Sample records for managing wind variability

  1. May 2013 PSERC Webinar: Managing Wind Variability with Self-Reserves and Responsive Demand

    Broader source: Energy.gov [DOE]

    The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar on managing wind variability in energy production. The webinar will be held Tuesday, May 7, 2013 from 2-3 p.m. No pre-registration is necessary.

  2. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  3. Long-Term Wind Power Variability

    SciTech Connect (OSTI)

    Wan, Y. H.

    2012-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  4. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co for the modeled wind- CAES system would not cover annualized capital costs. We also estimate market prices-ahead market is roughly $100, with large variability due to electric power prices. Wind power forecast errors

  5. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  6. Pitch-controlled variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.

    2000-03-01T23:59:59.000Z

    Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

  7. Variables Affecting Economic Development of Wind Energy

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2008-07-01T23:59:59.000Z

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  8. Managing Variable Energy Resources to Increase Renewable Electricity's

    E-Print Network [OSTI]

    Managing Variable Energy Resources to Increase Renewable Electricity's Contribution to the Grid P o Contribution of Renewable Energy to Total Electricity Generation? 15 ManaGInG VaRIablE EnERGy REsouRCEs 16 What l i c y m a k e r G u i d e #12;Variable energy resources, such as wind power, now produce about 3

  9. MOWII Webinar: Wind Development Cultural Resource Management

    Broader source: Energy.gov [DOE]

    During the planning stages, wind energy development can be affected by the regulatory process relative to cultural resource management issues. Section 106 of the National Historic Preservation Act ...

  10. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    Sadeh, Norman M.

    not exacerbate the global warming problem. However, renewable energy is inherently intermittent and variableManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions

  11. Load Alleviation on Wind Turbine Blades using Variable Airfoil Geometry

    E-Print Network [OSTI]

    Load Alleviation on Wind Turbine Blades using Variable Airfoil Geometry Peter Bjørn Andersen, Mac Loads, Trailing Edge Flaps, PID control, Signal Noise. 1 Introduction Wind turbine blades are subject to 40% when signal noise is added to the control. Keywords: Wind Turbine, Load Alleviation, Fatigue

  12. Offshore Series Wind Turbine Variable Hub heights & rotor diameters

    E-Print Network [OSTI]

    Firestone, Jeremy

    3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

  13. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    sharing the load and wind generation data. We thank Sushil2008. “Analysis of Wind Generation Impact on ERCOT Ancillaryof the Variability of Wind Generation in India: Implications

  14. Inter-annual Variability of Wind Indices across Europe

    E-Print Network [OSTI]

    Pryor, Sara C.

    Energy, Risø National Laboratory, DK-4000 Roskilde, Denmark and Atmospheric Science Program, Department, including wind energy. However, relatively little research has been conducted to assess the historical variability of wind energy density across different spatial scales or the degree to which one can derive

  15. Variable diameter wind turbine rotor blades

    DOE Patents [OSTI]

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06T23:59:59.000Z

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  16. Managing Variability throughout the Software Development Lifecycle

    E-Print Network [OSTI]

    Managing Variability throughout the Software Development Lifecycle Neil Loughran and Awais Rashid levels of the software development lifecycle, especially when new requirements arise. We believe of the software development lifecycle. Moreover, the effects of variability and, in particular, new variabilities

  17. Laboratory implementation of variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Zinger, D.S. [Northern Illinois University, DeKalb, IL (United States)] [Northern Illinois University, DeKalb, IL (United States); Miller, A.A. [Univ. of Idaho, Moscow, ID (United States)] [Univ. of Idaho, Moscow, ID (United States); Muljadi, E.; Butterfield, C.P.; Robinson, M.C. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States)

    1996-07-01T23:59:59.000Z

    To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

  18. Management and Conservation Short-Term Impacts of Wind Energy

    E-Print Network [OSTI]

    Beck, Jeffrey L.

    Management and Conservation Short-Term Impacts of Wind Energy Development on Greater Sage associated with wind energy development on greater sage-grouse populations. We hypothesized that greater sage-grouse nest, brood, and adult survival would decrease with increasing proximity to wind energy infrastructure

  19. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, E.

    1998-08-25T23:59:59.000Z

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  20. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-01-01T23:59:59.000Z

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  1. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-08-25T23:59:59.000Z

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  2. Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two variations. Index Terms--Wind energy conversion system, power generation control, sliding mode control

  3. Wind Power Variability, Its Cost, and Effect on Power Plant Emissions

    E-Print Network [OSTI]

    Wind Power Variability, Its Cost, and Effect on Power Plant Emissions A Dissertation Submitted The recent growth in wind power is transforming the operation of electricity systems by introducing. As a result, system operators are learning in real-time how to incorporate wind power and its variability

  4. The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric

    E-Print Network [OSTI]

    Kohfeld, Karen

    and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific through diversification. In hydroelectric dominated systems, like the PNW, the benefits of wind power can diversification can be maximized. Keywords: Wind power; Hydroelectricity; Renewable energy; Climate variability

  5. Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault to the grid connection of wind turbines. The second chapter elucidates recent thinking in the area of grid Risø National Laboratory Vestas Wind Systems A/S #12;#12;I Modelling and Analysis of Variable Speed

  6. Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator

    E-Print Network [OSTI]

    values. Keywords: permanent magnet synchronous generator, variable speed wind turbine, direct driven wind). A multipole synchronous generator connected to a power converter can operate at low speeds, so that a gear canControl strategy of a variable speed wind turbine with multipole permanent magnet synchronous

  7. Optimization of Wind Power and Its Variability With a Computational Intelligence Approach

    E-Print Network [OSTI]

    Kusiak, Andrew

    Optimization of Wind Power and Its Variability With a Computational Intelligence Approach Zijun is presented for maximizing the generation of wind power while minimizing its variability. In the optimization model, data-driven approaches are used to model the wind-power generation process based on industrial

  8. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource

    E-Print Network [OSTI]

    The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract

  9. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  10. Systematic Controller Design Methodology for Variable-Speed Wind Turbines

    SciTech Connect (OSTI)

    Hand, M. M.; Balas, M. J.

    2002-02-01T23:59:59.000Z

    Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three operational regions. This paper provides a guide for controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship between the two opposing metrics is easily visualized.

  11. Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.

    2006-03-01T23:59:59.000Z

    Presentation for the European Wind Energy Conference held February 27--March 2, 2006, in Athens, Greece, showing grid impacts of wind power variability.

  12. Assessing the Impact of Wind Variability on Power System Small-Signal Reachability

    E-Print Network [OSTI]

    Liberzon, Daniel

    Assessing the Impact of Wind Variability on Power System Small-Signal Reachability Yu Christine-signal and transient stability [6]. In this regard, it has been acknowledged that, as the presence of wind in the power balancing in near real time [7]. This paper focuses on this last problem--the impact of wind penetration

  13. Eddy Heat Flux in the Southern Ocean: Response to Variable Wind Forcing ANDREW MCC. HOGG

    E-Print Network [OSTI]

    Miami, University of

    Eddy Heat Flux in the Southern Ocean: Response to Variable Wind Forcing ANDREW MCC. HOGG Australian processes. The authors also test the model response to long-term changes in wind forcing, including steadily1925.1 © 2008 American Meteorological Society #12;Given the dominant role of wind forcing in the South

  14. Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines

    E-Print Network [OSTI]

    Hu, Weihao

    Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines, China mcheng@seu.edu.cn Abstract-- Grid connected wind turbines are the sources of power fluctuations presents an individual pitch control (IPC) strategy to mitigate the wind turbine power fluctuation at both

  15. Abstract--A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous

    E-Print Network [OSTI]

    Chen, Zhe

    1 Abstract--A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine of this variable speed wind turbine based on multiple generators drive-train configuration. Index Terms--Wind power

  16. Effects of turbulence on power generation for variable-speed wind turbines

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

    1996-11-01T23:59:59.000Z

    One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

  17. An examination of loads and responses of a wind turbine undergoing variable-speed operation

    SciTech Connect (OSTI)

    Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

    1996-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is to show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.

  18. Free and forced tropical variability: role of the wind-evaporation-sea surface temperature (WES) feedback

    E-Print Network [OSTI]

    Mahajan, Salil

    2009-05-15T23:59:59.000Z

    The Wind-Evaporation-Sea Surface Temperature (WES) feedback is believedto play an important role in the tropics, where climate variability is governed byatmosphere-ocean coupled interactions. This dissertation reports on studies to distinctlyisolate...

  19. Control strategy for variable-speed, stall-regulated wind turbines

    SciTech Connect (OSTI)

    Muljadi, E.; Pierce, K.; Migliore, P.

    1998-04-01T23:59:59.000Z

    A variable-speed, constant-pitch wind turbine was investigated to evaluate the feasibility of constraining its rotor speed and power output without the benefit of active aerodynamic control devices. A strategy was postulated to control rotational speed by specifying the demanded generator torque. By controlling rotor speed in relation to wind speed, the aerodynamic power extracted by the blades from the wind was manipulated. Specifically, the blades were caused to stall in high winds. In low and moderate winds, the demanded generator torque and the resulting rotor speed were controlled to cause the wind turbine to operate near maximum efficiency. A computational model was developed, and simulations were conducted of operation in high turbulent winds. Results indicated that rotor speed and power output were well regulated. 7 refs., 7 figs.

  20. Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-11-01T23:59:59.000Z

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

  1. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    and solar energy--is free, abundant, and most importantly, does not exacerbate the global warming problemManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand

  2. Wind Management LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot SpringNevada:Data

  3. Variable Charge Soils: Their Mineralogy, Chemistry and Management

    SciTech Connect (OSTI)

    Qafoku, Nik; Van Ranst, Eric; Noble, Andrew; Baert, Geert

    2004-07-01T23:59:59.000Z

    In this article, the mineralogy, chemistry and management of variable charge soils that are spread throughout the world are treated in details.

  4. High-Speed Optical Spectroscopy of a Cataclysmic Variable Wind BZ Camelopardalis

    E-Print Network [OSTI]

    Ringwald, F A

    1997-01-01T23:59:59.000Z

    BZ Cam is the first cataclysmic variable star with an accretion disk wind evident in its optical spectrum. The wind was found by Thorstensen, who discovered intermittent P Cygni profiles occurring simultaneously in He I 5876 Angstroms and H alpha. We have since obtained spectra with 0.4-Angstroms/pixel dispersion and 60-s time resolution. We find a wind much faster and more rapidly variable than the radiatively accelerated winds of OB stars, Wolf-Rayet stars, or luminous blue variables. Instead of showing blob ejection, the whole wind of BZ Cam appears to turn on and off. We use this to measure the acceleration law of a CV wind for the first time. The velocity increases linearly with time, attaining blue edge velocities near -3000 km/s, and absorption velocities near -1700 km/s, in 6 to 8 min after starting near rest. We also find a subsequent linear deceleration to nearly rest in 30 to 40 min, perhaps an effect of dilution as the wind expands. No periodicity from rotational outflow is obvious. This wind is e...

  5. WindDriven Currents in a Sea with a Variable Eddy Viscosity Calculated via a SincGalerkin

    E-Print Network [OSTI]

    Bowers, Kenneth L.

    Wind­Driven Currents in a Sea with a Variable Eddy Viscosity Calculated via a Sinc.S.A. November 17, 1999 Short title: Wind­Driven Currents Calculated via a Sinc­Galerkin Technique Keywords: wind, a Sinc­Galerkin procedure is used to infer the sensitivity of wind­driven subsur­ face currents

  6. Variability of wind power near Oklahoma City and implications for siting of wind turbines

    SciTech Connect (OSTI)

    Kessler, E.; Eyster, R.

    1987-09-01T23:59:59.000Z

    Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

  7. Adaptive pitch control for variable speed wind turbines

    DOE Patents [OSTI]

    Johnson, Kathryn E. (Boulder, CO); Fingersh, Lee Jay (Westminster, CO)

    2012-05-08T23:59:59.000Z

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  8. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency

    E-Print Network [OSTI]

    Kriesche, Pascal

    In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

  9. High-Speed Optical Spectroscopy of a Cataclysmic Variable Wind: BZ Camelopardalis

    E-Print Network [OSTI]

    F. A. Ringwald; T. Naylor

    1997-10-02T23:59:59.000Z

    BZ Cam is the first cataclysmic variable star with an accretion disk wind evident in its optical spectrum. The wind was found by Thorstensen, who discovered intermittent P Cygni profiles occurring simultaneously in He I 5876 Angstroms and H alpha. We have since obtained spectra with 0.4-Angstroms/pixel dispersion and 60-s time resolution. We find a wind much faster and more rapidly variable than the radiatively accelerated winds of OB stars, Wolf-Rayet stars, or luminous blue variables. Instead of showing blob ejection, the whole wind of BZ Cam appears to turn on and off. We use this to measure the acceleration law of a CV wind for the first time. The velocity increases linearly with time, attaining blue edge velocities near -3000 km/s, and absorption velocities near -1700 km/s, in 6 to 8 min after starting near rest. We also find a subsequent linear deceleration to nearly rest in 30 to 40 min, perhaps an effect of dilution as the wind expands. No periodicity from rotational outflow is obvious. This wind is erratic and incessantly variable, and perhaps bipolar and face-on, but not highly collimated. The P Cygni absorption events trace out sawtooth waves, occurring within 30 to 40 white dwarf radii from the disk. This is the approximate size of the disk, as well as the disk/wind transition region recently postulated by Knigge and Drew. We estimate a distance of 830 +/- 160 pc, and an orbital inclination i such that 12 < i(degrees) < 40.

  10. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17T23:59:59.000Z

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  11. Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States; Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Milligan, M.; Smith, J. C.; DeMeo, E.; Oakleaf, B.; Wolf, K.; Schuerger, M.; Zavadil, R.; Ahlstrom, M.; Nakafuji, D. Y.

    2006-07-01T23:59:59.000Z

    Because of wind power's unique characteristics, many concerns are based on the increased variability that wind contributes to the grid, and most U.S. studies have focused on this aspect of wind generation. Grid operators are also concerned about the ability to predict wind generation over several time scales. In this report, we quantify the physical impacts and costs of wind generation on grid operations and the associated costs.

  12. Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory

    E-Print Network [OSTI]

    Huang, Jianwei

    Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory, Wind Power Integration, Markov Chain, Dynamic Potential Game Theory, Nash Equilibrium. I. INTRODUCTION the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast

  13. Effects of variable wind stress on ocean heat content

    E-Print Network [OSTI]

    Klima, Kelly

    2008-01-01T23:59:59.000Z

    Ocean heat content change (ocean heat uptake) has an important role in variability of the Earth's heat balance. The understanding of which methods and physical processes control ocean heat uptake needs improvement in order ...

  14. A conservative control strategy for variable-speed stall-regulated wind turbines

    SciTech Connect (OSTI)

    Muljadi, E.; Pierce, K.; Migliore, P.

    2000-02-08T23:59:59.000Z

    Simulation models of a variable-speed, fixed-pitch wind turbine were investigated to evaluate the feasibility of constraining rotor speed and power output without the benefit of active aerodynamic control devices. A strategy was postulated to control rotational speed by specifying the demanded generator torque. By controlling rotor speed in relation to wind speed, the aerodynamic power extracted by the blades from the wind was manipulated. Specifically, the blades were caused to stall in high winds. In low and moderate winds, the demanded generator torque and the resulting rotor speed were controlled to cause the wind turbine to operate near maximum efficiency. Using the developed models, simulations were conducted of operation in turbulent winds. Results indicated that rotor speed and power output were well regulated. Preliminary investigations of system dynamics showed that, compared to fixed-speed operation, variable-speed operation caused cyclic loading amplitude to be reduced for the turbine blades and low-speed shaft and slightly increased for the tower loads. This result suggests a favorable impact on fatigue life from implementation of the proposed control strategy.

  15. A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural Health Monitoring

    E-Print Network [OSTI]

    Stanford University

    1 A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural of wind turbines and reducing the life-cycle costs significantly. This paper presents a life-cycle management (LCM) framework for online monitoring and performance assessment of wind turbines, enabling

  16. A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines

    E-Print Network [OSTI]

    Stanford University

    A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

  17. VARIABLE WINDS AND DUST FORMATION IN R CORONAE BOREALIS STARS

    SciTech Connect (OSTI)

    Clayton, Geoffrey C.; Zhang Wanshu [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Geballe, T. R., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: wzhan21@lsu.edu, E-mail: tgeballe@gemini.edu [Gemini Observatory, 670 N. A'ohoku Place, Hilo, HI 96720 (United States)

    2013-08-01T23:59:59.000Z

    We have observed P-Cygni and asymmetric, blue-shifted absorption profiles in the He I {lambda}10830 lines of 12 R Coronae Borealis stars over short (1 month) and long (3 yr) timescales to look for variations linked to their dust-formation episodes. In almost all cases, the strengths and terminal velocities of the line vary significantly and are correlated with dust formation events. Strong absorption features with blue-shifted velocities {approx}400 km s{sup -1} appear during declines in visible brightness and persist for about 100 days after recovery to maximum brightness. Small residual winds of somewhat lower velocity are present outside of the decline and recovery periods. The correlations support models in which recently formed dust near the star is propelled outward at high speed by radiation pressure and drags the gas along with it.

  18. Managing forecast variability in a build-to-order environment

    E-Print Network [OSTI]

    Einhorn, Marshall

    2007-01-01T23:59:59.000Z

    In any production environment, managing demand variability is a delicate balancing act. Firms must constantly weigh potential obsolescence costs of unused inventory (should sales not materialize) against potential expedite ...

  19. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  20. The winds of Luminous Blue Variables and the Mass of AG Car

    E-Print Network [OSTI]

    Jorick S. Vink; Alex de Koter

    2002-07-15T23:59:59.000Z

    We present radiation-driven wind models for Luminous Blue Variables (LBVs) and predict their mass-loss rates. A comparison between our predictions and the observations of AG Car shows that the variable mass loss behaviour of LBVs is due the recombination/ionisation of Fe IV/III and Fe III/II. We also derive a present-day mass of 35 Msun for AG Car.

  1. Predicting the Energy Output of Wind Farms Based on Weather Data: Important Variables and their Correlation

    E-Print Network [OSTI]

    Vladislavleva, Katya; Neumann, Frank; Wagner, Markus

    2011-01-01T23:59:59.000Z

    Wind energy plays an increasing role in the supply of energy world-wide. The energy output of a wind farm is highly dependent on the weather condition present at the wind farm. If the output can be predicted more accurately, energy suppliers can coordinate the collaborative production of different energy sources more efficiently to avoid costly overproductions. With this paper, we take a computer science perspective on energy prediction based on weather data and analyze the important parameters as well as their correlation on the energy output. To deal with the interaction of the different parameters we use symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on publicly available weather and energy data for a wind farm in Australia. We reveal the correlation of the different variables for the energy output. The model obtained for energy prediction gives a very reliable prediction of the energy output for newly given weather data.

  2. Abstract--The variability and non-dispatchable nature of wind and solar energy production presents

    E-Print Network [OSTI]

    , the New York ISO already started to support the integration of limited energy storage resources (LESR) [81 Abstract--The variability and non-dispatchable nature of wind and solar energy production, energy storage can be a viable solution to balance energy production against its consumption. This paper

  3. Tomographic Simulations of Accretion Disks in Cataclysmic Variables - Flickering and Wind

    E-Print Network [OSTI]

    Fabiola M. A. Ribeiro; Marcos P. Diaz

    2007-11-22T23:59:59.000Z

    Both continuum and emission line flickering are phenomena directly associated with the mass accretion process. In this work we simulate accretion disk Doppler maps including the effects of winds and flickering flares. Synthetic flickering Doppler maps are calculated and the effect of the flickering parameters on the maps is explored. Jets and winds occur in many astrophysical objects where accretion disks are present. Jets are generally absent among the cataclysmic variables (CVs), but there is evidence of mass loss by wind in many objects. CVs are ideal objects to study accretion disks and consequently to study the wind associated with these disks. We also present simulations of accretion disks including the presence of a wind with orbital phase resolution. Synthetic H-alpha line profiles in the optical region are obtained and their corresponding Doppler maps are calculated. The effect of the wind simulation parameters on the wind line profiles is also explored. From this study we verified that optically thick lines and/or emission by diffuse material into the primary Roche lobe are necessary to generate single peaked line profiles, often seen in CVs. The future accounting of these effects is suggested for interpreting Doppler tomography reconstructions.

  4. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01T23:59:59.000Z

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  5. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1995-11-01T23:59:59.000Z

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  6. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.

    1996-10-01T23:59:59.000Z

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy analyzed uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  7. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States)

    1996-11-01T23:59:59.000Z

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up, and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy the authors analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  8. Rummaging inside the Eskimo's parka: Variable asymmetric PN fast wind and a binary nucleus?

    E-Print Network [OSTI]

    Prinja, Raman

    2014-01-01T23:59:59.000Z

    We report on high-resolution optical time-series spectroscopy of the central star of the `Eskimo' planetary nebula NGC~2392. Datasets were secured with the ESO 2.3m in 2006 March and CFHT 3.6m in 2010 March to diagnose the fast wind and photospheric properties of the central star. The HeI and HeII recombination lines reveal evidence for clumping and temporal structures in the fast wind that are erratically variable on timescales down to ~ 30 min. (i.e. comparable to the characteristic wind flow time). We highlight changes in the overall morphology of the wind lines that cannot plausibly be explained by line-synthesis model predictions with a spherically homogeneous wind. Additionally we present evidence that the UV line profile morphologies support the notion of a high-speed, high-ionization polar wind in NGC~2392. Analyses of deep-seated, near-photospheric absorption lines reveals evidence for low-amplitude radial velocity shifts. Fourier analysis points tentatively to a ~ 0.12-d modulation in the radial vel...

  9. Real time grid congestion management in presence of high penetration of wind energy

    E-Print Network [OSTI]

    Boyer, Edmond

    of wind generation [2]. In the literature, many methods have been reported for congestion management to element outage or random production as is wind generation. hal-00422160,version1-6Oct2009 Author related to wind generation [8]. This is due to the difficulties to predict exact congestion magnitude

  10. TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING

    E-Print Network [OSTI]

    Stanford University

    TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING K. Smarsly1) strategies can enable wind turbine manufacturers, owners, and operators to precisely schedule maintenance behavior of wind turbines and to reduce (epistemic) uncertainty. Both the resistance parameters

  11. Management and Conservation Article Behavioral Responses of Bats to Operating Wind Turbines

    E-Print Network [OSTI]

    Holberton, Rebecca L.

    Management and Conservation Article Behavioral Responses of Bats to Operating Wind Turbines JASON W used thermal infrared (TIR) cameras to assess the flight behavior of bats at wind turbines because with turbine blades, suggesting that bats may be at higher risk of fatality on nights with low wind speeds

  12. Self-excited induction generator for variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Gregory, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Broad, D. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering] [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering

    1996-10-01T23:59:59.000Z

    When an induction generator is connected to a utility bus, the voltage and frequency at the terminal of the generator are the same as the voltage and frequency of the utility. The reactive power needed by the induction generator is supplied by the utility and the real power is returned to the utility. The rotor speed varies within a very limited range, and the reactive power requirement must be transported through a long line feeder, thus creating additional transmission losses. The energy captured by a wind turbine can be increased if the rotor speed can be adjusted to follow wind speed variations. For small applications such as battery charging or water pumping, a stand alone operation can be implemented without the need to maintain the output frequency output of the generator. A self- excited induction generator is a good candidate for a stand alone operation where the wind turbine is operated at variable speed. Thus the performance of the wind turbine can be unproved. In this paper, we examine a self-excited induction generator operated in a stand alone mode. A potential application for battery charging is given. The output power of the generator will be controlled to improve the performance of the wind turbine.

  13. Variability of Wind Power and Other Renewables - Management options...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For industry residues this production is quite constant over the year but for district heating this results in electricity production of biomass having seasonal variation...

  14. A Global View on the Wind Sea and Swell Climate and Variability from ERA-40 ALVARO SEMEDO

    E-Print Network [OSTI]

    Haak, Hein

    A Global View on the Wind Sea and Swell Climate and Variability from ERA-40 ALVARO SEMEDO 2010) ABSTRACT In this paper a detailed global climatology of wind-sea and swell parameters, based on the 45-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) wave reanalysis

  15. Simplified life cycle approach: GHG variability assessment for onshore wind electricity based on Monte-Carlo simulations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the literature. In the special case of greenhouses gases (GHG) from wind power electricity, the LCA resultsSimplified life cycle approach: GHG variability assessment for onshore wind electricity based performed by the IPCC [1]. Such result might lead policy makers to consider LCA as an inconclusive method [2

  16. The Impact of Accretion Disk Winds on the Optical Spectra of Cataclysmic Variables

    E-Print Network [OSTI]

    Matthews, James H; Long, Knox S; Sim, Stuart A; Higginbottom, Nick

    2015-01-01T23:59:59.000Z

    Many high-state non-magnetic cataclysmic variables (CVs) exhibit blue-shifted absorption or P-Cygni profiles associated with ultraviolet (UV) resonance lines. These features imply the existence of powerful accretion disk winds in CVs. Here, we use our Monte Carlo ionization and radiative transfer code to investigate whether disk wind models that produce realistic UV line profiles are also likely to generate observationally significant recombination line and continuum emission in the optical waveband. We also test whether outflows may be responsible for the single-peaked emission line profiles often seen in high-state CVs and for the weakness of the Balmer absorption edge (relative to simple models of optically thick accretion disks). We find that a standard disk wind model that is successful in reproducing the UV spectra of CVs also leaves a noticeable imprint on the optical spectrum, particularly for systems viewed at high inclination. The strongest optical wind-formed recombination lines are H$\\alpha$ and H...

  17. The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation

    E-Print Network [OSTI]

    Jaworsky, Christina A

    2013-01-01T23:59:59.000Z

    Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

  18. Reactive power management of distribution networks with wind generation for improving voltage stability

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    -loadability Reactive power margin Wind turbine a b s t r a c t This paper proposes static and dynamic VAR planningReactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q

  19. Using supply chain management techniques to make wind plant and energy storage operation more profitable

    E-Print Network [OSTI]

    Saran, Prashant

    2009-01-01T23:59:59.000Z

    Our research demonstrates that supply chain management techniques can improve the incremental gross profits of wind plant and storage operations by up to five times. Using Monte-Carlo simulation we create and test scenarios ...

  20. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    and V. Neimane. 2005. 4000 MW Wind Power in Sweden-Impact onand Michael Milligan. 2009. “Wind Energy and Power SystemOperations: A Review of Wind Integration Studies to Date. ”

  1. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01T23:59:59.000Z

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  2. Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for Grid Integration Studies

    SciTech Connect (OSTI)

    Behnke, M.; Ellis, A.; Kazachkov, Y.; McCoy, T.; Muljadi, E.; Price, W.; Sanchez-Gasca, J.

    2007-09-01T23:59:59.000Z

    This paper describes reduced-order, simplified wind turbine models for analyzing the stability impact of large arrays of wind turbines with a single point of network interconnection.

  3. Rotating Winds from Accretion Disks in Cataclysmic Variables: Eclipse Modeling of V347 Puppis

    E-Print Network [OSTI]

    Isaac Shlosman; Peter Vitello; Christopher W. Mauche

    1995-11-01T23:59:59.000Z

    We study the eclipsing nova-like variable V347 Pup by matching its UV emission line profiles in and out of eclipse to synthetic lines using a 3D kinematic and radiation transfer model. Our results support the accretion disk origin of winds in non-magnetic CVs as opposite to the WD origin. Our main point concerns the importance of rotation for the UV emission line shapes in such systems. In particular, we show that the narrowing of the UV emission lines in V347 Pup during eclipse can be easily explained by the eclipse of the innermost part of the wind by the secondary and the resulting reduction in the contribution of rotational broadening to the width of the lines. During the eclipse, the residual line flux is very sensitive to the maximal temperature of disk radiation. Good fits for reasonable mass-loss rates have been obtained for maximum disk temperatures of 50,000 degrees. This constraint was imposed either by leveling off the inner disk temperature profiles, in agreement with recent observations of some nova-like objects, or by assuming that the accretion disk does not extend to the surface of the white dwarf, in which case V347 up would be an intermediate polar. In anticipation of high-speed spectrophotometry of CVs by the HST, we provide numerical model of a time-resolved eclipse of V347 Pup or similar such system to be verified by future observations.

  4. Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines

    SciTech Connect (OSTI)

    Hand, M.M. [National Renewable Energy Lab., Golden, CO (United States); Balas, M.J. [Univ. of Colorado, Boulder, CO (United States). Dept. of Aerospace Engineering Sciences

    1997-11-01T23:59:59.000Z

    Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. 2 refs., 9 figs.

  5. Effect of wind variability on topographic waves: Lake Kinneret case Elad Shilo,1

    E-Print Network [OSTI]

    Ashkenazy, Yossi "Yosef"

    to the presence of a curl in the wind field. Using various wind regimes to force the lake indicated of the lake. Forcing the model with a spatially uniform wind field constructed from a single station resulted's response to wind-forcing will provide more accu- rate conditions for further studies concerning water qual

  6. Wind energy Computerized Maintenance Management System (CMMS) : data collection recommendations for reliability analysis.

    SciTech Connect (OSTI)

    Peters, Valerie A.; Ogilvie, Alistair; Veers, Paul S.

    2009-09-01T23:59:59.000Z

    This report addresses the general data requirements for reliability analysis of fielded wind turbines and other wind plant equipment. The report provides a list of the data needed to support reliability and availability analysis, and gives specific recommendations for a Computerized Maintenance Management System (CMMS) to support automated analysis. This data collection recommendations report was written by Sandia National Laboratories to address the general data requirements for reliability analysis of fielded wind turbines. This report is intended to help the reader develop a basic understanding of what data are needed from a Computerized Maintenance Management System (CMMS) and other data systems, for reliability analysis. The report provides: (1) a list of the data needed to support reliability and availability analysis; and (2) specific recommendations for a CMMS to support automated analysis. Though written for reliability analysis of wind turbines, much of the information is applicable to a wider variety of equipment and a wider variety of analysis and reporting needs.

  7. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect (OSTI)

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01T23:59:59.000Z

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  8. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 23, NO. 2, JUNE 2008 551 Sliding Mode Power Control of Variable-Speed Wind

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in variable-speed wind energy conversion sys- tems (VS-WECS). These systems have two operation regions de of Variable-Speed Wind Energy Conversion Systems Brice Beltran, Tarek Ahmed-Ali, and Mohamed El Hachemi (newton meter). Tg Generator torque in the rotor side (newton meter). Ths High-speed torque (newton meter

  9. arnaud.vergnol@hei.fr, jonathan.sprooten@hei.fr. Optimal network congestion management using wind farms

    E-Print Network [OSTI]

    Boyer, Edmond

    congestion in rural areas due the important increase of wind generation [1]. In the literature, many methods generation. Therefore, most European TSO's have chosen to manage separately, congestions related to wind are affected by errors in load and generation prediction due to element outage or random production as is wind

  10. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

    2012-07-01T23:59:59.000Z

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  11. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01T23:59:59.000Z

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  12. Long term variability of Cygnus X-1: VII. Orbital variability of the focussed wind in Cyg X-1 / HDE 226868 system

    E-Print Network [OSTI]

    Grinberg, V; Hell, N; Pottschmidt, K; Böck, M; García, J A; Hanke, M; Nowak, M A; Sundqvist, J O; Townsend, R H D; Wilms, J

    2015-01-01T23:59:59.000Z

    Binary systems with an accreting compact object are a unique chance to investigate the strong, clumpy, line-driven winds of early type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1 using 4.77 Ms of RXTE observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein-wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified...

  13. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  14. East Pacific ocean eddies and their relationship to subseasonal variability in Central American wind jets

    E-Print Network [OSTI]

    Qiu, Bo

    wind jets Chueh-Hsin Chang,1,2 Shang-Ping Xie,1,3 Niklas Schneider,3,4 Bo Qiu,4 Justin Small,5 Wei-tilted bands on the northwest flank of the Tehuantepec and Papagayo wind jets and collocated-variance bands at a speed of 9­13 cm/s. Wind fluctuations are important for eddy formation in the Gulf

  15. Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

  16. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  17. Wind energy Computerized Maintenance Management System (CMMS) : data collection recommendations for reliability analysis.

    SciTech Connect (OSTI)

    Peters, Valerie A.; Ogilvie, Alistair B.

    2012-01-01T23:59:59.000Z

    This report addresses the general data requirements for reliability analysis of fielded wind turbines and other wind plant equipment. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific data recommendations for a Computerized Maintenance Management System (CMMS) to support automated analysis. This data collection recommendations report was written by Sandia National Laboratories to address the general data requirements for reliability analysis of operating wind turbines. This report is intended to help develop a basic understanding of the data needed for reliability analysis from a Computerized Maintenance Management System (CMMS) and other data systems. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific recommendations for a CMMS to support automated analysis. Though written for reliability analysis of wind turbines, much of the information is applicable to a wider variety of equipment and analysis and reporting needs. The 'Motivation' section of this report provides a rationale for collecting and analyzing field data for reliability analysis. The benefits of this type of effort can include increased energy delivered, decreased operating costs, enhanced preventive maintenance schedules, solutions to issues with the largest payback, and identification of early failure indicators.

  18. On the role of wind driven ocean dynamics in tropical Atlantic variability

    E-Print Network [OSTI]

    Da Silva, Meyre Pereira

    2006-08-16T23:59:59.000Z

    The response of the tropical Atlantic Ocean to wind stress forcing on seasonal and interannual time scales is examined using an ocean data assimilation product from the Geophysical Fluid Dynamics Laboratory (GFDL), and an ocean general circulation...

  19. Structural health and prognostics management for offshore wind turbines : an initial roadmap.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C. [ATA Engineering, San Diego, CA

    2012-12-01T23:59:59.000Z

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blade's torsional stiffness due to the disbond, which also resulted in changes in the blade's local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  20. A study of wind variability in the lower troposphere through power spectrum analysis at mesoscale frequencies

    E-Print Network [OSTI]

    Cornett, John Sheldon

    1966-01-01T23:59:59.000Z

    major energy peaks. One major peak occurred at a period of about 4 days and the second peak at a period of about 1 min with a rather broad, flat spectral curve in between these peaks. He attributed the low frequency peak to fluctuations in wind speed... tropospheze, both Mantis (1963) and Chiu (1960) found a high energy peak in the spectra of the horizontal wind components corresponding to synoptic-scale periods of 4 to 6 days. However, they were limited to considering periods of 2 days or more because...

  1. A Precision Agriculture Approach to Managing Cotton Fiber Quality as a Function of Variable Soil Properties

    E-Print Network [OSTI]

    Stanislav, Scott

    2011-08-04T23:59:59.000Z

    A PRECISION AGRICULTURE APPROACH TO MANAGING COTTON FIBER QUALITY AS A FUNCTION OF VARIABLE SOIL PROPERTIES A Seniors Scholars Thesis By SCOTT MICHAEL STANISLAV Submitted to the Office of Undergraduate Research Texas A&M University...://www.pdfmachine.com http://www.broadgun.com A PRECISION AGRICULTURE APPROACH TO MANAGING COTTON FIBER QUALITY AS A FUNCTION OF VARIABLE SOIL PROPERTIES A Seniors Scholars Thesis By SCOTT MICHAEL STANISLAV Submitted to the Office of Undergraduate...

  2. Economic and technical impacts of wind variability and intermittency on long-term generation expansion planning

    E-Print Network [OSTI]

    Paristech 2009 Submitted to the Engineering Systems Division in partial fulfillment of the requirements to the Engineering Systems Division on May 6, 2011 in partial fulfillment of the requirements for the Degree of the U.S. I aggregate an hourly dataset of load and wind resource in eleven regions in order to capture

  3. GAMMA-RAY VARIABILITY FROM WIND CLUMPING IN HIGH-MASS X-RAY BINARIES This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Townsend, Richard

    the resulting gamma-ray emissivity depends on the target density, the detection of rapid variabilityGAMMA-RAY VARIABILITY FROM WIND CLUMPING IN HIGH-MASS X-RAY BINARIES WITH JETS This article has Society. All rights reserved. Printed in the U.S.A. GAMMA-RAY VARIABILITY FROM WIND CLUMPING IN HIGH

  4. Convex-Based Thermal Management for 3D MPSoCs Using DVFS and Variable-Flow Liquid Cooling

    E-Print Network [OSTI]

    De Micheli, Giovanni

    management using variable-flow liquid cooling. 1 Introduction Power and thermal management are important] is a thermal model tool that calculates transient temperature response given the physical and power consumptionConvex-Based Thermal Management for 3D MPSoCs Using DVFS and Variable-Flow Liquid Cooling Francesco

  5. Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio

    SciTech Connect (OSTI)

    Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

    2013-08-01T23:59:59.000Z

    This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

  6. Variable-speed wind power system with improved energy capture via multilevel conversion

    DOE Patents [OSTI]

    Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay

    2005-05-31T23:59:59.000Z

    A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.

  7. Buying in a volatile market: variable or fixed price? Professor of Purchasing Management

    E-Print Network [OSTI]

    Vellekoop, Michel

    , in markets like money, stock or oil markets; sometimes they are rather lengthy, in markets like the steelBuying in a volatile market: variable or fixed price? Jan Telgen Professor of Purchasing Management Many commodities are bought in a volatile market, where the purchasing price changes constantly

  8. Efficient Energy Management and Data Recovery in Sensor Networks using Latent Variables Based Tensor

    E-Print Network [OSTI]

    Simunic, Tajana

    Efficient Energy Management and Data Recovery in Sensor Networks using Latent Variables Based factor in a successful sensor network deployment is finding a good balance between maximizing the number of measurements taken (to maintain a good sampling rate) and minimizing the overall energy consumption (to extend

  9. Weaving Aspect Configurations for Managing System Variability Brice Morin, Olivier Barais1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the software lifecycle. 1 Introduction Variability management is a key concern in the software industry modeled. The Aspect-Oriented Software Development (AOSD) paradigm proposes to separate distinct concerns of the software life-cycle [4, 5, 8, 17, 28]: requirement, architecture, design, leading to the creation

  10. A Prospective Study of Management and Litter Variables Associated with Cellulitis in California

    E-Print Network [OSTI]

    Singer, Randall

    A Prospective Study of Management and Litter Variables Associated with Cellulitis in California that the litter was an important reservoir for cellulitis-associated E. coli. We hypothesized that factors study of 304 flocks on five farms from two integrated broiler companies was conducted to determine

  11. Towards Managing Variability in the Safety Design of an Automotive Hall Effect Sensor

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards Managing Variability in the Safety Design of an Automotive Hall Effect Sensor Dimitri Van) as the main devel- opment process for an automotive Hall Effect sensor. This versatile component is integrated for every automotive application in which the sensor is to be used. In addition, no support is given

  12. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    Cost 5 Sites Wind 25 Site Grid Solar Conclusions Our analysisanalysis of the potential cost implications of the vari- ability of PV compared to wind. •analysis is to estimate the cost of providing additional balancing reserves to manage the variability of wind

  13. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01T23:59:59.000Z

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  14. Characterizing and Exploiting Task-Load Variability and Correlation for Energy Management in Multi-Core Systems

    E-Print Network [OSTI]

    Tasiran, Serdar

    Characterizing and Exploiting Task-Load Variability and Correlation for Energy Management in Multi) Istanbul, Turkey Lausanne, Switzerland Abstract-- We present a hybrid energy management technique of the application. We use the stochastic models in formulating and solving the energy management prob- lem

  15. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

  16. Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2012-06-01T23:59:59.000Z

    As with any industrial-scale technology, wind power has impacts. As wind technology deployment becomes more widespread, a defined opposition will form as a result of fear of change and competing energy technologies. As the easy-to-deploy sites are developed, the costs of developing at sites with deployment barriers will increase, therefore increasing the total cost of power. This presentation provides an overview of wind development stakeholders and related stakeholder engagement questions, Energy Department activities that provide wind project deployment information, and the quantification of deployment barriers and costs in the continental United States.

  17. Geographical and seasonal variability of the global "practical" wind Cristina L. Archer a,*, Mark Z. Jacobson b

    E-Print Network [OSTI]

    technical, practical, or economic e existed. Using petroleum as an anal- ogy, the theoretical wind power; 3) global model maps evaluated against data are not available at high-resolution, either spatially

  18. V444 Cyg X-ray and polarimetric variability: Radiative and Coriolis forces shape the wind collision region

    E-Print Network [OSTI]

    Lomax, Jamie R; Hoffman, Jennifer L; Russell, Christopher M P; De Becker, Michael; Corcoran, Michael F; Davidson, James W; Neilson, Hilding R; Owocki, Stan; Pittard, Julian M; Pollock, Andy M T

    2014-01-01T23:59:59.000Z

    We present results from a study of the eclipsing, colliding-wind binary V444 Cyg that uses a combination of X-ray and optical spectropolarimetric methods to describe the 3-D nature of the shock and wind structure within the system. We have created the most complete X-ray light curve of V444 Cyg to date using 40 ksec of new data from Swift, and 200 ksec of new and archived XMM-Newton observations. In addition, we have characterized the intrinsic, polarimetric phase-dependent behavior of the strongest optical emission lines using data obtained with the University of Wisconsin's Half-Wave Spectropolarimeter. We have detected evidence of the Coriolis distortion of the wind-wind collision in the X-ray regime, which manifests itself through asymmetric behavior around the eclipses in the system's X-ray light curves. The large opening angle of the X-ray emitting region, as well as its location (i.e. the WN wind does not collide with the O star, but rather its wind) are evidence of radiative braking/inhibition occurri...

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    transmission to deliver wind generation to load centers. Toof integrating variable wind generation into the electricityfrom wind. Annual wind energy generation was specified in

  20. Management Analyst

    Broader source: Energy.gov [DOE]

    The Wind and Water Power Technologies Office (WWPTO) manages efforts to improve performance, lower costs, and accelerate deployment of wind and water power technologies, which can play a...

  1. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01T23:59:59.000Z

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  2. Comments on the Regional Climate Variability Driven by Foehn Winds in the McMurdo Dry Valleys, Antarctica

    E-Print Network [OSTI]

    Sienicki, Krzysztof

    2013-01-01T23:59:59.000Z

    The main objection to Speirs, McGowan, Steinhoff and Bromwich work arises from the lack of analyses of the probability distribution functions of underlying processes leading to wind formation of which velocities are measured by automated weather stations and reported in the paper. Mathematically a rigorous definition of calculating the correlation coefficient (Pearson product-moment correlation coefficient) of averages does not exist. Therefore the authors numbers as given in Table II represent a set of randomly calculated figures. The authors suggestion in relation to a few of these random numbers that some of them have statistical significance at the 95% level is erroneous since no relationship exists between correlation coefficient of averages and statistical significance. Therefore Speirs et al. main conclusion that the - SAM is found to significantly influence foehn wind frequency at McMurdo Dry Valleys is unfounded.

  3. Revised: Jan 20, 2014 56:155 [IE:4550] Wind Power Management

    E-Print Network [OSTI]

    Kusiak, Andrew

    ://www.nccc.gov.sg/renewables/biomass.shtm Solar http://www.nccc.gov.sg/renewables/solar.shtm #12;2 Hydrogen/Fuel Cells http, diagnostics, operations and maintenance, condition monitoring, health monitoring and of turbine components as a fuel 4 5: Turbine siting 5 6: Energy output 6 7: SCADA systems 7 Midterm Exam March 13 8: Modeling wind

  4. Design and fabrication of a stress-managed Nb3Sn wind and react dipole 

    E-Print Network [OSTI]

    Noyes, Patrick Daniel

    2007-09-17T23:59:59.000Z

    .1.3. Coil Loading ............................................................................................. 22 3.1.4. Bladder Preload......................................................................................... 23 3.1.5. Friction... impregnation process so will release a minimal amount of energy at lower forces. This will greatly reduce the DQ which adiabatically heats the windings. A study was done to determine the force required for release [22]. 24 3.1.5. Friction-Locked Ends...

  5. Obtaining data for wind farm development and management: the EO-WINDFARM project

    E-Print Network [OSTI]

    providers, wind energy market players and end-users such as electricity companies. It is supported by the European Space Agency within the Earth Observation Market Development program. The set of data comprises production should then increase from 6 % to 12 % in 2010. While Europe is not rich in oil, gas and coal

  6. WEST: A northern California study of the role of wind-driven transport in the productivity of coastal plankton communities

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    variability. Alongshore Wind m/s Temperature o C SalinityA. , Largier, J. , 2003. Wind strength and biological2006. Effects of variable winds on biological productivity

  7. Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    timeframe. Projected Wind Generation as % of Electricityrepresent the cost of wind generation. Wind Power Price (time-variability of wind generation is often such that its

  8. Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor

    E-Print Network [OSTI]

    Nikandrou, Paul

    2009-01-01T23:59:59.000Z

    Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

  9. Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

  10. Variable-Speed Wind Turbine Controller Systematic Design Methodology: A Comparison of Non-Linear and Linear Model-Based Designs

    SciTech Connect (OSTI)

    Hand, M. M.

    1999-07-30T23:59:59.000Z

    Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. Traditional controller design generally consists of linearizing a model about an operating point. This step was taken for two different operating points, and the systematic design approach was used. A comparison of the optimal regions selected using the n on-linear model and the two linear models shows similarities. The linearization point selection does, however, affect the turbine performance slightly. Exploitation of the simplicity of the model allows surfaces consisting of operation under a wide range of gain values to be created. This methodology provides a means of visually observing turbine performance based upon the two metrics chosen for this study. Design of a PID controller is simplified, and it is possible to ascertain the best possible combination of controller parameters. The wide, flat surfaces indicate that a PID controller is very robust in this variable-speed wind turbine application.

  11. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  12. Design and fabrication of a stress-managed Nb3Sn wind and react dipole

    E-Print Network [OSTI]

    Noyes, Patrick Daniel

    2007-09-17T23:59:59.000Z

    A new approach to high-field dipole design is being developed at Texas A&M University. The goal of the development is to facilitate the use of high-field conductors (Nb3 and Bi-2212) and to manage Lorentz stress and magnetization so that field...

  13. 1 to be published in Wind Energy Many engineering systems incorporate prognostics and health management (PHM), which consists of technologies

    E-Print Network [OSTI]

    Sandborn, Peter

    1 to be published in Wind Energy ABSTRACT Many engineering systems incorporate prognostics exist for wind energy systems, they do not specifically quantify the value of decisions after: GHaddad@slb.com. 1. INTRODUCTION Wind energy is at the forefront of alternative energy sources. The US

  14. Technical and management support for the development of Small Wind Systems. Fiscal year 1980 annual report, October 1, 1979-September 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    The status and achievements of a program for the development, testing, and commercialization of wind energy systems rated under 100 kilowatts are described. The organization structure and task definition used to promote the production, marketing, and acceptance of small systems are described, and the Work Breakdown Structure under which the program is organized is detailed. Reports are given which describe the status of contracts funded by the Federal Wind Energy Program and managed by the Rocky Flats Wind Systems Program. These project reports, sequenced according to the Department of Energy Work Breakdown Structure, name the principal investigators involved, and discuss achievements and progress made during Fiscal Year 1980. Of fourty-four projects, seven were completed during the Fiscal Year. The Work Breakdown Structure Index details the organization sequence.

  15. NREL Sheds Light on Integration Costs of Variable Generation and

    E-Print Network [OSTI]

    , such as wind and solar energy, provide benefits such as reduced environmental impact, lack of fuel consumptionNREL Sheds Light on Integration Costs of Variable Generation and Cost-Causation Integration costs are generally manageable, but calculating costs is challenging. Renewable energy generation sources

  16. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04T23:59:59.000Z

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  17. WIND ENERGY Wind Energ. 2013; 00:112

    E-Print Network [OSTI]

    that by a novel change of variables, which focuses on power flows, we can transform the problem to one with linear rejection, model predictive control, convex optimization, wind power control, energy storage, power output to reliable operation of power systems due to the fluctuating nature of wind power. Thus, modern wind power

  18. A Letter from Patrick Gilman: Wind Powering America Is Now Stakeholder Engagement and Outreach

    Broader source: Energy.gov [DOE]

    Patrick Gilman, Wind Energy Deployment manager, explains why Wind Powering America's name is in the process of being changed.

  19. Rf : Munoz, M.I., Barcellini F., Mollo, V. (2011). Collective elaboration of care for safety in radiotherapy: cooperative management of patient variability. In HEPS'2011 Healthcare Ergonomics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2011-01-01T23:59:59.000Z

    in radiotherapy: cooperative management of patient variability. In HEPS'2011 Healthcare Ergonomics and Patient of patient variability. Maria Isabel Munoz Ergonomics Laboratory Research Center on work Development (CRTD-EA 4132) 41 rue Gay Lussac 75005 Paris mi.munoz@free.fr Flore Barcellini1 Ergonomics Laboratory Research

  20. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of the U.S. DOE’s Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

  1. NERC Presentation: Accommodating High Levels of Variable Generation...

    Office of Environmental Management (EM)

    of variable electricity eneration. Variable resources are types of electric power generation that rely on an uncontrolled, "variable" fuel (e.g. wind, sunlight, waves, tidal...

  2. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01T23:59:59.000Z

    D. (2005), California Wind Resources, CEC publication # CEC-level inversions with surface wind and temperature at PointD. W. Stuart (1986), Mesoscale wind variability near Point

  3. Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.

    SciTech Connect (OSTI)

    Myrent, Noah J. [Purdue Center for Systems Integrity, Lafayette, IN; Kusnick, Joshua F. [Purdue Center for Systems Integrity, Lafayette, IN; Barrett, Natalie C. [Purdue Center for Systems Integrity, Lafayette, IN; Adams, Douglas E. [Purdue Center for Systems Integrity, Lafayette, IN; Griffith, Daniel Todd

    2013-04-01T23:59:59.000Z

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  4. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  5. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01T23:59:59.000Z

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is stillWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  6. Design and Test of a Variable Speed Wind Turbine System Employing a Direct Drive Axial Flux Synchronization Generator: 29 October 2002 - 31 December 2005

    SciTech Connect (OSTI)

    Lipo, T. A.; Tenca, P.

    2006-07-01T23:59:59.000Z

    The goal of this funded research project is the definition, analytical investigation, modeling, and prototype realization of a current-source conversion topology tailored to high-power wind turbines.

  7. Design and Test of DC Voltage Link Conversion System and Brushless Doubly-Fed Induction Generator for Variable-Speed Wind Energy Applications: August 1999--May 2003

    SciTech Connect (OSTI)

    Lipo, T.A.; Panda, D.; Zarko, D.

    2005-11-01T23:59:59.000Z

    This report describes four low-cost alternative power converters for processing the power developed by a doubly fed wound-rotor induction generator for wind energy conversion systems.

  8. Economic and technical impacts of wind variability and intermittency on long-term generation expansion planning in the U.S

    E-Print Network [OSTI]

    Brun, Caroline Elisabeth Hénia

    2011-01-01T23:59:59.000Z

    Electricity power systems are a major source of carbon dioxide emissions and are thus required to change dramatically under climate policy. Large-scale deployment of wind power has emerged as one key driver of the shift ...

  9. AWEA Wind Project Operations and Maintenance and Safety Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

  10. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Pricing on the Usage of Wind Generation. Power Systems, IEEE2008) Analysis of Wind Generation Impact on ERCOT Anclillaryto higher or lower wind generation than scheduled. To manage

  11. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    of variability of wind generation and costs related toLaxson (2006). Wind Turbine Design Cost and Scaling Model.MW installed worldwide. 6 Wind energy costs in India are

  12. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2010-08-23T23:59:59.000Z

    Worldwide interest in the deployment of photovoltaic generation (PV) is rapidly increasing. Operating experience with large PV plants, however, demonstrates that large, rapid changes in the output of PV plants are possible. Early studies of PV grid impacts suggested that short-term variability could be a potential limiting factor in deploying PV. Many of these early studies, however, lacked high-quality data from multiple sites to assess the costs and impacts of increasing PV penetration. As is well known for wind, accounting for the potential for geographic diversity can significantly reduce the magnitude of extreme changes in aggregated PV output, the resources required to accommodate that variability, and the potential costs of managing variability. We use measured 1-min solar insolation for 23 time-synchronized sites in the Southern Great Plains network of the Atmospheric Radiation Measurement program and wind speed data from 10 sites in the same network to characterize the variability of PV with different degrees of geographic diversity and to compare the variability of PV to the variability of similarly sited wind. The relative aggregate variability of PV plants sited in a dense 10 x 10 array with 20 km spacing is six times less than the variability of a single site for variability on time scales less than 15-min. We find in our analysis of wind and PV plants similarly sited in a 5 x 5 grid with 50 km spacing that the variability of PV is only slightly more than the variability of wind on time scales of 5-15 min. Over shorter and longer time scales the level of variability is nearly identical. Finally, we use a simple approximation method to estimate the cost of carrying additional reserves to manage sub-hourly variability. We conclude that the costs of managing the short-term variability of PV are dramatically reduced by geographic diversity and are not substantially different from the costs for managing the short-term variability of similarly sited wind in this region.

  13. Wind shear for large wind turbine generators at selected tall tower sites

    SciTech Connect (OSTI)

    Elliott, D.L.

    1984-04-01T23:59:59.000Z

    The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

  14. Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy.

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy. Wind's variability does increase the day-to-day and minute-to- minute operating costs of a utility system because the wind variations do affect the operation of other plants. But investigations by utility

  15. COMPARISON OF WIND AND WIND SHEAR CLIMATOLOGIES DERIVED FROM HIGH-RESOLUTION RADIOSONDES AND THE ECMWF MODEL

    E-Print Network [OSTI]

    Stoffelen, Ad

    COMPARISON OF WIND AND WIND SHEAR CLIMATOLOGIES DERIVED FROM HIGH-RESOLUTION RADIOSONDES wind and its vertical gradient, i.e. wind-shear, is characterized as a function of climate region. For a better representation of the average atmospheric wind and shear and their variabilities, high

  16. Influence of the spatial variability of soil type and tree colonization on the dynamics of1 Molinia caerulea (L.) Moench in managed heathland2

    E-Print Network [OSTI]

    Boyer, Edmond

    are directly associated with the availability of soil mineral resources,50 which is a structuring factor1 Influence of the spatial variability of soil type and tree colonization on the dynamics of1 Molinia caerulea (L.) Moench in managed heathland2 3 Samira MOBAIEDa , Jean François PONGEb , Sandrine

  17. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  18. Multivariate analysis and prediction of wind turbine response to varying wind field characteristics based on machine learning

    E-Print Network [OSTI]

    Stanford University

    Multivariate analysis and prediction of wind turbine response to varying wind field characteristics effects on wind turbines are essential not only for designing, but also for cost-efficiently managing wind, Universitätsstr. 150, 44780 Bochum, GERMANY; email: hartus@inf.bi.rub.de ABSTRACT Site-specific wind field

  19. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  20. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  1. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31T23:59:59.000Z

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  2. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Matlab which simplifies the process of creating a three-dimensional model of a wind turbine blade. The graphical, user-friendly tool manages all blade information including...

  3. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Matlab which simplifies the process of creating a three-dimensional model of a wind turbine blade. The graphical, user-friendly tool manages all blade information including...

  4. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  5. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  6. The Potential of Current-and Wind-Driven Transport for Environmental Management of the Baltic Sea

    E-Print Network [OSTI]

    Döös, Kristofer

    of the offshore areas in terms of potential transport to vul- nerable regions of an oil spill or other pollution Pollution management Á Oil pollution Á Fairway design Á Lagrangian transport Á Ocean modeling Á Baltic Sea Á. 2012), litter and debris (Pichel et al. 2007), and especially oil or chemical pollution may cause large

  7. NREL Variability and Reserves Analysis for the Western Interconnect (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; King, J.

    2011-10-01T23:59:59.000Z

    Additional variability and uncertainty increase reserve requirements. In this light, this presentation discusses how use of generation reserves can be optimized for managing variability and uncertainty. Conclusions of this presentation are: (1) Provided a method for calculating additional reserve requirements due to wind and solar production; (2) Method is based on statistical analysis of historical time series data; (3) Reserves are dynamic, produced for each hour; (4) Reserve time series are calculated from and synchronized to simulation data; (5) PROMOD can not model directly, but workarounds exist for regulation and spin; and (6) Other production modeling packages have varying capability for reserves modeling.

  8. Towards Smart Integration of Wind Generation.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards Smart Integration of Wind Generation. G. Giebela , P. Meiboma , P. Pinsonb , and G for the management of electricity grids with large-scale wind generation and to get a better handle on extreme events that integrate the full information on the expected wind generation. In order to demonstrate the value

  9. Wind shear climatology for large wind turbine generators

    SciTech Connect (OSTI)

    Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

    1982-10-01T23:59:59.000Z

    Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

  10. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    The variable O&M cost of wind and solar is assumed to bethe relative levelized cost of wind and solar supply. OneJ. Swider and C. Weber. The costs of wind’s intermittency in

  11. Nonlinear Control of a Wind Turbine Sven Creutz Thomsen

    E-Print Network [OSTI]

    Nonlinear Control of a Wind Turbine Sven Creutz Thomsen Kongens Lyngby 2006 #12; Technical describes analysis of various nonlinear control methods for controlling a wind turbine. High speed wind Modeling and analysis 5 2 Model descriptions 7 2.1 Variable speed wind turbine

  12. Nonlinear Control of a Wind Turbine Sven Creutz Thomsen

    E-Print Network [OSTI]

    Nonlinear Control of a Wind Turbine Sven Creutz Thomsen Kongens Lyngby 2006 #12;Technical describes analysis of various nonlinear control methods for controlling a wind turbine. High speed wind descriptions 7 2.1 Variable speed wind turbine . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Constant

  13. Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact on an ocean model

    E-Print Network [OSTI]

    Talley, Lynne D.

    Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact by the QuikSCAT-SeaWinds scatterometer tandem mission (April­October 2003) and their impact on ocean model simulation. The diurnal variability captured by twice-daily scatterometer wind from the tandem mission

  14. AWEA Wind Project O&M and Safety Seminar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CA The AWEA Wind Project O&M and Safety Seminar is where leading owners, operators, turbine manufacturers, material suppliers, wind technicians, managers, supervisors,...

  15. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    50 kW. Here we present wind generation as a percentage oftotal electricity consumption. Wind generation on this basistime-variability of wind generation is often such that its

  16. Operational behavior of a double-fed permanent magnet generator for wind turbines

    E-Print Network [OSTI]

    Reddy, Sivananda Kumjula

    2005-01-01T23:59:59.000Z

    Greater efficiency in wind turbine systems is achieved by allowing the rotor to change its rate of rotation as the wind speed changes. The wind turbine system is decoupled from the utility grid and a variable speed operation ...

  17. Feasibility analysis of coordinated offshore wind project development in the U.S.

    E-Print Network [OSTI]

    Zhang, Mimi Q

    2008-01-01T23:59:59.000Z

    Wind energy is one of the cleanest and most available resources in the world, and advancements in wind technology are making it more cost effective. Though wind power is rapidly developing in many regions, its variable ...

  18. Sandia National Laboratories: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Grid System Planning for Wind: Wind Generator Modeling On June 11, 2014, in Wind generation continues to dominate the interconnection queues and the need for generic,...

  19. ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER

    E-Print Network [OSTI]

    Firestone, Jeremy

    ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

  20. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30T23:59:59.000Z

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  1. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

    SciTech Connect (OSTI)

    Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

    2009-02-01T23:59:59.000Z

    This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

  2. Abstract--Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    by the year 2020 [2]. Wind turbines can operate either with a fixed speed or a variable speed. In the case and then as fluctuations in the electrical power on the grid. The variable-speed turbine operation offers several major acoustical [3]. Among variable speed constant-frequency wind turbines, the doubly fed induction generator

  3. Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.

    E-Print Network [OSTI]

    Boyer, Edmond

    of difficulties to the power system operation. This is due to the fluctuating nature of wind generation to the management of wind generation. Accurate and reliable forecasting systems of the wind production are widely

  4. Solar Wind Turbulence A Study of Corotating Interaction Regions at 1 AU

    E-Print Network [OSTI]

    Solar Wind Turbulence A Study of Corotating Interaction Regions at 1 AU Je rey A. Tessein Department of Physics University of New Hampshire Durham, NH 03824 May 15, 2009 #12;Abstract The solar wind's rotation and the variability in the source of the solar wind, fast moving wind can crash into slow wind

  5. Impact of DFIG wind turbines on transient stability of power systems a review

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Impact of DFIG wind turbines on transient stability of power systems ­ a review Authors Na Abstract of wind farms are using variable speed wind turbines equipped with doubly-fed induction generators (DFIG) due to their advantages over other wind turbine generators. Therefore, the analysis of wind power

  6. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  7. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  8. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  9. Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics

    E-Print Network [OSTI]

    Raischel, Frank; Lopes, Vitor V; Lind, Pedro G

    2012-01-01T23:59:59.000Z

    Using a method for stochastic data analysis, borrowed from statistical physics, we analyze synthetic data from a Markov chain model that reproduces measurements of wind speed and power production in a wind park in Portugal. From the theoretical point of view we argue that our methods can be used to extract unknown functional relations between two variables. We first show that indeed our analysis retrieves the power performance curve, which yields the relationship between wind speed and power production and discuss how such procedure can be extended for extracting functional relationships between pairs of physical variables in general. Second, we show how specific features, such as the turbine rated wind speed or the descriptive wind speed statistics, can be related with the equations describing the evolution of power production and wind speed at single wind turbines.

  10. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15T23:59:59.000Z

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

  11. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    of Variable Renewable Generation The report is accompaniedit Relates to Wind-Powered Generation. LBNL-XXXX. Berkeley:with Increased Wind Generation. LBNL-XXXX. Berkeley:

  12. RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES

    SciTech Connect (OSTI)

    Nichols, R.

    2013-10-14T23:59:59.000Z

    Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

  13. Winding Trail 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long...

  14. Wind-Blown Sand: Threshold of Motion

    E-Print Network [OSTI]

    Swann, Christy Michelle

    2014-11-12T23:59:59.000Z

    ....................................................................................... 43 13 Bedload trap designed for this study .................................................................................. 45 14 Schematic of internal adjustable chimney adjusted to the height of the surface... predicting the threshold for wind-blown sand in natural environments are rooted in the original wind tunnel work of Bagnold (1936). He introduced an empirically-calibrated model of the threshold using shear velocity, 𝑢?: a height independent variable...

  15. Wind and Solar Energy Curtailment Practices (Presentation)

    SciTech Connect (OSTI)

    Bird, L.; Cochran, J.; Wang, X.

    2014-10-01T23:59:59.000Z

    This presentation to the fall 2014 technical meeting of the Utility Variable-Generation Integration Group summarizes experience with curtailment of wind and solar in the U.S.

  16. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23T23:59:59.000Z

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  17. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  18. Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage Presentation3 DATE: March 14,6 (Annual

  19. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  20. WIND DATA REPORT Mattapoisett

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Mattapoisett Mattapoisett, Massachusetts December 1, 2006 ­ February 28, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  1. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  2. Maximum power tracking control scheme for wind generator systems

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  3. Maximum power tracking control scheme for wind generator systems

    E-Print Network [OSTI]

    Mena, Hugo Eduardo

    2009-05-15T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  4. Ecosystem feedbacks arising from wind transport in drylands: Results

    E-Print Network [OSTI]

    Ecosystem feedbacks arising from wind transport in drylands: Results from field experiments fire frequency Woody mortality Introduction of exotic grasses Is cover dominated by annuals or short intensity precipitation Low wind speeds Low P/PE High variability High intensity precipitation High wind

  5. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena, Hugo Eduardo

    2009-05-15T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  6. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  7. Control of Wind Turbines for Power Regulation and

    E-Print Network [OSTI]

    Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation aspects of mathematical modelling of wind turbines, and especially the control methods suited for power

  8. Validation of Power Output for the WIND Toolkit

    SciTech Connect (OSTI)

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  9. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  10. WECC Variable Generation Planning Reference Book: Appendices

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.; Ma, Jian; Vyakaranam, Bharat

    2013-05-13T23:59:59.000Z

    The document titled “WECC Variable Generation Planning Reference Book”. This book is divided into two volumes; one is the main document (volume 1)and the other is appendices (volume 2). The main document is a collection of the best practices and the information regarding the application and impact of variables generation on power system planning. This volume (appendices) has additional information on the following topics: Probabilistic load flow problems. 2. Additional useful indices. 3. high-impact low-frequency (HILF) events. 4. Examples of wide-area nomograms. 5. Transmission line ratings, types of dynamic rating methods. 6. Relative costs per MW-km of different electric power transmission technologies. 7. Ultra-high voltage (UHV) transmission. 8.High voltage direct current (VSC-HVDC). 9. HVDC. 10. Rewiring of existing transmission lines. 11. High-temperature low sag (HTLS) conductors. 12. The direct method and energy functions for transient stability analysis in power systems. 13.Blackouts caused by voltage instability. 14. Algorithm for parameter continuation predictor-corrector methods. 15. Approximation techniques available for security regions. 16. Impacts of wind power on power system small signals stability. 17. FIDVR. 18. FACTS. 19. European planning standard and practices. 20. International experience in wind and solar energy sources. 21. Western Renewable Energy Zones (WREZ). 22. various energy storage technologies. 23. demand response. 24. BA consolidation and cooperation options. 25. generator power management requirements and 26. European planning guidelines.

  11. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  12. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01T23:59:59.000Z

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  13. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23T23:59:59.000Z

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  14. Managing R&D Risk in Renewable Energy

    E-Print Network [OSTI]

    Rausser, Gordon C.; Papineau, Maya

    2008-01-01T23:59:59.000Z

    but the variability of wind electricity costs is quite high.Report on Wind Power Installation, Cost and Performance.conditions, wind electricity is also cost-competitive with

  15. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  16. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30T23:59:59.000Z

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  17. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  18. The RenewElec Project: Variable Renewable Energy and the Power System

    SciTech Connect (OSTI)

    Apt, Jay

    2014-02-14T23:59:59.000Z

    Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

  19. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01T23:59:59.000Z

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  20. Wind energy systems: program summary

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  1. High resolution reanalysis of wind speeds over the British Isles for wind energy integration 

    E-Print Network [OSTI]

    Hawkins, Samuel Lennon

    2012-11-29T23:59:59.000Z

    The UK has highly ambitious targets for wind development, particularly offshore, where over 30GW of capacity is proposed for development. Integrating such a large amount of variable generation presents enormous challenges. ...

  2. A Unified Framework for Reliability Assessment of Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Liberzon, Daniel

    1 A Unified Framework for Reliability Assessment of Wind Energy Conversion Systems Sebastian S a framework for assessing wind energy conversion systems (WECS) reliability in the face of external based on wind energy are: the impact of wind speed variability on system reliability [1]; WECS' reaction

  3. Robust control for wind power systems A. Pintea 1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    design applied to a horizontal wind turbine, functioning in the above rated wind speeds area. The turbines chosen for study in this paper are variable speed wind turbines and the main focus will fall. The controller presented here, is a robust digital controller which aims to regulate the wind turbine rotor speed

  4. Gille-SIO 221C 1 Wind Forcing of Geostrophic Currents

    E-Print Network [OSTI]

    Gille, Sarah T.

    Gille-SIO 221C 1 Wind Forcing of Geostrophic Currents Some of the strongest and most variable winds between ACC transport and wind forcing. What is the phase relationshp between U and x ? 3. What in the world blow over the Antarctic Circumpolar Current. How does the current respond to fluctuations in wind

  5. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  6. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30T23:59:59.000Z

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  7. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  8. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook WindTurbine-icon.png...

  9. American Wind Energy Association Wind Energy Finance and Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Energy Association Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT...

  10. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  11. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  13. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedinstalled wind power project costs, wind turbine transactionand components and wind turbine costs. Excluded from all

  14. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

  15. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    ;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines

  16. NREL: News Feature - NREL Software Tool a Boon for Wind Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperatures, and other variables alter the air flow and energy production at wind farms. Photo by Dennis Schroeder, NREL Wind energy is blowing away skeptics-it's so close to...

  17. Impacts of large quantities of wind energy on the electric power system

    E-Print Network [OSTI]

    Yao, Yuan, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Wind energy has been surging on a global scale. Significant penetration of wind energy is expected to take place in the power system, bringing new challenges because of the variability and uncertainty of this renewable ...

  18. Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine

    E-Print Network [OSTI]

    Silva, Filipe Faria Da

    Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine-Frequency Control (LFC) is gradually shifted to Variable Speed Wind Turbines (VSWTs). In order to equip VSWT

  19. Towns across Massachusetts are considering wind power, not only because it is one of the cleanest,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Towns across Massachusetts are considering wind power, not only because it is one of the cleanest managed wind power project can be a net source of income. This fact sheet introduces the major factors to consider in determining whether your town can benefit from wind power. Can my community use wind power

  20. Fluctuations of offshore wind generation -Statistical modelling , L.E.A. Christensen, H. Madsen

    E-Print Network [OSTI]

    of power fluctuations at large offshore wind farms has a significant impact on the control and management of their parameters. Simulation results are given for the case of the Horns Rev and Nysted offshore wind farms. An overview of offshore wind energy in Europe is given in [1]. Such large offshore wind farms concentrate

  1. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Cost Analysis, Phase 1. CWEC-2003-06. Davis, California: California Windanalysis of the effect of wind timing and variability on the system integration costs

  2. Wind Farm Monitoring at Lake Benton II Wind Power Project - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-08-275

    SciTech Connect (OSTI)

    Gevorgian, V.

    2014-06-01T23:59:59.000Z

    Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability nature of wind power. These data are used for many research and analyses activities consistent with the Wind Program mission: Establish a database of long-term wind power similar to other long-term renewable energy resource databases (e.g. solar irradiance and hydrology); produce meaningful statistics about long-term variation of wind power, spatial and temporal diversity of wind power, and the correlation of wind power, other renewable energy resources, and utility load; provide high quality, realistic wind power output data for system operations impact studies and wind plant and forecasting model validation.

  3. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, R.; Jordan, G.; Miller, N.; Clark, K.; Freeman, L.; Milligan, M.

    2011-01-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. It was initiated in 2007 to examine the operational impact of up to 35% energy penetration of wind, photovoltaics (PV), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming (see study area map). WestConnect also includes utilities in California, but these were not included because California had already completed a renewable energy integration study for the state. This study was set up to answer questions that utilities, public utilities commissions, developers, and regional planning organizations had about renewable energy use in the west: (1) Does geographic diversity of renewable energy resource help mitigate variability; (2) How do local resources compare to out-of-state resources; (3) Can balancing area cooperation help mitigate variability; (4) What is the role and value of energy storage; (5) Should reserve requirements be modified; (6) What is the benefit of forecasting; and (7) How can hydropower help with integration of renewables? The Western Wind and Solar Integration Study is sponsored by the U.S. Department of Energy (DOE) and run by NREL with WestConnect as a partner organization. The study follows DOE's 20% Wind Energy by 2030 report, which did not find any technical barriers to reaching 20% wind energy in the continental United States by 2030. This study and its partner study, the Eastern Wind Integration and Transmission Study, performed a more in-depth operating impact analysis to see if 20% wind energy was feasible from an operational level. In DOE/NREL's analysis, the 20% wind energy target required 25% wind energy in the western interconnection; therefore, this study considered 20% and 30% wind energy to bracket the DOE analysis. Additionally, since solar is rapidly growing in the west, 5% solar was also considered in this study. The goal of the Western Wind and Solar Integration Study is to understand the costs and operating impacts due to the variability and uncertainty of wind, PV, and CSP on the grid. This is mainly an operations study, (rather than a transmission study), although different scenarios model different transmission build-outs to deliver power. Using a detailed power system production simulation model, the study identifies operational impacts and challenges of wind energy penetration up to 30% of annual electricity consumption.

  4. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to global warmingGlobal »Wind

  5. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New Today aboutWind

  6. Optimization of wind turbine energy and power factor with an evolutionary computation algorithm

    E-Print Network [OSTI]

    Kusiak, Andrew

    -controllable variables of a 1.5 MW wind turbine. An evolutionary strategy algorithm solves the data-derived optimization-linear approach to control a variable-speed turbine to maximize power in the presence of generator torque for variable-speed wind turbines. Munteanu et al. [11] applied a linear-quadratic stochastic approach to solve

  7. Influence of Mean State on Climate Variability at Interannual and Decadal Time Scales 

    E-Print Network [OSTI]

    Zhu, Xiaojie

    2013-05-17T23:59:59.000Z

    for many phenomena associated with variables that are nonlinear by definition, such as the vertical wind shear and surface wind speed. In the first part of this dissertation, the influence of mean flow and anomalous flow on vertical wind shear variability...

  8. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect (OSTI)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01T23:59:59.000Z

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  9. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  10. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  11. Sunflower Wind Farm EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunflower Wind Farm EA Sunflower Wind Farm Draft EA (25mb pdf) Note: If you have problems downloading this file, pelase contact Lou Hanebury at (406) 255-2812 Sunflower Wind Farm...

  12. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

    1994-07-01T23:59:59.000Z

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  13. Analysis of wind power for battery charging

    SciTech Connect (OSTI)

    Muljadi, E.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (United States); Gevorgian, V. [University of Armenia, Yerevan (Armenia). State Engineering

    1995-11-01T23:59:59.000Z

    One type of wind-powered battery charging will be explored in this paper. It consists of a wind turbine driving a permanent magnet alternator and operates at variable speed. The alternator is connected to a battery bank via a rectifier. The characteristic of the system depends on the wind turbine, the alternator, and the system configuration. If the electrical load does not match the wind turbine, the performance of the system will be degraded. By matching the electrical load to the wind turbine, the system can be improved significantly. This paper analyzes the properties of the system components. The effects of parameter variation and the system configuration on the system performance are investigated. Two basic methods of shaping the torque-speed characteristic of the generator are presented. The uncompensated as well as the compensated systems will be discussed. Control strategies to improve the system performance will be explored. Finally, a summary of the paper will be presented in the last section.

  14. Stochastic Search with an Observable State Variable Lauren A. Hannah

    E-Print Network [OSTI]

    Powell, Warren B.

    is an example: a wind farm manager must pledge how much energy she will provide to a utility company an hour, the difference is lost. The objective function depends on the future wind and market price, both unknown. The last 24 hours of wind and market prices, time of day and time of year all contain information about

  15. Use of Slip Ring Induction Generator for Wind Power Generation

    E-Print Network [OSTI]

    K Y Patil; D S Chavan

    Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

  16. Dual-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)] [Flowind Corp., San Rafael, CA (United States)

    1996-10-01T23:59:59.000Z

    Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

  17. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01T23:59:59.000Z

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  18. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  19. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  20. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  1. Commonwealth Wind Incentive Program – Micro Wind Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

  2. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    States. Specifically, Bluewater Wind and Delmarva PowerLLC Babcock & Brown Acquisition Bluewater Wind Good Energies

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

  4. Regulatory and technical barriers to wind energy integration in northeast China

    E-Print Network [OSTI]

    Davidson, Michael (Michael Roy)

    2014-01-01T23:59:59.000Z

    China leads the world in installed wind capacity, which forms an integral part of its long-term goals to reduce the environmental impacts of the electricity sector. This primarily centrally-managed wind policy has concentrated ...

  5. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01T23:59:59.000Z

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  6. Analyzing of Balancing Authorities Cooperation Methods with High Variable Generation Penetration

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Zhou, Ning; Etingov, Pavel V.; Samaan, Nader A.; Ma, Jian; Diao, Ruisheng; Guttromson, Ross T.

    2010-11-02T23:59:59.000Z

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept is based on various forms of collaboration between individual BAs to manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as Area Control Error (ACE) diversity interchange (ADI), variable generation only BA, BA consolidation, dynamic scheduling, and regulation and load following sharing are discussed in this paper. The objective of such strategies is to allow individual BAs within a large power grid to help each other dealing with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics such as capacity, ramp rate, ramp duration, energy and cycling requirements to evaluate the performance of different virtual BA strategies.

  7. Appendix I3-1 to Wind HUI Initiative 1: AWST-WindNET-Phase 1 Final Report

    SciTech Connect (OSTI)

    John Zack

    2012-07-15T23:59:59.000Z

    This report is an appendix to the Hawaii WindHUI efforts to develop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET Phase 1 efforts on the Big Island of Hawaii and includes descriptions of modeling methodologies, use of field validation data, results and recommendations. The objective of the WindNET project was to investigate the improvement that could be obtained in short-term wind power forecasting for wind generation facilities operating on the island grids operated by Hawaiian Electric Companies through the use of atmospheric sensors deployed at targeted locations. WindNET is envisioned as a multiphase project that will address the short-term wind forecasting issues of all of the wind generation facilities on the all of the Hawaiian Electric Companies' island grid systems. The first phase of the WindNET effort (referred to as WindNET-1) was focused on the wind generation facilities on the Big Island of Hawaii. With complex terrain and marine environment, emphasis was on improving the 0 to 6 hour forecasts of wind power ramps and periods of wind variability, with a particular interest in the intra-hour (0-1 hour) look-ahead period. The WindNET project was built upon a foundation that was constructed with the results from a previously completed observation targeting study for the Big Island that was conducted as part of a project supported by the National Renewable Energy Laboratory (NREL) and interactions with the western utilities. The observational targeting study provided guidance on which variables to measure and at what locations to get the most improvement in forecast performance at a target forecast site. The recommendations of the observation targeting study were based on the application two techniques: (1) an objective method called ensemble sensitivity analysis (ESA) (Ancell and Hakim, 2007; Torn and Hakim, 2008; Zack et al, 2010); and (2) a subjective method based on a diagnostic analysis of large ramp events. The analysis was completed for both the wind farm on the southern tip of the Big Island and on the northern tip of the island. The WindNET project was designed to also deploy sensors to validate the Big Island observational targeting study and enhance operator's understanding of predominate causes of wind variability conditions at the wind facilities. Compromises had to be made with the results from the observation targeting study to accommodate project resource limitations, availability of suitable sites, and other factors. To focus efforts, field sensor deployment activities focused on the wind facility on the southern point of Big Island.

  8. The wind power probability density forecast problem can be formulated as: forecast the wind power pdf at time step t for each look-ahead time step t+k of a given time-horizon

    E-Print Network [OSTI]

    Kemner, Ken

    The wind power probability density forecast problem can be formulated as: forecast the wind power ahead) knowing a set of explanatory variables (e.g. numerical weather predictions (NWPs), wind power measured values). Translating this sentence to an equation, we have: where pt+k is the wind power

  9. On open boundary conditions for a limited-area coastal model off Oregon. Part 2: response to wind forcing from

    E-Print Network [OSTI]

    . Additional experiments forced by realistic, time-variable, but spatially uniform winds are included to allow in numerical experiments utilizing idealized wind forcing. The objective of this paper is to continue the study in a situation where realistic wind stress forcing with strong spatial and temporal variability is utilized

  10. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  11. Wind Bias from Sub-optimal Estimation Due to Geophysical Modeling Error Paul E. Johnson and David G . Long

    E-Print Network [OSTI]

    Long, David G.

    Wind Bias from Sub-optimal Estimation Due to Geophysical Modeling Error -Wind I Paul E. Johnson (which relates the wind to the normalized radar cross section, NRCS, of the ocean surface) is uncertainty in the NRCS for given wind conditions. When the estimated variability is in- cluded in the maximum likelihood

  12. Paper No. 2006-JSC-397 Agarwal Design Loads for an Offshore Wind Turbine using Statistical Extrapolation from Limited Field Data

    E-Print Network [OSTI]

    Manuel, Lance

    Paper No. 2006-JSC-397 Agarwal Design Loads for an Offshore Wind Turbine using Statistical a field measurement campaign. At the Blyth offshore wind farm in the United Kingdom, a 2MW wind turbine of variability in the parameters for load distribution is investigated. KEY WORDS: Offshore wind turbines

  13. Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable

    E-Print Network [OSTI]

    Powell, Warren B.

    -ahead wind commitment problem." A wind farm manager must pledge how much energy she will provide to a utility objective: the last 24 hours of wind and market prices, time of day and time of year all contain information problem and the hour ahead wind commit- ment problem. Our results show Dirichlet process weights can offer

  14. Comfort-constrained distributed heat pump management

    E-Print Network [OSTI]

    Parkinson, Simon; Crawford, Curran; Djilali, Ned

    2011-01-01T23:59:59.000Z

    This paper introduces the design of a demand response network control strategy aimed at thermostatically controlled electric heating and cooling systems in buildings. The method relies on the use of programmable communicating thermostats, which are able to provide important component-level state variables to a system-level central controller. This information can be used to build power density distribution functions for the aggregate heat pump load. These functions lay out the fundamental basis for the methodology by allowing for consideration of customer-level constraints within the system-level decision making process. The proposed strategy is then implemented in a computational model to simulate a distribution of buildings, where the aggregate heat pump load is managed to provide the regulation services needed to successfully integrate wind power generators. Increased exploitation of wind resources will place similarly themed ancillary services in high-demand, traditionally provided by dispatchable energy ...

  15. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Generation2006. “ Integrating Wind Generation into Utility Systems”.Stand-Alone Wind Generation . 60

  16. Howard County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

  17. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01T23:59:59.000Z

    This presentation describes how you economically manage integration costs of storage and variable generation.

  18. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  19. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  20. Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 503523

    E-Print Network [OSTI]

    Manuel, Lance

    with such spectral models can be in turn highly variable for different realizations. Turbine load and performance a wind velocity field over spatial dimensions on the scale of the turbine rotor diameter in accordance of uncertainty in inflow turbulence to wind turbine loads Korn Saranyasoontorn, Lance ManuelÃ? Department of Civil

  1. Sizing Storage and Wind Generation Capacities in Remote Power Systems

    E-Print Network [OSTI]

    Victoria, University of

    Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B Capacities in Remote Power Systems by Andy Gassner B.Sc., University of Wisconsin ­ Madison, 2003 Supervisory and small power systems. However, the variability due to the stochastic nature of the wind resource

  2. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01T23:59:59.000Z

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  3. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  4. Characteristics of Wind Turbines Under Normal and Fault Conditions: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Parsons, B.; Ellis, A.

    2007-02-01T23:59:59.000Z

    This paper investigates the characteristics of a variable-speed wind turbine connected to a stiff or weak grid under normal and fault conditions and the role of reactive power compensation.

  5. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  6. Dynamic simulation of dual-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.

    1996-10-01T23:59:59.000Z

    Induction generators have been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness, and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using two induction generators with two different rated speeds. With single- speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. The operation at maximum Cp can occur only at a single wind speed. However, if the wind speed varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind-speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative to capture more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine will be investigated. One type of control algorithm for dual- speed operation is proposed. Results from a dynamic simulation will be presented to show how the control algorithm works and how power, current and torque of the system vary as the wind turbine is exposed to varying wind speeds.

  7. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Environmental Management (EM)

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

  8. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Savers [EERE]

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  9. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  10. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  11. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    a new vision for wind energy through 2050. Taking into account all facets of wind energy (land-based, offshore, distributed), the new Wind Vision Report defines the...

  12. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  13. 1112 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 4, DECEMBER 2010 Short-Horizon Prediction of Wind Power

    E-Print Network [OSTI]

    Kusiak, Andrew

    (wind energy in particular) has grown sig- nificantly in the last years. As a relatively new industry, wind energy must address numerous questions, including providing accurate short-term prediction of wind of the generated power [1]. Long-term wind speed and power prediction is of interest to management of energy

  14. Horizontal wind rotor. Final technical report

    SciTech Connect (OSTI)

    Guard, E.J.

    1983-06-30T23:59:59.000Z

    A vertical axis wind machine called, ''Horizontal Wind Rotor'' conceived in 1979 by the Grantee E.J. Guard was an effort to marry a new high tech carousel type wind rotor to a basic building design for the purpose of generating practical amounts of electricty. This was directed especially towards high performance power generation, relative to low average wind velocity fields, typically found in Florida. From January 1980 to April 1983 two 1/30 scale wind tunnel type test models of buildings, one round and one square were built. An eight Hartzell shrouded wind tunnel fan machine was designed and built to supply uniform wind velocities for testing. All components of the Horizontal Wind Rotor (HWR) were fabricated, instrumented, mounted on the building models, and tested and modified repeatedly for performance optimization. Aerodynamic consultants, model makers, mechanical and computer engineers and technicians under the direction of E. Guard all teamed up to evolve the size, shape, and placement of the system components. It was recognized early that the machine had to be large in order to extract energy from low wind velocities. It was also noted that there were so many variables in the system, so as to elude analytical computation, that only testing could provide the answers. Consequently, this grant program has provided major contributions to the sparse available data in this little studied field, and set up valuable bench marks in design and power output parameters. This data will be the foundation for incorporating the newly discovered design improvements into the full scale prototype to follow. (Phase II) It is believed that this Rotor design is the only one in the world today that will produce as much power in the lower wind velocity ranges and it is also believed that every objective of the original grant proposal has been met or exceeded.

  15. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

  16. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's2008. Analysis of Wind Generation Impact on ERCOT Ancillary

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power'sthe Impact of Significant Wind Generation Facilities on Bulk

  20. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  1. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  2. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  3. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  5. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  6. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  7. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  8. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  9. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  10. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  15. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  18. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  19. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2011. In March 2011, NRG Bluewater Wind?s Delaware projectPurchaser Delmarva NRG Bluewater Wind (Delaware) Universitythe project, while NRG Bluewater would retain the remaining

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

  2. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2004 ­ February 28, 2005 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  3. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA March 26th 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  4. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June 1st 2004- May 31st 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Distributions......................................................................................................... 11 Monthly Average Wind Speeds

  5. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA March 1, 2006 - May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions.......

  6. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  7. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA December 1st , 2006 ­ February 28th , 2007 Prepared...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  8. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2006 to August 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed D

  9. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts March 24th to May 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  10. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA December 2006 ­ February 2007 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  11. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts December 1, 2005 - February 28, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 12 Wind Speed Di

  12. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts December, 2006 1st to February 28th , 2007 Prepared...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  13. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts June 1, 2006 - August 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Di

  14. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA March 2007 ­ May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  15. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA September ­ November 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  16. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  17. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA December 1, 2005 - February 28, 2006 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  18. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts September 1, 2006 - November 30, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions..................

  19. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA December 1st 2005 to February 28th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  20. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI March 1, 2007 ­ May 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  1. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Sep 1st 2004 to Nov 30th 2004. Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  2. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA June ­ August 2006 Prepared for Massachusetts Technology Collaborative.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  3. WIND DATA REPORT September 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Lynn, MA September 2005 Prepared for Massachusetts Technology Collaborative 75.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Monthly Average Wind Speeds

  4. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts September 1st to November 30th , 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  6. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts June 1st to August 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  7. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  8. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts March 1, 2006 - May 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributi

  9. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2004 ­ November 30, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution.............

  10. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA December 1st 2005 to February 28th 2006. Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  11. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  12. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA March 1st , 2007 ­ May 31st , 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  13. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI September 1, 2007 ­ November 30, 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  14. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2005 ­ May 31, 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  15. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA April 14 ­ May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  16. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Dec 1st 2004 to Feb 28th 2005. Prepared for Massachusetts Technology ...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  17. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA March 1st 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  18. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA June 1st 2006 to July 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  19. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI June 1, 2007 ­ August 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    studies show that wind energy integration costs are below $do not represent wind energy generation costs. This sectioncomponent of the overall cost of wind energy, but can vary

  1. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    do not represent wind energy generation costs. Based on thisproduction-cost reduction value of wind energy, without anwith wind energy. Generally, these costs are associated with

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    performance, and price of wind energy, policy uncertainty –The wind energy integration, transmission, and policyand absent supportive policies for wind energy. That said,

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policy2012, however, federal policy towards wind energy remainsin federal policy towards wind energy after 2012 places such

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policyPTC. Moreover, federal policy towards wind energy remainsand policy announcements demonstrate accelerated activity in the offshore wind energy

  5. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribut

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  8. Building Toward a Small Wind Turbine Site Assessor Credential (Presentation)

    SciTech Connect (OSTI)

    Sinclair, K.

    2013-09-01T23:59:59.000Z

    Proper site assessment is integral to the development of a successful small wind project. Without a small wind site assessor certification program, consumers, including state incentive program managers, lack a benchmark for differentiating between qualified and nonqualified site assessors. A small wind site assessor best practice manual is being developed as a resource for consumers until a credential program becomes available. This presentation describes the purpose, proposed content, and the National Renewable Energy Laboratory's approach to the development of such a manual.

  9. Power optimization of wind turbines with data mining and evolutionary computation

    E-Print Network [OSTI]

    Kusiak, Andrew

    and non-controllable variables of a wind turbine. An evolutionary strategy algorithm is appliedPower optimization of wind turbines with data mining and evolutionary computation Andrew Kusiak July 2009 Accepted 25 August 2009 Available online 17 September 2009 Keywords: Wind turbine Data mining

  10. Ris-R-Report Grid fault and design-basis for wind turbines -

    E-Print Network [OSTI]

    of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines analysis for fatigue and ultimate structural loads, respectively, have been performed and compared for two variable speed wind turbines to produce power at wind speeds higher than 25m/s and up to 50m/s without

  11. Estimating Wind Turbine Parameters and Quantifying Their Effects on Dynamic Behavior

    E-Print Network [OSTI]

    Hiskens, Ian A.

    1 Estimating Wind Turbine Parameters and Quantifying Their Effects on Dynamic Behavior Jonathan variable-speed wind turbines in grid stability studies. Often the values for model parameters are poorly parameters on the dynamic behavior of wind turbine generators. A parameter estimation process is then used

  12. High-Order Sliding Mode Control of a DFIG-Based Wind Turbine

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    High-Order Sliding Mode Control of a DFIG-Based Wind Turbine for Power Maximization and Grid Fault tolerance of a Doubly-Fed Induction Generator (DFIG)-based Wind Turbine (WT). These variable speed systems have several advantages over the traditional wind turbine operating methods, such as the reduction

  13. A Comparative Study of Time-Frequency Representations for Fault Detection in Wind Turbine

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Comparative Study of Time-Frequency Representations for Fault Detection in Wind Turbine El of wind energy, minimization and prediction of maintenance operations in wind turbine is of key importance. In variable speed turbine generator, advanced signal processing tools are required to detect and diagnose

  14. Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

    E-Print Network [OSTI]

    Hennon, Christopher C.

    of the hurricane surface winds from NOAA and U.S. Air Force Weather Squadron aircraft flights. Further, results1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W This paper presents a new hurricane ocean vector wind (OVW) product known as Q-Winds produced from the SeaWinds

  15. Review of Variable Generation Integration Charges

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01T23:59:59.000Z

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  16. Abstract--this paper proposes a MIMO linear quadratic regulator (LQR) controller designed for a horizontal variable

    E-Print Network [OSTI]

    Boyer, Edmond

    with the trade-off between the wind energy conversion maximization and the minimization of the fatigue Tipical wind turbine power curve Therefore, in this regime, the system is multivariable and multi for a horizontal variable speed wind turbine with focus on the operating range referring to the above rated wind

  17. Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Institute of Aeronautics and Astronautics 1 Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades for Offshore Structural Health and Prognostics Management...

  18. Wind energy information guide

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  19. Wind power today

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  20. Implications of geographic diversity for short-term variability and predictability of solar power.

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    Term variability of solar power,” Lawrence Berkeley Nationaldue to wind and solar power,” Environmental Science &and Predictability of Solar Power Andrew D. Mills and Ryan

  1. Operating Reserves and Variable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Kirby, B.

    2011-08-01T23:59:59.000Z

    This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

  2. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  3. Coupled dynamic analysis of floating offshore wind farms

    E-Print Network [OSTI]

    Shim, Sangyun

    2009-05-15T23:59:59.000Z

    it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible...

  4. Coupled dynamic analysis of floating offshore wind farms 

    E-Print Network [OSTI]

    Shim, Sangyun

    2009-05-15T23:59:59.000Z

    it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible...

  5. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  6. Criterion for Generation of Winds from Magnetized Accretion Disks

    E-Print Network [OSTI]

    Osamu Kaburaki

    2001-08-29T23:59:59.000Z

    An analytic model is proposed for non-radiating accretion flows accompanied by up or down winds in a global magnetic field. Physical quantities in this model solution are written in variable-separated forms, and their radial parts are simple power law functions including one parameter for wind strength. Several, mathematically equivalent but physically different expressions of the criterion for wind generation are obtained. It is suggested also that the generation of wind is a consequence of the intervention of some mechanism that redistributes the locally available gravitational energy, and that the Bernoulli sum can be a good indicator of the existence of such mechanisms.

  7. Alternative Approaches to Calculate Benefits of an Energy Imbalance Market With Wind and Solar Energy: Preprint

    SciTech Connect (OSTI)

    Kirby, B.; King, J.; Milligan, M.

    2012-06-01T23:59:59.000Z

    The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.

  8. On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications

    E-Print Network [OSTI]

    Manuel, Lance

    On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications Korn, Austin, TX 78712 In stochastic simulation of inflow turbulence random fields for wind turbine applica models can be in turn highly variable. Turbine load and performance variability could as well result

  9. WIND EFFECTS ON CHEMICAL SPILL IN ST ANDREW BAY SYSTEM

    E-Print Network [OSTI]

    Chu, Peter C.

    WIND EFFECTS ON CHEMICAL SPILL IN ST ANDREW BAY SYSTEM PETER C. CHU, PATRICE PAULY Naval Can easily reach 20 m/s and more during hurricane events #12;Water Quality Management and Analysis

  10. Wind Energy Stakeholder Outreach and Education

    SciTech Connect (OSTI)

    Bob Lawrence; Craig Cox; Jodi Hamrick; DOE Contact - Keith Bennett

    2006-07-27T23:59:59.000Z

    Since August of 2001, Bob Lawrence and Associates, Inc. (BL&A) has applied its outreach and support services to lead a highly effective work effort on behalf of Wind Powering America (WPA). In recent years, the company has generated informative brochures and posters, researched and created case studies, and provided technical support to key wind program managers. BL&A has also analyzed Lamar, Colorado’s 162MW wind project and developed a highly regarded 'wind supply chain' report and outreach presentation. BL&A’s efforts were then replicated to characterize similar supply chain presentations in New Mexico and Illinois. Note that during the period of this contract, the recipient met with members of the DOE Wind Program a number of times to obtain specific guidance on tasks that needed to be pursued on behalf of this grant. Thus, as the project developed over the course of 5 years, the recipient varied the tasks and emphasis on tasks to comply with the on-going and continuously developing requirements of the Wind Powering America Program. This report provides only a brief summary of activities to illustrate the recipient's work for advancing wind energy education and outreach from 2001 through the end of the contract period in 2006. It provides examples of how the recipient and DOE leveraged the available funding to provide educational and outreach work to a wide range of stakeholder communities.

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  13. Sandia Energy - Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Plant Optimization Home Stationary Power Energy Conversion Efficiency Wind Energy Wind Plant Optimization Wind Plant OptimizationTara Camacho-Lopez2015-05-29T21:33:21+00:00...

  14. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Water Power Peer Review WindWaveFloat Alla Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov...

  15. Wind Energy Act (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

  16. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  17. Airplane and the wind

    E-Print Network [OSTI]

    Airplane and the wind. An airplane starts from the point A and flies to B. The speed of the airplane with respect to the air is v (constant). There is also a wind of

  18. See the Wind

    Broader source: Energy.gov (indexed) [DOE]

    See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

  19. Wind JOC Conference - Wind Control Changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Wind Control Changes JOC August 10, 2012 Presentation updated on July 30, 2012 at 11:00 AM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 Wind Control Changes B O N...

  20. Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Ma, Jian; Samaan, Nader A.; Diao, Ruisheng; Malhara, Sunita V.; Guttromson, Ross T.; Du, Pengwei; Sastry, Chellury

    2010-02-01T23:59:59.000Z

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.

  1. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Prospects for Offshore Wind Farms. ” Wind Engineering, 28:Techniques for Offshore Wind Farms. ” Journal of Solar

  2. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  3. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  4. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01T23:59:59.000Z

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  5. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  6. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    space constraints. Ohio: The Lake Erie Energy DevelopmentGreat Lakes Ohio Wind, and Great Lakes Wind Energy LLC. In

  8. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  10. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  11. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15T23:59:59.000Z

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  12. Wind Turbine Competition Introduction

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

  13. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  14. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  15. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  16. QUANTITATIVE DAMAGE ASSESSMENT OF HYBRID COMPOSITE WIND TURBINE BLADES BY ENERGY BASED ACOUSTIC EMISSION SOURCE

    E-Print Network [OSTI]

    Boyer, Edmond

    QUANTITATIVE DAMAGE ASSESSMENT OF HYBRID COMPOSITE WIND TURBINE BLADES BY ENERGY BASED ACOUSTIC in the wind turbine blade. It was tried to apply a new source location method, which has a developed algorithm assessment, source location, wind turbine blade, hybrid composites INTRODUCTION Structural health management

  17. Large Scale Wind Turbine Siting Map Report NJ Department of Environmental Protection

    E-Print Network [OSTI]

    Holberton, Rebecca L.

    Large Scale Wind Turbine Siting Map Report NJ Department of Environmental Protection September 8 Jersey Department of Environmental Protection's (NJDEP) "Large Scale Wind Turbine Siting Map Management rules to address the development and permitting of wind turbines in the coastal zone

  18. The economic value of wind energy

    SciTech Connect (OSTI)

    Pavlak, Alex

    2008-10-15T23:59:59.000Z

    Today's wholesale electricity market passes intermittency costs to the ratepayer in the form of increased overall system cost, a hidden subsidy. Market managers need a competition that correctly allocates cost and provides consumers with the lowest price. One solution is for buyers to contract wind farms to provide energy on demand. (author)

  19. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  20. Identifying Wind and Solar Ramping Events: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Orwig, K.

    2013-01-01T23:59:59.000Z

    Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

  1. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01T23:59:59.000Z

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  2. Coastal zone wind energy. Part III: a procedure to determine the wind power potential of the coastal zone

    SciTech Connect (OSTI)

    Garstang, M.; Pielke, R.; Snow, J.W.

    1982-03-01T23:59:59.000Z

    A stepwise procedure is presented for determining the seasonal and/or annual mean potential wind power density for any location on the East and Gulf coasts of the United States. The steps include reference to the dominant wind regimes and mean power densities already obtained to estimate the wind power potential of the location under consideration; methods to calculate the potential wind power distributions and steps to be taken to locate the best site in the area of interest. The method can be best applied where the atmospheric systems which produce most of the wind energy at the surface are relatively persistent. The method is least successful in areas where the wind field is highly variable. Application of the complete method requires the use of an existing two- or three-dimensional mesoscale numerical model.

  3. Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms

    E-Print Network [OSTI]

    Stevens, Richard J A M

    2014-01-01T23:59:59.000Z

    Fluctuations represent a major challenge for the incorporation of electric power from large wind-farms into power grids. Wind farm power output fluctuates strongly in time, over various time scales. Understanding these fluctuations, especially their spatio-temporal characteristics, is particularly important for the design of backup power systems that must be readily available in conjunction with wind-farms. In this work we analyze the power fluctuations associated with the wind-input variability at scales between minutes to several hours, using large eddy simulations (LES) of extended wind-parks, interacting with the atmospheric boundary layer. LES studies enable careful control of parameters and availability of wind-velocities simultaneously across the entire wind-farm. The present study focuses on neutral atmospheric conditions and flat terrain, using actuator-disk representations of the individual wind-turbines. We consider power from various aggregates of wind-turbines such as the total average power sign...

  4. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13T23:59:59.000Z

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  5. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  6. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff,Holt WindInformationWestWinds Wind

  7. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

    2008-06-24T23:59:59.000Z

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  8. Scoping and Framing Social Opposition to U.S. Wind Projects (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Flowers, L.

    2010-05-01T23:59:59.000Z

    Historical barriers to wind power include cost and reliability. However, rapid growth has increased the footprint of wind power in the United States, and some parts of the country have begun to observe conflicts between local communities and wind energy development. Thus, while questions of economic viability and the ability of grid operators to effectively manage wind energy have become less significant, community acceptance issues have emerged as a barrier to wind and associated transmission projects. Increasing community acceptance is likely to be a growing challenge as the wind industry seeks electricity sector penetration levels approaching 20%.

  9. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

  10. SERI Advanced and Innovative Wind-Energy-Concepts Program

    SciTech Connect (OSTI)

    Mitchell, R.L.; Jacobs, E.W.

    1983-06-01T23:59:59.000Z

    In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

  11. Operational risk of a wind farm energy production by Extreme Value Theory and Copulas

    E-Print Network [OSTI]

    D'Amico, Guglielmo; Prattico, Flavio

    2014-01-01T23:59:59.000Z

    In this paper we use risk management techniques to evaluate the potential effects of those operational risks that affect the energy production of a wind farm. We concentrate our attention on three major risk factors: wind speed uncertainty, wind turbine reliability and interactions of wind turbines due mainly to their placement. As a first contribution, we show that the Weibull distribution, commonly used to fit recorded wind speed data, underestimates rare events. Therefore, in order to achieve a better estimation of the tail of the wind speed distribution, we advance a Generalized Pareto distribution. The wind turbines reliability is considered by modeling the failures events as a compound Poisson process. Finally, the use of Copula able us to consider the correlation between wind turbines that compose the wind farm. Once this procedure is set up, we show a sensitivity analysis and we also compare the results from the proposed procedure with those obtained by ignoring the aforementioned risk factors.

  12. National Wind Distance Learning Collaborative

    SciTech Connect (OSTI)

    Dr. James B. Beddow

    2013-03-29T23:59:59.000Z

    Executive Summary The energy development assumptions identified in the Department of Energy's position paper, 20% Wind Energy by 2030, projected an exploding demand for wind energy-related workforce development. These primary assumptions drove a secondary set of assumptions that early stage wind industry workforce development and training paradigms would need to undergo significant change if the workforce needs were to be met. The current training practice and culture within the wind industry is driven by a relatively small number of experts with deep field experience and knowledge. The current training methodology is dominated by face-to-face, classroom based, instructor present training. Given these assumptions and learning paradigms, the purpose of the National Wind Distance Learning Collaborative was to determine the feasibility of developing online learning strategies and products focused on training wind technicians. The initial project scope centered on (1) identifying resources that would be needed for development of subject matter and course design/delivery strategies for industry-based (non-academic) training, and (2) development of an appropriate Learning Management System (LMS). As the project unfolded, the initial scope was expanded to include development of learning products and the addition of an academic-based training partner. The core partners included two training entities, industry-based Airstreams Renewables and academic-based Lake Area Technical Institute. A third partner, Vision Video Interactive, Inc. provided technology-based learning platforms (hardware and software). The revised scope yielded an expanded set of results beyond the initial expectation. Eight learning modules were developed for the industry-based Electrical Safety course. These modules were subsequently redesigned and repurposed for test application in an academic setting. Software and hardware developments during the project's timeframe enabled redesign providing for student access through the use of tablet devices such as iPads. Early prototype Learning Management Systems (LMS) featuring more student-centric access and interfaces with emerging social media were developed and utilized during the testing applications. The project also produced soft results involving cross learning between and among the partners regarding subject matter expertise, online learning pedagogy, and eLearning technology-based platforms. The partners believe that the most significant, overarching accomplishment of the project was the development and implementation of goals, activities, and outcomes that significantly exceeded those proposed in the initial grant application submitted in 2009. Key specific accomplishments include: (1) development of a set of 8 online learning modules addressing electrical safety as it relates to the work of wind technicians; (3) development of a flexible, open-ended Learning Management System (LMS): (3) creation of a robust body of learning (knowledge, experience, skills, and relationships). Project leaders have concluded that there is substantial resource equity that could be leverage and recommend that it be carried forward to pursue a Next Stage Opportunity relating to development of an online core curriculum for institute and community college energy workforce development programs.

  13. Title of Document: INTERANNUAL VARIABILITY OF SEA SURFACE TEMPERATURE IN THE EASTERN

    E-Print Network [OSTI]

    Maryland at College Park, University of

    and therefore cloud cover and shortwave heating. In a parallel set of experiments, the low-frequency variability variability of SST in the EPWP. Interannual wind stress, shortwave radiation, and precipitation were used of the Tehuantepec gap winds was also shown to have a considerable effect on that of SST in the EPWP. Motivated

  14. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    Wind energy assessment and wind farm simulation in Triunfo- Pernambuco, Brazil,wind resources for electrical energy production. Wind resources as- sessment of Brazil

  15. Sandia Energy - Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind & Water Power Newsletter Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind & Water Power Newsletter Wind & Water Power NewsletterTara...

  16. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect (OSTI)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24T23:59:59.000Z

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

  17. Shocks and Wind Bubbles Around Energetic Pulsars

    E-Print Network [OSTI]

    Bryan M. Gaensler

    2004-05-14T23:59:59.000Z

    The Crab Nebula demonstrates that neutron stars can interact with their environments in spectacular fashion, their relativistic winds generating nebulae observable across the electromagnetic spectrum. At many previous conferences, astronomers have discussed, debated and puzzled over the complicated structures seen in the Crab, but have been limited to treating most other pulsar wind nebulae (PWNe) as simple calorimeters for a pulsar's spin-down energy. However, with the wealth of high-quality data which have now become available, this situation has changed dramatically. I here review some of the main observational themes which have emerged from these new measurements. Highlights include the ubiquity of pulsar termination shocks, the unambiguous presence of relativistic jets in PWNe, complicated time variability seen in PWN structures, and the use of bow shocks to probe the interaction of pulsar winds with the ambient medium.

  18. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

    2011-11-29T23:59:59.000Z

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  19. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  20. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  1. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  2. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  3. DFIG-Based Wind Turbine Robust Control Using High-Order Sliding Modes and a High Gain Observer

    E-Print Network [OSTI]

    Brest, Université de

    DFIG-Based Wind Turbine Robust Control Using High-Order Sliding Modes and a High Gain Observer with the power generation control in variable speed wind turbines. In this context, a control strategy is proposed to ensure power extraction optimization of a DFIG- based wind turbine. The proposed control

  4. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    hub heights of 110 meters (m) (which are already in wide commercial deployment in Germany and other European countries), the technical potential for wind deployment is...

  5. Allegany County Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets requirements for industrial wind energy conversion systems. These requirements include minimum separation distances, setback requirements, electromagnetic interference analysis ...

  6. Talkin’ Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  7. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  8. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  9. wind_guidance

    Broader source: Energy.gov [DOE]

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  10. Barstow Wind Turbine Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  11. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  12. Wind | Department of Energy

    Office of Environmental Management (EM)

    in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job...

  13. Northern Wind Farm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities to accommodate the interconnection. The EA also includes a review of the potential environmental impacts of Northern Wind, LLC, constructing, operating, and...

  14. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  15. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  16. Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features

    SciTech Connect (OSTI)

    Toole, Gasper L. [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

  17. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01T23:59:59.000Z

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  18. Wind turbulence characterization for wind energy development

    SciTech Connect (OSTI)

    Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

    1991-09-01T23:59:59.000Z

    As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

  19. Cataclysmic Variables

    E-Print Network [OSTI]

    Robert Connon Smith

    2007-01-23T23:59:59.000Z

    Cataclysmic variables are binary stars in which a relatively normal star is transferring mass to its compact companion. This interaction gives rise to a rich range of behaviour, of which the most noticeable are the outbursts that give the class its name. Novae belong to the class, as do the less well known dwarf novae and magnetic systems. Novae draw their energy from nuclear reactions, while dwarf novae rely on gravity to power their smaller eruptions. All the different classes of cataclysmic variable can be accommodated within a single framework and this article will describe the framework, review the properties of the main types of system and discuss models of the outbursts and of the long-term evolution.

  20. Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing

    SciTech Connect (OSTI)

    Cordes, J A; Johnson, B A

    1981-06-01T23:59:59.000Z

    A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

  1. Kahuku Wind Power (First Wind) | Department of Energy

    Office of Environmental Management (EM)

    The project employs the integration of Clipper LibertyTM wind turbine generators and a control system to more efficiently integrate wind power with the utility's power grid....

  2. American Wind Energy Association Wind Energy Finance and Investment Seminar

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

  3. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Environmental Management (EM)

    capturing more wind than ever before through the installation of innovative offshore wind turbines and systems in U.S. waters, the Atmosphere to Electrons initiative which...

  4. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  5. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Savers [EERE]

    Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects U.S. Offshore Wind Manufacturing and Supply Chain Development...

  6. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  8. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  11. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedused to estimate wind integration costs and the ability toColorado 2 GW and 3 GW Wind Integration Cost Study. Denver,

  12. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Economic Analysis of a Wind Farm in Nantucket Sound. BeaconP. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    to natural gas. 2008 Wind Technologies Market Report 1% windforward gas market. 2008 Wind Technologies Market Report 4.Market Report Wind Penetration (Capacity Basis) Arizona Public Service Avista Utilities California RPS Idaho Power Xcel-PSCo-2008 at 2006 Gas

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    forward gas market. 2009 Wind Technologies Market Report TheMarket Report Wind Penetration (Capacity Basis) Xcel-PSCo-2008 at 2006 Gasgas facilities run at even lower capacity factors. 2009 Wind Technologies Market Report

  15. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Technologies Market Report Wind Gas Coal Other Renewablethe forward gas market. 2011 Wind Technologies Market ReportMarket Report Nameplate Capacity (GW) Entered queue in 2011 Total in queue at end of 2011 Wind Natural Gas

  16. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  17. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

  18. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  19. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  3. Carbon smackdown: wind warriors

    SciTech Connect (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  4. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  5. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  6. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm Jump to:

  7. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  8. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    regulation and frequency response services charge for wind energyRegulation and Frequency Response Service that charges a higher rate for wind energy

  9. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  10. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    forward gas market. 2010 Wind Technologies Market Report 4.Market Report Entered queue in 2010 Total in queue at end of 2010 Nameplate Capacity (GW) Wind Natural Gas

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  12. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  13. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

  14. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,on developing wind power projects on public lands. State

  15. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,of developing wind power projects on public lands. State

  16. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    SciTech Connect (OSTI)

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01T23:59:59.000Z

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

  17. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08T23:59:59.000Z

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  18. Ris National Laboratory DTU Wind Energy Department

    E-Print Network [OSTI]

    wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

  19. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    potential on Hong Kong islands - an analysis of wind power and wind turbine characteristics, Renewable Energy,

  20. Cooperative field test program for wind systems

    SciTech Connect (OSTI)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01T23:59:59.000Z

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.