Powered by Deep Web Technologies
Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

May 2013 PSERC Webinar: Managing Wind Variability with Self-Reserves...  

Broader source: Energy.gov (indexed) [DOE]

Center (PSERC) is offering a free public webinar on managing wind variability in energy production. The webinar will be held Tuesday, May 7, 2013 from 2-3 p.m. No pre-registration...

2

May 2013 PSERC Webinar: Managing Wind Variability with Self-Reserves and Responsive Demand  

Broader source: Energy.gov [DOE]

The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar on managing wind variability in energy production. The webinar will be held Tuesday, May 7, 2013 from 2-3 p.m. No pre-registration is necessary.

3

Managing Wind Power Forecast Uncertainty in Electric Grids.  

E-Print Network [OSTI]

??Electricity generated from wind power is both variable and uncertain. Wind forecasts provide valuable information for wind farm management, but they are not perfect. Chapter… (more)

Mauch, Brandon Keith

2012-01-01T23:59:59.000Z

4

VARIABLE SPEED WIND TURBINE  

E-Print Network [OSTI]

Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

Chatinderpal Singh

5

Long-Term Wind Power Variability  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

Wan, Y. H.

2012-01-01T23:59:59.000Z

6

Real time grid congestion management in presence of high penetration of wind energy  

E-Print Network [OSTI]

Real time grid congestion management in presence of high penetration of wind energy A. Vergnol1 , J », « Wind energy », « Variable speed drive » Abstract With the increased use of wind energy the power

Boyer, Edmond

7

New Report: Integrating Variable Wind Energy into the Grid |...  

Broader source: Energy.gov (indexed) [DOE]

Report: Integrating Variable Wind Energy into the Grid New Report: Integrating Variable Wind Energy into the Grid December 19, 2011 - 2:00pm Addthis The Energy Department and...

8

Pitch-controlled variable-speed wind turbine generation  

SciTech Connect (OSTI)

Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

Muljadi, E.; Butterfield, C.P.

2000-03-01T23:59:59.000Z

9

Variables Affecting Economic Development of Wind Energy  

SciTech Connect (OSTI)

NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

Lantz, E.; Tegen, S.

2008-07-01T23:59:59.000Z

10

Optimal combined wind power forecasts using exogeneous variables  

E-Print Network [OSTI]

Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

11

Managing Variable Energy Resources to Increase Renewable Electricity's  

E-Print Network [OSTI]

Managing Variable Energy Resources to Increase Renewable Electricity's Contribution to the Grid P o Contribution of Renewable Energy to Total Electricity Generation? 15 ManaGInG VaRIablE EnERGy REsouRCEs 16 What l i c y m a k e r G u i d e #12;Variable energy resources, such as wind power, now produce about 3

12

Offshore Series Wind Turbine Variable Hub heights & rotor diameters  

E-Print Network [OSTI]

3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

Firestone, Jeremy

13

Load Alleviation on Wind Turbine Blades using Variable Airfoil Geometry  

E-Print Network [OSTI]

Load Alleviation on Wind Turbine Blades using Variable Airfoil Geometry Peter Bjřrn Andersen, Mac Loads, Trailing Edge Flaps, PID control, Signal Noise. 1 Introduction Wind turbine blades are subject to 40% when signal noise is added to the control. Keywords: Wind Turbine, Load Alleviation, Fatigue

14

Intra-hour wind power variability assessment using the conditional range metric : quantification, forecasting and applications.  

E-Print Network [OSTI]

??The research presented herein concentrates on the quantification, assessment and forecasting of intra-hour wind power variability. Wind power is intrinsically variable and, due to the… (more)

Boutsika, Thekla

2013-01-01T23:59:59.000Z

15

Variable diameter wind turbine rotor blades  

DOE Patents [OSTI]

A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

2005-12-06T23:59:59.000Z

16

Asphericity and clumpiness in the winds of Luminous Blue Variables  

E-Print Network [OSTI]

We present the first systematic spectropolarimetric study of Luminous Blue Variables (LBVs) in the Galaxy and the Magellanic Clouds, in order to investigate the geometries of their winds. We find that at least half of our sample show changes in polarization across the strong H$\\alpha$ emission line, indicating that the light from the stars is intrinsically polarized and therefore that asphericity already exists at the base of the wind. Multi-epoch spectropolarimetry on four targets reveals variability in their intrinsic polarization. Three of these, AG Car, HR Car and P Cyg, show a position angle (PA) of polarization which appears random with time. Such behaviour can be explained by the presence of strong wind-inhomogeneities, or `clumps' within the wind. Only one star, R 127, shows variability at a constant PA, and hence evidence for axi-symmetry as well as clumpiness. However, if viewed at low inclination, and at limited temporal sampling, such a wind would produce a seemingly random polarization of the type observed in the other three stars. Time-resolved spectropolarimetric monitoring of LBVs is therefore required to determine if LBV winds are axi-symmetric in general. The high fraction of LBVs ($>$ 50%) showing intrinsic polarization is to be compared with the lower $\\sim$ 20-25 % for similar studies of their evolutionary neighbours, O supergiants and Wolf-Rayet stars. We anticipate that this higher incidence is due to the lower effective gravities of the LBVs, coupled with their variable temperatures within the bi-stability jump regime. This is also consistent with the higher incidence of wind asphericity that we find in LBVs with strong H$\\alpha$ emission and recent (last $\\sim$ 10 years) strong variability.

Ben Davies; Rene D. Oudmaijer; Jorick S. Vink

2005-05-17T23:59:59.000Z

17

Laboratory implementation of variable-speed wind turbine generation  

SciTech Connect (OSTI)

To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

Zinger, D.S. [Northern Illinois University, DeKalb, IL (United States)] [Northern Illinois University, DeKalb, IL (United States); Miller, A.A. [Univ. of Idaho, Moscow, ID (United States)] [Univ. of Idaho, Moscow, ID (United States); Muljadi, E.; Butterfield, C.P.; Robinson, M.C. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States)

1996-07-01T23:59:59.000Z

18

Management and Conservation Short-Term Impacts of Wind Energy  

E-Print Network [OSTI]

Management and Conservation Short-Term Impacts of Wind Energy Development on Greater Sage associated with wind energy development on greater sage-grouse populations. We hypothesized that greater sage-grouse nest, brood, and adult survival would decrease with increasing proximity to wind energy infrastructure

Beck, Jeffrey L.

19

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents [OSTI]

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

Muljadi, E.

1998-08-25T23:59:59.000Z

20

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents [OSTI]

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Variable Speed Wind Turbine Generator with Zero-sequence Filter  

DOE Patents [OSTI]

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-08-25T23:59:59.000Z

22

Optimization of Wind Power and Its Variability With a Computational Intelligence Approach  

E-Print Network [OSTI]

Optimization of Wind Power and Its Variability With a Computational Intelligence Approach Zijun is presented for maximizing the generation of wind power while minimizing its variability. In the optimization model, data-driven approaches are used to model the wind-power generation process based on industrial

Kusiak, Andrew

23

The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric  

E-Print Network [OSTI]

The Impacts of Wind Speed Trends and Long- term Variability in Relation to Hydroelectric Reservoir and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific through diversification. In hydroelectric dominated systems, like the PNW, the benefits of wind power can

Kohfeld, Karen

24

Wind Power Variability, Its Cost, and Effect on Power Plant Emissions  

E-Print Network [OSTI]

Wind Power Variability, Its Cost, and Effect on Power Plant Emissions A Dissertation Submitted The recent growth in wind power is transforming the operation of electricity systems by introducing. As a result, system operators are learning in real-time how to incorporate wind power and its variability

25

Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator  

E-Print Network [OSTI]

values. Keywords: permanent magnet synchronous generator, variable speed wind turbine, direct driven wind). A multipole synchronous generator connected to a power converter can operate at low speeds, so that a gear canControl strategy of a variable speed wind turbine with multipole permanent magnet synchronous

26

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems  

E-Print Network [OSTI]

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two (National Renewable Energy Laboratory) wind turbine simulator FAST (Fatigue, Aerodynamics, Structures

Boyer, Edmond

27

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource  

E-Print Network [OSTI]

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract

28

Assessing the Impact of Wind Variability on Power System Small-Signal Reachability  

E-Print Network [OSTI]

variability. However, with the increased penetration of renewable-based generation, operational uncertainty by variability in the system supply side. Operational uncertainty is not new to power systems, e.g., demand]. For example, the highly variable nature of wind speeds not only makes the wind resource highly intermittent

Liberzon, Daniel

29

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS  

E-Print Network [OSTI]

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

30

Managing Wind-based Electricity Generation and Storage  

E-Print Network [OSTI]

and solar energy--is free, abundant, and most importantly, does not exacerbate the global warming problemManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper on renewable energy, and to develop efficient electricity storage. Renewable energy--such as wind energy

31

Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch  

E-Print Network [OSTI]

and faculty. There were many people who helped me during my doctoral studies. First, I want to thank my co-advisors for wind farm management, but they are not perfect. Chapter 2 presents a model of a wind farm with compressed air energy storage (CAES) participating freely in the day-ahead electricity market without

32

Systematic Controller Design Methodology for Variable-Speed Wind Turbines  

SciTech Connect (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three operational regions. This paper provides a guide for controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship between the two opposing metrics is easily visualized.

Hand, M. M.; Balas, M. J.

2002-02-01T23:59:59.000Z

33

Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States (Presentation)  

SciTech Connect (OSTI)

Presentation for the European Wind Energy Conference held February 27--March 2, 2006, in Athens, Greece, showing grid impacts of wind power variability.

Parsons, B.

2006-03-01T23:59:59.000Z

34

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid  

E-Print Network [OSTI]

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines

Hansen, René Rydhof

35

Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines  

E-Print Network [OSTI]

Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines, China mcheng@seu.edu.cn Abstract-- Grid connected wind turbines are the sources of power fluctuations presents an individual pitch control (IPC) strategy to mitigate the wind turbine power fluctuation at both

Hu, Weihao

36

Abstract--A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous  

E-Print Network [OSTI]

1 Abstract--A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine of this variable speed wind turbine based on multiple generators drive-train configuration. Index Terms--Wind power

Chen, Zhe

37

Effects of turbulence on power generation for variable-speed wind turbines  

SciTech Connect (OSTI)

One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

1996-11-01T23:59:59.000Z

38

An examination of loads and responses of a wind turbine undergoing variable-speed operation  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is to show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.

Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

1996-11-01T23:59:59.000Z

39

Abstract--The variability and non-dispatchable nature of wind and solar energy production presents  

E-Print Network [OSTI]

1 Abstract--The variability and non-dispatchable nature of wind and solar energy production needed for a variety of energy storage applications can be found in [6]. Wind and solar power variations, energy storage can be a viable solution to balance energy production against its consumption. This paper

40

Control strategy for variable-speed, stall-regulated wind turbines  

SciTech Connect (OSTI)

A variable-speed, constant-pitch wind turbine was investigated to evaluate the feasibility of constraining its rotor speed and power output without the benefit of active aerodynamic control devices. A strategy was postulated to control rotational speed by specifying the demanded generator torque. By controlling rotor speed in relation to wind speed, the aerodynamic power extracted by the blades from the wind was manipulated. Specifically, the blades were caused to stall in high winds. In low and moderate winds, the demanded generator torque and the resulting rotor speed were controlled to cause the wind turbine to operate near maximum efficiency. A computational model was developed, and simulations were conducted of operation in high turbulent winds. Results indicated that rotor speed and power output were well regulated. 7 refs., 7 figs.

Muljadi, E.; Pierce, K.; Migliore, P.

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fixed-Speed and Variable-Slip Wind Turbines Providing Spinning Reserves to the Grid: Preprint  

SciTech Connect (OSTI)

As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response so they can support the frequency stability of the grid. To provide governor response, wind turbines should be able to generate less power than the available wind power and hold the rest in reserve, ready to be accessed as needed. This paper explores several ways to control wind turbine output to enable reserve-holding capability. This paper focuses on fixed-speed (also known as Type 1) and variable-slip (also known as Type 2) turbines.

Muljadi, E.; Singh, M.; Gevorgian, V.

2012-11-01T23:59:59.000Z

42

Managing Wind-based Electricity Generation and Storage  

E-Print Network [OSTI]

Managing Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable

Sadeh, Norman M.

43

Variability of wind power near Oklahoma City and implications for siting of wind turbines  

SciTech Connect (OSTI)

Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

Kessler, E.; Eyster, R.

1987-09-01T23:59:59.000Z

44

High-Speed Optical Spectroscopy of a Cataclysmic Variable Wind BZ Camelopardalis  

E-Print Network [OSTI]

BZ Cam is the first cataclysmic variable star with an accretion disk wind evident in its optical spectrum. The wind was found by Thorstensen, who discovered intermittent P Cygni profiles occurring simultaneously in He I 5876 Angstroms and H alpha. We have since obtained spectra with 0.4-Angstroms/pixel dispersion and 60-s time resolution. We find a wind much faster and more rapidly variable than the radiatively accelerated winds of OB stars, Wolf-Rayet stars, or luminous blue variables. Instead of showing blob ejection, the whole wind of BZ Cam appears to turn on and off. We use this to measure the acceleration law of a CV wind for the first time. The velocity increases linearly with time, attaining blue edge velocities near -3000 km/s, and absorption velocities near -1700 km/s, in 6 to 8 min after starting near rest. We also find a subsequent linear deceleration to nearly rest in 30 to 40 min, perhaps an effect of dilution as the wind expands. No periodicity from rotational outflow is obvious. This wind is e...

Ringwald, F A

1997-01-01T23:59:59.000Z

45

Adaptive pitch control for variable speed wind turbines  

DOE Patents [OSTI]

An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

Johnson, Kathryn E. (Boulder, CO); Fingersh, Lee Jay (Westminster, CO)

2012-05-08T23:59:59.000Z

46

Variable Charge Soils: Their Mineralogy, Chemistry and Management  

SciTech Connect (OSTI)

In this article, the mineralogy, chemistry and management of variable charge soils that are spread throughout the world are treated in details.

Qafoku, Nik; Van Ranst, Eric; Noble, Andrew; Baert, Geert

2004-07-01T23:59:59.000Z

47

High-Speed Optical Spectroscopy of a Cataclysmic Variable Wind: BZ Camelopardalis  

E-Print Network [OSTI]

BZ Cam is the first cataclysmic variable star with an accretion disk wind evident in its optical spectrum. The wind was found by Thorstensen, who discovered intermittent P Cygni profiles occurring simultaneously in He I 5876 Angstroms and H alpha. We have since obtained spectra with 0.4-Angstroms/pixel dispersion and 60-s time resolution. We find a wind much faster and more rapidly variable than the radiatively accelerated winds of OB stars, Wolf-Rayet stars, or luminous blue variables. Instead of showing blob ejection, the whole wind of BZ Cam appears to turn on and off. We use this to measure the acceleration law of a CV wind for the first time. The velocity increases linearly with time, attaining blue edge velocities near -3000 km/s, and absorption velocities near -1700 km/s, in 6 to 8 min after starting near rest. We also find a subsequent linear deceleration to nearly rest in 30 to 40 min, perhaps an effect of dilution as the wind expands. No periodicity from rotational outflow is obvious. This wind is erratic and incessantly variable, and perhaps bipolar and face-on, but not highly collimated. The P Cygni absorption events trace out sawtooth waves, occurring within 30 to 40 white dwarf radii from the disk. This is the approximate size of the disk, as well as the disk/wind transition region recently postulated by Knigge and Drew. We estimate a distance of 830 +/- 160 pc, and an orbital inclination i such that 12 < i(degrees) < 40.

F. A. Ringwald; T. Naylor

1997-10-02T23:59:59.000Z

48

On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic  

E-Print Network [OSTI]

On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic and is presumed to be similar in three dimensions. Total wind power input is generally always positive, while

Wunsch, Carl

49

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency  

E-Print Network [OSTI]

In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

Kriesche, Pascal

50

Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration  

SciTech Connect (OSTI)

We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

2014-06-17T23:59:59.000Z

51

Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States; Preprint  

SciTech Connect (OSTI)

Because of wind power's unique characteristics, many concerns are based on the increased variability that wind contributes to the grid, and most U.S. studies have focused on this aspect of wind generation. Grid operators are also concerned about the ability to predict wind generation over several time scales. In this report, we quantify the physical impacts and costs of wind generation on grid operations and the associated costs.

Parsons, B.; Milligan, M.; Smith, J. C.; DeMeo, E.; Oakleaf, B.; Wolf, K.; Schuerger, M.; Zavadil, R.; Ahlstrom, M.; Nakafuji, D. Y.

2006-07-01T23:59:59.000Z

52

Management and Conservation Article Behavioral Responses of Bats to Operating Wind Turbines  

E-Print Network [OSTI]

Management and Conservation Article Behavioral Responses of Bats to Operating Wind Turbines JASON W used thermal infrared (TIR) cameras to assess the flight behavior of bats at wind turbines because fatalities, migratory tree bats, thermal infrared imaging, wind power, wind turbines. Recent studies indicate

Holberton, Rebecca L.

53

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory  

E-Print Network [OSTI]

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory, Wind Power Integration, Markov Chain, Dynamic Potential Game Theory, Nash Equilibrium. I. INTRODUCTION the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast

Huang, Jianwei

54

A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines  

E-Print Network [OSTI]

A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

Stanford University

55

A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural Health Monitoring  

E-Print Network [OSTI]

1 A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural of wind turbines and reducing the life-cycle costs significantly. This paper presents a life-cycle management (LCM) framework for online monitoring and performance assessment of wind turbines, enabling

Stanford University

56

A conservative control strategy for variable-speed stall-regulated wind turbines  

SciTech Connect (OSTI)

Simulation models of a variable-speed, fixed-pitch wind turbine were investigated to evaluate the feasibility of constraining rotor speed and power output without the benefit of active aerodynamic control devices. A strategy was postulated to control rotational speed by specifying the demanded generator torque. By controlling rotor speed in relation to wind speed, the aerodynamic power extracted by the blades from the wind was manipulated. Specifically, the blades were caused to stall in high winds. In low and moderate winds, the demanded generator torque and the resulting rotor speed were controlled to cause the wind turbine to operate near maximum efficiency. Using the developed models, simulations were conducted of operation in turbulent winds. Results indicated that rotor speed and power output were well regulated. Preliminary investigations of system dynamics showed that, compared to fixed-speed operation, variable-speed operation caused cyclic loading amplitude to be reduced for the turbine blades and low-speed shaft and slightly increased for the tower loads. This result suggests a favorable impact on fatigue life from implementation of the proposed control strategy.

Muljadi, E.; Pierce, K.; Migliore, P.

2000-02-08T23:59:59.000Z

57

VARIABLE WINDS AND DUST FORMATION IN R CORONAE BOREALIS STARS  

SciTech Connect (OSTI)

We have observed P-Cygni and asymmetric, blue-shifted absorption profiles in the He I {lambda}10830 lines of 12 R Coronae Borealis stars over short (1 month) and long (3 yr) timescales to look for variations linked to their dust-formation episodes. In almost all cases, the strengths and terminal velocities of the line vary significantly and are correlated with dust formation events. Strong absorption features with blue-shifted velocities {approx}400 km s{sup -1} appear during declines in visible brightness and persist for about 100 days after recovery to maximum brightness. Small residual winds of somewhat lower velocity are present outside of the decline and recovery periods. The correlations support models in which recently formed dust near the star is propelled outward at high speed by radiation pressure and drags the gas along with it.

Clayton, Geoffrey C.; Zhang Wanshu [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Geballe, T. R., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: wzhan21@lsu.edu, E-mail: tgeballe@gemini.edu [Gemini Observatory, 670 N. A'ohoku Place, Hilo, HI 96720 (United States)

2013-08-01T23:59:59.000Z

58

Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint  

SciTech Connect (OSTI)

One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

2013-10-01T23:59:59.000Z

59

The winds of Luminous Blue Variables and the Mass of AG Car  

E-Print Network [OSTI]

We present radiation-driven wind models for Luminous Blue Variables (LBVs) and predict their mass-loss rates. A comparison between our predictions and the observations of AG Car shows that the variable mass loss behaviour of LBVs is due the recombination/ionisation of Fe IV/III and Fe III/II. We also derive a present-day mass of 35 Msun for AG Car.

Jorick S. Vink; Alex de Koter

2002-07-15T23:59:59.000Z

60

Predicting the Energy Output of Wind Farms Based on Weather Data: Important Variables and their Correlation  

E-Print Network [OSTI]

Wind energy plays an increasing role in the supply of energy world-wide. The energy output of a wind farm is highly dependent on the weather condition present at the wind farm. If the output can be predicted more accurately, energy suppliers can coordinate the collaborative production of different energy sources more efficiently to avoid costly overproductions. With this paper, we take a computer science perspective on energy prediction based on weather data and analyze the important parameters as well as their correlation on the energy output. To deal with the interaction of the different parameters we use symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on publicly available weather and energy data for a wind farm in Australia. We reveal the correlation of the different variables for the energy output. The model obtained for energy prediction gives a very reliable prediction of the energy output for newly given weather data.

Vladislavleva, Katya; Neumann, Frank; Wagner, Markus

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint  

SciTech Connect (OSTI)

In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

Gevorgian, V.; Singh, M.; Muljadi, E.

2011-12-01T23:59:59.000Z

62

Managing forecast variability in a build-to-order environment  

E-Print Network [OSTI]

In any production environment, managing demand variability is a delicate balancing act. Firms must constantly weigh potential obsolescence costs of unused inventory (should sales not materialize) against potential expedite ...

Einhorn, Marshall

2007-01-01T23:59:59.000Z

63

Variable speed operation of generators with rotor-speed feedback in wind power applications  

SciTech Connect (OSTI)

The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

Muljadi, E.; Butterfield, C.P.; Migliore, P.

1995-11-01T23:59:59.000Z

64

Variable speed operation of generators with rotor-speed feedback in wind power applications  

SciTech Connect (OSTI)

The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy analyzed uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.

1996-10-01T23:59:59.000Z

65

Variable speed operation of generators with rotor-speed feedback in wind power applications  

SciTech Connect (OSTI)

The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up, and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy the authors analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States)

1996-11-01T23:59:59.000Z

66

Rummaging inside the Eskimo's parka: Variable asymmetric PN fast wind and a binary nucleus?  

E-Print Network [OSTI]

We report on high-resolution optical time-series spectroscopy of the central star of the `Eskimo' planetary nebula NGC~2392. Datasets were secured with the ESO 2.3m in 2006 March and CFHT 3.6m in 2010 March to diagnose the fast wind and photospheric properties of the central star. The HeI and HeII recombination lines reveal evidence for clumping and temporal structures in the fast wind that are erratically variable on timescales down to ~ 30 min. (i.e. comparable to the characteristic wind flow time). We highlight changes in the overall morphology of the wind lines that cannot plausibly be explained by line-synthesis model predictions with a spherically homogeneous wind. Additionally we present evidence that the UV line profile morphologies support the notion of a high-speed, high-ionization polar wind in NGC~2392. Analyses of deep-seated, near-photospheric absorption lines reveals evidence for low-amplitude radial velocity shifts. Fourier analysis points tentatively to a ~ 0.12-d modulation in the radial vel...

Prinja, Raman

2014-01-01T23:59:59.000Z

67

TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING  

E-Print Network [OSTI]

TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING K. Smarsly1) strategies can enable wind turbine manufacturers, owners, and operators to precisely schedule maintenance behavior of wind turbines and to reduce (epistemic) uncertainty. Both the resistance parameters

Stanford University

68

Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration  

E-Print Network [OSTI]

Operations: A Review of Wind Integration Studies to Date. ”Analysis of Impacts of Wind Integration in the Tamil Nadu2009. “Calculating Wind Integration Costs: Separating Wind

Phadke, Amol

2014-01-01T23:59:59.000Z

69

Self-excited induction generator for variable-speed wind turbine generation  

SciTech Connect (OSTI)

When an induction generator is connected to a utility bus, the voltage and frequency at the terminal of the generator are the same as the voltage and frequency of the utility. The reactive power needed by the induction generator is supplied by the utility and the real power is returned to the utility. The rotor speed varies within a very limited range, and the reactive power requirement must be transported through a long line feeder, thus creating additional transmission losses. The energy captured by a wind turbine can be increased if the rotor speed can be adjusted to follow wind speed variations. For small applications such as battery charging or water pumping, a stand alone operation can be implemented without the need to maintain the output frequency output of the generator. A self- excited induction generator is a good candidate for a stand alone operation where the wind turbine is operated at variable speed. Thus the performance of the wind turbine can be unproved. In this paper, we examine a self-excited induction generator operated in a stand alone mode. A potential application for battery charging is given. The output power of the generator will be controlled to improve the performance of the wind turbine.

Muljadi, E.; Gregory, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Broad, D. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering] [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering

1996-10-01T23:59:59.000Z

70

Variability of Wind Power and Other Renewables - Management options...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is low and released during hours of peak demand. Batteries are typically operated on small-scale systems, and no commercially viable solution for large- scale battery storage...

71

A Global View on the Wind Sea and Swell Climate and Variability from ERA-40 ALVARO SEMEDO  

E-Print Network [OSTI]

A Global View on the Wind Sea and Swell Climate and Variability from ERA-40 ALVARO SEMEDO 2010) ABSTRACT In this paper a detailed global climatology of wind-sea and swell parameters, based on the 45-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) wave reanalysis

Haak, Hein

72

Simplified life cycle approach: GHG variability assessment for onshore wind electricity based on Monte-Carlo simulations  

E-Print Network [OSTI]

in the literature. In the special case of greenhouses gases (GHG) from wind power electricity, the LCA resultsSimplified life cycle approach: GHG variability assessment for onshore wind electricity based performed by the IPCC [1]. Such result might lead policy makers to consider LCA as an inconclusive method [2

Paris-Sud XI, Université de

73

The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation  

E-Print Network [OSTI]

Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

Jaworsky, Christina A

2013-01-01T23:59:59.000Z

74

A study of wind variability in the lower troposphere through power spectrum analysis at mesoscale frequencies  

E-Print Network [OSTI]

on the theoretical and practical application of the analysis method comes directly from this reference. B. Fundamental Assum tions of Power S ectrum Theor Consider a function of time X(t), such as wind speed, which is generated by a random process. Then the value... of the function X(t) at any particular point in time is a random variable. This random process may or may not have a Gaussian or normal distribution but it is a fundamental assumption (at least in the development of the theory) that the random process...

Cornett, John Sheldon

1966-01-01T23:59:59.000Z

75

Reactive power management of distribution networks with wind generation for improving voltage stability  

E-Print Network [OSTI]

-loadability Reactive power margin Wind turbine a b s t r a c t This paper proposes static and dynamic VAR planningReactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q

Pota, Himanshu Roy

76

Using supply chain management techniques to make wind plant and energy storage operation more profitable  

E-Print Network [OSTI]

Our research demonstrates that supply chain management techniques can improve the incremental gross profits of wind plant and storage operations by up to five times. Using Monte-Carlo simulation we create and test scenarios ...

Saran, Prashant

2009-01-01T23:59:59.000Z

77

Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration  

E-Print Network [OSTI]

and V. Neimane. 2005. 4000 MW Wind Power in Sweden-Impact on2009. “The Evolution of Wind Power Integration Studies:and Michael Milligan. 2011. “Wind Power Forecasting Error

Phadke, Amol

2014-01-01T23:59:59.000Z

78

Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint  

SciTech Connect (OSTI)

This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

Hodge, B. M.; Shedd, S.; Florita, A.

2012-08-01T23:59:59.000Z

79

Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for Grid Integration Studies  

SciTech Connect (OSTI)

This paper describes reduced-order, simplified wind turbine models for analyzing the stability impact of large arrays of wind turbines with a single point of network interconnection.

Behnke, M.; Ellis, A.; Kazachkov, Y.; McCoy, T.; Muljadi, E.; Price, W.; Sanchez-Gasca, J.

2007-09-01T23:59:59.000Z

80

Rotating Winds from Accretion Disks in Cataclysmic Variables: Eclipse Modeling of V347 Puppis  

E-Print Network [OSTI]

We study the eclipsing nova-like variable V347 Pup by matching its UV emission line profiles in and out of eclipse to synthetic lines using a 3D kinematic and radiation transfer model. Our results support the accretion disk origin of winds in non-magnetic CVs as opposite to the WD origin. Our main point concerns the importance of rotation for the UV emission line shapes in such systems. In particular, we show that the narrowing of the UV emission lines in V347 Pup during eclipse can be easily explained by the eclipse of the innermost part of the wind by the secondary and the resulting reduction in the contribution of rotational broadening to the width of the lines. During the eclipse, the residual line flux is very sensitive to the maximal temperature of disk radiation. Good fits for reasonable mass-loss rates have been obtained for maximum disk temperatures of 50,000 degrees. This constraint was imposed either by leveling off the inner disk temperature profiles, in agreement with recent observations of some nova-like objects, or by assuming that the accretion disk does not extend to the surface of the white dwarf, in which case V347 up would be an intermediate polar. In anticipation of high-speed spectrophotometry of CVs by the HST, we provide numerical model of a time-resolved eclipse of V347 Pup or similar such system to be verified by future observations.

Isaac Shlosman; Peter Vitello; Christopher W. Mauche

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Near-Infrared, Kilosecond Variability of the Wisps And Jet in the Crab Pulsar Wind Nebula  

SciTech Connect (OSTI)

We present a time-lapse sequence of 20 near-infrared (J- and K'-band) snapshots of the central 20'' x 20'' of the Crab pulsar wind nebula, taken at sub-arcsecond resolution with the Hokupa'a/QUIRC adaptive optics camera on the Gemini North Telescope, and sampled at intervals of 10 minutes and 24 hours. It is observed that the equatorial wisps and polar knots in the termination shock of the pulsar wind appear to fluctuate in brightness on kilosecond time-scales. Maximum flux variations of {+-}24 {+-} 4 and {+-}14 {+-} 4 per cent relative to the mean (in 1.2 ks) are measured for the wisps and knots respectively, with greatest statistical significance in J band where the nebula background is less prominent. The J and K' flux densities imply different near-infrared spectra for the nonthermal continuum emission from the wisps and outermost polar knot (''sprite''), giving F{sub {nu}} {proportional_to} {nu}{sup -0.56{+-}0.12} and F{sub {nu}} {proportional_to} {nu}{sup -0.21{+-}0.13} respectively. The data are compared with existing optical and UV photometry and applied to constrain theories of the variability of the wisps (relativistic ion-cyclotron instability) and knots (relativistic fire hose instability).

Melatos, Andrew; Scheltus, D.; /Melbourne U.; Whiting, M.T.; /New South Wales U.; Eikenberry, S.S.; /Florida U.; Romani, R.W.; /Stanford U., Phys. Dept.; Rigaut, F.; /Gemini; Spitkovsky, A.; /KIPAC, Menlo Park; Arons, J.; /UC, Berkeley, Astron. Dept.; Payne, D.J.B.; /Melbourne U.

2006-01-11T23:59:59.000Z

82

Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines  

SciTech Connect (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. 2 refs., 9 figs.

Hand, M.M. [National Renewable Energy Lab., Golden, CO (United States); Balas, M.J. [Univ. of Colorado, Boulder, CO (United States). Dept. of Aerospace Engineering Sciences

1997-11-01T23:59:59.000Z

83

Wind energy Computerized Maintenance Management System (CMMS) : data collection recommendations for reliability analysis.  

SciTech Connect (OSTI)

This report addresses the general data requirements for reliability analysis of fielded wind turbines and other wind plant equipment. The report provides a list of the data needed to support reliability and availability analysis, and gives specific recommendations for a Computerized Maintenance Management System (CMMS) to support automated analysis. This data collection recommendations report was written by Sandia National Laboratories to address the general data requirements for reliability analysis of fielded wind turbines. This report is intended to help the reader develop a basic understanding of what data are needed from a Computerized Maintenance Management System (CMMS) and other data systems, for reliability analysis. The report provides: (1) a list of the data needed to support reliability and availability analysis; and (2) specific recommendations for a CMMS to support automated analysis. Though written for reliability analysis of wind turbines, much of the information is applicable to a wider variety of equipment and a wider variety of analysis and reporting needs.

Peters, Valerie A.; Ogilvie, Alistair; Veers, Paul S.

2009-09-01T23:59:59.000Z

84

arnaud.vergnol@hei.fr, jonathan.sprooten@hei.fr. Optimal network congestion management using wind farms  

E-Print Network [OSTI]

congestion in rural areas due the important increase of wind generation [1]. In the literature, many methods generation. Therefore, most European TSO's have chosen to manage separately, congestions related to wind are affected by errors in load and generation prediction due to element outage or random production as is wind

Boyer, Edmond

85

Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources  

SciTech Connect (OSTI)

This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

Ke, Xinda; Lu, Ning; Jin, Chunlian

2015-01-01T23:59:59.000Z

86

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 23, NO. 2, JUNE 2008 551 Sliding Mode Power Control of Variable-Speed Wind  

E-Print Network [OSTI]

in variable-speed wind energy conversion sys- tems (VS-WECS). These systems have two operation regions de of Variable-Speed Wind Energy Conversion Systems Brice Beltran, Tarek Ahmed-Ali, and Mohamed El Hachemi (newton meter). Tg Generator torque in the rotor side (newton meter). Ths High-speed torque (newton meter

Paris-Sud XI, Université de

87

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

88

Managing Knowledge for Innovations in Wind Power Industry.  

E-Print Network [OSTI]

?? On one side Innovation, innovation systems and knowledge management are two topics have been discussed so much by scholars before. The advantages gained through… (more)

Karatas, Bora

2010-01-01T23:59:59.000Z

89

Long term variability of Cygnus X-1: VII. Orbital variability of the focussed wind in Cyg X-1 / HDE 226868 system  

E-Print Network [OSTI]

Binary systems with an accreting compact object are a unique chance to investigate the strong, clumpy, line-driven winds of early type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1 using 4.77 Ms of RXTE observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein-wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified...

Grinberg, V; Hell, N; Pottschmidt, K; Böck, M; García, J A; Hanke, M; Nowak, M A; Sundqvist, J O; Townsend, R H D; Wilms, J

2015-01-01T23:59:59.000Z

90

Operational Impacts of Large Deployments of Offshore Wind (Poster)  

SciTech Connect (OSTI)

The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

Ibanez, E.; Heaney, M.

2014-10-01T23:59:59.000Z

91

Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

2013-10-01T23:59:59.000Z

92

Test Results of a Nb3Sn Wind/React 'Stress-Managed' BlockDipole  

SciTech Connect (OSTI)

A second phase of a highfield dipole technology developmenthas been tested. A Nb3Sn block-coil model dipole was fabricated, usingmagnetic mirror geometry and wind/react coil technology. The primaryobjective of this phase was to make a first experimental test of thestress-management strategy pioneered at Texas A&M. In this strategy ahigh-strength support matrix is integrated with the windings to interceptLorentz stress from the inner winding so that it does not accumulate inthe outer winding. The magnet attained a field that was consistent withshort sample limit on the first quench; there was no training. Thedecoupling of Lorentz stress between inner and outer windings wasvalidated. In ramp rate studies the magnet exhibited a remarkablerobustness in rapid ramping operation. It reached 85 percent of shortsample(ss) current even while ramping 2-3 T/s. This robustness isattributed to the orientation of the Rutherford cables parallel to thefield in the windings, instead of the transverse orientation thatcharacterizes common dipole designs. Test results are presented and thenext development phase plans are discussed.

McInturff, A.; Bish, P.; Blackburn, R.; Diaczenko, N.; Elliott,T.; Hafalia Jr., R.; Henchel, W.; Jaisle, A.; Lau, W.; Lietzke, A.; McIntyre, P.; Noyes, P.; Nyman, M.; Sattarov, A.; Sattarov, A.

2006-08-25T23:59:59.000Z

93

Test Results of a Nb3Sn Wind/React"Stress-Managed" Block Dipole  

SciTech Connect (OSTI)

A second phase of a high field dipole technology development has been tested. A Nb{sub 3}Sn block-coil model dipole was fabricated, using magnetic mirror geometry and wind/react coil technology. The primary objective of this phase was to make a first experimental test of the stress-management strategy pioneered at Texas A&M. In this strategy a high-strength support matrix is integrated with the windings to intercept Lorentz stress from the inner winding so that it does not accumulate in the outer winding. The magnet attained a field that was consistent with short sample limit on the first quench; there was no training. The decoupling of Lorentz stress between inner and outer windings was validated. In ramp rate studies the magnet exhibited a remarkable robustness in rapid ramping operation. It reached 85% of short sample(ss) current even while ramping 2-3 T/s. This robustness is attributed to the orientation of the Rutherford cables parallel to the field in the windings, instead of the transverse orientation that characterizes common dipole designs. Test results are presented and the next development phase plans are discussed.

McInturff, A.; Blackburn, R.; Diaczenko, N.; Elliott, T.; Henchel, W.; Jaisle, A.; McIntyre, P.; Noyes, P.; Sattarov, A.; Lietzke, A.; Hafalia Jr., R.; Lau, W.; Nyman, M.; Bish, P.

2007-06-01T23:59:59.000Z

94

Simplified life cycle approach: GHG variability assessment for onshore wind electricity based on Monte-Carlo simulations  

E-Print Network [OSTI]

The environmental impacts of electricity production systems have been widely assessed over the past years with many published LCAs in the literature. In the special case of greenhouses gases (GHG) from wind power electricity, the LCA results variability observed is very high, for example ranging from 2 to 81 g CO2eq/kWh in a literature review performed by the IPCC [1]. Such result might lead policy makers to consider

Pierryves Padey; Denis Le Boulch; Isabelle Blanc

2013-01-01T23:59:59.000Z

95

Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

Not Available

2006-03-01T23:59:59.000Z

96

Wind energy Computerized Maintenance Management System (CMMS) : data collection recommendations for reliability analysis.  

SciTech Connect (OSTI)

This report addresses the general data requirements for reliability analysis of fielded wind turbines and other wind plant equipment. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific data recommendations for a Computerized Maintenance Management System (CMMS) to support automated analysis. This data collection recommendations report was written by Sandia National Laboratories to address the general data requirements for reliability analysis of operating wind turbines. This report is intended to help develop a basic understanding of the data needed for reliability analysis from a Computerized Maintenance Management System (CMMS) and other data systems. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific recommendations for a CMMS to support automated analysis. Though written for reliability analysis of wind turbines, much of the information is applicable to a wider variety of equipment and analysis and reporting needs. The 'Motivation' section of this report provides a rationale for collecting and analyzing field data for reliability analysis. The benefits of this type of effort can include increased energy delivered, decreased operating costs, enhanced preventive maintenance schedules, solutions to issues with the largest payback, and identification of early failure indicators.

Peters, Valerie A.; Ogilvie, Alistair B.

2012-01-01T23:59:59.000Z

97

On the role of wind driven ocean dynamics in tropical Atlantic variability  

E-Print Network [OSTI]

The response of the tropical Atlantic Ocean to wind stress forcing on seasonal and interannual time scales is examined using an ocean data assimilation product from the Geophysical Fluid Dynamics Laboratory (GFDL), and an ocean general circulation...

Da Silva, Meyre Pereira

2006-08-16T23:59:59.000Z

98

Structural health and prognostics management for offshore wind turbines : an initial roadmap.  

SciTech Connect (OSTI)

Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blade's torsional stiffness due to the disbond, which also resulted in changes in the blade's local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

Griffith, Daniel Todd; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C. [ATA Engineering, San Diego, CA

2012-12-01T23:59:59.000Z

99

Economic and technical impacts of wind variability and intermittency on long-term generation expansion planning  

E-Print Network [OSTI]

Paristech 2009 Submitted to the Engineering Systems Division in partial fulfillment of the requirements to the Engineering Systems Division on May 6, 2011 in partial fulfillment of the requirements for the Degree of the U.S. I aggregate an hourly dataset of load and wind resource in eleven regions in order to capture

100

Temporal variability of the trade wind inversion: Measured with a boundary layer vertical profiler. Master's thesis  

SciTech Connect (OSTI)

This study uses Hawaiian Rainband Project (HaRP) data, from the summer of 1991, to show a boundary layer wind profiler can be used to measure the trade wind inversion. An algorithm has been developed for the profiler that objectively measures the depth of the moist oceanic boundary layer. The Hilo inversion, measured by radiosonde, is highly correlated with the moist oceanic boundary layer measured by the profiler at Paradise Park. The inversion height on windward Hawaii is typically 2253 + or - 514 m. The inversion height varies not only on a daily basis, but on less than an hourly basis. It has a diurnal, as well as a three to four day cycle. There appears to be no consistent relationship between inversion height and precipitation. Currently, this profiler is capable of making high frequency (12 minute) measurements of the inversion base variation, as well as other features.

Grindinger, C.M.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Journal of Environmental Management 86 (2008) 1426 Combination of multispectral remote sensing, variable rate technology  

E-Print Network [OSTI]

Journal of Environmental Management 86 (2008) 14­26 Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management Qian Dua , Ni-Bin Changb causing pollution in surface water in Texas (Texas Environmental Profiles, 2005). As the Safe Drinking

Du, Jenny (Qian)

102

Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio  

SciTech Connect (OSTI)

This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

2013-08-01T23:59:59.000Z

103

Variable-speed wind power system with improved energy capture via multilevel conversion  

DOE Patents [OSTI]

A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.

Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay

2005-05-31T23:59:59.000Z

104

Revised: Jan 20, 2014 56:155 [IE:4550] Wind Power Management  

E-Print Network [OSTI]

turbines, location and design of wind farms, control of turbines and wind farms, predictive modeling and systems, wind farm performance optimization, and integration of wind power with a grid. The modeling://www.nccc.gov.sg/renewables/biomass.shtm Solar http://www.nccc.gov.sg/renewables/solar.shtm #12;2 Hydrogen/Fuel Cells http

Kusiak, Andrew

105

Towards Managing Variability in the Safety Design of an Automotive Hall Effect Sensor  

E-Print Network [OSTI]

Towards Managing Variability in the Safety Design of an Automotive Hall Effect Sensor Dimitri Van) as the main devel- opment process for an automotive Hall Effect sensor. This versatile component is integrated for every automotive application in which the sensor is to be used. In addition, no support is given

Paris-Sud XI, Université de

106

A Prospective Study of Management and Litter Variables Associated with Cellulitis in California  

E-Print Network [OSTI]

A Prospective Study of Management and Litter Variables Associated with Cellulitis in California that the litter was an important reservoir for cellulitis-associated E. coli. We hypothesized that factors study of 304 flocks on five farms from two integrated broiler companies was conducted to determine

Singer, Randall

107

Efficient Energy Management and Data Recovery in Sensor Networks using Latent Variables Based Tensor  

E-Print Network [OSTI]

Efficient Energy Management and Data Recovery in Sensor Networks using Latent Variables Based factor in a successful sensor network deployment is finding a good balance between maximizing the number of measurements taken (to maintain a good sampling rate) and minimizing the overall energy consumption (to extend

Simunic, Tajana

108

Obtaining data for wind farm development and management: the EO-WINDFARM project  

E-Print Network [OSTI]

, there are huge wind resources and European companies are world leaders at converting it into electric power. Wind). That sector has a mean growth rate of 30% for the last two years. The total installed wind power capacity objective for 2010 in Europe amounts to 75 GW (EWEA, 2004). The total power currently installed (mid 2004

109

Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005  

SciTech Connect (OSTI)

Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

Erdman, W.; Behnke, M.

2005-11-01T23:59:59.000Z

110

Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

SciTech Connect (OSTI)

The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

2010-09-01T23:59:59.000Z

111

Characterizing and Exploiting Task-Load Variability and Correlation for Energy Management in Multi-Core Systems  

E-Print Network [OSTI]

Characterizing and Exploiting Task-Load Variability and Correlation for Energy Management in Multi) Istanbul, Turkey Lausanne, Switzerland Abstract-- We present a hybrid energy management technique of the application. We use the stochastic models in formulating and solving the energy management prob- lem

Tasiran, Serdar

112

Improving the reliability of wind power through spatially distributed wind generation.  

E-Print Network [OSTI]

??Wind power is a fast-growing, sustainable energy source. However, the problem of wind variability as it relates to wind power reliability is an obstacle to… (more)

Fisher, Samuel Martin

2012-01-01T23:59:59.000Z

113

Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts (Presentation)  

SciTech Connect (OSTI)

As with any industrial-scale technology, wind power has impacts. As wind technology deployment becomes more widespread, a defined opposition will form as a result of fear of change and competing energy technologies. As the easy-to-deploy sites are developed, the costs of developing at sites with deployment barriers will increase, therefore increasing the total cost of power. This presentation provides an overview of wind development stakeholders and related stakeholder engagement questions, Energy Department activities that provide wind project deployment information, and the quantification of deployment barriers and costs in the continental United States.

Baring-Gould, I.

2012-06-01T23:59:59.000Z

114

Geographical and seasonal variability of the global "practical" wind Cristina L. Archer a,*, Mark Z. Jacobson b  

E-Print Network [OSTI]

technical, practical, or economic e existed. Using petroleum as an anal- ogy, the theoretical wind power; 3) global model maps evaluated against data are not available at high-resolution, either spatially

115

Kepler photometry and optical spectroscopy of the ZZ Lep central star of the Planetary Nebula NGC 6826: rotational and wind variability  

E-Print Network [OSTI]

We present three years of long-cadence and over one year of short-cadence photometry of the central star of the Planetary Nebula NGC 6826 obtained with the Kepler spacecraft, and temporally coinciding optical spectroscopy. The light curves are dominated by incoherent variability on time scales of several hours, but contain a lower-amplitude periodicity of 1.23799 d. The temporal amplitude and shape changes of this signal are best explicable with a rotational modulation, and are not consistent with a binary interpretation. We argue that we do not observe stellar pulsations within the limitations of our data, and show that a binary central star with an orbital period less than seven days could only have escaped our detection in the case of low orbital inclination. Combining the photometric and spectroscopic evidence, we reason that the hourly variations are due to a variable stellar wind, and are global in nature. The physical cause of the wind variability of NGC 6826 and other ZZ Leporis stars is likely relate...

Handler, G; Urbaneja, M A; Antoci, V; Twicken, J D; Barclay, T

2013-01-01T23:59:59.000Z

116

Integration Costs: Are They Unique to Wind and Solar Energy? Preprint  

SciTech Connect (OSTI)

Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

2012-05-01T23:59:59.000Z

117

Comments on the Regional Climate Variability Driven by Foehn Winds in the McMurdo Dry Valleys, Antarctica  

E-Print Network [OSTI]

The main objection to Speirs, McGowan, Steinhoff and Bromwich work arises from the lack of analyses of the probability distribution functions of underlying processes leading to wind formation of which velocities are measured by automated weather stations and reported in the paper. Mathematically a rigorous definition of calculating the correlation coefficient (Pearson product-moment correlation coefficient) of averages does not exist. Therefore the authors numbers as given in Table II represent a set of randomly calculated figures. The authors suggestion in relation to a few of these random numbers that some of them have statistical significance at the 95% level is erroneous since no relationship exists between correlation coefficient of averages and statistical significance. Therefore Speirs et al. main conclusion that the - SAM is found to significantly influence foehn wind frequency at McMurdo Dry Valleys is unfounded.

Sienicki, Krzysztof

2013-01-01T23:59:59.000Z

118

Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its  

E-Print Network [OSTI]

ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

Stanford University

119

Variable-Speed Wind Turbine Controller Systematic Design Methodology: A Comparison of Non-Linear and Linear Model-Based Designs  

SciTech Connect (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. Traditional controller design generally consists of linearizing a model about an operating point. This step was taken for two different operating points, and the systematic design approach was used. A comparison of the optimal regions selected using the n on-linear model and the two linear models shows similarities. The linearization point selection does, however, affect the turbine performance slightly. Exploitation of the simplicity of the model allows surfaces consisting of operation under a wide range of gain values to be created. This methodology provides a means of visually observing turbine performance based upon the two metrics chosen for this study. Design of a PID controller is simplified, and it is possible to ascertain the best possible combination of controller parameters. The wide, flat surfaces indicate that a PID controller is very robust in this variable-speed wind turbine application.

Hand, M. M.

1999-07-30T23:59:59.000Z

120

Convex-Based Thermal Management for 3D MPSoCs Using DVFS and Variable-Flow Liquid Cooling  

E-Print Network [OSTI]

energy by up to 50% compared with tradi- tional state-of-the-art liquid cooling techniques. The proposedConvex-Based Thermal Management for 3D MPSoCs Using DVFS and Variable-Flow Liquid Cooling Francesco multi-processors system on chip (MPSoCs) using microfluidic cooling. The controller uses dynamic volt

De Micheli, Giovanni

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor  

E-Print Network [OSTI]

Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

Nikandrou, Paul

2009-01-01T23:59:59.000Z

122

Wind Power Career Chat  

SciTech Connect (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

123

Design and fabrication of a stress-managed Nb3Sn wind and react dipole  

E-Print Network [OSTI]

A new approach to high-field dipole design is being developed at Texas A&M University. The goal of the development is to facilitate the use of high-field conductors (Nb3 and Bi-2212) and to manage Lorentz stress and magnetization so that field...

Noyes, Patrick Daniel

2007-09-17T23:59:59.000Z

124

1 to be published in Wind Energy Many engineering systems incorporate prognostics and health management (PHM), which consists of technologies  

E-Print Network [OSTI]

1 to be published in Wind Energy ABSTRACT Many engineering systems incorporate prognostics exist for wind energy systems, they do not specifically quantify the value of decisions after: GHaddad@slb.com. 1. INTRODUCTION Wind energy is at the forefront of alternative energy sources. The US

Sandborn, Peter

125

Technical and management support for the development of Small Wind Systems. Fiscal year 1980 annual report, October 1, 1979-September 30, 1980  

SciTech Connect (OSTI)

The status and achievements of a program for the development, testing, and commercialization of wind energy systems rated under 100 kilowatts are described. The organization structure and task definition used to promote the production, marketing, and acceptance of small systems are described, and the Work Breakdown Structure under which the program is organized is detailed. Reports are given which describe the status of contracts funded by the Federal Wind Energy Program and managed by the Rocky Flats Wind Systems Program. These project reports, sequenced according to the Department of Energy Work Breakdown Structure, name the principal investigators involved, and discuss achievements and progress made during Fiscal Year 1980. Of fourty-four projects, seven were completed during the Fiscal Year. The Work Breakdown Structure Index details the organization sequence.

Not Available

1981-08-01T23:59:59.000Z

126

NREL Sheds Light on Integration Costs of Variable Generation and  

E-Print Network [OSTI]

, such as wind and solar energy, provide benefits such as reduced environmental impact, lack of fuel consumptionNREL Sheds Light on Integration Costs of Variable Generation and Cost-Causation Integration costs are generally manageable, but calculating costs is challenging. Renewable energy generation sources

127

Wind farm electrical system  

DOE Patents [OSTI]

An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

Erdman, William L.; Lettenmaier, Terry M.

2006-07-04T23:59:59.000Z

128

A Letter from Patrick Gilman: Wind Powering America Is Now Stakeholder Engagement and Outreach  

Broader source: Energy.gov [DOE]

Patrick Gilman, Wind Energy Deployment manager, explains why Wind Powering America's name is in the process of being changed.

129

E-Print Network 3.0 - air gap windings Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Physics ; Renewable Energy 76 Wind Power Variability, Its Cost, and Effect on Power Plant Emissions Summary: Wind Power Variability, Its Cost, and Effect on Power Plant...

130

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

131

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

of the U.S. DOE’s Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

2008-01-01T23:59:59.000Z

132

Community Wind: Once Again Pushing the Envelope of Project Finance  

E-Print Network [OSTI]

lease financing has been popular in the commercial solarlease financing in the wind sector due to wind power’s greater inter-year variability relative to solar (

bolinger, Mark A.

2011-01-01T23:59:59.000Z

133

Rf : Munoz, M.I., Barcellini F., Mollo, V. (2011). Collective elaboration of care for safety in radiotherapy: cooperative management of patient variability. In HEPS'2011 Healthcare Ergonomics  

E-Print Network [OSTI]

in radiotherapy: cooperative management of patient variability. In HEPS'2011 Healthcare Ergonomics and Patient of patient variability. Maria Isabel Munoz Ergonomics Laboratory Research Center on work Development (CRTD-EA 4132) 41 rue Gay Lussac 75005 Paris mi.munoz@free.fr Flore Barcellini1 Ergonomics Laboratory Research

Paris-Sud XI, Université de

134

Calibration of the Merrill-G.A.L.C.I.T. wind-tunnel, and a suggestion for a variable cross-section on a small high-speed wind-tunnel.  

E-Print Network [OSTI]

??Speed, power and flow inclination calibration tests run in the Merrill-GALCIT wind-tunnel are described and results presented. A description of the new balance-system is included.… (more)

Schwarzenbach, Jean Christophe

1942-01-01T23:59:59.000Z

135

Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.  

SciTech Connect (OSTI)

Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

Myrent, Noah J. [Purdue Center for Systems Integrity, Lafayette, IN; Kusnick, Joshua F. [Purdue Center for Systems Integrity, Lafayette, IN; Barrett, Natalie C. [Purdue Center for Systems Integrity, Lafayette, IN; Adams, Douglas E. [Purdue Center for Systems Integrity, Lafayette, IN; Griffith, Daniel Todd

2013-04-01T23:59:59.000Z

136

Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)  

SciTech Connect (OSTI)

Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

Robichaud, R.

2014-09-01T23:59:59.000Z

137

Economic and technical impacts of wind variability and intermittency on long-term generation expansion planning in the U.S  

E-Print Network [OSTI]

Electricity power systems are a major source of carbon dioxide emissions and are thus required to change dramatically under climate policy. Large-scale deployment of wind power has emerged as one key driver of the shift ...

Brun, Caroline Elisabeth Hénia

2011-01-01T23:59:59.000Z

138

Design and Test of DC Voltage Link Conversion System and Brushless Doubly-Fed Induction Generator for Variable-Speed Wind Energy Applications: August 1999--May 2003  

SciTech Connect (OSTI)

This report describes four low-cost alternative power converters for processing the power developed by a doubly fed wound-rotor induction generator for wind energy conversion systems.

Lipo, T.A.; Panda, D.; Zarko, D.

2005-11-01T23:59:59.000Z

139

Design and Test of a Variable Speed Wind Turbine System Employing a Direct Drive Axial Flux Synchronization Generator: 29 October 2002 - 31 December 2005  

SciTech Connect (OSTI)

The goal of this funded research project is the definition, analytical investigation, modeling, and prototype realization of a current-source conversion topology tailored to high-power wind turbines.

Lipo, T. A.; Tenca, P.

2006-07-01T23:59:59.000Z

140

AWEA Wind Project Operations and Maintenance and Safety Seminar  

Office of Energy Efficiency and Renewable Energy (EERE)

The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wind shear for large wind turbine generators at selected tall tower sites  

SciTech Connect (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

142

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

143

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy.  

E-Print Network [OSTI]

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy. Wind's variability does increase the day-to-day and minute-to- minute operating costs of a utility system because the wind variations do affect the operation of other plants. But investigations by utility

Massachusetts at Amherst, University of

144

Modeling of wind farm controllers Poul Srensen1  

E-Print Network [OSTI]

and dead band. Two types of wind farms are presented. The first using variable speed wind turbines with doubly fed induction generators and fixed speed wind turbines with active stall control. Keywords: wind the wind turbines have increased in size, the costs have been reduced, and the controllability developed

145

COMPARISON OF WIND AND WIND SHEAR CLIMATOLOGIES DERIVED FROM HIGH-RESOLUTION RADIOSONDES AND THE ECMWF MODEL  

E-Print Network [OSTI]

COMPARISON OF WIND AND WIND SHEAR CLIMATOLOGIES DERIVED FROM HIGH-RESOLUTION RADIOSONDES wind and its vertical gradient, i.e. wind-shear, is characterized as a function of climate region. For a better representation of the average atmospheric wind and shear and their variabilities, high

Stoffelen, Ad

146

Influence of the spatial variability of soil type and tree colonization on the dynamics of1 Molinia caerulea (L.) Moench in managed heathland2  

E-Print Network [OSTI]

are directly associated with the availability of soil mineral resources,50 which is a structuring factor1 Influence of the spatial variability of soil type and tree colonization on the dynamics of1 Molinia caerulea (L.) Moench in managed heathland2 3 Samira MOBAIEDa , Jean François PONGEb , Sandrine

Boyer, Edmond

147

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

2014-01-01T23:59:59.000Z

148

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

149

Wasted Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

why turbulent airflows are causing power losses and turbine failures in America's wind farms-and what to do about it April 1, 2014 Wasted Wind This aerial photo of Denmark's Horns...

150

Wind Energy  

Broader source: Energy.gov [DOE]

Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

151

The effect of high penetration of wind power on primary frequency control of power systems.  

E-Print Network [OSTI]

??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine… (more)

Motamed, Bardia

2013-01-01T23:59:59.000Z

152

E-Print Network 3.0 - aggregated wind power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and the increased wind power penetration in power systems the main trend for modern wind turbines is clearly... variable speed operation and grid connection via ... Source: Ris...

153

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network [OSTI]

Makarov, Y. , 2007: Wind Integration Issues and So- lutionsexpectations, and integration strategy for any wind powerwind climate and variability. Site design and operation, as well as market integration

Mansbach, David K.

2010-01-01T23:59:59.000Z

154

Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

2013-10-01T23:59:59.000Z

155

Distributed Wind Energy in Idaho  

SciTech Connect (OSTI)

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

156

Wind shear climatology for large wind turbine generators  

SciTech Connect (OSTI)

Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

1982-10-01T23:59:59.000Z

157

NREL Variability and Reserves Analysis for the Western Interconnect (Presentation)  

SciTech Connect (OSTI)

Additional variability and uncertainty increase reserve requirements. In this light, this presentation discusses how use of generation reserves can be optimized for managing variability and uncertainty. Conclusions of this presentation are: (1) Provided a method for calculating additional reserve requirements due to wind and solar production; (2) Method is based on statistical analysis of historical time series data; (3) Reserves are dynamic, produced for each hour; (4) Reserve time series are calculated from and synchronized to simulation data; (5) PROMOD can not model directly, but workarounds exist for regulation and spin; and (6) Other production modeling packages have varying capability for reserves modeling.

Milligan, M.; King, J.

2011-10-01T23:59:59.000Z

158

Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact on an ocean model  

E-Print Network [OSTI]

Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact by the QuikSCAT-SeaWinds scatterometer tandem mission (April­October 2003) and their impact on ocean model simulation. The diurnal variability captured by twice-daily scatterometer wind from the tandem mission

Talley, Lynne D.

159

Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications.  

E-Print Network [OSTI]

??As wind energy penetration levels increase, there is a growing interest in using storage devices to aid in managing the fluctuations in wind turbine output… (more)

Chahwan, John A.

2007-01-01T23:59:59.000Z

160

Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power  

E-Print Network [OSTI]

@et.aau.dk, csu@et.aau.dk, zch@et.aau.dk Abstract ­ Grid connected wind turbines are fluctuating power sources due on the power system small signal stability of wind turbines based on fixed-speed induction generators, doubly two interconnected power systems [9]. The wind power fluctuations produced by grid connected variable

Hu, Weihao

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Operational behavior of a double-fed permanent magnet generator for wind turbines  

E-Print Network [OSTI]

Greater efficiency in wind turbine systems is achieved by allowing the rotor to change its rate of rotation as the wind speed changes. The wind turbine system is decoupled from the utility grid and a variable speed operation ...

Reddy, Sivananda Kumjula

2005-01-01T23:59:59.000Z

162

Feasibility analysis of coordinated offshore wind project development in the U.S.  

E-Print Network [OSTI]

Wind energy is one of the cleanest and most available resources in the world, and advancements in wind technology are making it more cost effective. Though wind power is rapidly developing in many regions, its variable ...

Zhang, Mimi Q

2008-01-01T23:59:59.000Z

163

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

164

Western Wind Strategy: Addressing Critical Issues for Wind Deployment  

SciTech Connect (OSTI)

The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

Douglas Larson; Thomas Carr

2012-03-30T23:59:59.000Z

165

ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER  

E-Print Network [OSTI]

ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

Firestone, Jeremy

166

Definition of a 5-MW Reference Wind Turbine for Offshore System Development  

SciTech Connect (OSTI)

This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

2009-02-01T23:59:59.000Z

167

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

of difficulties to the power system operation. This is due to the fluctuating nature of wind generation to the management of wind generation. Accurate and reliable forecasting systems of the wind production are widely

Boyer, Edmond

168

Impact of DFIG wind turbines on transient stability of power systems a review  

E-Print Network [OSTI]

Impact of DFIG wind turbines on transient stability of power systems ­ a review Authors Na Abstract of wind farms are using variable speed wind turbines equipped with doubly-fed induction generators (DFIG) due to their advantages over other wind turbine generators. Therefore, the analysis of wind power

Pota, Himanshu Roy

169

Solar Wind Turbulence A Study of Corotating Interaction Regions at 1 AU  

E-Print Network [OSTI]

Solar Wind Turbulence A Study of Corotating Interaction Regions at 1 AU Je rey A. Tessein Department of Physics University of New Hampshire Durham, NH 03824 May 15, 2009 #12;Abstract The solar wind's rotation and the variability in the source of the solar wind, fast moving wind can crash into slow wind

170

20% Wind Energy 20% Wind Energy  

E-Print Network [OSTI]

(government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

Powell, Warren B.

171

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

172

Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics  

E-Print Network [OSTI]

Using a method for stochastic data analysis, borrowed from statistical physics, we analyze synthetic data from a Markov chain model that reproduces measurements of wind speed and power production in a wind park in Portugal. From the theoretical point of view we argue that our methods can be used to extract unknown functional relations between two variables. We first show that indeed our analysis retrieves the power performance curve, which yields the relationship between wind speed and power production and discuss how such procedure can be extended for extracting functional relationships between pairs of physical variables in general. Second, we show how specific features, such as the turbine rated wind speed or the descriptive wind speed statistics, can be related with the equations describing the evolution of power production and wind speed at single wind turbines.

Raischel, Frank; Lopes, Vitor V; Lind, Pedro G

2012-01-01T23:59:59.000Z

173

Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels  

E-Print Network [OSTI]

in integrating large levels of wind power generation. Theeconomics of large-scale wind power in a carbon constrainedThe effect of so- lar wind power variability on their

Mills, Andrew

2014-01-01T23:59:59.000Z

174

Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report  

SciTech Connect (OSTI)

To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

2012-07-15T23:59:59.000Z

175

RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES  

SciTech Connect (OSTI)

Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

Nichols, R.

2013-10-14T23:59:59.000Z

176

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

177

A survey on wind power ramp forecasting.  

SciTech Connect (OSTI)

The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

2011-02-23T23:59:59.000Z

178

Vertical Axis Wind Turbine Foundation parameter study  

SciTech Connect (OSTI)

The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

Lodde, P.F.

1980-07-01T23:59:59.000Z

179

Wind and Solar Energy Curtailment Practices (Presentation)  

SciTech Connect (OSTI)

This presentation to the fall 2014 technical meeting of the Utility Variable-Generation Integration Group summarizes experience with curtailment of wind and solar in the U.S.

Bird, L.; Cochran, J.; Wang, X.

2014-10-01T23:59:59.000Z

180

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

182

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network [OSTI]

of Variable Renewable Generation The report is accompaniedit Relates to Wind-Powered Generation. LBNL-XXXX. Berkeley:with Increased Wind Generation. LBNL-XXXX. Berkeley:

Eto, Joseph H.

2011-01-01T23:59:59.000Z

183

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

184

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

185

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

186

NREL: Wind Research - Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Below are upcoming events related to wind energy technology. January 2015 2015 Wind Energy Systems Engineering Workshop January 14 - 15, 2015 Boulder, CO The third NREL Wind...

187

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

188

Wind turbine spoiler  

DOE Patents [OSTI]

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

189

Wind turbine  

DOE Patents [OSTI]

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

190

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

E-Print Network [OSTI]

capacity for wind, although these extreme ramp-rates wereIn order to manage extreme events with 30% wind and 5% solarWind and Solar Integration Study indicates that extreme

Cappers, Peter

2012-01-01T23:59:59.000Z

191

Validation of Power Output for the WIND Toolkit  

SciTech Connect (OSTI)

Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

King, J.; Clifton, A.; Hodge, B. M.

2014-09-01T23:59:59.000Z

192

Maximum power tracking control scheme for wind generator systems  

E-Print Network [OSTI]

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena Lopez, Hugo Eduardo

2008-10-10T23:59:59.000Z

193

Maximum power tracking control scheme for wind generator systems  

E-Print Network [OSTI]

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena, Hugo Eduardo

2009-05-15T23:59:59.000Z

194

Control of Wind Turbines for Power Regulation and  

E-Print Network [OSTI]

Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation aspects of mathematical modelling of wind turbines, and especially the control methods suited for power

195

Sizing Storage and Wind Generation Capacities in Remote Power Systems  

E-Print Network [OSTI]

Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B capital investment costs of renewable energy technologies. Specifically, wind power represents the most and small power systems. However, the variability due to the stochastic nature of the wind resource

Victoria, University of

196

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

SciTech Connect (OSTI)

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

197

Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy  

SciTech Connect (OSTI)

The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

2011-10-01T23:59:59.000Z

198

Wind energy systems: program summary  

SciTech Connect (OSTI)

The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

None

1980-05-01T23:59:59.000Z

199

National Offshore Wind Energy Grid Interconnection Study  

SciTech Connect (OSTI)

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

2014-07-30T23:59:59.000Z

200

Microsoft Word - G0418 Mariah Wind CX  

Broader source: Energy.gov (indexed) [DOE]

Kevlyn Mathews Project Manager - TPCV-TPP-4 Proposed Action: Mariah Wind, LLC Small Generator Integration Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7...

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

WECC Variable Generation Planning Reference Book: Appendices  

SciTech Connect (OSTI)

The document titled “WECC Variable Generation Planning Reference Book”. This book is divided into two volumes; one is the main document (volume 1)and the other is appendices (volume 2). The main document is a collection of the best practices and the information regarding the application and impact of variables generation on power system planning. This volume (appendices) has additional information on the following topics: Probabilistic load flow problems. 2. Additional useful indices. 3. high-impact low-frequency (HILF) events. 4. Examples of wide-area nomograms. 5. Transmission line ratings, types of dynamic rating methods. 6. Relative costs per MW-km of different electric power transmission technologies. 7. Ultra-high voltage (UHV) transmission. 8.High voltage direct current (VSC-HVDC). 9. HVDC. 10. Rewiring of existing transmission lines. 11. High-temperature low sag (HTLS) conductors. 12. The direct method and energy functions for transient stability analysis in power systems. 13.Blackouts caused by voltage instability. 14. Algorithm for parameter continuation predictor-corrector methods. 15. Approximation techniques available for security regions. 16. Impacts of wind power on power system small signals stability. 17. FIDVR. 18. FACTS. 19. European planning standard and practices. 20. International experience in wind and solar energy sources. 21. Western Renewable Energy Zones (WREZ). 22. various energy storage technologies. 23. demand response. 24. BA consolidation and cooperation options. 25. generator power management requirements and 26. European planning guidelines.

Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.; Ma, Jian; Vyakaranam, Bharat

2013-05-13T23:59:59.000Z

202

Understanding Inertial and Frequency Response of Wind Power Plants: Preprint  

SciTech Connect (OSTI)

The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

2012-07-01T23:59:59.000Z

203

High resolution reanalysis of wind speeds over the British Isles for wind energy integration   

E-Print Network [OSTI]

The UK has highly ambitious targets for wind development, particularly offshore, where over 30GW of capacity is proposed for development. Integrating such a large amount of variable generation presents enormous challenges. ...

Hawkins, Samuel Lennon

2012-11-29T23:59:59.000Z

204

The RenewElec Project: Variable Renewable Energy and the Power System  

SciTech Connect (OSTI)

Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

Apt, Jay

2014-02-14T23:59:59.000Z

205

A Unified Framework for Reliability Assessment of Wind Energy Conversion Systems  

E-Print Network [OSTI]

1 A Unified Framework for Reliability Assessment of Wind Energy Conversion Systems Sebastian S a framework for assessing wind energy conversion systems (WECS) reliability in the face of external based on wind energy are: the impact of wind speed variability on system reliability [1]; WECS' reaction

Liberzon, Daniel

206

Dynamic behaviour of a DFIG wind turbine subjected to power system faults  

E-Print Network [OSTI]

of the dynamic interaction between variable speed DFIG wind turbines and the power system subjected by the Danish Transmission System Operator Energinet.dk. Keywords: doubly-fed induction generator (DFIG), wind turbines, the variable speed DFIG wind turbine with its dynamic behaviour and its ride-through capabil- ity

207

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

208

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Broader source: Energy.gov (indexed) [DOE]

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

209

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

210

Wind pro?le assessment for wind power purposes.  

E-Print Network [OSTI]

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional… (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

211

Wind Powering America Webinar: Wind Power Economics: Past, Present...  

Broader source: Energy.gov (indexed) [DOE]

Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November...

212

Community Wind Handbook/Understand Your Wind Resource and Conduct...  

Open Energy Info (EERE)

Wind Resource and Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook...

213

2015 Iowa Wind Power Conference and Iowa Wind Energy Association...  

Energy Savers [EERE]

2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

214

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect (OSTI)

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

215

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

Wiser, Ryan

2012-01-01T23:59:59.000Z

216

Abdel-Aziz, A. and H.C. Frey, "Quantification of Hourly Variability in Hourly Activity and NOx Emissions for Baseload Coal-Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management Association, Pittsburgh, PA, June 2003  

E-Print Network [OSTI]

Emissions for Baseload Coal- Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management emission factors from coal-fired power plants vary over time due to variation in coal composition fed or to evaluate the variability of NOx emission rates for coal-fired power plants of the 100 largest electric

Frey, H. Christopher

217

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

218

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

219

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

220

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

222

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

223

Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine  

E-Print Network [OSTI]

Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine-Frequency Control (LFC) is gradually shifted to Variable Speed Wind Turbines (VSWTs). In order to equip VSWT

Silva, Filipe Faria Da

224

Impacts of large quantities of wind energy on the electric power system  

E-Print Network [OSTI]

Wind energy has been surging on a global scale. Significant penetration of wind energy is expected to take place in the power system, bringing new challenges because of the variability and uncertainty of this renewable ...

Yao, Yuan, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

225

Wind Farm Monitoring at Lake Benton II Wind Power Project - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-08-275  

SciTech Connect (OSTI)

Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability nature of wind power. These data are used for many research and analyses activities consistent with the Wind Program mission: Establish a database of long-term wind power similar to other long-term renewable energy resource databases (e.g. solar irradiance and hydrology); produce meaningful statistics about long-term variation of wind power, spatial and temporal diversity of wind power, and the correlation of wind power, other renewable energy resources, and utility load; provide high quality, realistic wind power output data for system operations impact studies and wind plant and forecasting model validation.

Gevorgian, V.

2014-06-01T23:59:59.000Z

226

Western Wind and Solar Integration Study  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. It was initiated in 2007 to examine the operational impact of up to 35% energy penetration of wind, photovoltaics (PV), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming (see study area map). WestConnect also includes utilities in California, but these were not included because California had already completed a renewable energy integration study for the state. This study was set up to answer questions that utilities, public utilities commissions, developers, and regional planning organizations had about renewable energy use in the west: (1) Does geographic diversity of renewable energy resource help mitigate variability; (2) How do local resources compare to out-of-state resources; (3) Can balancing area cooperation help mitigate variability; (4) What is the role and value of energy storage; (5) Should reserve requirements be modified; (6) What is the benefit of forecasting; and (7) How can hydropower help with integration of renewables? The Western Wind and Solar Integration Study is sponsored by the U.S. Department of Energy (DOE) and run by NREL with WestConnect as a partner organization. The study follows DOE's 20% Wind Energy by 2030 report, which did not find any technical barriers to reaching 20% wind energy in the continental United States by 2030. This study and its partner study, the Eastern Wind Integration and Transmission Study, performed a more in-depth operating impact analysis to see if 20% wind energy was feasible from an operational level. In DOE/NREL's analysis, the 20% wind energy target required 25% wind energy in the western interconnection; therefore, this study considered 20% and 30% wind energy to bracket the DOE analysis. Additionally, since solar is rapidly growing in the west, 5% solar was also considered in this study. The goal of the Western Wind and Solar Integration Study is to understand the costs and operating impacts due to the variability and uncertainty of wind, PV, and CSP on the grid. This is mainly an operations study, (rather than a transmission study), although different scenarios model different transmission build-outs to deliver power. Using a detailed power system production simulation model, the study identifies operational impacts and challenges of wind energy penetration up to 30% of annual electricity consumption.

Lew, D.; Piwko, R.; Jordan, G.; Miller, N.; Clark, K.; Freeman, L.; Milligan, M.

2011-01-01T23:59:59.000Z

227

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

228

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

229

The National Wind Technology Center  

SciTech Connect (OSTI)

Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

1994-07-01T23:59:59.000Z

230

IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2  

SciTech Connect (OSTI)

Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

Lantz, E.; Wiser, R.; Hand, M.

2012-05-01T23:59:59.000Z

231

Commonwealth Wind Incentive Program – Micro Wind Initiative  

Broader source: Energy.gov [DOE]

Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

232

Analysis of wind power for battery charging  

SciTech Connect (OSTI)

One type of wind-powered battery charging will be explored in this paper. It consists of a wind turbine driving a permanent magnet alternator and operates at variable speed. The alternator is connected to a battery bank via a rectifier. The characteristic of the system depends on the wind turbine, the alternator, and the system configuration. If the electrical load does not match the wind turbine, the performance of the system will be degraded. By matching the electrical load to the wind turbine, the system can be improved significantly. This paper analyzes the properties of the system components. The effects of parameter variation and the system configuration on the system performance are investigated. Two basic methods of shaping the torque-speed characteristic of the generator are presented. The uncompensated as well as the compensated systems will be discussed. Control strategies to improve the system performance will be explored. Finally, a summary of the paper will be presented in the last section.

Muljadi, E.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (United States); Gevorgian, V. [University of Armenia, Yerevan (Armenia). State Engineering

1995-11-01T23:59:59.000Z

233

Wind energy bibliography  

SciTech Connect (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

234

Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

235

Dual-speed wind turbine generation  

SciTech Connect (OSTI)

Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)] [Flowind Corp., San Rafael, CA (United States)

1996-10-01T23:59:59.000Z

236

Use of Slip Ring Induction Generator for Wind Power Generation  

E-Print Network [OSTI]

Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

K Y Patil; D S Chavan

237

Module Handbook Specialisation Wind Energy  

E-Print Network [OSTI]

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

238

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

SciTech Connect (OSTI)

Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

2008-05-01T23:59:59.000Z

239

Stochastic Search with an Observable State Variable Lauren A. Hannah  

E-Print Network [OSTI]

is an example: a wind farm manager must pledge how much energy she will provide to a utility company an hour, the difference is lost. The objective function depends on the future wind and market price, both unknown. The last 24 hours of wind and market prices, time of day and time of year all contain information about

Powell, Warren B.

240

Modeling the Benefits of Storage Technologies to Wind Power  

SciTech Connect (OSTI)

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Regulatory and technical barriers to wind energy integration in northeast China  

E-Print Network [OSTI]

China leads the world in installed wind capacity, which forms an integral part of its long-term goals to reduce the environmental impacts of the electricity sector. This primarily centrally-managed wind policy has concentrated ...

Davidson, Michael (Michael Roy)

2014-01-01T23:59:59.000Z

242

Wind Resource Assessment in Europe Using Emergy  

E-Print Network [OSTI]

mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

2014-01-01T23:59:59.000Z

243

Appendix I3-1 to Wind HUI Initiative 1: AWST-WindNET-Phase 1 Final Report  

SciTech Connect (OSTI)

This report is an appendix to the Hawaii WindHUI efforts to develop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET Phase 1 efforts on the Big Island of Hawaii and includes descriptions of modeling methodologies, use of field validation data, results and recommendations. The objective of the WindNET project was to investigate the improvement that could be obtained in short-term wind power forecasting for wind generation facilities operating on the island grids operated by Hawaiian Electric Companies through the use of atmospheric sensors deployed at targeted locations. WindNET is envisioned as a multiphase project that will address the short-term wind forecasting issues of all of the wind generation facilities on the all of the Hawaiian Electric Companies' island grid systems. The first phase of the WindNET effort (referred to as WindNET-1) was focused on the wind generation facilities on the Big Island of Hawaii. With complex terrain and marine environment, emphasis was on improving the 0 to 6 hour forecasts of wind power ramps and periods of wind variability, with a particular interest in the intra-hour (0-1 hour) look-ahead period. The WindNET project was built upon a foundation that was constructed with the results from a previously completed observation targeting study for the Big Island that was conducted as part of a project supported by the National Renewable Energy Laboratory (NREL) and interactions with the western utilities. The observational targeting study provided guidance on which variables to measure and at what locations to get the most improvement in forecast performance at a target forecast site. The recommendations of the observation targeting study were based on the application two techniques: (1) an objective method called ensemble sensitivity analysis (ESA) (Ancell and Hakim, 2007; Torn and Hakim, 2008; Zack et al, 2010); and (2) a subjective method based on a diagnostic analysis of large ramp events. The analysis was completed for both the wind farm on the southern tip of the Big Island and on the northern tip of the island. The WindNET project was designed to also deploy sensors to validate the Big Island observational targeting study and enhance operator's understanding of predominate causes of wind variability conditions at the wind facilities. Compromises had to be made with the results from the observation targeting study to accommodate project resource limitations, availability of suitable sites, and other factors. To focus efforts, field sensor deployment activities focused on the wind facility on the southern point of Big Island.

John Zack

2012-07-15T23:59:59.000Z

244

2013 Wind Week | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWindProject Management3 Awards20133 Wind Week

245

Howard County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

246

The wind power probability density forecast problem can be formulated as: forecast the wind power pdf at time step t for each look-ahead time step t+k of a given time-horizon  

E-Print Network [OSTI]

The wind power probability density forecast problem can be formulated as: forecast the wind power ahead) knowing a set of explanatory variables (e.g. numerical weather predictions (NWPs), wind power measured values). Translating this sentence to an equation, we have: where pt+k is the wind power

Kemner, Ken

247

E-Print Network 3.0 - advanced wind turbine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

models and advanced control strategies... .139) Track: Technical VARIABLE SPEED WIND TURBINES - FAULT RIDE-THROUGH AND GRID SUPPORT CAPABILITIES... is on the fault ride through...

248

Wind Bias from Sub-optimal Estimation Due to Geophysical Modeling Error Paul E. Johnson and David G . Long  

E-Print Network [OSTI]

Wind Bias from Sub-optimal Estimation Due to Geophysical Modeling Error -Wind I Paul E. Johnson (which relates the wind to the normalized radar cross section, NRCS, of the ocean surface) is uncertainty in the NRCS for given wind conditions. When the estimated variability is in- cluded in the maximum likelihood

Long, David G.

249

A Combined High Gain Observer and High-Order Sliding Mode Controller for a DFIG-Based Wind  

E-Print Network [OSTI]

simulator FAST. Index Terms--Wind turbine (WT), Doubly-Fed Induction Generator (DFIG), high gain observer using the NREL wind turbine simulator FAST. II. WIND TURBINE MODELING The global scheme for a grid-connected shaft speed and thus maintaining optimal power generation. The more variable speed wind turbines

Paris-Sud XI, Université de

250

Paper No. 2006-JSC-397 Agarwal Design Loads for an Offshore Wind Turbine using Statistical Extrapolation from Limited Field Data  

E-Print Network [OSTI]

Paper No. 2006-JSC-397 Agarwal Design Loads for an Offshore Wind Turbine using Statistical a field measurement campaign. At the Blyth offshore wind farm in the United Kingdom, a 2MW wind turbine of variability in the parameters for load distribution is investigated. KEY WORDS: Offshore wind turbines

Manuel, Lance

251

Estimation of Wind Speed in Connection to a Wind Turbine  

E-Print Network [OSTI]

Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

252

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network [OSTI]

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

253

Wind Power Outlook 2004  

SciTech Connect (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

254

Wind Resource Maps (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

255

Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable  

E-Print Network [OSTI]

-ahead wind commitment problem." A wind farm manager must pledge how much energy she will provide to a utility objective: the last 24 hours of wind and market prices, time of day and time of year all contain information problem and the hour ahead wind commit- ment problem. Our results show Dirichlet process weights can offer

Powell, Warren B.

256

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network [OSTI]

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until… (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

257

NREL: Wind Research - Boosting Wind Plant Power Output by 4%...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting Wind Plant Power Output by 4%-5% through Coordinated Turbine Controls July 30, 2014 Wind plant underperformance has plagued wind plant developers for years. To address...

258

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

259

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

260

Comfort-constrained distributed heat pump management  

E-Print Network [OSTI]

This paper introduces the design of a demand response network control strategy aimed at thermostatically controlled electric heating and cooling systems in buildings. The method relies on the use of programmable communicating thermostats, which are able to provide important component-level state variables to a system-level central controller. This information can be used to build power density distribution functions for the aggregate heat pump load. These functions lay out the fundamental basis for the methodology by allowing for consideration of customer-level constraints within the system-level decision making process. The proposed strategy is then implemented in a computational model to simulate a distribution of buildings, where the aggregate heat pump load is managed to provide the regulation services needed to successfully integrate wind power generators. Increased exploitation of wind resources will place similarly themed ancillary services in high-demand, traditionally provided by dispatchable energy ...

Parkinson, Simon; Crawford, Curran; Djilali, Ned

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 503523  

E-Print Network [OSTI]

with such spectral models can be in turn highly variable for different realizations. Turbine load and performance a wind velocity field over spatial dimensions on the scale of the turbine rotor diameter in accordance of uncertainty in inflow turbulence to wind turbine loads Korn Saranyasoontorn, Lance ManuelĂ? Department of Civil

Manuel, Lance

262

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe  

E-Print Network [OSTI]

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe Matthew J. Swann;Abstract Flood and wind damage to property and livelihoods resulting from extreme precipitation events variability of these extreme events can be closely related to the large-scale atmospheric circulation

Feigon, Brooke

263

Characteristics of Wind Turbines Under Normal and Fault Conditions: Preprint  

SciTech Connect (OSTI)

This paper investigates the characteristics of a variable-speed wind turbine connected to a stiff or weak grid under normal and fault conditions and the role of reactive power compensation.

Muljadi, E.; Butterfield, C. P.; Parsons, B.; Ellis, A.

2007-02-01T23:59:59.000Z

264

Western Wind and Solar Integration Study Phase 2 (Fact Sheet)  

SciTech Connect (OSTI)

This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

Not Available

2013-09-01T23:59:59.000Z

265

Western Wind and Solar Integration Study: Phase 2 (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

2013-09-01T23:59:59.000Z

266

Dynamic simulation of dual-speed wind turbine generation  

SciTech Connect (OSTI)

Induction generators have been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness, and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using two induction generators with two different rated speeds. With single- speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. The operation at maximum Cp can occur only at a single wind speed. However, if the wind speed varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind-speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative to capture more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine will be investigated. One type of control algorithm for dual- speed operation is proposed. Results from a dynamic simulation will be presented to show how the control algorithm works and how power, current and torque of the system vary as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

267

Energy Storage Management for VG Integration (Presentation)  

SciTech Connect (OSTI)

This presentation describes how you economically manage integration costs of storage and variable generation.

Kirby, B.

2011-10-01T23:59:59.000Z

268

Next-Generation Wind Technology  

Broader source: Energy.gov [DOE]

The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

269

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

Bolinger, Mark

2013-01-01T23:59:59.000Z

270

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

The Effects of Integrating Wind Power on Transmission Systemat Various Levels of Wind Power Capacity Penetration 201242 6. Wind Power Price

Wiser, Ryan

2014-01-01T23:59:59.000Z

271

Wind Farms in North America  

E-Print Network [OSTI]

About Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University2002) Economic Impacts of Wind Power in Kittitas County, Wa.

Hoen, Ben

2014-01-01T23:59:59.000Z

272

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

273

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

274

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

275

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

276

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

Massachusetts at Amherst, University of

277

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

278

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

279

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

Wiser, Ryan

2010-01-01T23:59:59.000Z

280

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

Bolinger, Mark

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

282

WIND DATA REPORT FALMOUTH, MA  

E-Print Network [OSTI]

WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

283

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

284

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

285

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Bolinger, Mark

2013-01-01T23:59:59.000Z

286

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

Bolinger, Mark

2013-01-01T23:59:59.000Z

287

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

288

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

Wiser, Ryan

2012-01-01T23:59:59.000Z

289

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

Wiser, Ryan

2010-01-01T23:59:59.000Z

290

1112 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 4, DECEMBER 2010 Short-Horizon Prediction of Wind Power  

E-Print Network [OSTI]

(wind energy in particular) has grown sig- nificantly in the last years. As a relatively new industry, wind energy must address numerous questions, including providing accurate short-term prediction of wind of the generated power [1]. Long-term wind speed and power prediction is of interest to management of energy

Kusiak, Andrew

291

Wind energy information guide  

SciTech Connect (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

292

Building Toward a Small Wind Turbine Site Assessor Credential (Presentation)  

SciTech Connect (OSTI)

Proper site assessment is integral to the development of a successful small wind project. Without a small wind site assessor certification program, consumers, including state incentive program managers, lack a benchmark for differentiating between qualified and nonqualified site assessors. A small wind site assessor best practice manual is being developed as a resource for consumers until a credential program becomes available. This presentation describes the purpose, proposed content, and the National Renewable Energy Laboratory's approach to the development of such a manual.

Sinclair, K.

2013-09-01T23:59:59.000Z

293

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

294

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

295

Wind Power: A Clean and Renewable Supplement to the World's Energy Mix Michael Treadow  

E-Print Network [OSTI]

Wind Power: A Clean and Renewable Supplement to the World's Energy Mix Michael Treadow May 8, 2006 WWS 402d Junior Paper ­ Final Draft Abstract: Wind power harbors the potential to become a key to wind power's growth relate to its remoteness and variability, but neither is an ob- stacle too great

Mauzerall, Denise

296

Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants  

E-Print Network [OSTI]

presents a simulation model of a wind power plant based on a MW-level variable speed wind turbineAncillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants Weihao Hu with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory

Chen, Zhe

297

LQG control of horizontal wind turbines for blades and tower loads alleviation  

E-Print Network [OSTI]

LQG control of horizontal wind turbines for blades and tower loads alleviation A. Pintea*, N of power produced by two bladed horizontal variable speed wind turbines. The proposed controller ensures oscillations and with the tower bending tendency. Keywords: LQG control, Wind turbines, Multi-objective control

Paris-Sud XI, Université de

298

High-Order Sliding Mode Control of a DFIG-Based Wind Turbine  

E-Print Network [OSTI]

High-Order Sliding Mode Control of a DFIG-Based Wind Turbine for Power Maximization and Grid Fault tolerance of a Doubly-Fed Induction Generator (DFIG)-based Wind Turbine (WT). These variable speed systems have several advantages over the traditional wind turbine operating methods, such as the reduction

Paris-Sud XI, Université de

299

A Comparative Study of Time-Frequency Representations for Fault Detection in Wind Turbine  

E-Print Network [OSTI]

A Comparative Study of Time-Frequency Representations for Fault Detection in Wind Turbine El of wind energy, minimization and prediction of maintenance operations in wind turbine is of key importance. In variable speed turbine generator, advanced signal processing tools are required to detect and diagnose

Paris-Sud XI, Université de

300

Risk-Based Strategies for Wind/Pumped-Hydro Coordination under Electricity Markets  

E-Print Network [OSTI]

be reduced by coupling the wind farm with energy storage facilities, thus constituting a virtual power plant energy sources (RES). However, the operation of RES units such as wind or solar plants presents the inconve- nience of being intrinsically dependent on the variability of the wind or solar resource

Boyer, Edmond

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ris-R-1182(EN) Equalizing Effects of the Wind Energy  

E-Print Network [OSTI]

Risø-R-1182(EN) Equalizing Effects of the Wind Energy Production in Northern Europe Determined from Reanalysis Data Gregor Giebel Risø National Laboratory, Roskilde May 2000 #12;Abstract The wind energy of wind energy into the grid, since the generation is less variable, when it is combined from a larger

302

Estimating Wind Turbine Parameters and Quantifying Their Effects on Dynamic Behavior  

E-Print Network [OSTI]

variable-speed wind turbines in grid stability studies. Often the values for model parameters are poorly parameters on the dynamic behavior of wind turbine generators. A parameter estimation process is then used [1], [2]. Accordingly, the impact of wind turbine generators (WTGs) on power system dynamic

Hiskens, Ian A.

303

Coupled dynamic analysis of floating offshore wind farms  

E-Print Network [OSTI]

it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible...

Shim, Sangyun

2009-05-15T23:59:59.000Z

304

Competitive Wind Grants (Vermont)  

Broader source: Energy.gov [DOE]

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

305

Residential Wind Power  

E-Print Network [OSTI]

This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

Willis, Gary

2011-12-16T23:59:59.000Z

306

See the Wind  

Broader source: Energy.gov (indexed) [DOE]

See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

307

Talbot County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

308

Wind Energy Act (Maine)  

Broader source: Energy.gov [DOE]

The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

309

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

Wiser, Ryan

2012-01-01T23:59:59.000Z

310

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

Bolinger, Mark

2013-01-01T23:59:59.000Z

311

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration Study—Final Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

312

Criterion for Generation of Winds from Magnetized Accretion Disks  

E-Print Network [OSTI]

An analytic model is proposed for non-radiating accretion flows accompanied by up or down winds in a global magnetic field. Physical quantities in this model solution are written in variable-separated forms, and their radial parts are simple power law functions including one parameter for wind strength. Several, mathematically equivalent but physically different expressions of the criterion for wind generation are obtained. It is suggested also that the generation of wind is a consequence of the intervention of some mechanism that redistributes the locally available gravitational energy, and that the Bernoulli sum can be a good indicator of the existence of such mechanisms.

Osamu Kaburaki

2001-08-29T23:59:59.000Z

313

Polarimetric modeling of corotating interaction regions (CIRs) threading massive-star winds  

E-Print Network [OSTI]

Massive star winds are complex radiation-hydrodynamic (sometimes magnetohydrodynamic) outflows that are propelled by their enormously strong luminosities. The winds are often found to be structured and variable, but can also display periodic or quasi-periodic behavior in a variety of wind diagnostics. The regular variations observed in putatively single stars, especially in UV wind lines, have often been attributed to corotating interaction regions (CIRs) like those seen in the solar wind. We present light curves for variable polarization from winds with CIR structures. We develop a model for a time-independent CIR based on a kinematical description. Assuming optically thin electron scattering, we explore the range of polarimetric light curves that result as the curvature, latitude, and number of CIRs are varied. We find that a diverse array of variable polarizations result from an exploration of cases. The net polarization from an unresolved source is weighted more toward the inner radii of the wind. Given t...

Ignace, R; Proulx-Giraldeau, F

2015-01-01T23:59:59.000Z

314

Wind Energy Stakeholder Outreach and Education  

SciTech Connect (OSTI)

Since August of 2001, Bob Lawrence and Associates, Inc. (BL&A) has applied its outreach and support services to lead a highly effective work effort on behalf of Wind Powering America (WPA). In recent years, the company has generated informative brochures and posters, researched and created case studies, and provided technical support to key wind program managers. BL&A has also analyzed Lamar, Colorado’s 162MW wind project and developed a highly regarded 'wind supply chain' report and outreach presentation. BL&A’s efforts were then replicated to characterize similar supply chain presentations in New Mexico and Illinois. Note that during the period of this contract, the recipient met with members of the DOE Wind Program a number of times to obtain specific guidance on tasks that needed to be pursued on behalf of this grant. Thus, as the project developed over the course of 5 years, the recipient varied the tasks and emphasis on tasks to comply with the on-going and continuously developing requirements of the Wind Powering America Program. This report provides only a brief summary of activities to illustrate the recipient's work for advancing wind energy education and outreach from 2001 through the end of the contract period in 2006. It provides examples of how the recipient and DOE leveraged the available funding to provide educational and outreach work to a wide range of stakeholder communities.

Bob Lawrence; Craig Cox; Jodi Hamrick; DOE Contact - Keith Bennett

2006-07-27T23:59:59.000Z

315

Kent County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

316

Review of Variable Generation Integration Charges  

SciTech Connect (OSTI)

The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

2013-03-01T23:59:59.000Z

317

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

Wiser, Ryan

2010-01-01T23:59:59.000Z

318

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network [OSTI]

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

319

Wind power outlook 2006  

SciTech Connect (OSTI)

This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

anon.

2006-04-15T23:59:59.000Z

320

Wind Economic Development (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

Not Available

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mathematical and Computational Applications, Vol. 18, No. 3, pp. 408-420, 2013 MODELING AND CONTROL OF A VARIABLE SPEED  

E-Print Network [OSTI]

as variable speed variable pitch angle wind turbine due to its advantages in efficiency and the structure that is close to the ideal power curve where the energy efficiency is maximized below the nominal wind speed of 11 / and the power is limited to the nominal value above the nominal wind speed. Turbsim

Yanikoglu, Berrin

322

Alternative Approaches to Calculate Benefits of an Energy Imbalance Market With Wind and Solar Energy: Preprint  

SciTech Connect (OSTI)

The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.

Kirby, B.; King, J.; Milligan, M.

2012-06-01T23:59:59.000Z

323

Operating Reserves and Variable Generation  

SciTech Connect (OSTI)

This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

Ela, E.; Milligan, M.; Kirby, B.

2011-08-01T23:59:59.000Z

324

Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind  

E-Print Network [OSTI]

Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

Nebraska-Lincoln, University of

325

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

326

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

327

Implications of geographic diversity for short-term variability and predictability of solar power.  

E-Print Network [OSTI]

Term variability of solar power,” Lawrence Berkeley Nationaldue to wind and solar power,” Environmental Science &and Predictability of Solar Power Andrew D. Mills and Ryan

Mills, Andrew

2013-01-01T23:59:59.000Z

328

On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications  

E-Print Network [OSTI]

On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications Korn, Austin, TX 78712 In stochastic simulation of inflow turbulence random fields for wind turbine applica models can be in turn highly variable. Turbine load and performance variability could as well result

Manuel, Lance

329

Solano Wind Project Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergynotSola60County WindI

330

The economic value of wind energy  

SciTech Connect (OSTI)

Today's wholesale electricity market passes intermittency costs to the ratepayer in the form of increased overall system cost, a hidden subsidy. Market managers need a competition that correctly allocates cost and provides consumers with the lowest price. One solution is for buyers to contract wind farms to provide energy on demand. (author)

Pavlak, Alex

2008-10-15T23:59:59.000Z

331

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

332

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

333

Wind energy applications guide  

SciTech Connect (OSTI)

The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

anon.

2001-01-01T23:59:59.000Z

334

Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint  

SciTech Connect (OSTI)

Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

Zhang, J.; Hodge, B. M.; Florita, A.

2013-05-01T23:59:59.000Z

335

Fluctuations of offshore wind generation -Statistical modelling , L.E.A. Christensen, H. Madsen  

E-Print Network [OSTI]

Fluctuations of offshore wind generation - Statistical modelling P. Pinson , L.E.A. Christensen, H of power fluctuations at large offshore wind farms has a significant impact on the control and management of the wind power output. This paper con- centrates on the statistical modelling of offshore power fluctu

336

Large Scale Wind Turbine Siting Map Report NJ Department of Environmental Protection  

E-Print Network [OSTI]

Large Scale Wind Turbine Siting Map Report NJ Department of Environmental Protection September 8 Jersey Department of Environmental Protection's (NJDEP) "Large Scale Wind Turbine Siting Map Management rules to address the development and permitting of wind turbines in the coastal zone

Holberton, Rebecca L.

337

QUANTITATIVE DAMAGE ASSESSMENT OF HYBRID COMPOSITE WIND TURBINE BLADES BY ENERGY BASED ACOUSTIC EMISSION SOURCE  

E-Print Network [OSTI]

QUANTITATIVE DAMAGE ASSESSMENT OF HYBRID COMPOSITE WIND TURBINE BLADES BY ENERGY BASED ACOUSTIC in the wind turbine blade. It was tried to apply a new source location method, which has a developed algorithm assessment, source location, wind turbine blade, hybrid composites INTRODUCTION Structural health management

Boyer, Edmond

338

Wind Program: Wind Vision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind PowerWind

339

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

340

Wind tower service lift  

DOE Patents [OSTI]

An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

2011-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Western Wind and Solar Integration Study (Fact Sheet)  

SciTech Connect (OSTI)

Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

Not Available

2012-09-01T23:59:59.000Z

342

Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation  

SciTech Connect (OSTI)

With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.

Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Ma, Jian; Samaan, Nader A.; Diao, Ruisheng; Malhara, Sunita V.; Guttromson, Ross T.; Du, Pengwei; Sastry, Chellury

2010-02-01T23:59:59.000Z

343

Identifying Wind and Solar Ramping Events: Preprint  

SciTech Connect (OSTI)

Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

Florita, A.; Hodge, B. M.; Orwig, K.

2013-01-01T23:59:59.000Z

344

the risk issue of wind measurement for wind turbine operation  

E-Print Network [OSTI]

Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

Leu, Tzong-Shyng "Jeremy"

345

NREL: Wind Research - WindPACT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are...

346

Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms  

E-Print Network [OSTI]

Fluctuations represent a major challenge for the incorporation of electric power from large wind-farms into power grids. Wind farm power output fluctuates strongly in time, over various time scales. Understanding these fluctuations, especially their spatio-temporal characteristics, is particularly important for the design of backup power systems that must be readily available in conjunction with wind-farms. In this work we analyze the power fluctuations associated with the wind-input variability at scales between minutes to several hours, using large eddy simulations (LES) of extended wind-parks, interacting with the atmospheric boundary layer. LES studies enable careful control of parameters and availability of wind-velocities simultaneously across the entire wind-farm. The present study focuses on neutral atmospheric conditions and flat terrain, using actuator-disk representations of the individual wind-turbines. We consider power from various aggregates of wind-turbines such as the total average power sign...

Stevens, Richard J A M

2014-01-01T23:59:59.000Z

347

Systems and methods for an integrated electrical sub-system powered by wind energy  

DOE Patents [OSTI]

Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

2008-06-24T23:59:59.000Z

348

Scoping and Framing Social Opposition to U.S. Wind Projects (Poster)  

SciTech Connect (OSTI)

Historical barriers to wind power include cost and reliability. However, rapid growth has increased the footprint of wind power in the United States, and some parts of the country have begun to observe conflicts between local communities and wind energy development. Thus, while questions of economic viability and the ability of grid operators to effectively manage wind energy have become less significant, community acceptance issues have emerged as a barrier to wind and associated transmission projects. Increasing community acceptance is likely to be a growing challenge as the wind industry seeks electricity sector penetration levels approaching 20%.

Lantz, E.; Flowers, L.

2010-05-01T23:59:59.000Z

349

National Wind Distance Learning Collaborative  

SciTech Connect (OSTI)

Executive Summary The energy development assumptions identified in the Department of Energy's position paper, 20% Wind Energy by 2030, projected an exploding demand for wind energy-related workforce development. These primary assumptions drove a secondary set of assumptions that early stage wind industry workforce development and training paradigms would need to undergo significant change if the workforce needs were to be met. The current training practice and culture within the wind industry is driven by a relatively small number of experts with deep field experience and knowledge. The current training methodology is dominated by face-to-face, classroom based, instructor present training. Given these assumptions and learning paradigms, the purpose of the National Wind Distance Learning Collaborative was to determine the feasibility of developing online learning strategies and products focused on training wind technicians. The initial project scope centered on (1) identifying resources that would be needed for development of subject matter and course design/delivery strategies for industry-based (non-academic) training, and (2) development of an appropriate Learning Management System (LMS). As the project unfolded, the initial scope was expanded to include development of learning products and the addition of an academic-based training partner. The core partners included two training entities, industry-based Airstreams Renewables and academic-based Lake Area Technical Institute. A third partner, Vision Video Interactive, Inc. provided technology-based learning platforms (hardware and software). The revised scope yielded an expanded set of results beyond the initial expectation. Eight learning modules were developed for the industry-based Electrical Safety course. These modules were subsequently redesigned and repurposed for test application in an academic setting. Software and hardware developments during the project's timeframe enabled redesign providing for student access through the use of tablet devices such as iPads. Early prototype Learning Management Systems (LMS) featuring more student-centric access and interfaces with emerging social media were developed and utilized during the testing applications. The project also produced soft results involving cross learning between and among the partners regarding subject matter expertise, online learning pedagogy, and eLearning technology-based platforms. The partners believe that the most significant, overarching accomplishment of the project was the development and implementation of goals, activities, and outcomes that significantly exceeded those proposed in the initial grant application submitted in 2009. Key specific accomplishments include: (1) development of a set of 8 online learning modules addressing electrical safety as it relates to the work of wind technicians; (3) development of a flexible, open-ended Learning Management System (LMS): (3) creation of a robust body of learning (knowledge, experience, skills, and relationships). Project leaders have concluded that there is substantial resource equity that could be leverage and recommend that it be carried forward to pursue a Next Stage Opportunity relating to development of an online core curriculum for institute and community college energy workforce development programs.

Dr. James B. Beddow

2013-03-29T23:59:59.000Z

350

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

351

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

352

Operational risk of a wind farm energy production by Extreme Value Theory and Copulas  

E-Print Network [OSTI]

In this paper we use risk management techniques to evaluate the potential effects of those operational risks that affect the energy production of a wind farm. We concentrate our attention on three major risk factors: wind speed uncertainty, wind turbine reliability and interactions of wind turbines due mainly to their placement. As a first contribution, we show that the Weibull distribution, commonly used to fit recorded wind speed data, underestimates rare events. Therefore, in order to achieve a better estimation of the tail of the wind speed distribution, we advance a Generalized Pareto distribution. The wind turbines reliability is considered by modeling the failures events as a compound Poisson process. Finally, the use of Copula able us to consider the correlation between wind turbines that compose the wind farm. Once this procedure is set up, we show a sensitivity analysis and we also compare the results from the proposed procedure with those obtained by ignoring the aforementioned risk factors.

D'Amico, Guglielmo; Prattico, Flavio

2014-01-01T23:59:59.000Z

353

Wind-To-Hydrogen Energy Pilot Project  

SciTech Connect (OSTI)

WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

2009-04-24T23:59:59.000Z

354

wind_guidance  

Broader source: Energy.gov [DOE]

Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

355

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

356

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

357

Wind Wave Float  

Broader source: Energy.gov (indexed) [DOE]

Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov Purpose, Objectives, & Integration Project...

358

Talkin’ Bout Wind Generation  

Broader source: Energy.gov [DOE]

The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

359

Wind Engineering & Natural Disaster Mitigation  

E-Print Network [OSTI]

Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

Denham, Graham

360

Wind Energy and Spatial Technology  

E-Print Network [OSTI]

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

Schweik, Charles M.

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Proceedings Nordic Wind Power Conference  

E-Print Network [OSTI]

Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

362

Shocks and Wind Bubbles Around Energetic Pulsars  

E-Print Network [OSTI]

The Crab Nebula demonstrates that neutron stars can interact with their environments in spectacular fashion, their relativistic winds generating nebulae observable across the electromagnetic spectrum. At many previous conferences, astronomers have discussed, debated and puzzled over the complicated structures seen in the Crab, but have been limited to treating most other pulsar wind nebulae (PWNe) as simple calorimeters for a pulsar's spin-down energy. However, with the wealth of high-quality data which have now become available, this situation has changed dramatically. I here review some of the main observational themes which have emerged from these new measurements. Highlights include the ubiquity of pulsar termination shocks, the unambiguous presence of relativistic jets in PWNe, complicated time variability seen in PWN structures, and the use of bow shocks to probe the interaction of pulsar winds with the ambient medium.

Bryan M. Gaensler

2004-05-14T23:59:59.000Z

363

Wind Power Today, 2010, Wind and Water Power Program (WWPP)  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

Not Available

2010-05-01T23:59:59.000Z

364

American Wind Energy Association Wind Energy Finance and Investment...  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

365

Wind Powering America's Wind for Schools Team Honored with Wirth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis This is an...

366

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

367

The Influence of Boundary Layer Processes on the Diurnal Variation of the Climatological Near-Surface Wind Speed Probability Distribution over Land*  

E-Print Network [OSTI]

diurnally varying vertical structure of the leading three climatological moments of near-surface wind speed-Surface Wind Speed Probability Distribution over Land* YANPING HE School of Earth and Ocean Sciences wind speed probability distribution is essential for surface flux estimation and wind power management

He, Yanping

368

Use of wind power forecasting in operational decisions.  

SciTech Connect (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

369

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network [OSTI]

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

370

Q-Winds satellite hurricane wind retrievals and H*Wind comparisons  

E-Print Network [OSTI]

tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

Hennon, Christopher C.

371

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

372

DFIG-Based Wind Turbine Robust Control Using High-Order Sliding Modes and a High Gain Observer  

E-Print Network [OSTI]

DFIG-Based Wind Turbine Robust Control Using High-Order Sliding Modes and a High Gain Observer with the power generation control in variable speed wind turbines. In this context, a control strategy is proposed to ensure power extraction optimization of a DFIG- based wind turbine. The proposed control

Brest, Université de

373

192 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 4, NO. 1, JANUARY 2013 Monitoring Wind Farms With Performance Curves  

E-Print Network [OSTI]

to varying loads, which in turn lead to wind turbine faults, e.g., spalled bearings and fractured gears--Three different operational curves--the power curve, rotor curve, and blade pitch curve--are presented the reference curves of wind power, rotor speed, and blade pitch angle, with wind speed as an input variable

Kusiak, Andrew

374

100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40 Data  

E-Print Network [OSTI]

and time variability of significant wave height and wind speed on the prediction of their extreme values of this dataset makes it ideal for the study of extreme wind and wave phenomena over the whole globe. Initial100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40

Haak, Hein

375

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

Wiser, Ryan

2010-01-01T23:59:59.000Z

376

Wind Farms in North America  

E-Print Network [OSTI]

P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

Hoen, Ben

2014-01-01T23:59:59.000Z

377

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

Wiser, Ryan

2010-01-01T23:59:59.000Z

378

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

Bolinger, Mark

2010-01-01T23:59:59.000Z

379

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

Wiser, Ryan

2012-01-01T23:59:59.000Z

380

Fort Carson Wind Resource Assessment  

SciTech Connect (OSTI)

This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

Robichaud, R.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

Bolinger, Mark

2013-01-01T23:59:59.000Z

382

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

Wiser, Ryan

2012-01-01T23:59:59.000Z

383

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

Wiser, Ryan

2010-01-01T23:59:59.000Z

384

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

Wiser, Ryan

2012-01-01T23:59:59.000Z

385

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

Bolinger, Mark

2013-01-01T23:59:59.000Z

386

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

Bolinger, Mark

2013-01-01T23:59:59.000Z

387

Comparison of Wind Power and Load Forecasting Error Distributions: Preprint  

SciTech Connect (OSTI)

The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

2012-07-01T23:59:59.000Z

388

Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features  

SciTech Connect (OSTI)

Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

Toole, Gasper L. [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

389

NREL: Wind Research - Wind Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind EnergyWind

390

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrekWest Winds Wind

391

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector WindOaxacaWind

392

Small Wind Information (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

Not Available

2011-08-01T23:59:59.000Z

393

Offshore Wind Geoff Sharples  

E-Print Network [OSTI]

Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

Kammen, Daniel M.

394

Carbon smackdown: wind warriors  

ScienceCinema (OSTI)

July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

2010-09-01T23:59:59.000Z

395

Carbon smackdown: wind warriors  

SciTech Connect (OSTI)

July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

2010-07-21T23:59:59.000Z

396

Illinois Wind Workers Group  

SciTech Connect (OSTI)

The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

David G. Loomis

2012-05-28T23:59:59.000Z

397

Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing  

SciTech Connect (OSTI)

A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

Cordes, J A; Johnson, B A

1981-06-01T23:59:59.000Z

398

Wind Management LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois: NameGroupTechnology

399

Wind Wildlife Research Meeting X  

Broader source: Energy.gov [DOE]

The biennial Wind Wildlife Research Meeting provides an internationally recognized forum for researchers and wind-wildlife stakeholders to hear contributed papers, view research posters, and listen...

400

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

Bolinger, Mark

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wind and Solar Curtailment: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integration of Wind Power Into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants London, England October 22 - 24, 2013 Conference Paper NREL...

402

Wind Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

403

Large Wind Property Tax Reduction  

Broader source: Energy.gov [DOE]

In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

404

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid “noise”

Wiser, Ryan

2012-01-01T23:59:59.000Z

405

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

Wiser, Ryan

2010-01-01T23:59:59.000Z

406

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

Bolinger, Mark

2010-01-01T23:59:59.000Z

407

Wind Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

408

Cataclysmic Variables  

E-Print Network [OSTI]

Cataclysmic variables are binary stars in which a relatively normal star is transferring mass to its compact companion. This interaction gives rise to a rich range of behaviour, of which the most noticeable are the outbursts that give the class its name. Novae belong to the class, as do the less well known dwarf novae and magnetic systems. Novae draw their energy from nuclear reactions, while dwarf novae rely on gravity to power their smaller eruptions. All the different classes of cataclysmic variable can be accommodated within a single framework and this article will describe the framework, review the properties of the main types of system and discuss models of the outbursts and of the long-term evolution.

Robert Connon Smith

2007-01-23T23:59:59.000Z

409

Ris National Laboratory DTU Wind Energy Department  

E-Print Network [OSTI]

wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

410

Cooperative field test program for wind systems  

SciTech Connect (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

411

IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report  

SciTech Connect (OSTI)

The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

Schwabe, P.; Lensink, S.; Hand, M.

2011-03-01T23:59:59.000Z

412

Wind Energy Kit | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Kit Wind Energy Kit Wind Energy :: Kit Materials List Below is a list of the different Wind Energy kits available. For more details, download the Wind Energy Kit List....

413

Wind Energy Program: Top 10 Program Accomplishments  

Broader source: Energy.gov [DOE]

Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

414

Utilizing Wind: Optimal Wind Farm Placement in the United States  

E-Print Network [OSTI]

Utilizing Wind: Optimal Wind Farm Placement in the United States By: Yintao Sun Advisor: Professor Acknowledgements First and foremost, I would like to thank my advisor, Professor Warren Powell, for all the help he An Introduction to Wind Energy 1 1.1 Wind, a Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Powell, Warren B.

415

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

416

Wind Energy at NREL's National Wind Technology Center  

SciTech Connect (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2010-01-01T23:59:59.000Z

417

Reference wind farm selection for regional wind power prediction models  

E-Print Network [OSTI]

1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

Paris-Sud XI, Université de

418

WIND ENERGY Wind Energ. 2013; 00:112  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. 2013; 00:1­12 DOI: 10.1002/we RESEARCH ARTICLE Model predictive control in wind speed, ensuring certain power gradients, with an insignificant loss in energy production rejection, model predictive control, convex optimization, wind power control, energy storage, power output

419

WIND ENERGY Wind Energ. 2013; 16:7790  

E-Print Network [OSTI]

energy industry lags far behind the wind energy industry, it has the potential to become a role player is equal to the long-term potential of onshore wind energy.1,2 Therefore, the utilisation of marineWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library

Papalambros, Panos

420

2001 European Wind Energy Conference and Exhibition EWEA Bella Center, Copenhagen, Denmark, 2-6 July 2001  

E-Print Network [OSTI]

the environmental management system of Vestas Wind Systems A/S and data from subcontractors are utilised for the LCA plants. The results from that project are used as a basis for this LCA for a 2 MW offshore wind turbine. This LCA focuses on an offshore wind turbine and as a sample turbine for the assessment it has been chosen

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wind Power Outreach Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power Wind

422

EA-1581: Sand Hills Wind Project, Wyoming  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

423

EIS-0408: Upper Great Plains Wind Energy Programmatic EIS  

Broader source: Energy.gov [DOE]

This EIS, being prepared jointly by DOE's Western Area Power Administration and the Department of the Interior’s Fish and Wildlife Service, will evaluate the environmental impacts of wind energy development in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota – Western’s Upper Great Plains customer service region. Western will use the EIS to implement a comprehensive regional program to manage interconnection requests for wind energy projects.

424

2012 Wind Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWindProject Management Workshop2 Webinar2 Wind

425

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy, Wind and Hydropowerin Spain. Spanish Wind Energy Association (AEE) contributionin a Wind Turbine. ” Wind Energy (9:1–2); pp. 141–161.

Lantz, Eric

2014-01-01T23:59:59.000Z

426

20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...  

Broader source: Energy.gov (indexed) [DOE]

6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

427

Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...  

Broader source: Energy.gov (indexed) [DOE]

This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel...

428

RESEARCH ARTICLE Empirical assessment of short-term variability from  

E-Print Network [OSTI]

Variability of solar power is a key driver in increasing the cost of integrating solar power into the electric, we characterize the variability in power output of six photovoltaic plants in the USA and Canada, already generate 9% and 22% of their electricity from wind and solar power and have found means to address

429

LRRB Pavement Management SystemsTraffic Generator Managing Interaction Between Local  

E-Print Network [OSTI]

% of their energy from renewable sources by 2025. #12;LRRB Pavement Management SystemsTraffic Generator MN Wind Resource #12;LRRB Pavement Management SystemsTraffic Generator Wind Power (continued) · Advantage: · Energy Anderson, Stearns County Deb Bloom, City of Roseville Bruce Hasbargen, Lk of Woods Cty Steve Koehler, City

Minnesota, University of

430

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

2013-06-01T23:59:59.000Z

431

Community Wind Benefits (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet explores the benefits of community wind projects, including citations to published research.

Not Available

2012-11-01T23:59:59.000Z

432

wind engineering & natural disaster mitigation  

E-Print Network [OSTI]

wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

Denham, Graham

433

Wind Electrolysis: Hydrogen Cost Optimization  

SciTech Connect (OSTI)

This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

Saur, G.; Ramsden, T.

2011-05-01T23:59:59.000Z

434

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

435

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

Bolinger, Mark

2010-01-01T23:59:59.000Z

436

Kentish Flats Offshore Wind Farm  

E-Print Network [OSTI]

Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

Firestone, Jeremy

437

Wind Power in Alaska  

Broader source: Energy.gov [DOE]

In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

438

DOE Collegiate Wind Competition  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Collegiate Wind Competition will take place concurrently with the 2014 AWEA WINDPOWER Conference and Exhibition in Las Vegas. Spectators are encouraged to attend...

439

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

440

Wind Turbines Benefit Crops  

ScienceCinema (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind Agreements (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

442

Model Wind Ordinance  

Broader source: Energy.gov [DOE]

''Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

443

Solar and Wind Rights  

Broader source: Energy.gov [DOE]

Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use...

444

Wind Energy Systems Exemption  

Broader source: Energy.gov [DOE]

Tennessee House Bill 809, enacted into law in Public Chapter 377, Acts of 2003 and codified under Title 67, Chapter 5, states that wind energy systems operated by public utilities, businesses or...

445

Wind Energy Permitting Standards  

Broader source: Energy.gov [DOE]

All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

446

County Wind Ordinance Standards  

Broader source: Energy.gov [DOE]

[http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

447

Wind Energy Teachers Guide  

SciTech Connect (OSTI)

This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

anon.

2003-01-01T23:59:59.000Z

448

Wind | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative SolarVehiclesWind Wind EERE

449

Probabilistic fatigue methodology and wind turbine reliability  

SciTech Connect (OSTI)

Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

Lange, C.H. [Stanford Univ., CA (United States)

1996-05-01T23:59:59.000Z

450

Tornado type wind turbines  

DOE Patents [OSTI]

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

451

Winding for linear pump  

DOE Patents [OSTI]

A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

1989-01-01T23:59:59.000Z

452

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

SciTech Connect (OSTI)

Although small wind turbine technology and economics have improved in recent years, the small wind market in the United States continues to be driven in large part by state incentives, such as cash rebates, favorable loan programs, and tax credits. This paper examines the state-by-state economic attractiveness of small residential wind systems. Economic attractiveness is evaluated primarily using the break-even turnkey cost (BTC) of a residential wind system as the figure of merit. The BTC is defined here as the aggregate installed cost of a small wind system that could be supported such that the system owner would break even (and receive a specified return on investment) over the life of the turbine, taking into account current available incentives, the wind resource, and the retail electricity rate offset by on-site generation. Based on the analysis presented in this paper, we conclude that: (1) the economics of residential, grid-connected small wind systems is highly variable by state and wind resource class, (2) significant cost reductions will be necessary to stimulate widespread market acceptance absent significant changes in the level of policy support, and (3) a number of policies could help stimulate the market, but state cash incentives currently have the most significant impact, and will be a critical element of continued growth in this market.

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-03-01T23:59:59.000Z

453

What measures climate? A variety of variables including their variability and extreme values determine climate for  

E-Print Network [OSTI]

climate zones? The sun is the ultimate power source for the climate "machine". The uneven distribution conditions. Typical variables to consider are temperature (maximum, miniumum), precipitation (includes rain, sleet, snow, hail, etc), sunlight/cloudiness, wind, humidity, ice cover, sea temperature, etc... Many

Allan, Richard P.

454

SAT-WIND project Final report  

E-Print Network [OSTI]

-2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

455

MAPping Foehn Winds in the Austrian Alps  

E-Print Network [OSTI]

and the flow above mountain-top level 3. Study the vertical and cross-gap distribution of wind speed-valley horizontal wind speed ("measured") vertical wind speed (calculated) total wind speed & streamlines -20 -10 0 October 1999 ­ TEACO2 calculated 2D winds down-valley horizontal wind speed ("measured") vertical wind

Gohm, Alexander

456

A Disturbance Margin For Quantifying Limits on Power Smoothing by Wind Turbines  

E-Print Network [OSTI]

wind variation a wind turbine can absorb in variable speed mode while still being guaranteed to operate speed and generator torque to store and release energy. This ability must be constrained by turbine speed and generator torque limits. To date, work in the literature is conceptual and does not indicate

Maggiore, Manfredi

457

The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: Energy.gov [DOE]

This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

458

The Wind Integration National Dataset (WIND) toolkit (Presentation)  

SciTech Connect (OSTI)

Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

Caroline Draxl: NREL

2014-01-01T23:59:59.000Z

459

Wind Powering America Podcasts, Wind Powering America (WPA)  

SciTech Connect (OSTI)

Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

Not Available

2012-04-01T23:59:59.000Z

460

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

and Scope Wind energy is growing and turbines are regularlyfor Design of Wind Turbines. Wind Energy Department of Risřloads on wind turbines. ” European Wind Energy Conference

Prowell, I.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wave variability and wave spectra for wind generated gravity waves  

E-Print Network [OSTI]

\\?\\jP\\-P7 cJ)srwJ cJ7 usr)c7(L s{ U)s{7((s) /? 6? /sJy(sy \\yi a)9 h? h9 Urcq s{ cJ7 Cyj?7)(jcL s{ n\\Pj{s)yj\\e m7)?7P7L] a)9 n9 U? m7((7 s{ $J7 n\\Pj{s)yj\\ ns_d\\yLe '7f v)P7\\y(] cJ7 m7\\uJ 0)s(jsy ms\\)ie \\yi scJ7) s{{ju7( s{ cJ7 C9 2? ^)_L ns)d( s{ 0...Jc \\yi f\\?7 d7)jsi (lr\\)7i j( (rww7(c7i9 ?c j( {sryi cJ\\c cJ7 _\\)wjy\\P d)s-\\-jPjcL ij(c)j-rcjsy s{ f\\?7 J7jwJc( {sPPsf( h\\LP7jwJW( ij(c)j-rcjsy uPs(7PL9 $Jj( usyuPr(jsy j( -\\(7i rdsy ob )7us)i( s{ \\-src 100 f\\?7( 7\\uJ dPr( (7?7)\\P 7Sc)\\ Psyw )7us)i( c...

Bretschneider, Charles L.

1959-01-01T23:59:59.000Z

462

Correlations in thermal comfort and natural wind  

E-Print Network [OSTI]

the average wind velocity and power spectrum exponent (?-of natural wind more accurately, power spectral analysisdata of natural wind versus the power spectral analysis

Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

2013-01-01T23:59:59.000Z

463

Helping Policymakers Evaluate Distributed Wind Options | Department...  

Energy Savers [EERE]

and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

464

Strong wind forcing of the ocean  

E-Print Network [OSTI]

of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

Zedler, Sarah E.

2007-01-01T23:59:59.000Z

465

Wind Turbine Acoustic Noise A white paper  

E-Print Network [OSTI]

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

466

WIND DATA REPORT January -December, 2003  

E-Print Network [OSTI]

WIND DATA REPORT Vinalhaven January - December, 2003 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

467

WIND DATA REPORT January -March, 2004  

E-Print Network [OSTI]

WIND DATA REPORT Vinalhaven January - March, 2004 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

468

ANNUAL WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

Massachusetts at Amherst, University of

469

WIND DATA REPORT Deer Island Parking Lot  

E-Print Network [OSTI]

WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

470

WIND DATA REPORT Deer Island Outfall  

E-Print Network [OSTI]

WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

471

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Figure 12. Effect of Wind Integration and Resource Adequacy62 Table E-2. Estimates of Wind IntegrationAugust. Utility Wind Integration Group (UWIG), 2006. “

Phadke, Amol

2008-01-01T23:59:59.000Z

472

antibody variable region: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: -seasonal climate variability: simulation and prediction using POAMA-2 Andrew Marshall Debbie Hudson, Matthew management Can POAMA help fill the gap? 12;Background...

473

Water: May be the Best Near-Term Benefit and Driver of a Robust Wind Energy Future (Poster)  

SciTech Connect (OSTI)

Water may be the most critical natural resource variable that affects the selection of generation options in the next decade. Extended drought in the western United States and more recently in the Southeast has moved water management and policy to the forefront of the energy options discussions. Recent climate change studies indicate that rising ambient temperatures could increase evapotranspiration by more than 25% to 30% in large regions of the country. Increasing demand for electricity, and especially from homegrown sources, inevitably will increase our thermal fleet, which consumes 400 to 700 gal/MWh for cooling. Recovering the vast oil shale resources in the West (one of the energy options discussed) is water intensive and threatens scarce water supplies. Irrigation for the growing corn ethanol industry requires 1,000 to 2,000 gallons of water for 1 gallon of production. Municipalities continue to grow and drive water demands and emerging constrained market prices upward. As illustrated by the 20% Wind Energy by 2030 analysis, wind offers an important mitigation opportunity: a 4-trillion-gallon water savings. This poster highlights the emerging constrained water situation in the United States and presents the case for wind energy as one of the very few means to ameliorate the emerging water wars in various U.S. regions.

Flowers, L.; Reategui, S.

2009-05-01T23:59:59.000Z

474

NREL: Wind Research - Wind Energy Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind Energy

475

Wind JOC Conference - Wind Control Changes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1 Wind

476

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerde IncStar (07) Wind FarmND

477

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossibleResearchSmall Wind

478

Previous Wind Power Announcements (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR IMMEDIATEPreviewing theMembers | Home |Wind

479

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:Wind Farm Jump to:

480

Offshore Wind Farms – the Impact on Wind Farm Planning and Cost of Generation  

E-Print Network [OSTI]

rates of planning and construction of new wind farms. Offshore wind farms typically offer the benefits

Jacob Ladeburg; Sanja Lutzeyer

Note: This page contains sample records for the topic "managing wind variability" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wind Power Plant Voltage Stability Evaluation: Preprint  

SciTech Connect (OSTI)

Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

Muljadi, E.; Zhang, Y. C.

2014-09-01T23:59:59.000Z

482

Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint  

SciTech Connect (OSTI)

Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

2013-10-01T23:59:59.000Z

483

Chaninik Wind Group Wind Heat Smart Grids Final Report  

SciTech Connect (OSTI)

Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

Meiners, Dennis [Technical Contact

2013-06-29T23:59:59.000Z

484

Wind for Schools: A Wind Powering America Project  

SciTech Connect (OSTI)

This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.

Not Available

2007-12-01T23:59:59.000Z

485

NREL: Wind Research - Collegiate Wind Competition Set to Blow...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23, 2014 The United States is among the world's largest and fastest growing wind energy markets. In fact, wind energy is now the number one source of new U.S. electricity...

486

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

SciTech Connect (OSTI)

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

487

DOE Offers Conditional Commitment to Cape Wind Offshore Wind...  

Office of Environmental Management (EM)

Secretary Ernest Moniz. The proposed Cape Wind project would use 3.6-MW offshore wind turbines that would provide a majority of the electricity needed for Cape Cod, Nantucket,...

488

Responses of floating wind turbines to wind and wave excitation  

E-Print Network [OSTI]

The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

Lee, Kwang Hyun

2005-01-01T23:59:59.000Z

489

Development of Regional Wind Resource and Wind Plant Output Datasets...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

490

Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)  

SciTech Connect (OSTI)

Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

Not Available

2012-02-01T23:59:59.000Z

491

Wind for Schools: A Wind Powering America Project (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Baring-Gould, I.

2009-08-01T23:59:59.000Z

492

Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Not Available

2010-02-01T23:59:59.000Z

493

Models of Forbidden Line Emission Profiles from Axisymmetric Stellar Winds  

E-Print Network [OSTI]

A number of strong infrared forbidden lines have been observed in several evolved Wolf-Rayet star winds, and these are important for deriving metal abundances and testing stellar evolution models. In addition, because these optically thin lines form at large radius in the wind, their resolved profiles carry an imprint of the asymptotic structure of the wind flow. This work presents model forbidden line profile shapes formed in axisymmetric winds. It is well-known that an optically thin emission line formed in a spherical wind expanding at constant velocity yields a flat-topped emission profile shape. Simulated forbidden lines are produced for a model stellar wind with an axisymmetric density distribution that treats the latitudinal ionization self-consistently and examines the influence of the ion stage on the profile shape. The resulting line profiles are symmetric about line centre. Within a given atomic species, profile shapes can vary between centrally peaked, doubly peaked, and approximately flat-topped in appearance depending on the ion stage (relative to the dominant ion) and viewing inclination. Although application to Wolf-Rayet star winds is emphasized, the concepts are also relevant to other classes of hot stars such as luminous blue variables and Be/B[e] stars.

Richard Ignace; Adam Brimeyer

2006-05-10T23:59:59.000Z

494

Wind motor applications for transportation  

SciTech Connect (OSTI)

Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

1996-12-31T23:59:59.000Z

495

Abstract--In this paper, we present the voltage build up process and the terminal voltage control of an isolated wind  

E-Print Network [OSTI]

of an isolated wind powered induction generator driven by a variable speed wind turbine using rotor flux oriented, but they can be set to operate within a given variation of speed. Unlike a grid connected induction generator and the speed, torque and fluxes as its outputs. Key words-- Wind energy system, Induction generator, Saturation

Paris-Sud XI, Université de

496

Abstract--A bi-objective optimization model of power and power changes generated by a wind turbine is discussed in this  

E-Print Network [OSTI]

operating a variable-speed wind turbine with pitch control to maximize power while minimizing the loads prediction, power ramp rate, data mining, wind turbine operation strategy, generator torque, blade pitch1 Abstract--A bi-objective optimization model of power and power changes generated by a wind

Kusiak, Andrew

497

Texas Tech University is poised to take a leadership role in the development of wind power systems through research, economic development, job creation and education.  

E-Print Network [OSTI]

of wind power systems through research, economic development, job creation and education. Congressionally. The money will be used to create applications that will integrate wind energy into municipal power grids the variable power supplied by wind with water pumping and desalination facilities. Community colleges

Gelfond, Michael

498

Optimum propeller wind turbines  

SciTech Connect (OSTI)

The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

Sanderson, R.J.; Archer, R.D.

1983-11-01T23:59:59.000Z

499

Wind Success Stories  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power06 Wind Success

500

TMCC WIND RESOURCE ASSESSMENT  

SciTech Connect (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z