uranium mills supplied by many local mines. Ground water contamination at the site occurred as a result of uranium mill operations. The potential for impacts to human health and the environment from contaminated ground water currently does not exist. No domestic or livestock wells accessing ground water from the uppermost aquifer have been identified within a 5 mile radius from the site. Therefore, no current exposure pathways to humans, livestock, or wildlife exist, nor are any foreseen. The proposed ground water compliance strategy under consideration for application at the Ambrosia Lake site is to perform no remediation, based on the application of supplemental standards because the ground water has ``limited use.``

  17. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  18. Site observational work plan for the UMTRA project site at Shiprock, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the initial document for developing site-specific activities to achieve regulatory compliance in the UMTRA Ground Water Project. The regulatory framework used to select the proposed ground water compliance strategies is presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. The Shiprock site consists of two, interconnected hydrogeologic systems: the terrace system and the floodplain system. Separate compliance strategies are proposed for these two systems. The compliance strategy for the terrace aquifer is no remediation with the application of supplemental standards based on classification of the terrace aquifer as having Class III (limited-use) ground water. The compliance strategy for the floodplain aquifer is active remediation using a subsurface biological barrier. These strategies were selected by applying site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement (PEIS) (DOE, 1994a). The site conceptual model indicates that milling-related contamination has impacted the ground water in the terrace and floodplain aquifers. Ground water occurs in both aquifers in alluvium and in fractures in the underlying Cretaceous age Mancos Shale. A mound of ground water related to fluids from the milling operations is thought to exist in the terrace aquifer below the area where settling ponds were in use during the mill operations. Most of the water occurring in the floodplain aquifer is from recharge from the San Juan River.

  19. Manhattan, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area6612134°, -76.8849782°MangoniaManhattan,

  20. The consequences of failure should be considered in siting geologic carbon sequestration projects

    E-Print Network [OSTI]

    Price, P.N.

    2009-01-01T23:59:59.000Z

    2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

  1. Yucca Mountain Site Characterization Project technical data catalog quarterly supplement

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with t requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to@ previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  2. Possibilities For The LAGUNA Projects At The Frejus Site

    SciTech Connect (OSTI)

    Mosca, Luigi [LSM-Frejus - CNRS/IN2P3 and CEA/DSM/IRFU (France)

    2010-11-24T23:59:59.000Z

    The present laboratory (LSM) at the Frejus site and the project of a first extension of it, mainly aimed at the next generation of dark matter and double beta decay experiments, are briefly reviewed. Then the main characteristics of the LAGUNA cooperation and Design Study network are summarized. Seven underground sites in Europe are considered in LAGUNA and are under study as candidates for the installation of Megaton scale detectors using three different techniques: a liquid Argon TPC (GLACIER), a liquid scintillator detector (LENA) and a Water Cerenkov (MEMPHYS), all mainly aimed at investigation of proton decay and properties of neutrinos from SuperNovae and other astrophysical sources as well as from accelerators (Super-beams and/or Beta-beams from CERN). One of the seven sites is located at Frejus, near the present LSM laboratory, and the results of its feasibility study are presented and discussed. Then the physics potential of a MEMPHYS detector installed in this site are emphasized both for non-accelerator and for neutrino beam based configurations. The MEMPHYNO prototype with its R and D programme is presented. Finally a possible schedule is sketched.

  3. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    SciTech Connect (OSTI)

    NONE

    1994-03-31T23:59:59.000Z

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  4. CERCLA Sites Quality Assurance Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA Sites Quality Assurance Project Plan

  5. History of the production complex: The methods of site selection

    SciTech Connect (OSTI)

    Not Available

    1987-09-01T23:59:59.000Z

    Experience taught the Atomic Energy Commission how to select the best possible sites for its production facilities. AEC officials learned from the precedents set by the wartime Manhattan Project and from their own mistakes in the immediate postwar years. This volume discusses several site selections. The sites covered are: (1) the Hanford Reservation, (2) the Idaho reactor site, (3) the Savannah River Plant, (4) the Paducah Gaseous Diffusion Plant, (5) the Portsmouth Gaseous Diffusion Plant, (6) the Fernald Production Center, (7) the PANTEX and Spoon River Plants, (8) the Rocky Flats Fabrication Facility, and (9) the Miamisburg and Pinellas plants. (JDH)

  6. Tropical Western Pacific CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z SiteManhattan ProjectMayARM-00-005Tropical

  7. Site observational work plan for the UMTRA Project site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. The wet tailings remaining after processing were placed as a slurry in three piles at the site. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The site is expected to remain in this status until licensed by the U.S. Nuclear Regulatory Commission (NRC) for long-term surveillance and maintenance. The preliminary ground water compliance strategy at the Tuba City site is active remediation-specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  8. Sites in Argentina for the Cherenkov Telescope Array Project

    E-Print Network [OSTI]

    Allekotte, Ingo; Etchegoyen, Alberto; Garca, Beatriz; Mancilla, Alexis; Maya, Javier; Ravignani, Diego; Rovero, Adrin

    2013-01-01T23:59:59.000Z

    The Cherenkov Telescope Array (CTA) Project will consist of two arrays of atmospheric Cherenkov telescopes to study high-energy gamma radiation in the range of a few tens of GeV to beyond 100 TeV. To achieve full-sky coverage, the construction of one array in each terrestrial hemisphere is considered. Suitable candidate sites are being explored and characterized. The candidate sites in the Southern Hemisphere include two locations in Argentina, one in San Antonio de los Cobres (Salta Province, Lat. 24:02:42 S, Long. 66:14:06 W, at 3600 m.a.s.l) and another one in El Leoncito (San Juan Province, Lat. 31:41:49 S, Long. 69:16:21 W, at 2600 m.a.s.l). Here we describe the two sites and the instrumentation that has been deployed to characterize them. We summarize the geographic, atmospheric and climatic data that have been collected for both of them.

  9. Value of Information Analysis Project Gnome Site, New Mexico

    SciTech Connect (OSTI)

    Greg Pohll; Jenny Chapman

    2010-01-01T23:59:59.000Z

    The Project Gnome site in southeastern New Mexico was the location of an underground nuclear detonation in 1961 and a hydrologic tracer test using radionuclides in 1963. The tracer test is recognized as having greater radionuclide migration potential than the nuclear test because the tracer test radionuclides (tritium, 90Sr, 131I, and 137Cs) are in direct contact with the Culebra Dolomite aquifer, whereas the nuclear test is within a bedded salt formation. The tracer test is the topic here. Recognizing previous analyses of the fate of the Gnome tracer test contaminants (Pohll and Pohlmann, 1996; Pohlmann and Andricevic, 1994), and the existence of a large body of relevant investigations and analyses associated with the nearby Waste Isolation Pilot Plant (WIPP) site (summarized in US DOE, 2009), the Gnome Site Characterization Work Plan (U.S. DOE, 2002) called for a Data Decision Analysis to determine whether or not additional characterization data are needed prior to evaluating existing subsurface intrusion restrictions and determining long-term monitoring for the tracer test. Specifically, the Work Plan called for the analysis to weigh the potential reduction in uncertainty from additional data collection against the cost of such field efforts.

  10. Weldon Spring Site environmental report for calendar year 1993. Weldon Springs Site Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This Site Environmental Report for Calendar Year 1993 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels, and to summarize trends and/or changes in contaminant concentrations from environmental monitoring program. In 1993, the maximum committed dose to a hypothetical individual at the chemical plant site perimeter was 0.03 mrem (0.0003 mSv). The maximum committed dose to a hypothetical individual at the boundary of the Weldon Spring Quarry was 1.9 mrem (0.019 mSv). These scenarios assume an individual walking along the perimeter of the site-once a day at the chemical plant/raffinate pits and twice a day at the quarry-250 days per year. This hypothetical individual also consumes fish, sediment, and water from lakes and other bodies of water in the area. The collective dose, based on an effected population of 112,000 was 0.12 person-rem (0.0012 person-Sv). This calculation is based on recreational use of the August A. Busch Memorial Conservation Area and the Missouri Department of Conservation recreational trail (the Katy Trail) near the quarry. These estimates are below the U.S. Department of Energy requirement of 100 mrem (I mSv) annual committed effective dose equivalent for all exposure pathways. Results from air monitoring for the National Emission Standards for Hazardous Air Pollutants (NESHAPs) program indicated that the estimated dose was 0.38 mrem, which is below the U.S. Environmental Protection Agency (EPA) standard of 10 mrem per year.

  11. Site observational work plan for the UMTRA Project Site at Tuba City, Arizona

    SciTech Connect (OSTI)

    None

    1994-09-01T23:59:59.000Z

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. A total of 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. Two processes were used to refine the ore: an acid leach process and a sodium carbonate alkaline process. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The preliminary ground water compliance strategy at the Tuba City site is active remediation. The specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  12. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2005-09-30T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  13. Fernald Environmental Management Project 1995 site environmental report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The Fernald site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This 1995 Site Environmental Report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA.

  14. CCSReg Project Regulating Access to Pore Space, Site

    E-Print Network [OSTI]

    injection of CO2 into deep geologic pore space on both private and federal lands. The regulation would: GS policy: EOR exclusion: #12;CCSReg Project Our project addresses issues... 9 Photo: Vattenfall

  15. WSSRAP chemical plant geotechnical investigations for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    This document has been prepared for the United states Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) by the Project Management Contractor (PMC), which consists of MK-Ferguson Company (MKF) and Morrison Knudsen Corporation Environmental Services Group (MKES) with Jacobs Engineering Group (JEG) as MKF's predesignated subcontractor. This report presents the results of site geotechnical investigations conducted by the PMC in the vicinity of the Weldon Spring chemical plant and raffinate pits (WSCP/RP) and in potential on-site and off-site clayey material borrow sources. The WSCP/RP is the proposed disposal cell (DC) site. 39 refs., 24 figs., 12 tabs.

  16. Monday, February 23, 2004 Decision on site for fusion project is put off again

    E-Print Network [OSTI]

    Monday, February 23, 2004 Decision on site for fusion project is put off again VIENNA (Kyodo) The six parties involved in an international nuclear fusion project have again failed to decide on either in March. Senior officials of the parties to the International Thermonuclear Experimental Reactor project

  17. Friday February 20, 2004 Three compromise plans eyed for fusion project site

    E-Print Network [OSTI]

    Friday February 20, 2004 Three compromise plans eyed for fusion project site A team of experts on an international nuclear fusion project has drawn up three compromise proposals in a bid to resolve the row over said. The six parties involved in the Thermonuclear Experimental Reactor (ITER) project have been

  18. Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project Site

    E-Print Network [OSTI]

    Firestone, Jeremy

    Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project wind power project site, we conducted an analysis of the suitability of habitat within the project of potential risk to the species. #12;Corn Snake ­ Fairly common in Delaware, but is not likely to be present

  19. Site fire protection projects review board engineering evaluation

    SciTech Connect (OSTI)

    Fayfich, R.R.

    1992-12-31T23:59:59.000Z

    The Savannah River Site (SRS) has been safely operated since its beginning in the early 1950`s with an effective, highly successful program of fire prevention. However, in the mid 1980`s the Department of Energy directed the site to identify and install fire protection measure in addition to the reliance on prevention. To address the site needs, independent fire protection surveys were conducted by Factory Mutual Research Corporation and Professional Loss Control, Inc. in 1986 and 1987. The results of these surveys identified 1400 fire protection improvements needed in existing facilities to comply with DOE Orders and NFPA Codes and Standards.

  20. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01T23:59:59.000Z

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  1. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    SciTech Connect (OSTI)

    Stephan, P.M. [ed.

    1996-01-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  2. Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it.

  3. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    SciTech Connect (OSTI)

    Stephan, P.M. [ed.

    1995-01-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  4. Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  5. Extensions and enhancements to the iLab heat transfer project site

    E-Print Network [OSTI]

    Saylor, David P. (David Patrick)

    2005-01-01T23:59:59.000Z

    The iLab Heat Transfer Project website started four years ago to enable web access to experiments related to movement of heat through transport processes. This thesis details improvements made to the site which extend and ...

  6. On self-help in a site and services project in Kenya

    E-Print Network [OSTI]

    Soni, Praful Naran

    1980-01-01T23:59:59.000Z

    The concept of self-help in a site and services project is based on the assumption that given the security of land tenureship_, an owner-builder can manage the whole process of house implementation. Generally, in any ...

  7. Hanford Site River Protection Project (RPP) High Level Waste Storage

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2000-01-31T23:59:59.000Z

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc.

  8. Vicinity Property Assessments at Formerly Utilized Sites Remedial Action Program Project Sites in the New York District - 13420

    SciTech Connect (OSTI)

    Ewy, Ann; Hays, David [U.S. Army Corps of Engineers (United States)] [U.S. Army Corps of Engineers (United States)

    2013-07-01T23:59:59.000Z

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) has addressed sites across the nation for almost 4 decades. Multiple stake holder pressures, multiple regulations, and process changes occur over such long time periods. These result in many challenges to the FUSRAP project teams. Initial FUSRAP work was not performed under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Records of Decision (ROD). The ROD identifies the remedy decision and ultimately the criteria to be used to release a site. Early FUSRAP projects used DOE Orders or the Uranium Mill Tailings Radiation Control Act (UMTRCA) standards. Under current RODs, regulations may differ, resulting in different cleanup criteria than that used in prior Vicinity Property (VP) remediation. The USACE, in preparation for closeout of Sites, conducts reviews to evaluate whether prior actions were sufficient to meet the cleanup criteria specified in the current ROD. On the basis of these reviews, USACE has conducted additional sampling, determined that prior actions were sufficient, or conducted additional remediation consistent with the selected remedy in the ROD. As the public pressures, regulations, and processes that the FUSRAP encounters continue to change, the program itself continues to evolve. Assessment of VPs at FUSRAP sites is a necessary step in the life cycle of our site management. (authors)

  9. Policy and procedures for classification of Class III groundwater at UMTRA Project sites. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has recently proposed groundwater regulations for the US Department of Energy's )DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. These regulations allow the application of supplemental standards at UMTRA Project sites in specific situations. The designation of groundwater as Class III permits the application of supplemental standards. This document discusses a final UMTRA Project policy and procedures for identifying Class III groundwater, including identification of a review area, definition of water quality, quantification of aquifer yield, and identification of methods reasonably employed for public water supply systems. These items, either individually or collectively, need to be investigated in order to determine if groundwaters at UMTRA Project sites are Class III. This document provides a framework for the DOE to determine Class III groundwaters.

  10. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.

  11. Integrated Manhattan Project for Excellence in Radiochemistry (IMPER)

    SciTech Connect (OSTI)

    Lewis, Jason

    2014-03-27T23:59:59.000Z

    Accomplishments are reported in these areas: single step radiolabeling of peptides with fluorine-18; photoreduction of 99Tc pertechnetate by nanometer-sized metal oxides for environmental remediation; synthesis and characterization of multi-modal CNT imaging constructs.

  12. Manhattan Project Truck Unearthed in Recovery Act Cleanup

    Office of Environmental Management (EM)

    inside a sealed building where digging is taking place at Ma- terial Disposal Area B (MDA-B), the Lab's first hazardous and radioactive waste landfill. MDA-B was used from 1944...

  13. Gosling, The Manhattan Project: Making the Atomic Bomb | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,Glen Wattman - Director, OfficeThe

  14. Authorizing Legislation: HR 3979, SEC. 3039 Manhattan Project National

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1A PotentialAllisonofM-15-04

  15. New Manhattan Project Resource Page Launched | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445 CU -Standards Began in

  16. The_Manhattan_Project_2010.pdf | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48HPublicfor PublicDepartmentWeekend Nuclear

  17. The Manhattan Project: Making the Atomic Bomb | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success StoriesInvestigationsThe

  18. Manhattan Project: Leslie Groves and J. Robert Oppenheimer

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE899 06 Revision 0U7114- .

  19. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmart WindowsDepartmentEnergy

  20. Recovery Act milestone: Excavation begins at Manhattan Project landfill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved Justification MemorandaRecords Management

  1. Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy University ManagingEnergy

  2. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006) |Footprints Scopeto DOE

  3. The Manhattan Project: Making the Atomic Bomb | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentTheEnergyDepartmentThe Management ofThe

  4. Manhattan Project National Historical Park Open House Event

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and a few0ChicagoOManhattan

  5. Manhattan Project Resources | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and a

  6. New Manhattan Project Resource Page Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNewEnergyEnergyDepartment ofNew

  7. Manhattan Project: A Miniature Solar System, 1890s-1919

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD ModelWidget

  8. Manhattan Project: Basic Research at Los Alamos, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD ModelWidgetAWernerNorris

  9. Manhattan Project: Bringing it All Together, 1942-1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD

  10. Manhattan Project: Dawn of the Atomic Era, 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1 GOES CRITICAL

  11. Manhattan Project: Debate Over How to Use the Bomb, 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1 GOES CRITICALErnest

  12. Manhattan Project: Early Government Support, 1939-1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1 GOESThe

  13. Manhattan Project: Early Uranium Research, 1939-1941

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1 GOESTheErnest

  14. Manhattan Project: Establishing Los Alamos, 1942-1943

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1Army parade,

  15. Manhattan Project: Exploring the Atom, 1919-1932

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1ArmyErnest Rutherford

  16. Manhattan Project: Hanford Becomes Operational, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,F Reactor Plutonium Production

  17. Manhattan Project: Implosion Becomes a Necessity, Los Alamos, 1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,F Reactor PlutoniumImplosion

  18. Manhattan Project: Japan Surrenders, August 10-15, 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,F Reactor

  19. Manhattan Project: Operation Crossroads, Bikini Atoll, July 1946

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary of War

  20. Manhattan Project: Piles and Plutonium, 1939-1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary ofGeneral

  1. Manhattan Project: Postscript--The Nuclear Age, 1945-Present

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary

  2. Manhattan Project: Production Reactor (Pile) Design, Met Lab, 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary1945Schematic of

  3. Manhattan Project: Reorganization and Acceleration, 1940-1941

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary1945Schematic

  4. Manhattan Project: Safety and the Trinity Test, July 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,

  5. Manhattan Project: The Atomic Bombing of Hiroshima, August 6, 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In the LaboratorySOURCES

  6. Manhattan Project: The Atomic Bombing of Nagasaki, August 9, 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In the

  7. Manhattan Project: The Cold War, 1945-1990

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest Berliner talks to the

  8. Manhattan Project: The Discovery of Fission, 1938-1939

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest Berliner talks to the

  9. Manhattan Project: The Navy and Thermal Diffusion, 1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest Berliner

  10. Manhattan Project: The Trinity Test, July 16, 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest BerlinerTHE

  11. Manhattan Project: The War Enters Its Final Phase, 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWestAmerican troops

  12. Manhattan Project: Y-12 Operation, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWestAmericanAlpha

  13. Manhattan Project: Y-12: Design, 1942-1943

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWestAmericanAlphaErnest

  14. Trojan Horse Project - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z SiteManhattan ProjectMay 29, 2014Biomass

  15. After the wind resource and project site have been determined and the community outreach effort has

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    permit application. See the Fact Sheets on resource assessment and wind resource data for more: Technology Performance Impacts & Issues Siting Resource Assessment Wind Data Permitting Case Studies 1. 2. 3After the wind resource and project site have been determined and the community outreach effort has

  16. On-Site Renewable Power Purchase Agreements for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

  17. Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site

    E-Print Network [OSTI]

    Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site D--Two Radiation Belt Activity Indices, based on electron flux measurement >300 keV and >1.6 MeV, and one Solar updated. Index Terms- CRATERRE project, Radiation belts activity, Space environment I. INTRODUCTION

  18. Session: Monitoring wind turbine project sites for avian impacts

    SciTech Connect (OSTI)

    Erickson, Wally

    2004-09-01T23:59:59.000Z

    This third session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The focus of the session was on existing wind projects that are monitored for their impacts on birds and bats. The presentation given was titled ''Bird and Bat Fatality Monitoring Methods'' by Wally Erickson, West, Inc. Sections included protocol development and review, methodology, adjusting for scavenging rates, and adjusting for observer detection bias.

  19. Oak Ridge Finishes Site's Largest Demolition Project to Date | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecember 23,Misc CasesOUO ReviewSite |Findsof

  20. Site Programs & Cooperative Agreements: West Valley Demonstration Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus GroupSherrellHanford Site ProgramsDepartment

  1. MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6,Projects | DepartmentLow-TemperatureMAMA-60MAJOR

  2. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The United States Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale Underground Coal Gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the hydrologic site characterization program is to provide an accurate representation of the hydrologic environment within the area to be gasified. This information will aid in the placement and operation of the process wells in relation to the ground water source. 21 refs., 14 figs., 6 tabs.

  3. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The US Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale underground coal gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the geologic site characterization program is to provide a descriptive model that accurately represents the geologic environment of the coal resource that is to be gasified. This model is to be used as an aid in understanding the hydrology of the coal bearing sequence, as a framework for installation of the process wells and the subsequent exploitation of the coal resources. 3 figs., 3 tabs.

  4. Trinity Site - World's First Nuclear Explosion | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z SiteManhattan Project » Signature

  5. Probable maximum flood control; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    DeGabriele, C.E.; Wu, C.L. [Bechtel National, Inc., San Francisco, CA (United States)

    1991-11-01T23:59:59.000Z

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.

  6. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Riddle, Donna L.

    2007-05-03T23:59:59.000Z

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, Quality Assurance Requirements, ANSI/ASQC E4-2004, Quality Systems for Environmental Data and Technology Programs Requirements with Guidance for Use, and ISO 14001-2004, Environmental Management Systems, have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, Quality Assurance Program, identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, QA Program Implementation, identifies the TAC organizations that have responsibility for implementing the QA program requirements; and Appendix C of the QA Manual provides comparison tables that identify where the requirements of other standards are addressed in the QA Manual.

  7. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Irene Farnham

    2011-05-01T23:59:59.000Z

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  8. The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project

    SciTech Connect (OSTI)

    Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

    2003-02-25T23:59:59.000Z

    This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

  9. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  10. Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites

    SciTech Connect (OSTI)

    Richman, Eric E.

    2012-10-31T23:59:59.000Z

    This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

  11. History of the Hanford Site: 1943-1990

    SciTech Connect (OSTI)

    D.W. Harvey

    2000-09-01T23:59:59.000Z

    This booklet was developed to highlight the national and international historical events that occurred in association with the development of the Hanford Site. The purpose of the booklet is to increase the awareness Hanford Site employees have of the historical significance of the Site's contributions and missions during the Manhattan Project (1943-1946) and Cold War era (1946-1990). By increasing knowledge and understanding of the Site's unique heritage, it is hoped this publication will help generate an appreciation of the Site's historic buildings and structures, and, thus, instill a sense of ''ownership'' in these buildings. One cannot appreciate the historic significance of a place or building without first knowing its story.

  12. Final work plan: Expedited Site Characterization of the IES Industries, Inc., Site at Marshalltown, Iowa. Ames Expedited Site Characterization Project, Version 1.0

    SciTech Connect (OSTI)

    Not Available

    1994-04-04T23:59:59.000Z

    The overall goal of the Ames Laboratory Expedited Site Characterization (ESC) project is to evaluate and promote both innovative and state-of-the-practice site characterization and/or monitoring technologies. This will be accomplished by fielding both types of technologies together in the context of an expedited site characterization. The first site will be at a former manufactured gas plant (FMGP) in Marshalltown, Iowa. The project will field three areas of technology: geophysical, analytical, and data fusion. Geophysical technologies are designed to understand the subsurface geology to help predict fate and transport of the target contaminants. Analytical technologies/methods are designed to detect and quantify the target contaminants. Data fusion technology consists of software systems designed to rapidly integrate or fuse all site information into a conceptual site model that then becomes the decision making tool for the site team to plan subsequent sampling activity. Not all of the contaminants present can be located at the action level. Polynuclear aromatic hydrocarbons (PAHs) are the signature organics associated with the coal tar activities that took place at the site. As a result, PAHs were selected as the target compounds. Screening analytical instruments and nonintrusive geophysical techniques will be fielded to qualitatively map the spatial contaminant distribution. Soil gas surveys, immunoassay testing (IMA), innovative optical techniques, and passive organic sorbent sensors will be deployed along with the geophysical methods. Gas chromatography/mass spectrometry (GC/MS) instruments and a cone penetrometer system equipped with a laser-induced fluorescence (LIF) probe will quantitatively map the action level edges of the PAH plume(s). Samples will be taken both by the cone penetrometer test system (CPT) and the Geoprobe {reg_sign} sampler system.

  13. A Neural Network Model for Construction Projects Site Overhead Cost Estimating in Egypt

    E-Print Network [OSTI]

    ElSawy, Ismaail; Razek, Mohammed Abdel

    2011-01-01T23:59:59.000Z

    Estimating of the overhead costs of building construction projects is an important task in the management of these projects. The quality of construction management depends heavily on their accurate cost estimation. Construction costs prediction is a very difficult and sophisticated task especially when using manual calculation methods. This paper uses Artificial Neural Network (ANN) approach to develop a parametric cost-estimating model for site overhead cost in Egypt. Fifty-two actual real-life cases of building projects constructed in Egypt during the seven year period 2002-2009 were used as training materials. The neural network architecture is presented for the estimation of the site overhead costs as a percentage from the total project price.

  14. Idaho National Laboratory Ten-Year Site Plan Project Description Document

    SciTech Connect (OSTI)

    Not Listed

    2012-03-01T23:59:59.000Z

    This document describes the currently active and proposed infrastructure projects listed in Appendix B of the Idaho National Laboratory 2013-2022 Ten Year Site Plan (DOE/ID-11449). It was produced in accordance with Contract Data Requirements List I.06. The projects delineated in this document support infrastructure needs at INL's Research and Education Campus, Materials and Fuels Complex, Advanced Test Reactor Complex and the greater site-wide area. The projects provide critical infrastructure needed to meet current and future INL opereational and research needs. Execution of these projects will restore, rebuild, and revitalize INL's physical infrastructure; enhance program execution, and make a significant contribution toward reducing complex-wide deferred maintenance.

  15. Policy and procedures for classification of Class III groundwater at UMTRA Project sites. Final

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has recently proposed groundwater regulations for the US Department of Energy`s )DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. These regulations allow the application of supplemental standards at UMTRA Project sites in specific situations. The designation of groundwater as Class III permits the application of supplemental standards. This document discusses a final UMTRA Project policy and procedures for identifying Class III groundwater, including identification of a review area, definition of water quality, quantification of aquifer yield, and identification of methods reasonably employed for public water supply systems. These items, either individually or collectively, need to be investigated in order to determine if groundwaters at UMTRA Project sites are Class III. This document provides a framework for the DOE to determine Class III groundwaters.

  16. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public`s concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  17. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    SciTech Connect (OSTI)

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25T23:59:59.000Z

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  18. Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4

    SciTech Connect (OSTI)

    NONE

    1992-06-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

  19. Ponnequin Wind Energy Project: Reference site avian study, January 1, 1998--December 31, 1998

    SciTech Connect (OSTI)

    Kerlinger, P.; Curry, R.; Ryder, R.

    2000-04-05T23:59:59.000Z

    This report summarizes the results of surveys completed during the period January 1, 1998, through December 31, 1998, at the Ponnequin Wind Energy Project in Weld County, Colorado. The surveys were conducted at two reference sites, and include a pre-construction avian abundance and use survey and raptor nesting, prey, and carcass surveys. The reference sites were situated immediately to the west of the project site in Weld County, Colorado, and 4.8 kilometers to the north of the site in Laramie County, Wyoming. The surveys were conducted along two 800-meter (m) main transects at each site with two 400-m (by 100-m) perpendicular transects. About 30 complete surveys were completed during the year, with a greater frequency of surveys in the late spring and early autumn. The surveys revealed mostly common species, with no endangered or threatened species on the sites. Small numbers of raptors were observed on or near the project and reference areas. During the winter, avian use and abundance was minimal. Prey species consisted primarily of thirteen-lined ground squirrels and northern pocket gophers. Two songbird carcasses were found. The results of these surveys, combined with data from several more months of surveys, will be compared to surveys conducted after construction of the wind farm.

  20. Field fracturing multi-sites project. Annual technical progress report, July 28, 1993--July 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data which will resolve significant unknowns with regard to hydraulic fracture modeling, fluid fracture rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. The goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic-fracturing test site.

  1. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    NONE

    1992-01-01T23:59:59.000Z

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  2. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2007-09-27T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDPs environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  3. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31T23:59:59.000Z

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  4. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

  5. Environmental Assessment of Ground Water Compliance at the Durango, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-11-29T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing a ground water compliance strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Durango, Colorado. DOE has prepared this environmental assessment to provide the public with information concerning the potential effects of this proposed strategy.

  6. West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2006-09-21T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

  7. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2008-12-17T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  8. Grand Junction Projects Office site environmental report for calendar year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report presents information pertaining to environmental activities conducted during calendar year 1992 at the US Department of Energy Grand Junction Projects Office (DOE-GJPO) facility in Colorado. Environmental activities conducted at the GJPO facility during 1992 included those associated with environmental compliance, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. Four phases of the on-site Grand Junction Projects Office Remedial Action Project were completed in 1992. Remediation activities, which included the removal of 161,589 tons of uranium-mill-tailings-contaminated material from the facility, were conducted in compliance with all applicable permits. Off-site dose modeling for the GJPO was conducted to determine compliance with current National Emission Standards for Hazardous Air Pollutants, Subpart H, and applicable DOE Orders (5400.1 and 5400.5). The total off-site EDE to the public from all sources of radiation emanating from the facility (radon, air particulates, gamma) was calculated as 9 mrem/yr, which is well below the DOE dose limit of 100 mrem/yr above background. The radiological and nonradiological monitoring program at the GJPO facility included monitoring of activities that generate potentially hazardous or toxic wastes and monitoring of ambient air, surface water, and ground water.

  9. Post-NEPA environmental investigations at DOE geopressured-geothermal project sites

    SciTech Connect (OSTI)

    Reed, A.W.

    1985-01-01T23:59:59.000Z

    In 1982, the Oak Ridge National Laboratory (ORNL) conducted follow-up environmental reviews of four US Department of Energy (DOE) geopressured-geothermal design well projects: Dow Parcperdue, Sweet Lake, Gladys McCall and Pleasant Bayou. The reviews determined the implementation and effectiveness of monitoring and mitigation commitments made by DOE in National Environmental Policy Act (NEPA) documents prepared for the individual projects. This paper briefly describes post-NEPA environmental investigations at DOE's geopressured-geothermal design well sites and focuses on three environmental problems that were identified and subsequently mitigated by DOE. These were (1) a breech in the brine pit liner and (2) a torn mud pit liner at the Dow Parcperdue well site, and (3) the disposal of potentially hazardous contents of the reserve pit at the Pleasant Bayou well site. The nature of the environmental problems, recommendations for mitigation of each, and remedial actions that were taken are presented.

  10. Field fracturing multi-sites project. Annual report, August 1, 1995--July 31, 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments are to be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment conducive to acquiring high-quality data. The primary Project goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic fracturing test site to diagnose, characterize, and test hydraulic fracturing technology and performance. It is anticipated that the research work being conducted by the multi-disciplinary team of GRI and DOE contractors will lead to the development of a commercial fracture mapping tool/service.

  11. Project Title: Plant Lab Capabilities Project (4512) Program or Program Office: Y -12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluidst; ·lJ~·eterminatIon

  12. Project Title: Rheocaster Project (4544) Program or Program Office: Y -12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluidst;

  13. Technical data base quarterly report, April--June 1992; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    NONE

    1992-09-01T23:59:59.000Z

    The acquisition and development of technical data are activities that provide the information base from which the Yucca mountain Site will be characterized and may P-ventually be licensed as a high-level waste repository. The Project Technical Data Base (TDB) is the repository for the regional and site-specific technical data required in intermediate and license application analyses and models. The TDB Quarterly Report provides the mechanism for identifying technical data currently available from the Project TDB. Due to the variety of scientific information generated by YMP activities, the Project TDB consists of three components, each designed to store specific types of data. The Site and Engineering Properties Data Base (SEPDB) maintains technical data best stored in a tabular format. The Geographic Nodal Information Study and Evaluation System (GENISES), which is the Geographic Information System (GIS) component of the Project TDB, maintains spatial or map-like data. The Geologic and Engineering Materials Bibliography of Chemical Species (GEMBOCHS) data base maintains thermodynamic/geochemical data needed to support geochemical reaction models involving the waste package and repository geochemical environment. Each of these data bases are addressed independently within the TDB Quarterly Report.

  14. Shaft Sinking at the Nevada Test Site, U1h Shaft Project

    SciTech Connect (OSTI)

    B. Briggs; R. Musick

    2001-03-01T23:59:59.000Z

    The U1h Shaft Project is a design/build subcontract to construct one 6.1 meter (m) (20 feet (ft)) finished diameter shaft to a depth of 321.6 m (1,055 ft.) at the Nevada Test Site. Atkinson Construction was subcontracted by Bechtel Nevada to construct the U1h Shaft for the U.S. Department of Energy. The project consists of furnishing and installing the sinking plant, construction of the 321.6 m (1,055 ft.) of concrete lined shaft, development of a shaft station at a depth of 297.5 m (976 ft.), and construction of a loading pocket at the station. The outfitting of the shaft and installation of a new hoist may be incorporated into the project at a later date. This paper will describe the design phase, the excavation and lining operation, shaft station construction and the contractual challenges encountered on this project.

  15. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

  16. West Valley Demonstration Project site environmental report for calendar year 1996

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

  17. COVE 2A Benchmarking calculations using NORIA; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Carrigan, C.R.; Bixler, N.E.; Hopkins, P.L.; Eaton, R.R.

    1991-10-01T23:59:59.000Z

    Six steady-state and six transient benchmarking calculations have been performed, using the finite element code NORIA, to simulate one-dimensional infiltration into Yucca Mountain. These calculations were made to support the code verification (COVE 2A) activity for the Yucca Mountain Site Characterization Project. COVE 2A evaluates the usefulness of numerical codes for analyzing the hydrology of the potential Yucca Mountain site. Numerical solutions for all cases were found to be stable. As expected, the difficulties and computer-time requirements associated with obtaining solutions increased with infiltration rate. 10 refs., 128 figs., 5 tabs.

  18. Tritium And Iodine Plumes on the U.S. Department of Energy Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z SiteManhattan ProjectMay 29, 2014 Online

  19. Tritium And Iodine Plumes on the U.S. Department of Energy Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z SiteManhattan ProjectMay 29, 2014

  20. ENHANCING EFFECTIVENESS OF EMSP PROJECTS THROUGH STRONG CONNECTIONS TO SITE PROBLEMS

    SciTech Connect (OSTI)

    Josephson, Gary B.; Hale, Donna

    2003-07-31T23:59:59.000Z

    The Environmental Management Science Program (EMSP) funds basic science research that will lead to reduced remediation cost, schedule, technical uncertainties, and risk for DOEs environmental clean up. The Tanks Focus Area (TFA) has partnered with EMSP to accomplish those same objectives for DOEs largest and most expensive remediation effort to retrieve and immobilize the highly radioactive wastes that are our nation's chief nuclear defense program legacy. TFA has been tasked to facilitate success of the EMSP investment. The key for EMSP projects to contribute to this remediation effort is communication. First, the scientist needs to understand much more about how his scientific results would be used than he could ever learn from the original EMSP solicitation or by reading the referenced DOE needs statements. Second, the scientists results must be communicated to the site problem holders in a usable form and in a timely manner such that important information gaps can still be filled by the EMSP project. Research results can be used in a variety of ways besides deployment of new hardware or a new process. When results are USED the site problem holders become users. The important aspect that research results are to be used is captured in the TFA lexicon for their clients, the DOE sites--USERS. The best method observed, so far, to accomplish the indispensable communication necessary for success is through direct contact between EMSP researchers and TFA/site problem holders, person to person. The observation that direct contact is the best medium for exchange of complex information may seem inanely obvious. However, it is not the normal procedure in the more academic world of the fundamental scientists, where publishing of results in a peer-reviewed journal completes the transmittal of scientific results. Direct communication between EMSP researchers and site users doesnt occur naturally. TFA actively bridges this gap between science and technology development and site users through its technology integration managers (TIMs). TIMs are experienced researchers, usually from DOEs national laboratories, with intimate knowledge of the needs of sites at the working level. They help focus the research projects to develop technical solutions to site submitted needs. They stand in a rather unique position with one foot in the research community and the other foot in the tanks. This paper will show, through several examples, significant contributions EMSP scientists have made to solving DOE's high-level waste challenges through direct and enhanced communication with TFA and site users.

  1. On-Site Oxy-Lance Size Reduction of South Texas Project Reactor Vessel Heads - 12324

    SciTech Connect (OSTI)

    Posivak, Edward [WMG, inc. (United States); Keeney, Gilbert; Wheeler, Dean [Shaw Group (United States)

    2012-07-01T23:59:59.000Z

    On-Site Oxy-Lance size reduction of mildly radioactive large components has been accomplished at other operating plants. On-Site Oxy-Lance size reduction of more radioactive components like Reactor Vessel Heads had previously been limited to decommissioning projects. Building on past decommissioning and site experience, subcontractors for South Texas Project Nuclear Operating Company (STPNOC) developed an innovative integrated system to control smoke, radioactive contamination, worker dose, and worker safety. STP's innovative, easy to use CEDM containment that provided oxy lance access, smoke control, and spatter/contamination control was the key to successful segmentation for cost-effective and ALARA packaging and transport for disposal. Relative to CEDM milling, STP oxy-lance segmentation saved approximately 40 person- REM accrued during 9,000 hours logged into the radiological controlled area (RCA) during more than 3,800 separate entries. Furthermore there were no personnel contamination events or respiratory uptakes of radioactive material during the course of the entire project. (authors)

  2. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  3. The consequences of failure should be considered in siting geologic carbon sequestration projects

    SciTech Connect (OSTI)

    Price, P.N.; Oldenburg, C.M.

    2009-02-23T23:59:59.000Z

    Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

  4. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-08-13T23:59:59.000Z

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA).

  5. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  6. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect (OSTI)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  7. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles; Riccobono, Antonino, MS; Messing, Charles G., Ph.D.; Walker, Brian K., Ph.D.; Reed, John K., Ph.D.

    2012-02-28T23:59:59.000Z

    Dehlsen Associates, LLC was awarded a grant by the United States Department of Energy (DOE) Golden Field Office for a project titled 'Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida,' corresponding to DOE Grant Award Number DE-EE0002655 resulting from DOE funding Opportunity Announcement Number DE-FOA-0000069 for Topic Area 2, and it is referred to herein as 'the project.' The purpose of the project was to enhance the certainty of the survey requirements and regulatory review processes for the purpose of reducing the time, efforts, and costs associated with initial siting efforts of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore Southeast Florida. To secure early input from agencies, protocols were developed for collecting baseline geophysical information and benthic habitat data that can be used by project developers and regulators to make decisions early in the process of determining project location (i.e., the siting process) that avoid or minimize adverse impacts to sensitive marine benthic habitat. It is presumed that such an approach will help facilitate the licensing process for hydrokinetic and other ocean renewable energy projects within the study area and will assist in clarifying the baseline environmental data requirements described in the U.S. Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement (formerly Minerals Management Service) final regulations on offshore renewable energy (30 Code of Federal Regulations 285, published April 29, 2009). Because projects generally seek to avoid or minimize impacts to sensitive marine habitats, it was not the intent of this project to investigate areas that did not appear suitable for the siting of ocean renewable energy projects. Rather, a two-tiered approach was designed with the first step consisting of gaining overall insight about seabed conditions offshore southeastern Florida by conducting a geophysical survey of pre-selected areas with subsequent post-processing and expert data interpretation by geophysicists and experienced marine biologists knowledgeable about the general project area. The second step sought to validate the benthic habitat types interpreted from the geophysical data by conducting benthic video and photographic field surveys of selected habitat types. The goal of this step was to determine the degree of correlation between the habitat types interpreted from the geophysical data and what actually exists on the seafloor based on the benthic video survey logs. This step included spot-checking selected habitat types rather than comprehensive evaluation of the entire area covered by the geophysical survey. It is important to note that non-invasive survey methods were used as part of this study and no devices of any kind were either temporarily or permanently attached to the seabed as part of the work conducted under this project.

  8. Final audit report of remedial action construction at the UMTRA Project Falls City, Texas, site

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This final audit report for the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site summarizes the radiological audits and the quality assurance (QA) in-process surveillances, audits, and final close-out inspection performed by the U.S. Department of Energy (DOE) and Technical Assistance Contractor (TAC). It also summarizes U.S. Nuclear Regulatory Commission (NRC) surveillances. One radiological audit and three radiological surveillances were performed at the Falls City site. These surveillances and audit, which resulted in 31 observations, focused primarily on processing site activities and were performed on the following dates: 3-6 August 1992, 29-30 October 1992, 22-26 March 1993, and 1-3 November 1993. All outstanding radiological issues were closed out at the completion of the construction activities. Six QA in-process surveillances, which resulted in 71 observations, were performed at the Falls City site on the following dates: 22-24 July 1992, 23-25 November 1992, 17-19 May 1993, 16-18 August 1993, 13-15 October 1993, and 2-4 February 1994. All outstanding issues were closed out with the February surveillance on 3 March 1994. The DOE/TAC remedial action close-out inspections of the Falls City site, which resulted in 56 observations, were conducted 9-10 June 1994 and 26 July 1994. The inspections were closed out on 26 January 1995. The NRC performed three on-site construction reviews (OSCR), resulting in seven observations of remedial action construction activities that occurred during site visits. The OSCRs were performed 9 December 1992, 12 May 1993, and 25 October 1993. Since all audit and surveillance observations and recommendations have been closed out, this final audit report segment of the site certification process is complete.

  9. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31T23:59:59.000Z

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  10. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site.

  11. A machine learning model of Manhattan air pollution at high spatial resolution

    E-Print Network [OSTI]

    Keeler, Rachel H. (Rachel Heiden)

    2014-01-01T23:59:59.000Z

    A machine-learning model was created to predict air pollution at high spatial resolution in Manhattan, New York using taxi trip data. Urban air pollution increases morbidity and mortality through respiratory and cardiovascular ...

  12. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    SciTech Connect (OSTI)

    Rendall, John D. [CH2MHILL B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL B& W West Valley, LLC (CHBWV)

    2014-09-16T23:59:59.000Z

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOEs effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  13. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS Corporation

    2010-09-17T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOEs effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  14. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    SciTech Connect (OSTI)

    Rendall, John D. [CH2M HILL B& W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL B& W West Valley, LLC (CHBWV)

    2013-09-19T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOEs effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  15. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    SciTech Connect (OSTI)

    CH2M HILL B& W West Valley, LLC

    2012-09-27T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOEs effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  16. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    SciTech Connect (OSTI)

    CH2MHILL B& W West Valley, LLC

    2011-09-28T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  17. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  18. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    SciTech Connect (OSTI)

    NONE

    2003-09-12T23:59:59.000Z

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.

  19. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  20. The Oak Ridge Reservation Annual Site Environmental Report, 2007

    SciTech Connect (OSTI)

    none,

    2008-09-30T23:59:59.000Z

    The Oak Ridge Reservation (ORR) consists of three major government-owned, contractor-operated facilities: the Y-12 National Security Complex, Oak Ridge National Laboratory, and East Tennessee Technology Park. The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced materials for the first atomic bombs. The reservations role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the United States. Both the work carried out for the war effort and subsequent research, development, and production activities have involved, and continue to involve, the use of radiological and hazardous materials. The Oak Ridge Reservation Annual Site Environmental Report and supporting data are available at Http://www.ornl.gov/sci/env_rpt or from the project director.

  1. Waste minimization plan construction and operation of the replacement cross-site transfer system, project W-058

    SciTech Connect (OSTI)

    Boucher, T.D.

    1996-04-01T23:59:59.000Z

    This report addresses the research and development of a waste minimization plan for the construction and operation of Project W-058, Replacement of the Cross-Site Transfer System, on the Hanford Site. The plan is based on Washington Administrative Code (WAC) 173-307, Plans. The waste minimization plan identifies areas where pollution prevention/waste minimization principles can be incorporated into the construction and operation of the cross-site transfer system.

  2. Nondestructive Examination Equipment in the Hanford Site WRAP 1 and Retrieval Project

    SciTech Connect (OSTI)

    Keve, J.K.; Weber, J.R.

    1994-08-01T23:59:59.000Z

    The Waste Receiving and Processing Facility, Module 1 (WRAP-1) is currently under construction at the Hanford Nuclear Site in south-central Washington Stage. The facility is scheduled to begin operation in 1996. Its mission is to annually receive more than 6,800 55-gallon drums of both newly generated and retrieved contact-handled solid waste and prepare them for certification and disposal. WRAP 1, the Nondestructive Examination (NDE) System has two primary functions: To identify the presence or verify the absence of non-compliant materials in the un-manifested, retrieved drums, and to certify that all outgoing drums of TRU waste (newly generated and processed) are free of liquids and other non-compliant items. The Solid Waste Retrieval Facility, Phase 1 Project will unearth and recover the first 10,000 of 38,000 drums of suspect TRU waste buried between 1970 and 1985 for which no detailed contents manifests exist. Follow-on projects will recover the balance of the buried drums. To resolve safely issues about storing the newly unearthed drums, the containers and contents will be examined at the recovery site before the containers are placed in storage facilities.

  3. active site h103w: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ST. LOUIS DOWNTOWN SITE Engineering Websites Summary: with the Manhattan Engi- neer District and the Atomic Energy Commission in the 1940s and 50's. The USACE encourages...

  4. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01T23:59:59.000Z

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program.

  5. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  6. Weldon Spring Site Remedial Action Project quarterly environmental data summary for second quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-08-11T23:59:59.000Z

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the second quarter of 1998 is enclosed. The data presented constitutes the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the database during the second quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the database and KPA data are not merged into the regular database. All data received and verified during the second quarter were within a permissible range of variability, except for those listed. Above normal occurrences are cited for groundwater, air, and NPDES data. There were no above normal occurrences for springs or surface water. The attached tables present the most recent data for air and the data merged into the database during the second quarter 1998 for groundwater, NPDES, surface water, and springs.

  7. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site: Final. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Thorium 230 (Th-230) at the Gunnison, Colorado processing site will require remediation, however, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Therefore, to effectively remediate the site with respect to Radium 226 (Ra-226) and Th-230, the following supplemental standard is proposed: In situ Ra-26 will be remediated to the EPA soil cleanup standards independent of groundwater considerations. In situ Th-230 concentrations will be remediated in the region above the encountered water table so the 1000-year projected Ra-226 concentration complies with the EPA soil cleanup concentration limits. If elevated Th-230 persists to the water table, an additional foot of excavation will be performed and the grid will be backfilled. Excavated grids will be backfilled to the final remedial action grade with clean cobbly soil. Final grid verification that is required below the water table will be performed by extracting and analyzing a single bulk soil sample with the bucket of a backhoe. Modeled surface radon flux values will be estimated and documented. A recommendation will be made that land records should be annotated to identify the presence of residual Th-230.

  8. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    None

    2003-04-23T23:59:59.000Z

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

  9. Determination of aerosol size distributions at uranium mill tailings remedial action project sites

    SciTech Connect (OSTI)

    Newton, G.J.; Reif, R.H. [CWM Federal Environmental Services, Inc., Albuquerque, NM (United States); Hoover, M.D.

    1994-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has an ongoing program, the Uranium Mill Tailings Remedial Action (UMTRA) Project, to stabilize piles of uranium mill tailings in order to reduce the potential radiological hazards to the public. Protection of workers and the general public against airborne radioactivity during remedial action is a top priority at the UMTRA Project. The primary occupational radionuclides of concern are {sup 230}Th, {sup 226}Ra, {sup 210}Pb, {sup 210}Po, and the short-lived decay products of {sup 222}Rn with {sup 230}Th causing the majority of the committed effective dose equivalent (CEDE) from inhaling uranium mill tailings. Prior to this study, a default particle size of 1.0 {mu}m activity median aerodynamic diameter (AMAD) was assumed for airborne radioactive tailings dust. Because of recent changes in DOE requirements, all DOE operations are now required to use the CEDE methodology, instead of the annual effective dose equivalent (AEDE) methodology, to evaluate internal radiation exposures. Under the transition from AEDE to CEDE, with a 1.0 {mu}m AMAD particle size, lower bioassay action levels would be required for the UMTRA Project. This translates into an expanded internal dosimetry program where significantly more bioassay monitoring would be required at the UMTRA Project sites. However, for situations where the particle size distribution is known to differ significantly from 1.0 {mu}m AMAD, the DOE allows for corrections to be made to both the estimated dose to workers and the derived air concentration (DAC) values. For particle sizes larger than 1.0 {mu}m AMAD, the calculated CEDE from inhaling tailings would be relatively lower.

  10. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project - status of project to date January 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fourth year (1996) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). The fourth year at the Weldon Springs Site shows sustained progress as the project moves through the final design and into the remedial action phases of the Chemical Plant Operable Unit. The remedial action phase includes the Foundations Removal work package, Chemical Solidification and Stabilization, and disposal cell.

  11. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  12. Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report

    SciTech Connect (OSTI)

    NONE

    2000-12-01T23:59:59.000Z

    This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demand when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and PGDP are believed to have been returned to the shipping site or disposed of as waste on the Oak Ridge Reservation. No evidence of Y-12 Complex processing of this material was identified in the historical records reviewed by the Project Team.

  13. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  14. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2009-09-24T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDPs environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  15. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    SciTech Connect (OSTI)

    NONE

    1992-08-01T23:59:59.000Z

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  16. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

  17. Description of the Formerly Utilized Sites Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed.

  18. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect (OSTI)

    Gardner, Martin G.; Price, Randall K.

    2007-02-01T23:59:59.000Z

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  19. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01T23:59:59.000Z

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  20. Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2003-03-13T23:59:59.000Z

    This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

  1. Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

    SciTech Connect (OSTI)

    Spane, Frank A.

    2013-04-29T23:59:59.000Z

    Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

  2. Development and use of site-specific chemical and biological criteria for assessing New Bedford Harbor pilot dredging project

    SciTech Connect (OSTI)

    Nelson, W.G.; Hansen, D.J.

    1991-01-01T23:59:59.000Z

    Numerical site-specific chemical and biological criteria were established to assess the impact of a pilot dredging project on water quality at the New Bedford Harbor, Massachusetts, USA, Superfund site. Because most existing chemical concentrations in the water column and indigenous biota exceeded federal and state water quality limits, the derivation of site-specific criteria was required. Prior to any operational phases of the project (i.e., dike construction, dredging), criteria values were developed from background concentrations of PCBs and metals in water and biota, as well as for the toxic effects of water quality on the biota. During each operational phase of the project, water samples were collected, analyzed within 16 h, and the data supplied to a management committee in order to assess the environmental impact of the previous days operation. The ambient unfiltered water concentration of PCBs and metals were the only chemical or biological criteria exceeded. Modification of the next days' operations resulted in a return of these concentrations to background levels. The combined use of site-specific criteria and a real-time decision making management process allowed for successful completion of the project with a minimal effect on water quality.

  3. U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits.

  4. Results of the groundwater restoration project, Hanna Underground Coal Gasification Test Site, Wyoming: Topical report

    SciTech Connect (OSTI)

    Oliver, R.L.

    1988-01-01T23:59:59.000Z

    Underground coal gasification (UCG) experiments conducted during the 1970s at the Department of Energy (DOE) site near Hanna, Wyoming, formed six underground cavities in the Hanna No. 1 coal seam, an aquifer of low permeability. When the first Hanna UCG experiment began in March 1973, researchers had little information about what effects the geologic or hydrologic characteristics of the area might have on the UCG process; likewise, the effects of UCG on the environment were unknown. Since the UCG experiments were completed, dilute concentrations of pyrolysis products and leachates have been detected in groundwater monitoring wells in and near some of the six cavities. Three primary UCG indicator constituents have been measured at elevated concentrations: phenols, TDS, and sulfate. The Hanna III cavity water exceeded the DOE target level for TDS and sulfate, and the Hanna I cavity water exceeded the DOE target level for phenols. The indicated phenols contamination, however, was in groundwater sampled from a well which was previously used as a production well during the experiment. Water pumped during the restoration project and a new well located approximately 10 ft from the old production well was sampled and no elevated phenols concentration was detected. Therefore, the restoration performed on the Hanna I cavity water was not necessary. The restoration was performed, however, because these indications were not available until during the restoration. Locally, various other constituents exceed DOE target levels, but concentrations are very near target levels and are well within livestock use limits. 2 refs., 7 figs., 5 tabs.

  5. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    N /A

    1997-02-19T23:59:59.000Z

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the M&O is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment.

  6. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final [report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards.

  7. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    SciTech Connect (OSTI)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23T23:59:59.000Z

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

  8. Oak Ridge Reservation annual site environmental report for 1997: Color your tomorrow

    SciTech Connect (OSTI)

    Hamilton, L.V. [and others

    1998-10-01T23:59:59.000Z

    The U.S. Department of Energy currently oversees activities on the Oak Ridge Reservation (ORR), a government-owned, contractor-operated facility. The reservation contains three major operating sites: the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced the materials for the first atomic bombs. The reservation's role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the United States. Both the work carried out for the war effort and subsequent research, development, and production activities have involved (and continue to involve) radiological and hazardous materials.

  9. 1991 New Mexico economic impact study for the Uranium Mill Tailings Remedial Action Project, Ambrosia Lake, New Mexico, site

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    The University of New Mexico Bureau of Business and Economic Research completed an abbreviated cost-benefit analysis of the income and employment impact of the US Department of Energy (DOE) and contractor offices in Albuquerque. Since the Project Office will have a significant positive impact on the State`s economy (shown on Table 8), the impact is combined with the impact of remedial actions at the Ambrosia Lake site to highlight the cost-benefit of the entire Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project at the Ambrosia Lake site will generate $12.509 million in gross labor income in New Mexico between 1989 and 1994. This includes $1.161 million in federal tax revenue, $1.015 million in State personal income tax revenue, and seven thousand in local tax revenue. The UMTRA Project will generate the equivalent of 84 full-time jobs during the peak year of remedial action at Ambrosia Lake site. New Mexico`s total funding requirement for the UMTRA Project is estimated to be $2.963 million. The net economic benefit of the Ambrosia Lake portion of the UMTRA Project to New Mexico after the State`s share of the project`s cost, the federal income tax, and the $0.936 million income impact of the alternate use of the State funding are subtracted, will be $7.451 million between 1990 and 1994. In Fiscal Year 1990 the UMTRA Project DOE and contractor offices in Albuquerque directly employed 163 people. Another 78 jobs were also maintained in support of the industry sector and 166 jobs were also maintained in other sections of the New Mexico economy. It is estimated that $19 million dollars of income was generated and 1.949 million of State and local taxes were collected. The University of New Mexico study shows that for every dollar the State of New Mexico invests in the UMTRA Project, it will realize $95.05 in gross labor income. This corresponds to a net return on the States investment in the Project of $97.20 for every dollar invested.

  10. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

    1994-04-01T23:59:59.000Z

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  11. Greater Green River Basin production improvement project, Phase 1: Site characterization report

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Krystinik, L.F.; Mead, R.H.; Poe, S.C.

    1996-05-01T23:59:59.000Z

    Several tight, naturally-fractured, gas-productive formations in the Greater Green River Basin (GGRB) in Wyoming have been exploited using conventional vertical well technology. Typically, hydraulic fracture treatments must be performed in completing these wells to increase gas production rates to economic levels. However, with the maturation of horizontal drilling technology hydraulic fracture treatments may not be the most effective method for improving gas production from these tight reservoirs. Two of the most prolific tight gas reservoirs in the Green River Basin, the Frontier and the Mesaverde, are candidates for the application of horizontal well completion technology. The objective of the proposed project is to apply the DOE`s technical concept to the Second Frontier Formation on the western flank of the Rock Springs Uplift. Previous industry attempts to produce in commercial quantities from the Second Frontier Formation have been hampered by lack of understanding of both the in-situ natural fracture system and lack of adequate stimulation treatments. The proposed technical approach involves drilling a vertical characterization well to the Second Frontier Formation at a depth of approximately 16,000 ft. from a site located about 18 miles northwest of Rock Springs, Wyoming. Logging, coring, and well testing information from the vertical well will be used to design a hydraulic fracturing treatment and to assess the resulting production performance. Data from the vertical drilling phase will be used to design a 2,500 to 3,000-ft lateral wellbore which will be kicked off from the vertical hole and extend into the blanket marine sandstone bench of the Second Frontier Formation. The trajectory of this wellbore will be designed to intersect the maximum number of natural fractures to maximize production rates. Production testing of the resulting completion will provide an assessment of reserve potential related to horizontal lateral completions.

  12. Remote administration and user experience evaluation of the iLab Heat Transfer Project site

    E-Print Network [OSTI]

    Graham, Rodney K

    2006-01-01T23:59:59.000Z

    The iLab Heat Transfer Project provides a means for students to remotely execute, via a web interface, experiments related to the topic of heat transfer. The website associated with this project provides instructors with ...

  13. DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year...

    Office of Environmental Management (EM)

    U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental Technology...

  14. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites. Final report and users` guide

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

  15. Site characterization report for the basalt waste isolation project. Volume II

    SciTech Connect (OSTI)

    None

    1982-11-01T23:59:59.000Z

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  16. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

  17. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

  18. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-06T23:59:59.000Z

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values that have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.

  19. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.

  20. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect (OSTI)

    Hazen, Terry

    2002-08-26T23:59:59.000Z

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

  1. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-10-03T23:59:59.000Z

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  2. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project

    SciTech Connect (OSTI)

    Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

    1984-12-01T23:59:59.000Z

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

  3. Multimedia assessment of health risks for the Weldon Spring site remedial action project

    SciTech Connect (OSTI)

    Haroun, L.A.; MacDonell, M.M.; Peterson, J.M.; Fingleton, D.J.

    1990-01-01T23:59:59.000Z

    The US Department of Energy (DOE), under its Surplus Facilities Management Program (SFMP), is responsible for cleanup activities at the Weldon Spring site, Weldon Spring, Missouri. The site consists of two noncontiguous areas: the chemical plant area, which includes four raffinate pits, and the quarry. The Weldon Spring site became radioactively and chemically contaminated as a result of processing and disposal activities that took place from the 1940s through the 1960s. The US Department of the Army used the Weldon Spring site to produce dinitrotoluene (DNT) and trinitrotoluene (TNT) explosives from 1941 to 1946. The US Atomic Energy Commission (AEC, predecessor of the DOE) used the site to process uranium and thorium ore concentrates from 1957 to 1966. The quarry was used by the Army and the AEC for waste disposal beginning in the early 1940s; it was last used for disposal in 1969. Wastes placed in the quarry include TNT and DNT residues and radioactively contaminated materials. A summary of disposal activities at the quarry is presented. As part of the environmental compliance process at the Weldon Spring site, a baseline risk evaluation (BRE) was prepared to assess the potential risks associated with contamination present at the quarry. 13 refs., 2 figs., 6 tabs.

  4. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  5. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  6. Chemistry Research Projects Available to Undergraduates Consult Individual Faculty Members' Web Sites for More Details

    E-Print Network [OSTI]

    Crawford, T. Daniel

    . Applications to solar energy conversion or electrocatalysis. Design and synthesis of mixedmetal and photochemical energy storage. Particular emphasis is placed on probing the propertiesChemistry Research Projects Available to Undergraduates Consult Individual Faculty Members' Web

  7. Programmatic agreement among the USDOE/RL Operations Office, the Advisory Council on Historic Preservation, and the WA State Historic Preservation Office for the maintenance, deactivation, alteration and demolition of the built environment on the Hanford Site, Washington

    SciTech Connect (OSTI)

    Lloyd, D.W.

    1997-08-01T23:59:59.000Z

    This Programmatic Agreement (PA) addresses the built environment (i.e., buildings and structures) constructed during the Manhattan Project and Cold War Era periods of Hanford`s operational history. As such it encompasses the years 1943 through 1990. The identification, evaluation, and treatment of buildings and historic archeological remains on the Hanford Site predating 1943 will be accomplished through Sections 800.4 through 800.6 of the Council`s regulations. This PA will be in effect from the date of signature until September 30, 2000. Completion of the Sitewide Treatment Plan established under this PA satisfies all Section 106 requirements for identification, evaluation, and treatment necessary for all undertakings, up to and including demolition which may affect Manhattan Project and Cold War Era properties. This PA may be extended if the Sitewide Treatment Plan has not been completed by the end of FY 2000. Identification, evaluation, and treatment of properties constructed on the Hanford Site after 1990 will be handled pursuant to the regulations in effect at the time such properties are eligible for review.

  8. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed.

  9. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01T23:59:59.000Z

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  10. Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project (BWIP)

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.; Newell, R.L.; Page, T.L.

    1989-01-01T23:59:59.000Z

    The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facility consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.

  11. Project Manager, U.S. ITER INSIDE: ITER Site Progress Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProject ATHENAManagement ProjectITER

  12. Surface and subsurface cleanup protocol for radionuclides Gunnison, Colorado, UMTRA Project Processing Site. Revision 3, Final report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The supplemental standards provisions of Title 40, Code of Federal Regulations, Part 192 (40 CFR Part 192) require the cleanup of radionuclides other than radium-226 (Ra-226) to levels ``as low as reasonably achievable`` (ALARA), taking into account site-specific conditions, if sufficient quantities and concentrations are present to constitute a significant radiation hazard. In this context, thorium-230 (Th-230) at the Gunnison, Colorado, processing site will require remediation. However, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Characterization data indicate that in the offpile areas, the removal of residual in situ bulk Ra-226 and Th-230 such that the 1000-year projected Ra-226 concentration (Ra-226 concentration in 1000 years due to the decay of in situ Ra-226 and the in-growth of Ra-226 from in situ Th-230) complies with the US Environmental Protection Agency (EPA) cleanup standard for in situ Ra-226 and the cleanup protocol for in situ Th-230 can be readily achieved using conventional excavation techniques for bulk contamination without encountering significant impacts due to groundwater. The EPA cleanup standard and criterion for Ra-226 and the 1000-year projected Ra-226 are 5 and 15 picocuries per gram (pCi/g) above background, respectively, averaged over 15-centimeter (cm) deep surface and subsurface intervals and 100-square-meter (m{sup 2}) grid areas. Significant differential migration of Th-230 relative to Ra-226 has occurred over 40 percent of the subpile area. To effectively remediate the site with respect to Ra-226 and Th-230, supplemental standard is proposed and discussed in this report.

  13. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    SciTech Connect (OSTI)

    WESTRA, A.G.

    1999-06-24T23:59:59.000Z

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

  14. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  15. Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project

    SciTech Connect (OSTI)

    Chapman, T.E.

    1993-10-01T23:59:59.000Z

    The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacities and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.

  16. The Hunters Point cogeneration project: Environmental justice in power plant siting

    SciTech Connect (OSTI)

    Kosloff, L.H. [Trexler and Associates, Inc., Portland, OR (United States); Varanini, E.E. III [Marron, Reid and Sheehy, Sacramento, CA (United States)

    1997-12-31T23:59:59.000Z

    The recent Hunters Point, San Francisco power plant siting process in California represents the first time that environmental justice has arisen as a major power plant siting issue. Intervenors argued that the siting process was racially and economically biased and were supported by leading environmental justice activists at the Golden Gate Law School`s Environmental Justice Clinic, a leading thinker in this field. The applicant argued that environmental justice charges cannot realistically be made against a modern natural-gas energy facility with state-of-the-art environmental controls. The applicant also argued that environmental justice concerns were fully addressed through the extensive environmental and socioeconomic review carried out by California Energy Commission staff. After extensive testimony and cross-examination, the Commission agreed with the applicant. This case has important lessons for companies that could be charged with environmental justice violations and environmental justice activists who must decide where to most effectively target their efforts. This paper reviews the proceeding and its lessons and makes recommendations regarding future applicability of environmental justice issues to the power generation sector. The authors represented the applicant in the facility siting proceeding.

  17. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE (CSMRI) SITE FLOOD PLAIN AREA CLEANUP FACT SHEET & PROJECT SUMMARY

    E-Print Network [OSTI]

    . In 1992 a water main break at the Site flooded a tailings pond that overflowed into Clear Creek. The U.S. Environmental Protection Agency excavated and stockpiled soil from the tailings pond and surrounding area at the west end of the former tailings pond area previously cleaned up by EPA was found to contain

  18. Projected environmental impacts of radioactive material transportation to the first US repository site

    SciTech Connect (OSTI)

    Neuhauser, K.S.; Cashwell, J.W.; Reardon, P.C.; Ostmeyer, R.M.; McNair, G.W.

    1986-12-31T23:59:59.000Z

    This paper discusses the relative national environmental impacts of transporting nuclear wastes to each of the nine candidate repository sites in the United States. Several of the potential sites are closely clustered and, for the purpose of distance and routing calculations, are treated as a single location. These are: Cypress Creek Dome and Richton Dome in Mississippi (Gulf Interior Region), Deaf Smith County and Swisher County sites in Texas (Permian Basin), and Davis Canyon and Lavender Canyon site in Utah (Paradox Basin). The remaining sites are: Vacherie Dome, Louisiana; Yucca Mountain, Nevada; and Hanford Reservation, Washington. For compatibility with both the repository system authorized by the NWPA and with the MRS option, two separate scenarios were analyzed. In belief, they are (1) shipment of spent fuel and high-level wastes (HLW) directly from waste generators to a repository (Reference Case) and (2) shipment of spent fuel to a Monitored Retrievable Storage (MRS) facility and then to a repository. Between 17 and 38 truck accident fatalities, between 1.4 and 7.7 rail accident fatalities, and between 0.22 and 12 radiological health effects can be expected to occur as a result of radioactive material transportation during the 26-year operating period of the first repository. During the same period in the United States, about 65,000 total deaths from truck accidents and about 32,000 total deaths from rail accidents would occur; also an estimated 58,300 cancer fatalities are predicted to occur in the United States during a 26-year period from exposure to background radiation alone (not including medical and other manmade sources). The risks reported here are upper limits and are small by comparison with the "natural background" of risks of the same type. 3 refs., 6 tabs.

  19. Workplace Charging Behavior of Nissan Leafs in The EV Project at Six Work Sites

    SciTech Connect (OSTI)

    David Rohrbaugh; John Smart

    2014-11-01T23:59:59.000Z

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at six workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  20. Summary of field operations Tijeras Arroyo Well TJA-2. Site-Wide Hydrogeologic Characterization Project

    SciTech Connect (OSTI)

    Foutz, W.L. [Lamb Associates, Inc., Albuquerque, NM (United States); McCord, J.P. [INTERA, Inc., Albuquerque, NM (United States)

    1995-02-01T23:59:59.000Z

    This report is a basic data report for field operations associated with the drilling, logging, completion, and development of Tijeras Arroyo well TJA-2. This test/monitoring well was installed as part of Sandia National Laboratories, New Mexico, Environmental Restoration Project.

  1. St. Louis Sites Fact Sheet WHAT IS FUSRAP?

    E-Print Network [OSTI]

    US Army Corps of Engineers

    remediation program. It addresses radiological contamination generated by activities of the Manhattan Engineer operated as a uranium extrusion and rod-straightening facility. Contamination is now in dust located (USACE), St. Louis District, is conducting a radiological cleanup program for four Missouri sites (SLDS

  2. Scenarios constructed for basaltic igneous activity at Yucca Mountain and vicinity; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Barr, G.E.; Dunn, E.; Dockery, H.; Barnard, R. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Valentine, G.; Crowe, B. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States)

    1993-08-01T23:59:59.000Z

    Basaltic volcanism has been identified as a possible future event initiating a release of radionuclides from a potential repository at the proposed Yucca Mountain high-level waste repository site. The performance assessment method set forth in the Site Characterization Plan (DOE, 1988) requires that a set of scenarios encompassing all significant radionuclide release paths to the accessible environment be described. This report attempts to catalogue the details of the interactions between the features and processes produced by basaltic volcanism in the presence of the presumed groundwater flow system and a repository structure, the engineered barrier system (EBS), and waste. This catalogue is developed in the form of scenarios. We define a scenario as a well-posed problem, starting from an initiating event or process and proceeding through a logically connected and physically possible combination or sequence of features, events, and processes (FEPs) to the release of contaminants.

  3. INL-Site Idaho Completion Project Long Term Stewardship Strategic Plan

    SciTech Connect (OSTI)

    Olaveson, B.

    2007-09-17T23:59:59.000Z

    This Strategic Plan provides a brief historical overview of ICP long-term stewardship at the INL Site and the major goals and strategies that will drive the continued implementation of long-term stewardship in the future. The specific activities and processes that will be required to implement these goals should be outlined within an implementation plan and within implementing procedures and work plans.

  4. Cleanup protocols when encountering thorium-230 at U.S. DOE Uranium Mill Tailings Remedial Action (UMTRA) Project sites

    SciTech Connect (OSTI)

    Miller, M.L.; Hylko, J.M.; Cornish, R.E.

    1995-12-31T23:59:59.000Z

    The passage of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, established the regulatory framework, under which the US EPA charged with developing standards for the cleanup and disposal of tailings at 24 designated inactive uranium processing sites located in 10 states. 40 CFR 192.12 requires that the concentration of Ra-226 in land averaged over any area of 100 square meters shall not exceed the background level by more than 5 pCi/g, averaged over the first 15 cm of soil below the surface, 15 pCi/g, averaged over 15-cm-thick layers of soils more than 15 cm below the surface. However, Th-230 is not specifically addressed by the EPA in 40 CFR 192.12, which naturally decays with a half-life of 77,000 years to form Ra-226. Consequently, the cleanup of the initial Ra-226 contamination according to the standards will not necessarily mitigate against the eventual ingrowth of residual Ra-226 with time, due to the radioactive decay of residual Th-230. Therefore, to direct the excavation of residual Th-230, four generic protocols are being used at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, as follows: Determining the allowable remaining concentration of Th-230 in surface and subsurface soils; Encountering Th-230 contamination in the unsaturated subsurface soil; Encountering Th-230 contamination in the saturated zone; and Verification sampling. The four generic protocols, developed in conjunction with the supplemental standards provision, ensure protection of the general public by reducing exposures to levels that are As Low As Reasonably Achievable, while considering practical measures necessary to excavate Th-230 under conditions encountered at the UMTRA Project site.

  5. EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region.

  6. Turning the Manhattan Project into a National Park | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idahothe New FundingTravel Travel The Office

  7. Recovery Act Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy Recovery Act CreatesDepartment

  8. The Manhattan Project: Making of the Atomic Bomb | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48HPublic DisseminationTechnologies,The Management

  9. Work of Manhattan Project-era photographer Ed Westcott lives on | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to &83 3.3 Table3

  10. Recovery Act Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2A en7/%2A enNationalBuilding

  11. The Manhattan Project: Making of the Atomic Bomb | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentTheEnergyDepartmentThe Management of

  12. Turning the Manhattan Project into a National Park | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest forTechnologiesTribal UtilityFebruaryTurning on the Fan

  13. Manhattan Project: A Tentative Decision to Build the Bomb<!--Include title

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD ModelWidgetA NOTE ONof

  14. Manhattan Project: Atomic Rivals and the ALSOS Mission, 1938-1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD ModelWidgetAWerner

  15. Manhattan Project: CP-1 Goes Critical, Met Lab, December 2, 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1 GOES CRITICAL (Met

  16. Manhattan Project: DuPont and Hanford, Hanford Engineer Works, 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1 GOESThe president of

  17. Manhattan Project: Early Bomb Design, Los Alamos: Laboratory, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1 GOESThe president

  18. Manhattan Project: Final Approval to Build the Bomb, Washington, D.C.,

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1ArmyErnest

  19. Manhattan Project: Final Bomb Design, Los Alamos: Laboratory, 1944-1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1ArmyErnestThe first

  20. Manhattan Project: Final Reactor Design and X-10, 1942-1943

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andDCP-1ArmyErnestThe

  1. Manhattan Project: Oak Ridge and Hanford Come Through, 1944-1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary of War Henry

  2. Manhattan Project: Potsdam and the Final Decision to Use the Bomb, July

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science,FSecretary1945 Joseph

  3. Manhattan Project: Seaborg and Plutonium Chemistry, Met Lab, 1942-1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In the Laboratory ParticleGlenn

  4. Manhattan Project: The Plutonium Path to the Bomb, 1942-1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest BerlinerTHE PLUTONIUM

  5. Manhattan Project: The Uranium Path to the Bomb, 1942-1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWest BerlinerTHEAlpha

  6. Manhattan Project: Working K-25 into the Mix, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In theWestAmerican troopsK-25

  7. Recovery Act Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy Reliability (OE): EA-405 DelEnergyDepartment

  8. A business case for on-site generation: The BD biosciences pharmingen project

    SciTech Connect (OSTI)

    Firestone, Ryan; Creighton, Charles; Bailey, Owen; Marnay, Chris; Stadler, Michael

    2003-09-01T23:59:59.000Z

    Deregulation is haltingly changing the United States electricity markets. The resulting uncertainty and/or rising energy costs can be hedged by generating electricity on-site and other benefits, such as use of otherwise wasted heat, can be captured. The Public Utility Regulatory Policy Act (PURPA) of 1978 first invited relatively small-scale generators ({ge} 1 MW) into the electricity market. The advent of efficient and reliable small scale and renewable equipment has spurred an industry that has, in recent years, made even smaller (business scale) electricity generation an economically viable option for some consumers. On-site energy capture and/or conversion, known as distributed energy resources (DER), offers consumers many benefits, such as economic savings and price predictability, improved reliability, control over power quality, and emissions reductions. Despite these benefits, DER adoption can be a daunting move to a customer accustomed to simply paying a monthly utility bill. San Diego is in many ways an attractive location for DER development: It has high electricity prices typical of California and a moderate climate i.e. energy loads are consistent throughout the year. Additionally, the price shock to San Diego Gas and Electric (SDG&E) customers during the summer of 2000 has interested many in alternatives to electricity price vulnerability. This report examines the business case for DER at the San Diego biotechnology supply company, BD Biosciences Pharmingen, which considered DER for a building with 200-300 kW base-load, much of which accommodates the refrigerators required to maintain chemicals. Because of the Mediterranean climate of the San Diego area and the high rate of air changes required due to on-site use of chemicals, modest space heating is required throughout the year. Employees work in the building during normal weekday business hours, and daily peak loads are typically about 500 kW.

  9. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 1, Introduction, history, and current candidates

    SciTech Connect (OSTI)

    Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01T23:59:59.000Z

    The purpose of the Yucca Mountain Site Characterization Project is to evaluate Yucca Mountain for its suitability as a potential site for the nation`s first high-level nuclear waste repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) has been occupied for a number of years with developing and evaluating the performance of waste packages for the potential repository. In recent years this work has been carried out under the guidance of and in collaboration with the Management and Operating contractor for the Civilian Radioactive Waste Management System, TRW Environmental Safety Systems, Inc., which in turn reports to the Office of Civilian Radioactive Waste Management of the US Department of Energy. This report summarizes the history of the selection and characterization of materials to be used in the engineered barrier system for the potential repository at Yucca Mountain, describes the current candidate materials, presents a compilation of their properties, and summarizes available corrosion data and modeling. The term ``engineered materials`` is intended to distinguish those materials that are used as part of the engineered barrier system from the natural, geologic materials of the site.

  10. Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-EReviewLaboratory |Site |

  11. Portsmouth Site Closes a Busy Year with Several D&D Project Completions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:Annual SiteSubcommittees - May

  12. Project Title: C31 Deployment (4501) Program or Program Office: Y -12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluids |Storage Research

  13. Project Title: LIFE Center West (4498) Program or Program Office: Y-12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluids |Storagel)ctermInatIonFornl

  14. Project Title: NSY Drum Disposal (4504) Program or Program Office: Y -12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluids

  15. Project Title: New Non SNM Door (4503) Program or Program Office: Y ·12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluidst; ·lJ~· Categorical

  16. Project Title: Tin Whisker Mitigation (4532) Program or Program Office: Y-12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluidst;lJetermlnatIont'orn1

  17. Soil Characterization at the Linde FUSRAP Site and the Impact on Soil Volume Estimates

    SciTech Connect (OSTI)

    Boyle, J.; Kenna, T.; Pilon, R.

    2002-02-27T23:59:59.000Z

    The former Linde site in Tonawanda, New York is currently undergoing active remediation of Manhattan Engineering District's radiological contamination. This remediation is authorized under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The focus of this paper will be to describe the impact of soil characterization efforts as they relate to soil volume estimates and project cost estimates. An additional objective is to stimulate discussion about other characterization and modeling technologies, and to provide a ''Lessons Learned'' scenario to assist in future volume estimating at other FUSRAP sites. Initial soil characterization efforts at the Linde FUSRAP site in areas known to be contaminated or suspected to be contaminated were presented in the Remedial Investigation Report for the Tonawanda Site, dated February 1993. Results of those initial characterization efforts were the basis for soil volume estimates that were used to estimate and negotiate the current remediation contract. During the course of remediation, previously unidentified areas of contamination were discovered, and additional characterization was initiated. Additional test pit and geoprobe samples were obtained at over 500 locations, bringing the total to over 800 sample locations at the 135-acre site. New data continues to be collected on a routine basis during ongoing remedial actions.

  18. Annual report on the U.S. Department of Energy`s Cultural Resource Activities at Colorado UMTRA Project Sites for October 1993 through September 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1993, through September 30, 1994. The UMTRA Project is a cooperative (state and federal) program mandated by the Uranium Mill Tailings Radiation Control Act, Public Law 95-604 (42 USC {section}7901 et seq.). This law requires the timely cleanup of 24 inactive uranium mill tailings sites throughout the United States. Nine of these inactive uranium mill tailings sites are in Colorado at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, Advisory Council on Historic Preservation, and Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of agreement (PMOA) (DOE, 1984). This PMOA specifies requirements for the DOE`s fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report fulfills the requirement for the DOE to provide the state of Colorado with an annual report on the cultural resource activities performed for all of the UMTRA Project sites in Colorado. This report is organized by UMTRA Project site. For each site, the general remedial action activities and cultural resource activities performed during the period of record are summarized. When known, the DOE`s plans for future cultural resource activities at the site are summarized.

  19. Intensive archaeological survey of the F/H Surface Enhancement Project Area, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    SciTech Connect (OSTI)

    Sassaman, K.E.; Gillam, J.C.

    1993-08-01T23:59:59.000Z

    Twelve archaeological sites and four artifact occurrences were located by intensive survey of two tracts of land for the F and H Surface Enhancement Project on the Savannah River Site, Aiken and Barnwell Counties, South Carolina. Fieldwork in the 480-acre project area included surface reconnaissance of 3.6 linear kilometers of transects, 140 shovel tests along 4.2 linear kilometers of transects, an additional 162 shovel tests at sites and occurrences, and the excavation of six l {times} 2 m test units. All but one of the sites contained artifacts of the prehistoric era; the twelfth site consists of the remains of a twentieth-century home place. The historic site and six of the prehistoric sites consist of limited and/or disturbed contexts of archaeological deposits that have little research potential and are therefore considered ineligible for nomination to the National Register of Historic Places (NRHP). The remaining five sites have sufficient content and integrity to yield information important to ongoing investigations into upland site use. These sites (38AK146, 38AK535, 38AK539, 38AK541, and 38AK543) are thus deemed eligible for nomination to the NRHP and the Savannah River Archaeological Research Program (SRARP) recommends that they be preserved through avoidance or data recovery.

  20. Seismic data acquisition at the FACT site for the CASPAR project.

    SciTech Connect (OSTI)

    Jones, Kyle R.; Chael, Eric Paul; Hart, Darren M.

    2012-01-01T23:59:59.000Z

    Since May 2010, we have been recording continuous seismic data at Sandia's FACT site. The collected signals provide us with a realistic archive for testing algorithms under development for local monitoring of explosive testing. Numerous small explosive tests are routinely conducted around Kirtland AFB by different organizations. Our goal is to identify effective methods for distinguishing these events from normal daily activity on and near the base, such as vehicles, aircraft, and storms. In this report, we describe the recording system, and present some observations of the varying ambient noise conditions at FACT. We present examples of various common, non-explosive, sources. Next we show signals from several small explosions, and discuss their characteristic features.

  1. Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project

    SciTech Connect (OSTI)

    R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

    2006-01-01T23:59:59.000Z

    The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M&O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky Flats Environmental Technology Site (RFETS), and a variety of other sites over 20 years ago, making the development of Acceptable Knowledge a significant and problematic effort. In addition, the characterization requirements, and data quality objectives for shipment and WIPP disposal today, were non-existent when this waste was generated, resulting in real-time adjustments to unexpected conditions.

  2. Fiscal years 1993 and 1994 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Decontamination and Decommissioning Projects Department

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This photobriefing book describes the ongoing decontamination and decommissioning projects at the Argonne National Laboratory (ANL)-East Site near Lemont, Illinois. The book is broken down into three sections: introduction, project descriptions, and summary. The introduction elates the history and mission of the Decontamination and Decommissioning (D and D) Projects Department at ANL-East. The second section describes the active ANL-East D and D projects, giving a project history and detailing fiscal year (FY) 1993 and FY 1994 accomplishments and FY 1995 goals. The final section summarizes the goals of the D and D Projects Department and the current program status. The D/D projects include the Experimental Boiling Water Reactor, Chicago Pile-5 Reactor, that cells, and plutonium gloveboxes. 73 figs.

  3. Project Fact Sheet Project Update

    E-Print Network [OSTI]

    & Figures: Budget: 51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on SiteProject Fact Sheet Project Update: Project Brief: The concept of the new scheme is to redevelop Gardens project http://www.imperial.ac.uk/princesgardens/ Construction Project Team: Project Facts

  4. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 3: Corrosion and data modeling

    SciTech Connect (OSTI)

    Van Konynenburg, R.A.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Roy, A.K. [B and W Fuel Co., Lynchburg, VA (United States); Jones, D.A. [Nevada Univ., Reno, NV (United States)

    1995-08-01T23:59:59.000Z

    This three-volume report serves several purposes. The first volume provides an introduction to the engineered materials effort for the Yucca Mountain Site Characterization Project. It defines terms and outlines the history of selection and characterization of these materials. A summary of the recent engineered barrier materials characterization workshop is presented, and the current candidate materials are listed. The second volume tabulates design data for engineered materials, and the third volume is devoted to corrosion data, radiation effects on corrosion, and corrosion modeling. The second and third volumes are intended to be evolving documents, to which new data will be added as they become available from additional studies. The initial version of Volume 3 is devoted to information currently available for environments most similar to those expected in the potential Yucca Mountain repository. This is volume three.

  5. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18T23:59:59.000Z

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  6. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs VA Manhattan Campus

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report focuses on the Department of Veterans Affairs, VA Manhattan Campus (VA- Manhattan) fleet to identify the daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support successful introduction of plug-in electric vehicles (PEVs) into the agencys fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively called PEVs) can fulfill the mission requirements.

  7. A demonstration of remote survey and characterization of a buried waste site using the SRIP (Soldier Robot Interface Project) testbed

    SciTech Connect (OSTI)

    Burks, B.L.; Richardson, B.S.; Armstrong, G.A.; Hamel, W.R.; Jansen, J.F.; Killough, S.M.; Thompson, D.H.; Emery, M.S.

    1990-01-01T23:59:59.000Z

    During FY 1990, the Oak Ridge National Laboratory (ORNL) supported the Department of Energy (DOE) Environmental Restoration and Waste Management (ER WM) Office of Technology Development through several projects including the development of a semiautonomous survey of a buried waste site using a remotely operated all-terrain robotic testbed borrowed from the US Army. The testbed was developed for the US Army's Human Engineering Laboratory (HEL) for the US Army's Soldier Robot Interface Project (SRIP). Initial development of the SRIP testbed was performed by a team including ORNL, HEL, Tooele Army Depot, and Odetics, Inc., as an experimental testbed for a variety of human factors issues related to military applications of robotics. The SRIP testbed was made available to the DOE and ORNL for the further development required for a remote landfill survey. The robot was modified extensively, equipped with environmental sensors, and used to demonstrate an automated remote survey of Solid Waste Storage Area No. 3 (SWSA 3) at ORNL on Tuesday, September 18, 1990. Burial trenches in this area containing contaminated materials were covered with soil nearly twenty years ago. This paper describes the SRIP testbed and work performed in FY 1990 to demonstrate a semiautonomous landfill survey at ORNL. 5 refs.

  8. Oak Ridge Reservation Site Management Plan for the Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This site management plan for the Oak Ridge Reservation (ORR) describes the overall approach for addressing environmental contamination problems at the ORR Superfund site located in eastern Tennessee. The ORR consists of three major US Department of Energy (DOE) installations constructed in the early to mid 1940s as research, development, and process facilities in support of the Manhattan Project. In addition to the three installations -- Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) -- the ORR Superfund Site also includes areas outside the installations, land used by the Oak Ridge Associated Universities and waterways that have been contaminated by releases from the DOE installations. To date, {approximately} 400 areas (Appendix A) requiring evaluation have been identified. Cleanup of the ORR is expected to take two to three decades and cost several billion dollars. This site management plan provides a blueprint to guide this complex effort to ensure that the investigation and cleanup activities are carried out in an efficient and cost-effective manner.

  9. YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT EAST-WEST DRIFT SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    NA

    1999-06-08T23:59:59.000Z

    The purpose of this analysis is to systematically identify and evaluate hazards related to the design of the Yucca Mountain Project Exploratory Studies Facility (ESF) East-West Cross Drift. This analysis builds upon prior ESF System Safety Analyses and incorporates TS Main Drift scenarios, where applicable, into the East-West Drift scenarios. This System Safety Analysis (SSA) focuses on the personnel safety and health hazards associated with the engineered design of the East-West Drift. The analysis also evaluates other aspects of the East-West Drift, including purchased equipment (e.g., scientific mapping platform) or Systems/Structures/Components (SSCs) and out-of-tolerance conditions. In addition to recommending design mitigation features, the analysis identifies the potential need for procedures, training, or Job Safety Analyses (JSAs). The inclusion of this information in the SSA is intended to assist the organization(s) (e.g., constructor, Safety and Health, design) responsible for these aspects of the East-West Drift in evaluating personnel hazards and augment the information developed by these organizations. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with East-West Drift SSCs in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into SSC designs. (2) Add safety features and capabilities to existing designs. (3) Develop procedures and conduct training to increase worker awareness of potential hazards, reduce exposure to hazards, and inform personnel of the actions required to avoid accidents or correct hazardous conditions. This analysis does not consider temporary construction items and, therefore, does not consider hazards associated with temporary construction items. This analysis will be reviewed and updated to reflect new East-West Drift design changes, construction modifications, and ''as built'' documentation of the East-West Drift when completed. A major difference between this analysis and previous ESF SSAs is the inclusion of hazards that arise as a result of non-accident events, (e.g., ''off-normal'' operations, adverse environmental conditions, or ''out-of-tolerance'' conditions). Non-accident events, that were not included in previous ESF SSAs, include environmental and/or toxic hazards such as leaking gases/fluids, off-gassing reactions, and excessive dust, particulates, exhaust fumes, noise, temperature, etc. which could have an adverse health effect on personnel.

  10. Work plan for monitor well installation water and sediment sample collection aquifer testing and topographic surveying at the Riverton, Wyoming, UMTRA Project Site

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Investigations conducted during preparation of the site observational work plan (SOWP) at the Uranium Mill Tailings Remedial Action (UMTRA) Project site support a proposed natural flushing ground water compliance strategy, with institutional controls. However, additional site-specific data are needed to reduce uncertainties in order to confirm the applicability and feasibility of this proposed compliance strategy option. This proposed strategy will be analyzed in the site-specific environmental assessment. The purpose of this work plan is to summarize the data collection objectives to fill those data needs, describe the data collection activities that will be undertaken to meet those objectives, and elaborate on the data quality objectives which define the procedures that will be followed to ensure that the quality of these data meet UMTRA Project needs.

  11. SWEIS Yearbook-2012 Comparison of 2012 Data to Projections of the 2008 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Mahowald, Hallie B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wright, Marjorie Alys [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-16T23:59:59.000Z

    Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projectionsRadiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for all waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.

  12. NEW - DOE P 481.1, DOE's Policy Regarding Laboratories, Plants and Sites Engaging in Strategic Partnership Projects with Other Federal Agencies, Independent Organizations, and the Private Sector

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The purpose of this Policy is to set the context in which DOE and its laboratories, plants, and sites should pursue Strategic Partnership Projects (SSP) with other Federal government agencies, state and local institutions, universities, foreign entities and/or private companies. The Policy is applicable to the DOE laboratories, plants, and sites, and to the DOE programs that own them and facilitate their work.

  13. DOE's Policy Regarding Laboratories, Plants and Sites Engaging in Strategic Partnership Projects with Other Federal Agencies, Independent Organizations, and the Private Sector

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-17T23:59:59.000Z

    The purpose of this Policy is to set the context in which DOE and its laboratories, plants, and sites should pursue Strategic Partnership Projects (SPP) with other Federal government agencies, state and local institutions, universities, foreign entities and/or private companies. The Policy is applicable to the DOE laboratories, plants, and sites, and to the DOE programs that own them and facilitate their work.

  14. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was initiated in 1974 to identify, investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940

    E-Print Network [OSTI]

    US Army Corps of Engineers

    , investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940s, 1950s, and 1960s. Activities at the sites were performed by the Manhattan Engineer District or under the Atomic Energy Commission. Both were predecessors

  15. Collaboration in long-term stewardship at DOE Hanford Site

    SciTech Connect (OSTI)

    Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

    2013-01-10T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one of the six (6) cocooned reactors on site. These accomplishments relied upon the transparency between DOE cleanup programs and their contractors working together to successfully transition the land while addressing the challenges that arise. All parties, the three different DOE Programs and their respective prime contractors are dedicated to working together and continuing the progress of transitioning land to LTS, in alignment with the Program Plan and compliant with contractual requirements. This paper highlights the accomplishments and collaborative efforts to address the challenges faced as work progresses from the cleanup to transitioning of land parcels to LTS Program.

  16. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect (OSTI)

    Jolly, R

    2009-01-06T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

  17. Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Sobolik, S.R.; Fewell, M.E.

    1993-12-01T23:59:59.000Z

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document.

  18. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  19. ITER Siting Decision Clears One Important Obstacle in Congress "This is real . . . we've got a project on our hands." -DOE Office of Science

    E-Print Network [OSTI]

    in Moscow that representatives of the United States, European Union, Japan, the Russia Federation, China in late 2003 (see page 14 of www.sc.doe.gov/Sub/Facilities_for_future/facilities_future.htm .) Congress, he said, has "given reality to the project." DOE's site at http://www.science.doe.gov/ provides

  20. INNOVATIVE ALARA TOOLS AND WORK PRACTICES USED AT THE DOE HANFORD SITE

    SciTech Connect (OSTI)

    WAGGONER LO

    2010-02-12T23:59:59.000Z

    The Hanford Nuclear Reservation occupies an area of 586 square miles in southeastern Washington state. The site was created as part of the World War II Manhattan Project to produce weapons grade plutonium. A multitude of old reactor plants, processing facilities, underground tank farms, contaminated soil and ground water remain and are part of an on-going environmental cleanup mission of the site. The Columbia River bisects Hanford, and the concern is that the river will become contaminated if the sources of contamination are not removed. Currently facilities are being removed, the ground water is being treated, and contaminated soil is being transferred to an approved burial ground about 15 miles away from the River located in the center of the Hanford Site The remaining facilities and adjacent structures are undergoing D&D (decontaminate and demolish) and to date, significant progress has been made. During this presentation, I will discuss how we are using innovative tools and work practices to D&D these Hanford Site facilities.

  1. Annual report on the U.S. Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1995--September 1996

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1995 through September 30, 1996. The inactive uranium mill tailings sites in Colorado are at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of understanding (PMOU). This PMOU requires the DOE to fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report provides the state of Colorado with an annual report on the cultural resource activities performed for all UMTRA Project sites in Colorado. Due to the completion of surface activities at the UMTRA Project sites, this will be the last annual report to the state of Colorado. Cultural resources activities subsequent to this report will be reported to the state through site-specific correspondence.

  2. Classroom Projects - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES Thematerials |Physics LabHanford

  3. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07T23:59:59.000Z

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  4. Site-specific analysis of the cobbly soils at the Grand Junction processing site. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This report describes a recent site-specific analysis to evaluate the necessity of a recommendation to install a slurry trench around the Grand Junction processing site. The following analysis addresses the cobbly nature of the site's radiologically contaminated foundation soil, reassesses the excavation depths based on bulk radionuclide concentrations, and presents data-based arguments that support the elimination of the initially proposed slurry trench. The slurry trench around the processing site was proposed by the Remedial Action Contractor (RAC) to minimize the amount of water encountered during excavation. The initial depths of excavation developed during conceptual design, which indicated the need for a slurry wall, were reexamined as part of this analysis. This reanalysis, based on bulk concentrations of a cobbly subsoil, supports decreasing the original excavation depth, limiting the dewatering quantities to those which can be dissipated by normal construction activities. This eliminates the need for a slurry trench andseparate water treatment prior to permitted discharge.

  5. Relocation of on-site spoils pile materials at the Linde Fusrap Site

    SciTech Connect (OSTI)

    Schwippert, M.T. [Shaw Environmental and Infrastructure, Inc., New York (United States); Boyle, J.D.; Bousquet, S.M. [US Army Corps of Engineers, Buffalo District, New York (United States)

    2007-07-01T23:59:59.000Z

    During the 1940's, the Linde Division of Union Carbide used portions of their property in Tonawanda, New York for processing uranium ores under Federal Manhattan Engineering District (MED) contracts. These activities resulted in radiological contamination on portions of the property. The radionuclides of concern at the site are Radium, Thorium, and Uranium. The site is currently owned and operated by Praxair Inc., an industrial gas company. The U.S. Army Corps of Engineers (USACE) issued a Record of Decision to remediate the radiologically-contaminated materials associated with MED activities in March 2000 under the authority of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The selected remedy is fully protective of human health and the environment and complies with Federal and State requirements that are legally applicable or relevant and appropriate and meets community commitments. The USACE - Buffalo District has been executing remedial activities at the site and has successfully addressed many challenges in a safe and cost effective manner through effective coordination, project management, and partnering with stakeholders. These efforts supported the successful relocation of approximately 29,000 cubic yards of stockpiled material (soils, concrete, steel, asphalt and miscellaneous non-soil) that had been generated by the property owner as a result of ongoing development of the facility. Relocation of the material was necessary to allow safe access to the surface and subsurface soils beneath the pile for sampling and analysis. During relocation operations, materials were evaluated for the presence of radiological contamination. The vast majority of material was relocated onsite and remained the property owner's responsibility. A small portion of the material required off-site disposal at a permitted disposal facility due to radiological contamination that exceeded site criteria. This paper presents details associated with the successful resolution of responsibility concerns associated with a large stockpile of materials accumulated over many years by the property owner. A cost effective approach and partnership was developed to allow for real time radiological characterization and material dispositions by the government and satisfying chemical concerns presented by State regulators. These actions resulted in onsite relocation and responsible transfer of the materials to the property owner for beneficial reuse resulting in significant project cost savings. (authors)

  6. Remote site survey and characterization for the National ER WM Program using the SRIP (Solider Robot Interface Project) vehicle

    SciTech Connect (OSTI)

    Richardson, B.S.; Killough, S.M.; Emery, M.D.; Herndon, J.N.; Hamel, W.R.; Burks, B.L.

    1990-01-01T23:59:59.000Z

    A significant number of Department of Energy (DOE) production and research sites will require remediation of buried waste sites during the coming years. An important first step in cleanup, restoration, and decontamination activities is burial site characterization. An early field demonstration of buried waste site survey and characterization will be conducted using a remotely operated vehicle equipped with sensors, a manipulator system, and a vision system. This demonstration will be conducted in July 1990. 4 refs., 4 figs.

  7. The Ames Project (1942-1946)

    ScienceCinema (OSTI)

    None

    2013-06-05T23:59:59.000Z

    The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.

  8. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  9. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  10. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Chernoff, A.R. (USDOE Albuquerque Field Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office); Lacker, D.K. (Texas State Dept. of Health, Austin, TX (United States). Bureau of Radiation Control)

    1992-09-01T23:59:59.000Z

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  11. Characterization of materials for a reactive transport model validation experiment: Interim report on the caisson experiment. Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Siegel, M.D.; Cheng, W.C. [Sandia National Labs., Albuquerque, NM (United States); Ward, D.B.; Bryan, C.R. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences

    1995-08-01T23:59:59.000Z

    Models used in performance assessment and site characterization activities related to nuclear waste disposal rely on simplified representations of solute/rock interactions, hydrologic flow field and the material properties of the rock layers surrounding the repository. A crucial element in the design of these models is the validity of these simplifying assumptions. An intermediate-scale experiment is being carried out at the Experimental Engineered Test Facility at Los Alamos Laboratory by the Los Alamos and Sandia National Laboratories to develop a strategy to validate key geochemical and hydrological assumptions in performance assessment models used by the Yucca Mountain Site Characterization Project.

  12. Bibliography of publications related to the Yucca Mountain Site Characterization Project prepared by U.S. Geological Survey personnel through April 1991

    SciTech Connect (OSTI)

    Glanzman, V.M.

    1991-11-01T23:59:59.000Z

    Personnel of the US Geological Survey have participated in nuclear-waste management studies in the State of Nevada since the mid-1970`s. A bibliography of publications prepared principally for the US Department of Energy Yucca Mountain Site Characterization Project (formerly Nevada Nuclear Waste Storage Investigations) through April 1991 contains 475 entries in alphabetical order. The listing includes publications prepared prior to the inception of the Nevada Nuclear Waste Storage Investigations Project in April 1977 and selected publications of interest to the Yucca Mountain region. 480 refs.

  13. Symmetries of migration related segments of all [001] coincidence site lattice tilt boundaries in (001) projections for all holohedral cubic materials

    SciTech Connect (OSTI)

    Moeck, Peter; York, Bryant W.; Browning, Nigel D.

    2014-09-11T23:59:59.000Z

    Utilizing bicrystallography in two dimensions (2D), the symmetries of migration related segments of Coincidence Site Lattice (CSL) boundaries are derived for projections along their [001] tilt axis in grain boundaries of crystalline materials that possess the holohedral point symmetry of the cubic system (i.e. m3m). These kinds of edge-on projections are typical for atomic resolution imaging of such tilt boundaries with Transmission Electron Microscopes (TEM). This fact facilitates the visual confirmation of our predictions by recently published Zcontrast scanning TEM investigations [H. Yang et al., Phil. Mag. 93 (2013) 1219] and many other TEM studies.

  14. National Register of Historic Places multiple property documentation form -- Historic, archaeological, and traditional cultural properties of the Hanford Site, Washington

    SciTech Connect (OSTI)

    Nickens, P.R.

    1997-08-01T23:59:59.000Z

    The US Department of Energy`s Hanford Site encompasses an area of 560 square miles on the Columbia River in southeastern Washington. Since 1943, the Hanford Site has existed as a protected area for activities primarily related to the production of radioactive materials for national defense uses. For cultural resources on the Hanford Site, establishment of the nuclear reservation as a high security area, with public access restricted, has resulted in a well-protected status, although no deliberate resource protection measures were in effect to mitigate effects of facilities construction and associated activities. Thus, the Hanford Site contains an extensive record of aboriginal archaeological sites and Native American cultural properties, along with pre-Hanford Euro-American sites (primarily archaeological in nature with the removal of most pre-1943 structures), and a considerable number of Manhattan Project/Cold War era buildings and structures. The recent mission change from production to clean up and disposal of DOE lands created a critical need for development and implementation of new and different cultural resource management strategies. DOE-RL has undertaken a preservation planning effort for the Hanford Site. The intent of this Plan is to enable DOE-RL to organize data and develop goals, objectives, and priorities for the identification, evaluation, registration, protection, preservation, and enhancement of the Site`s historical and cultural properties. Decisions made about the identification, evaluation, registration and treatment of historic properties are most aptly made when relationships between individual properties and other similar properties are considered. The historic context and the multiple property documentation (NTD) process provides DOE-RL the organizational framework for these decisions. Once significant patterns are identified, contexts developed, and expected properties are defined, the NTD process provides the foundation for future decisions concerning the management of significant cultural resources on the Hanford Site.

  15. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    such concern is the potential impact of wind energy projectshas investigated the potential impact of wind projects onassessment of the potential impact of wind facilities on the

  16. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Phillips, J.S.

    1991-12-01T23:59:59.000Z

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  17. August 10, 2012: Memorandum of agreement to preserve historic...

    Broader source: Energy.gov (indexed) [DOE]

    that will preserve the historic contributions of Oak Ridge's K-25 site to the World War II Manhattan Project. The agreement between the DOE, Tennessee State Historic...

  18. Oak Ridge Reservation annual site environmental report for 1996

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The US Department of Energy currently oversees activities on the Oak Ridge Reservation (ORR), a government-owned, contractor-operated facility. Three sites compose the reservation: the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory, and East Tennessee Technology Park (formerly the K-25 Site). The ORR was established in the early 1940s as part of the Manhattan Project, a secret undertaking that produced the materials for the first atomic bombs. The reservation`s role has evolved over the years, and it continues to adapt to meet the changing defense, energy, and research needs of the US. Both the work carried out for the war effort and subsequent research, development, and production activities have produced (and continue to produce) radiological and hazardous wastes. This document contains a summary of environmental monitoring activities on the ORR and its surroundings. Environmental monitoring on the ORR consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring involves the collection and analysis of samples or measurements of liquid and gaseous effluents prior to release into the environment; these measurements allow the quantification and official reporting of contaminants, assessment of radiation exposures to the public, and demonstration of compliance with applicable standards and permit requirements. Environmental surveillance consists of the collection and analysis of environmental samples from the site and its environs; this provides direct measurement of contaminants in air, water, groundwater, soil, foods, biota, and other media subsequent to effluent release into the environment. Environmental surveillance data verify ORR`s compliance status and, combined with data from effluent monitoring, allow the determination of chemical and radiation dose/exposure assessment of ORR operations and effects, if any, on the local environment.

  19. HAZWOPER work plan and site safety and health plan for the Alpha characterization project at the solid waste storage area 4 bathtubbing trench at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This work plan/site safety and health plan is for the alpha sampling project at the Solid Waste Storage Area 4 bathtubbing trench. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program Manual and applicable ORNL; Martin Marietta Energy Systems, Inc.; and U.S. Department of Energy policies and procedures. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project. Unforeseeable site conditions or changes in scope of work may warrant a reassessment of the stated protection levels and controls. All adjustments to the plan must have prior approval by the safety and health disciplines signing the original plan.

  20. Collaboration in Long-Term Stewardship at DOE's Hanford Site - 13019

    SciTech Connect (OSTI)

    Moren, Rick; Brown, David [Mission Support Alliance, LLC, Richland, WA (United States)] [Mission Support Alliance, LLC, Richland, WA (United States); Feist, Ella [Washington Closure Hanford, LLC, Richland WA (United States)] [Washington Closure Hanford, LLC, Richland WA (United States); Grindstaff, Keith; Zeisloft, Jamie [US Department of Energy, Richland Operations, Richland WA (United States)] [US Department of Energy, Richland Operations, Richland WA (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan [1]. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years,, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one of the six (6) cocooned reactors on site. These accomplishments relied upon the transparency between DOE cleanup programs and their contractors working together to successfully transition the land while addressing the challenges that arise. All parties, the three different DOE Programs and their respective prime contractors are dedicated to working together and continuing the progress of transitioning land to LTS, in alignment with the Program Plan and compliant with contractual requirements. (authors)

  1. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  2. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  3. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    SciTech Connect (OSTI)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  4. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01T23:59:59.000Z

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

  5. Remote Terrestrial Sites as Operational/Logistics Analogs for Moon/Mars Bases: the Haughton Mars Project

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Remote Terrestrial Sites as Operational/Logistics Analogs for Moon/Mars Bases: the Haughton Mars coordinating the logistics and resupply of far-flung planetary bases. A number of logistics methods have been terrestrial logistics methods were tested in the context of (analog) planetary exploration. A comprehensive

  6. LONG-TERM STEWARDSHIP AT DOE HANFORD SITE - 12575

    SciTech Connect (OSTI)

    MOREN RJ; GRINDSTAFF KD

    2012-01-11T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)[1], which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S&M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation between the contractors and DOE-RL. Information Management (IM) is a key part of the LTS program. The IM Program identifies, locates, stores, protects and makes accessible Hanford LTS records and data to support the transfer of property ultimately to LM. As such, DOE-RL manages the Hanford LTS Program in a manner consistent with LM's goals, policies, and procedures.

  7. EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project Castine Harbor Test Site

    Broader source: Energy.gov [DOE]

    This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

  8. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01T23:59:59.000Z

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  9. Preliminary data report of investigations conducted at the Salmon Site, Lamar County, Mississippi. Nevada Environmental Restoration Project

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The US Department of Energy (DOE) conducted ecological studies at the Salmon Site (SS), Lamar County, Mississippi, from the middle of June 1992 to the end of April 1993. The studies are part of the Remedial Investigation and Feasibility Study (RI/FS) being conducted by the DOE. The RI/FS is the methodology under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986 (CERCLA/SARA) for evaluating hazardous waste sites on the National Priorities List (NPL). The Salmon Site is not listed on the NPL but DOE has voluntarily elected to conduct the evaluation of the SS in accordance with CERCLA/SARA. As part of the remedial investigation, baseline human health and ecological risk assessments will be conducted. These baseline risk assessments will evaluate the potential impact on human health and the environment if remedial actions are not conducted, identify locations where additional information needs to be collected, help determine whether remedial actions are necessary, and provide justification for performing remedial actions. This report describes the sampling activities conducted between February and April 1993 to aid in evaluating the possible environmental impacts at the SS tailored to the specific circumstances and conditions found there. The initial investigations included identification of the flora and fauna in and around the SS, with particular emphasis on identifying sensitive environments, endangered species and their habitats, and those species consumed by humans or found in human food chains.

  10. Annual report on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-06T23:59:59.000Z

    This report summarizes the US Department of Energy`s (DOE) cultural resource studies that were undertaken in support of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project in the state of Colorado for the period of October 1, 1991, through September 30, 1992. This report fulfills the DOE`s obligation to provide an annual report to the state of Colorado on the status and results of cultural resource studies conducted during the above period of record. This requirement is stated in a programmatic memorandum of agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Previous reports were based on a calendar year reporting period. However, in order to be more consistent with the programmatic memorandum of agreement, the period of record for this and subsequent annual reports has been changed to the Federal fiscal year. The current status and summaries of 1992 cultural resource surveys are provided for all UMTRA Project sites in Colorado. The sites are Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock.

  11. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25T23:59:59.000Z

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  12. Environmental Assessment and Finding of No Significant Impact: Pond B Dam Repair Project at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1999-09-27T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1285) for the proposed repair of the Pond B dam at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  13. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

    1992-01-01T23:59:59.000Z

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  14. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period January 1--March 31, 1988: Volume 1, Text

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This report describes the progress of eight Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1988. The facilities represented by the eight projects are the 300 Area Process trenches, 183-H Solar Evaporation Basins, 200 Areas Low-Level Burial Grounds, Nonradioactive Dangerous Waste Landfill, 216-A-36B Crib, 1301-N Liquid Waste Disposal Facility, 1325-N Liquid Waste Disposal Facility, and 1324-N/NA Surface Impoundment and Percolation Ponds. The latter four projects are included in this series of quarterly reports for the first time. This report is the seventh in a series of periodic status reports; the first six cover the period from May 1, 1986, through December 31, 1987 (PNL 1986; 1987a, b, c, d; 1988a). This report satisfies the requirements of Section 17B(3) of the Consent Agreement and Compliance Order issued by the Washington State Department of Ecology (1986a) to the US Department of Energy-Richland Operations Office. 13 refs., 19 figs., 24 tabs.

  15. Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project

    SciTech Connect (OSTI)

    Lance Prothro, Sigmund Drellack, Margaret Townsend

    2009-03-25T23:59:59.000Z

    The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

  16. Transferability of Data Related to the Underground Test Area Project, Nevada Test Site, Nye County, Nevada: Revision 0

    SciTech Connect (OSTI)

    Stoller-Navarro Joint Venture

    2004-06-24T23:59:59.000Z

    This document is the collaborative effort of the members of an ad hoc subcommittee of the Underground Test Area (UGTA) Technical Working Group (TWG). The UGTA Project relies on data from a variety of sources; therefore, a process is needed to identify relevant factors for determining whether material-property data collected from other areas can be used to support groundwater flow, radionuclide transport, and other models within a Corrective Action Unit (CAU), and for documenting the data transfer decision and process. This document describes the overall data transfer process. Separate Parameter Descriptions will be prepared that provide information for selected specific parameters as determined by the U.S. Department of Energy (DOE) UGTA Project Manager. This document and its accompanying appendices do not provide the specific criteria to be used for transfer of data for specific uses. Rather, the criteria will be established by separate parameter-specific and model-specific Data Transfer Protocols. The CAU Data Documentation Packages and data analysis reports will apply the protocols and provide or reference a document with the data transfer evaluations and decisions.

  17. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    SciTech Connect (OSTI)

    NA

    2002-03-26T23:59:59.000Z

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

  18. Site Screening, Site Selection,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management. During Project Definition, the project developer establishes an overall management plan for the project with a detailed focus on the Exploration Phase. It is important...

  19. Innovative Regulatory and Technical Approaches for the U.S. Army Corp of Engineers' Linde FUSRAP Site Remediation

    SciTech Connect (OSTI)

    Pitts, J. T.; Coutts, P. W.; Franz, J.; Boyle, J. D.; Rogers, B. C.

    2002-02-27T23:59:59.000Z

    The U.S. Department of Energy (USDOE) created the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to identify, investigate, and cleanup or control radiological contamination at sites used by the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) from the 1940s through the 1960s. The USDOE had identified 46 sites in the program and finished remediation at 24 of the smaller ones before the end of 1997. With the passage of the Energy and Water Resources Appropriation Act of 1998 the United States Army Corps of Engineers (USACE) was designated by Congress with responsibility to manage and execute the FUSRAP. The Linde Site located in Tonawanda, New York was operated by the MED from 1942-1946 to extract uranium from several high-grade ores. This natural uranium was subsequently enriched in U-235 elsewhere in the United States and ultimately used to produce energy or weapons. Though in the process of reviewing alternative disposal options by 1995, the USDOE had operated FUSRAP with a strategy requiring virtually all materials remediated be disposed of at only one Nuclear Regulatory Commission licensed facility. The change in management of the FUSRAP in 1997 allowed the disposal policy of low levels of radioactively contaminated materials found at the remaining sites to be reexamined. This paper presents some of the innovative regulatory and technical approaches employed at the Linde Site that are resulting in project cost savings while meeting applicable or relevant and appropriate requirements as well as fulfilling commitments made to the local community.

  20. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final report: Revision 1

    SciTech Connect (OSTI)

    Gonzales, D.

    1993-12-01T23:59:59.000Z

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing site are summarized as follows: In accordance with EPA-promulgated land cleanup standards, in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 clean up protocol has been developed. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR Part 192 relative to supplemental standards.

  1. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect (OSTI)

    MacDougall, H R; Scully, L W; Tillerson, J R [comps.] [comps.

    1987-09-01T23:59:59.000Z

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  2. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

    1993-05-01T23:59:59.000Z

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  3. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01T23:59:59.000Z

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  4. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    SciTech Connect (OSTI)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2009-12-02T23:59:59.000Z

    With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering wind power development nearby, there is an urgent need to empirically investigate common community concerns about wind project development. The concern that property values will be adversely affected by wind energy facilities is commonly put forth by stakeholders. Although this concern is not unreasonable, given property value impacts that have been found near high voltage transmission lines and other electric generation facilities, the impacts of wind energy facilities on residential property values had not previously been investigated thoroughly. The present research collected data on almost 7,500 sales of singlefamily homes situated within 10 miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from eight different hedonic pricing models, as well as both repeat sales and sales volume models. The various analyses are strongly consistent in that none of the models uncovers conclusive evidence of the existence of any widespread property value impacts that might be present in communities surrounding wind energy facilities. Specifically, neither the view of the wind facilities nor the distance of the home to those facilities is found to have any consistent, measurable, and statistically significant effect on home sales prices. Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact.

  5. Middlesex Sampling Plant environmental report for calendar year 1992, 239 Mountain Avenue, Middlesex, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report describes the environmental surveillance program at the Middlesex Sampling Plant (MSP) and provides the results for 1992. The site, in the Borough of Middlesex, New Jersey, is a fenced area and includes four buildings and two storage piles that contain 50,800 m{sup 3} of radioactive and mixed hazardous waste. More than 70 percent of the MSP site is paved with asphalt. The MSP facility was established in 1943 by the Manhattan Engineer District (MED) to sample, store, and/or ship uranium, thorium, and beryllium ores. In 1955 the Atomic Energy Commission (AEC), successor to MED, terminated the operation and later used the site for storage and limited sampling of thorium residues. In 1967 AEC activities ceased, onsite structures were decontaminated, and the site was certified for unrestricted use under criteria applicable at that time. In 1980 the US Department of Energy (DOE) initiated a multiphase remedial action project to clean up several vicinity properties onto which contamination from the plant had migrated. Material from these properties was consolidated into the storage piles onsite. Environmental surveillance of MSP began in 1980 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program. The environmental surveillance program at MSP includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-230, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analyses are performed to detect metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling th DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses.

  6. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  7. Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites, January--December 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This report is a summary of the US Department of Energy`s (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE`s obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

  8. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-01-31T23:59:59.000Z

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, Radioactive Waste Management, for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

  9. Portsmouth/Paducah Project Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paducah Site Recovery Act project director. Recovery Act Projects East End Smelter - Recovery Act funding accelerated by 22 years the cleanup and demolition of a...

  10. DOE - Office of Legacy Management -- TA-1 Manhattan Laboratory - NM 11

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntown Site - MOSuttonPlant - NYTA-1

  11. Atomic Bombs, Winning the War and Women in Pants: Voices of the Manhattan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of Training AprilUnion Call to Make AmericaProject Speak

  12. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona: Phase 2, Construction, Subcontract documents: Appendix E, final report. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1989-08-01T23:59:59.000Z

    This appendix discusses Phase II construction and subcontract documents uranium mill site near Tuba City, Arizona. It contains the bid schedule, special conditions, specifications, and subcontract drawings.

  13. Site C

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1 ~(3JlpV Project Proposal -Site40s'

  14. ParaSITE

    E-Print Network [OSTI]

    Rakowitz, Michael

    1998-01-01T23:59:59.000Z

    paraSITE proposes the appropriation of exterior ventilation systems on existing architecture to inflate pneumatic shelters that are designed for homeless people. This project involves the production of a series of inflatable ...

  15. Managing Legacy Records for Formerly Utilized Sites. Remedial Action Program Sites

    SciTech Connect (OSTI)

    Clayton, C. [DOE Office of Legacy Management, Washington, DC (United States); Gueretta, J. [Lead DOE Office of Legacy Management, Grand Junction, CO (United States); Tack, J. [Source One Management, Inc., Grand Junction, CO (United States); Widdop, M. [S.M. Stoller Corporation, Grand Junction, CO (United States)

    2008-07-01T23:59:59.000Z

    The Manhattan Engineer District (MED) and U.S. Atomic Energy Commission (AEC) contracted for support work through private and academic parties through the early 1960's. The work often involved radioactive materials. Residual radioactive contamination was left at some of more than 600 potentially contaminated (candidate) sites, and worker health and safety concerns remain from the site operations and subsequent remediation activities. The U.S. Department of Energy (DOE) initiated a program to identify and protect records of MED/AEC activities and of remediation work conducted under the Formerly Utilized Sites Remedial Action Program (FUSRAP) to aid in resolving questions about site conditions, liability, and worker health and safety and to ensure ongoing protectiveness of human health and the environment. This paper discusses DOE activities undertaken to locate records collections, confirm retention schedules and access requirements, and document information about the collections for use by future stewards. In conclusion: DOE-LM recognizes that records and information management is a critical component of effective LTS and M. Records are needed to answer questions about site conditions and demonstrate to the public in the future that the sites are safe. DOE-LM is working to satisfy present needs and anticipate future uses for FUSRAP records, and compile a collection of site and program information from which future stewards can readily locate and retrieve needed information. (authors)

  16. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect (OSTI)

    CHARBONEAU, S.L.

    2006-02-01T23:59:59.000Z

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

  17. Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery Canals, and On-Farm Delivery-Site Meters

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

    TR-202 October 2002 Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery... Canals, and On-Farm Delivery-Site Meters M. Edward Rister Ronald D. Lacewell Allen W. Sturdivant John R. C. Robinson Michael C. Popp John R. Ellis Texas Water Resources Institute Texas A&M University TR-202 October 2002 Economic and Conservation...

  18. Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy's cultural resource activities at Colorado UMTRA Project sites, January--December 1991. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This report is a summary of the US Department of Energy's (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE's obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

  19. Annual Site Environmental Report Calendar Year 2010

    SciTech Connect (OSTI)

    Kayser, Dan

    2011-01-31T23:59:59.000Z

    This report summarizes the environmental status of Ames Laboratory for calendar year 2010. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. In 2010, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local regulations and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2010. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2010. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2010. Included in these efforts were battery and CRT recycling, miscellaneous electronic office equipment, waste white paper and green computer paper-recycling and corrugated cardboard recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, foamed polystyrene peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Performance Evaluation Measurement Plan, on its Affirmative Procurement Performance Measure. A performance level of 'A-' was achieved in 2010 for Integrated Safety, Health and Environmental Protection. As reported in Site Environmental Reports for prior years, the Laboratory's Environmental Management System (EMS) has been integrated into the Laboratory's Integrated Safety Management System since 2005. The integration of EMS into the way the Laboratory does business allows the Laboratory to systematically review, address and respond to the Laboratory's environmental impacts. The Laboratory's EMS was audited in April 2009 by DOE-CH. There were four 'Sufficiently in Conformity' findings as a result of the audit. All four findings were tracked in the Laboratory's corrective action database for completion. Beryllium was used routinely at Ames Laboratory in the 1940's and 1950's in processes developed for the production of highly pure uranium and thorium in support of the historic Manhattan Project. Laboratory metallurgists also worked on a process to produce pure beryllium metal from beryllium fluoride. In the early 1950's, beryllium oxide powder was used to produce shaped beryllium and crucibles. As a result of that work, beryllium contamination now exists in many interstitial spaces (e.g., utility chases) and ventilation systems in Wilhelm, Spedding and Metals Development buildings. Extensive characterization and remediation efforts have occurred in 2009 and 2010 in order to better understand the extent of the contamination. Analysis of extensive sampling data suggests that a fairly wide dispersion of beryllium occurred (most likely in the 1950's and 60's) in Wilhelm Hall and in certain areas of Spedding Hall and Metals Development. Area air-sampling results and work-area surface characterizations indicate the exposure potential to current workers, building visitors and the public remains extremely low. This information is now used to guide cleaning efforts and to provide worker protection during remodeling and maintenance activities. Results were shared with the DOE's Former Worker Program to support former worker medical test

  20. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energys (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOEs mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project teams successful integration of the projects core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOEs mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  1. Independent Oversight Inspection, Hanford Site- September 2006

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management Programs at the Hanford Site Waste Stabilization and Disposition Project

  2. The Ambrosia Lake project archaeological investigations of three small sites associated with the southern Chacoan outlier of Kin Nizhoni, McKinley County, New Mexico. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Cullington, B.J. (ed.); Hammack, L.C.; Baugh, T.G. (Complete Archaeological Service Associates, Cortez, CO (United States))

    1990-03-15T23:59:59.000Z

    During the fall of 1987, Complete Archaeological Service Associates conducted mitigative excavations at three sites (LA50363, LA50364, and LA50371) in McKinley County, New Mexico. These sites are adjacent to the Phillips/United Nuclear Inactive Uranium Mill and Tailings site at Ambrosia Lake, New Mexico. The primary deposition at each of these sites appears to be related to a Pueblo II or Bonito Phase occupation. Temporal placement is based primarily on the cross dating of ceramics and archaeomagnetic determinations when possible. No tree-ring or radiocarbon samples are available from these sites. These Ambrosia Lake sites indicate that this area was occupied primarily by Pueblo II people who may have had close social, economic, and ceremonial ties with the people living at the nuclear community of Lower Nizhoni about 3 km south-southeast. The later component at LA50364 indicates a Pueblo III occupation by people who may have had similar ties to the people of the Kin Nizhoni nuclear community. The Ambrosia Lake sites, then, provide important information on the structure of subnuclear communities within the southern Chaco periphery.

  3. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

    2011-04-01T23:59:59.000Z

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

  4. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    SciTech Connect (OSTI)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)] [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)

    2013-07-01T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  5. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  6. Preliminary Site Characterization Report, Rulsion Site, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  7. HEFF---A user`s manual and guide for the HEFF code for thermal-mechanical analysis using the boundary-element method; Version 4.1: Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    St. John, C.M.; Sanjeevan, K. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)

    1991-12-01T23:59:59.000Z

    The HEFF Code combines a simple boundary-element method of stress analysis with the closed form solutions for constant or exponentially decaying heat sources in an infinite elastic body to obtain an approximate method for analysis of underground excavations in a rock mass with heat generation. This manual describes the theoretical basis for the code, the code structure, model preparation, and step taken to assure that the code correctly performs its intended functions. The material contained within the report addresses the Software Quality Assurance Requirements for the Yucca Mountain Site Characterization Project. 13 refs., 26 figs., 14 tabs.

  8. No end in sight for nuclear squabble The decision on a site for a controversial nuclear fusion project has been delayed

    E-Print Network [OSTI]

    No end in sight for nuclear squabble The decision on a site for a controversial nuclear fusion Japanese village Rokkasho-mura. Japan has said that if no agreement is reached it would be prepared. Canada pulled out of talks altogether in December. Opinions are polarised as to whether or not nuclear

  9. Study site in Son La Province, Vietnam investigating appropriate soil-water-plant management practices for sustainable crop and livestock production (CRP project

    E-Print Network [OSTI]

    Richner, Heinz

    Study site in Son La Province, Vietnam investigating appropriate soil-water-plant management Schmitter). To Our Readers The Soil and Water Management and Crop Nutrition (SWMCN) Section and the SWMCN-2013 programme with other FAO Divisions through result-based activities relating to soil and water management

  10. A brief history of the T Plant facility at the Hanford Site. Addendum 1

    SciTech Connect (OSTI)

    Gerber, M.S.

    1994-05-16T23:59:59.000Z

    T Plant (221-T) was the first and largest of the early chemical separations plants at the Hanford Engineer Works (HEW) (World War II name for the Hanford Site). Officially designated as a Cell Building by the Manhattan Engineer District (MED) of the Army Corps of Engineers (agency responsible for HEW), T Plant served as the headquarters of chemical processing operations at Hanford from its construction until the opening of the REDOX Plant in January 1952. Because it formed a crucial link in the first full-scale plutonium production operations in world history, it meets criteria established in the National Historic Preservation Act of 1966 as a National Historic Structure.

  11. Columbia's role in Upper Manhattan is a signi cant one. e University has a substantial physical presence, of course, as well as its role in teaching, research, innovation, and health care on a

    E-Print Network [OSTI]

    Lazar, Aurel A.

    Columbia's role in Upper Manhattan is a signi cant one. e University has a substantial physical, Executive Director University Donor Relations Office of Alumni and Development Columbia University dpb21 -- and global -- level. Columbia also provides thousands of jobs and generates millions of dollars for area

  12. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 2, Appendices A and B: Progress report, January 1, 1987 to March 31, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This report convers recent progress on ground-water monitoring programs for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste Landfill. The time period covered by this covered by this report is January 1 to March 31, 1987. Volume 2 contains Appendices A and B.

  13. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for January 1 to March 31, 1988: Volume 9: Appendix C

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    The appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the first quarter of calendar year 1988 (January through March). The data in this volume of Appendix C cover the following wells: 199-N-58; 199-N-59; 199-N-60; 199-N-61; 199-N-67. The data are presented in the following order: Well Completion Report/Title III Inspection List, As-Built Diagram, Logging Charts, and Drill Logs.

  14. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariate Metal-OrganicPulseSimulation,Site Index

  15. Senior projectS corporate Sponsored

    E-Print Network [OSTI]

    Stuart, Josh

    --Professor, Computer Engineering | http://users.soe.ucsc. edu/~larrabee/Site/Professor_Tracy_Larrabee.html Charlie McSenior projectS program corporate Sponsored Partner's Day May 31, 2012 Baskin School of Engineering earning their engineering degree and fulfilling this capstone design sequence. Our students who have

  16. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  17. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 5, Appendix B

    SciTech Connect (OSTI)

    none,

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W6-2; 299-W7-1; 299-W7-2; 299-W7-3; 299-W7-4. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  18. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 7, Appendix B (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wwlls completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W10-14; 299-W15-15; 299-W15-16; 299-W15-17; 299-W15-18. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  19. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 2, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E27-8; 299-E27-9; 299-E27-10; 299-E28-26; 299-E28-27. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  20. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 8, Appendix B (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W18-21; 299-W18-22; 299-W18-23; 299-W18-24. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  1. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 4, Appendix A (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E33-30; 299-E34-2; 299-E34-3; 299-E34-4; 299-E34-5; 299-E34-6. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  2. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period, January 1-March 31, 1988: Volume 6, Appendix B (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W7-5; 299-W7-6; 299-W8-1; 299-W9-1; 299-W10-13. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  3. Engineering testing and technology projects FY 1996 Site Support Program Plan, WBS 6.3.3 and 6.3.8. Revision 1

    SciTech Connect (OSTI)

    Brown, L.C.

    1995-10-01T23:59:59.000Z

    The engineering laboratory services for development, assembly, testing, and evaluation to support the resolution of WHC, Hanford, and DOE complex wide engineering issues for 1996 are presented. Primary customers are: TWRS, spent nuclear fuels, transition projects, liquid effluent program, and other Hanford contractors and programs. Products and services provided include: fabrication and assembly facilities for prototype and test equipment, development testing, proof of principle testing, instrumentation testing, nondestructive examination application development and testing, prototype equipment design and assembly, chemical engineering unit operations testing, engineering test system disposal, and safety issue resolution.

  4. Site Characterization Report ORGDP Diffusion Facilities Permanent Shutdown K-700 Power House and K-27 Switch Yard/Switch House

    SciTech Connect (OSTI)

    Thomas R.J., Blanchard R.D.

    1988-06-13T23:59:59.000Z

    The K-700 Power House area, initially built to supply power to the K-25 gaseous diffusion plant was shutdown and disassembled in the 1960s. This shutdown was initiated by TVA supplying economical power to the diffusion plant complex. As a result of world wide over production of enriched, reactor grade U{sup 235}, the K-27 switch yard and switch house area was placed in standby in 1985. Subsequently, as the future production requirements decreased, the cost of production increased and the separation technologies for other processes improved, the facility was permanently shutdown in December, 1987. This Site Characterization Report is a part of the FY-88 engineering Feasibility Study for placing ORGDP Gaseous Diffusion Process facilities in 'Permanent Shutdown'. It is sponsored by the Department of Energy through Virgil Lowery of Headquarters--Enrichment and through Don Cox of ORO--Enrichment Operations. The primary purpose of these building or site characterization reports is to document, quantify, and map the following potential problems: Asbestos; PCB containing fluids; Oils, coolants, and chemicals; and External contamination. With the documented quantification of the concerns (problems) the Engineering Feasibility Study will then proceed with examining the potential solutions. For this study, permanent shutdown is defined as the securing and/or conditioning of each facility to provide 20 years of safe service with minimal expenditures and, where feasible, also serving DOE's needs for long-term warehousing or other such low-risk use. The K-700 power house series of buildings were either masonry construction or a mix of masonry and wood. The power generating equipment was removed and sold as salvage in the mid 1960s but the buildings and auxiliary equipment were left intact. The nine ancillary buildings in the power house area use early in the Manhattan Project for special research projects, were left intact minus the original special equipment. During the late 1960s and 1970s, some of the abandoned buildings were used for offices, special projects, and storage. Some of the remaining electrical transformers contain PCBs in concentrations less than 500 ppm. Many of the steam and hot water pipes in the buildings are insulated with asbestos insulation, but none of the equipment or buildings have high counts of surface radioactive contamination. The general conditions of the buildings are from fair to poor. Many should be boarded-up to prevent personnel entry and in some cases demolitions would be the safer alternative.

  5. atlantic drill site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    140 7th Avenue South, University of South Florida, St Atlantic DSDP (Deep Sea Drilling Project) Site 607 and South Atlantic ODP Site 1090. Data collected provide and...

  6. Energy Generation Project Permitting (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Energy Generation Siting Policy Commission is mandated to survey best practices for siting approval of electric generation projects (all facilities except for net- and group-net-metered...

  7. SmartSolar Site Report and Appendix- Sample

    Broader source: Energy.gov [DOE]

    This site report provides SmartSolars identified opportunities for energy efficiency and solar projects, guides on how to move forward with these projects, and supporting documents.

  8. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 Laura Wilkerson, Portfolio Federal Project Director Karen Deacon, Deputy Federal Project...

  9. Texas Stream Team Special Projects

    E-Print Network [OSTI]

    Texas Stream Team Special Projects TMDL and Watershed Protection Plan Projects Steering Transparency tube E. coli Web site resources Materials Maps, Watershed Models Orange County Adams training sessions Quality control NPS education sessions Volunteers of the month Orange county

  10. A study of the necessary and optimal conditions for success in the most challenging human endeavors : modem day Manhattan Projects are needed for overcoming contemporary global challenges

    E-Print Network [OSTI]

    Chowdhury, Anando A

    2012-01-01T23:59:59.000Z

    It is possible to categorize four contemporary challenges as the greatest threats to global well-being and the persistence of humankind. These challenges are global climate and ecological change, poor human health management, ...

  11. Offshore Wind Project Map

    Broader source: Energy.gov [DOE]

    Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

  12. Hydraulic fracture model and diagnostics verification at GRI/DOE multi-site projects and tight gas sand program support. Final report, July 28, 1993--February 28, 1997

    SciTech Connect (OSTI)

    Schroeder, J.E.

    1997-12-31T23:59:59.000Z

    The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over twenty years. Early production experiments included nuclear stimulations and massive hydraulic fracture treatments. This work culminated in the US Department of Energy (DOE)`s Multiwell Experiment (MWX), a field laboratory designed to study the reservoir and production characteristics of low permeability sands. A key feature of MWX was an infrastructure which included several closely spaced wells that allowed detailed characterization of the reservoir through log and core analysis, and well testing. Interference and tracer tests, as well as the use of fracture diagnostics gave further information on stimulation and production characteristics. Thus, the Multiwell Experiment provided a unique opportunity for identifying the factors affecting production from tight gas sand reservoirs. The purpose of this operation was to support the gathering of field data that may be used to resolve the number of unknowns associated with measuring and modeling the dimensions of hydraulic fractures. Using the close-well infrastructure at the Multiwell Site near Rifle, Colorado, this operation focused primarily on the field design and execution of experiments. The data derived from the experiments were gathered and analyzed by DOE team contractors.

  13. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S. Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S. Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado; Gillespie, Joey [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; Widdop, Michael [S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado; none,

    2012-02-26T23:59:59.000Z

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS&M) of remediated FUSRAP sites. DOE LTS&M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS&M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS&M.

  14. TRACKING SITE

    Energy Science and Technology Software Center (OSTI)

    003235MLTPL00 AASG Geothermal Data submissions tracking application and site. https://github.com/usgin/aasgtrack

  15. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2012 SDPPP update fully incorporates all changes made during the year and reflects changes projected...

  16. Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho. [Urnanium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy's (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process.

  17. Air quality assessments in support of the Environmental Impact Statement (EIS), Oregon Air Contaminant Discharge Permit (ACDP) and Oregon Energy Facility Siting Council certificate (EFSC) for the Newberry Geothermal Pilot Project

    SciTech Connect (OSTI)

    Houck, J.E. [AGI Technologies, Portland, OR (United States); McClain, D.W. [CE Newberry, Inc., Portland, OR (United States)

    1996-12-31T23:59:59.000Z

    Air quality monitoring, emission predictions and impact modeling have been performed in support of the regulatory process for the Newberry Geothermal Pilot Project located near Newberry Crater, Oregon. The proposed power plant will generate 33 NM of power utilizing double flash technology. Air emissions from construction activities, well drilling, wellfield testing and operation, power plant operation, and unplanned upsets were evaluated. Wellfield and plant emission rates for hydrogen sulfide and other air pollutants were developed based on expected resource chemistry and operational scenarios. In addition, nitrogen dioxide and particulate emissions were estimated for drill rig diesel engines and construction activities, respectively. Air pollutant impacts at property boundaries, inside the Newberry National Volcanic Monument and at the nearest Class I area (Three Sisters Wilderness) were predicted using U.S. Environmental Protection Agency dispersion models. Cooling tower plume dimensions were predicted using an Electric Power Research Institute model. The deposition and impact of airborne heavy metals and hydrogen sulfide on two nearby watersheds were calculated. The effect of cooling tower plume drift was also evaluated. Preconstruction background air quality was estimated from published data. The results of the studies have demonstrated that good air quality can be expected at the proposed project site.

  18. Independent Oversight Review, Savannah River Site- August 2011

    Broader source: Energy.gov [DOE]

    Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project

  19. 2012 Annual Planning Summary for Thomas Jefferson Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Thomas Jefferson Site Office.

  20. 2012 Annual Planning Summary for Argonne Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Argonne Site Office.

  1. 2013 Annual Planning Summary for the Argonne Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within theArgonne Site Office

  2. 2014 Annual Planning Summary for the Berkeley Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within theBerkeley Site Office.

  3. Independent Oversight Review, Savannah River Site- July 2011

    Broader source: Energy.gov [DOE]

    Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project

  4. Map: Projected Growth of the Wind Industry From Now Until 2050 | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your Next Road Trip Fuel EfficientManhattan Project

  5. Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    Employees at the Hanford site are working together to find new and innovative ways to stay safe at the Plutonium Finishing Plant, one of the sites most complex decommissioning projects.

  6. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  7. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  8. Operational waste volume projection

    SciTech Connect (OSTI)

    Koreski, G.M.

    1996-09-20T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  9. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect (OSTI)

    A.M. Simmons

    2004-04-16T23:59:59.000Z

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  10. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup Document Date: 10162009 Keywords: recovery, waste site, BC Control, soil, contamination Area: BC Control Area Description: Using Recovery Act funding, contractors are...

  11. Public participation in UMTRA Project program management

    SciTech Connect (OSTI)

    Majors, M.J.; Ulland, L.M. [Weston (Roy F.), Inc., Albuquerque, NM (United States)

    1993-12-31T23:59:59.000Z

    Innovative techniques for overcoming barriers to public participation on the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project have led to improved communications with stakeholders at project sites and improved communications within the project. On the UMTRA Project, it`s been shown that an effective public participation program is an essential element to successful project implementation.

  12. QUALITY ASSURANCE PROJECT PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    .4.5.2 Transportation Regulations...................................................................8 2.4.5.3 Landfill

  13. CSMRI SITE PROJECT SUMMARY November 2010

    E-Print Network [OSTI]

    the source, nature and extent of contamination that is resulting in elevated levels of uranium in ground to be below the high water level for creek-influenced ground water the fill is a rock and soil mix from a local quarry. Clean topsoil from the School's campus is being used above the rock and soil mix

  14. Wind Project Siting Tools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWindCooperatives Jump

  15. TPA Project Manager's Lists - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPoints of Contact Hanford Advisory

  16. START Program Project Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department of iiBiodiesel |NYDepartmentOctober

  17. Pinellas County, Florida, Site Environmental Restoration Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 c & KPhillips3

  18. Pinellas County, Florida, Site Environmental Restoration Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 c &

  19. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency |91-51-SW State SouthTerrel J. Spears

  20. Hanford Site environmental management specification

    SciTech Connect (OSTI)

    Grygiel, M.L.

    1998-06-10T23:59:59.000Z

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.