Powered by Deep Web Technologies
Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Plug-In Electric Vehicle Handbook for Fleet Managers  

E-Print Network (OSTI)

Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Choosing Electric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Photo from Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires

2

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES  

E-Print Network (OSTI)

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES.e., the engine and electric machines) in a plug-in hybrid electric vehicle (PHEV). Existing studies focus mostly. INTRODUCTION This paper examines plug-in hybrid electric vehicles (PHEVs), i.e., automobiles that can extract

Krstic, Miroslav

3

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle  

E-Print Network (OSTI)

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing and hybrid driving mode. During the pure electric driving mode, the vehicle is only powered by the battery

Mi, Chunting "Chris"

4

Evaluation of the Effects of Thermal Management on Battery Life in Plug-in Hybrid Electric Vehicles Tugce Yuksel  

E-Print Network (OSTI)

Evaluation of the Effects of Thermal Management on Battery Life in Plug-in Hybrid Electric Vehicles a simulation model that aims to evaluate the effect of thermal management on battery life. The model consists of two sub- models: a thermal model and a battery degradation model. The temperature rise in the battery

Michalek, Jeremy J.

5

Plug-In Electric Vehicle Handbook for Electrical  

E-Print Network (OSTI)

Plug-In Electric Vehicle Handbook for Electrical Contractors #12;Plug-In Electric Vehicle Handbook for Electrical Contractors2 Table of Contents Introduction . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18

6

NREL: Transportation Research - Electric and Plug-In Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV...

7

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Managers Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

8

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

rravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric...

9

Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

François Martel; Sousso Kelouwani; Yves Dubé; Kodjo Agbossou

2015-01-01T23:59:59.000Z

10

Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Many jurisdictions around the world are supporting the adoption of electric vehicles through incentives and the deployment of a charging infrastructure to reduce greenhouse gas emissions. Plug-in hybrid electric vehicles (PHEVs), with offer mature technology and stable performance, are expected to gain an increasingly larger share of the consumer market. The aggregated effect on power grid due to large-scale penetration of \\{PHEVs\\} needs to be analyzed. Nighttime-charging which typically characterizes \\{PHEVs\\} is helpful in filling the nocturnal load valley, but random charging of large PHEV fleets at night may result in new load peaks and valleys. Active response strategy is a potentially effective solution to mitigate the additional risks brought by the integration of PHEVs. This paper proposes a power system operation risk analysis framework in which charging load self-management is used to control system operation risk. We describe an interactive mechanism between the system and \\{PHEVs\\} in conjunction with a smart charging model is to simulate the time series power consumption of PHEVs. The charging load is managed with adjusting the state transition boundaries and without violating the users’ desired charging constraints. The load curtailment caused by voltage or power flow violation after outages is determined by controlling charging power. At the same time, the system risk is maintained under an acceptable level through charging load self-management. The proposed method is implemented using the Roy Billinton Test System (RBTS) and several PHEV penetration levels are examined. The results show that charging load self-management can effectively balance the extra risk introduced by integration of \\{PHEVs\\} during the charging horizon.

Zhe Liu; Dan Wang; Hongjie Jia; Ned Djilali

2014-01-01T23:59:59.000Z

11

A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV)  

Science Journals Connector (OSTI)

Hybrid Electric Vehicles (HEV) combine the power from an electric motor with that from an internal combustion engine to propel the vehicle. The HEV electric motor is typically powered by a battery pack through power electronics. The HEV battery is recharged ...

Harpreetsingh Banvait; Sohel Anwar; Yaobin Chen

2009-06-01T23:59:59.000Z

12

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

4 demonstration of a plug-in diesel-electric HUMVEE by thediesel max output (kW) continuous/Me- kW type efficiency electric

Williams, Brett D

2010-01-01T23:59:59.000Z

13

Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Initiatives to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle Initiatives All solicitation documents that include the purchase of passenger

14

Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries  

Energy.gov (U.S. Department of Energy (DOE))

With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will...

15

Plug-In Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Downloadable Dynanometer Database (D3) * Modeling * Prototypes * Testing * Assessment PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Argonne Leads DOE's Effort to Evaluate Plug-in Hybrid Technology aprf testing Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles such as PHEVs. Argonne's Research Argonne National Laboratory is the U.S. Department of Energy's lead national laboratory for the simulation, validation and laboratory evaluation of plug-in hybrid electric vehicles and the advanced

16

Plug-In Hybrid Electric Vehicles - Prototypes  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

17

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

18

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Information Resource to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on

19

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Infrastructure Promotion to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on AddThis.com... More in this section... Federal

20

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on AddThis.com... More in this section...

22

Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

. Instead, the battery supplies electricity to the electric motor . Photo from Margaret Smith, DOEPIX 18215 Plug-In Electric Vehicle Handbook for Consumers 5 Factors That Affect...

23

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

24

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cities Coalitions Charge Up Plug-In Electric Vehicles Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

25

Plug-In Hybrid Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Plug-In Hybrid Electric Vehicles More Documents & Publications

26

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect

Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

Not Available

2014-05-01T23:59:59.000Z

27

Plug-In Electric Vehicle Handbook for Consumers  

E-Print Network (OSTI)

to compete with-- and complement--the ubiquitous ICE technology. First, advances in electric-drive all- electric driving ranges. Advanced technologies have also created a new breed of EVs that donPlug-In Electric Vehicle Handbook for Consumers #12;Plug-In Electric Vehicle Handbook for Consumers

28

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Evaluation to someone by E-mail Infrastructure Evaluation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on AddThis.com... More in this section... Federal State Advanced Search

29

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

30

Plug-in electric vehicle introduction in the EU  

E-Print Network (OSTI)

Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

Sisternes, Fernando J. de $q (Fernando José Sisternes Jiménez)

2010-01-01T23:59:59.000Z

31

Promote Plug-In Electric Vehicles and Workplace Charging Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

Drivers of conventional vehicles often learn about plug-in electric vehicles (PEVs) and charging infrastructure from PEV-driving employees and from employers who support workplace charging. Use the...

32

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Digg

33

NREL: Fleet Test and Evaluation - Electric and Plug-In Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric and Plug-In Hybrid Electric Drive Systems Electric and Plug-In Hybrid Electric Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of electric and plug-in hybrid electric drive systems in medium-duty trucks operated by fleets. Photo of medium-duty truck with the words "All Electric Vehicle" and "Plug-in" written on its side. NREL evaluates the performance of electric and plug-in hybrid electric vehicles in fleet operation. All-electric vehicles (EVs) use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. Plug-in hybrid electric vehicles (PHEVs) are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be

34

Alternative Fuels Data Center: Electricity Provider and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Provider Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations to someone by E-mail Share Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Facebook Tweet about Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Twitter Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Google Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Delicious Rank Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Digg Find More places to share Alternative Fuels Data Center: Electricity

35

EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

36

Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales...

37

Argonne Transportation - Plug-in Hybrid Electric Vehicle Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Prius testing by Argonne researchers. The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to commercializing PHEVs. Argonne National Laboratory, working together with Idaho National Laboratory, leads DOE's efforts to evaluate PHEVs and PHEV technology with the nation’s best vehicle technology evaluation tools and expertise. These two national laboratories are Centers for Excellence that combine state-of-the-art facilities; world-class expertise; long-term collaborative relationships with other DOE national laboratories, industry, and academia;

38

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Tax Credit

39

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Rebate - PECO to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Rebate - PECO

40

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Digg Find More places to share Alternative Fuels Data Center: Plug-In

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Energy.gov (U.S. Department of Energy (DOE))

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

42

Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: A qualitative analysis of responses and evaluations  

Science Journals Connector (OSTI)

Plug-in electric vehicles can potentially emit substantially lower CO2 emissions than internal combustion engine vehicles, and so have the potential to reduce transport emissions without curtailing personal car use. Assessing the potential uptake of these new categories of vehicles requires an understanding of likely consumer responses. Previous in-depth explorations of appraisals and evaluations of electric vehicles have tended to focus on ‘early adopters’, who may not represent mainstream consumers. This paper reports a qualitative analysis of responses to electric cars, based on semi-structured interviews conducted with 40 UK non-commercial drivers (20 males, 20 females; age 24–70 years) at the end of a seven-day period of using a battery electric car (20 participants) or a plug-in hybrid car (20 participants). Six core categories of response were identified: (1) cost minimisation; (2) vehicle confidence; (3) vehicle adaptation demands; (4) environmental beliefs; (5) impression management; and, underpinning all other categories, (6) the perception of electric cars generally as ‘work in progress’ products. Results highlight potential barriers to the uptake of current-generation (2010) plug-in electric cars by mainstream consumers. These include the prioritization of personal mobility needs over environmental benefits, concerns over the social desirability of electric vehicle use, and the expectation that rapid technological and infrastructural developments will make current models obsolete. Implications for the potential uptake of future electric vehicles are discussed.

Ella Graham-Rowe; Benjamin Gardner; Charles Abraham; Stephen Skippon; Helga Dittmar; Rebecca Hutchins; Jenny Stannard

2012-01-01T23:59:59.000Z

43

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

Momber, Ilan

2010-01-01T23:59:59.000Z

44

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Digg

45

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Digg

46

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on AddThis.com...

47

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Information Disclosure to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on AddThis.com... More in this section... Federal State Advanced Search

48

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate - APS to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

49

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Demonstration Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

50

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Parking Regulation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

51

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - NV Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on AddThis.com...

52

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Parking Requirement to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

53

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

54

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on

55

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Plug-In Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles

56

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on AddThis.com...

57

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Promotion and Coordination to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on AddThis.com... More in this section...

58

Development and Deployment of Generation 3 Plug-In Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells...

59

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Digg Find More places to share Alternative Fuels Data Center: Plug-In

60

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

62

Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Provision for Plug-In Provision for Plug-In Electric Vehicle (PEV) Charging Incentives to someone by E-mail Share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Facebook Tweet about Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Twitter Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Google Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Delicious Rank Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Digg Find More places to share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on AddThis.com...

63

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In

64

Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Access to Plug-In Access to Plug-In Electric Vehicle (PEV) Registration Records to someone by E-mail Share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Facebook Tweet about Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Twitter Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Google Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Delicious Rank Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Digg Find More places to share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on AddThis.com...

65

Definition: Plug-in Electric Vehicle Charging Station | Open Energy  

Open Energy Info (EERE)

Plug-in Electric Vehicle Charging Station Plug-in Electric Vehicle Charging Station Jump to: navigation, search Dictionary.png Plug-in Electric Vehicle Charging Station A device or station that provides power to charge the batteries of an electric vehicle. These chargers are classified according to output voltage and the rate at which they can charge a battery. Level 1 charging is the slowest, and can be done through most wall outlets at 120 volts and 15 amps AC. Level 2 charging is faster, and is done at less than or equal to 240 volts and 60 amps AC, with a power output of less than or equal to 14.4 kW. Level 3 charging is fastest, and can be done with power output of greater than 14.4 kW. Level 1 and 2 charging can be done at home with the proper equipment, and Level 2 and 3 charging can be done at fixed public charging

66

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

67

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

68

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

69

Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Availability of Hybrid Availability of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

70

Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deployment of Hybrid Deployment of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

71

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

72

Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions from Hybrid Emissions from Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

73

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

74

Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History  

Energy.gov (U.S. Department of Energy (DOE))

Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the...

75

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Definition A PEV is defined as a vehicle that:

76

Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fisher Coachworks Fisher Coachworks Develops Plug-In Electric Bus in Michigan to someone by E-mail Share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Facebook Tweet about Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Twitter Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Google Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Delicious Rank Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Digg Find More places to share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on AddThis.com...

77

Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Authorization for Authorization for Plug-In Electric Vehicle Charging Rate Incentives to someone by E-mail Share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Facebook Tweet about Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Twitter Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Google Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Delicious Rank Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Digg Find More places to share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on

78

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Digg

79

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Digg

80

Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Plug-In Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power to someone by E-mail Share Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Facebook Tweet about Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Twitter Bookmark Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Google Bookmark Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Delicious Rank Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Digg Find More places to share Alternative Fuels Data Center: Commercial

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

82

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

83

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

in Electric in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

84

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Digg

85

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions and air quality impacts of plug-in hybrid electric vehicles (PHEV). Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions More Documents & Publications Asia/ITS Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emission Plug-In Hybrid Electric Vehicles

86

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

In Electric In Electric Vehicle (PEV) Charging Signage and Parking Regulations to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on

87

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

in Public to someone by E-mail in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public

88

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

at Home to someone by E-mail at Home to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public Vehicles

89

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

SCE to someone by E-mail SCE to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on AddThis.com... More in this section... Federal State Advanced Search

90

Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative

91

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on AddThis.com... More in this section...

92

Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Local Government Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements to someone by E-mail Share Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Facebook Tweet about Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Twitter Bookmark Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Google Bookmark Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Delicious Rank Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Digg Find More places to share Alternative Fuels Data Center: Local

93

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

LADWP to someone by E-mail LADWP to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on AddThis.com... More in this section... Federal State

94

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Charging Requirements to someone by E-mail Charging Requirements to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

95

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

Michalek, Jeremy J.

96

NREL: Continuum Magazine - Maximizing the Benefits of Plug-in Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing the Benefits of Plug-in Electric Vehicles Maximizing the Benefits of Plug-in Electric Vehicles Issue 4 Print Version Share this resource Maximizing the Benefits of Plug-in Electric Vehicles Advancing electric vehicle charging options and grid readiness reduces oil consumption and vehicle emissions. A photo of two electric vehicles in a research facility. Enlarge image Electric vehicle charging stations in NREL's parking garage. Photo by Dennis Schroder, NREL Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles-offer the opportunity to reduce oil consumption and vehicle emissions by drawing on power from the utility grid. When the grid uses electricity generated from clean, domestic energy sources, the emerging PEV infrastructure will increasingly maximize

97

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

98

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

99

Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Feb 4, 2014 ... Abstract: We introduce a practically important and theoretically challenging problem: finding the minimum cost path for plug-in hybrid electric ...

Okan Arslan

2014-02-04T23:59:59.000Z

100

EV Everywhere: America’s Plug-In Electric Vehicle Market Charges Forward  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department, partnering with industry and national laboratories, is helping make plug-in electric vehicles more affordable and convenient for American families.

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Plug-In Electric Vehicle R&D on High Energy Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Electric Vehicle R&D on High Energy Materials Presented by John Vaughey Principal Investigator: Dennis Dees Chemical Sciences and Engineering Division Argonne National...

102

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network (OSTI)

An agent-based model to study market penetration of plug-in hybrid electric vehicles Margaret J 2011 Available online 29 April 2011 Keywords: Plug-in hybrid electric vehicles Market penetration Agent-based models. A recent joint report by the Electric Power Research Institute (EPRI) and the Natural Resources

Vermont, University of

103

State-of-Health Aware Optimal Control of Plug-in Electric Vehicles  

E-Print Network (OSTI)

), which utilize electric motors for propulsion, differ from fossil fuel powered vehiclesState-of-Health Aware Optimal Control of Plug-in Electric Vehicles Yanzhi Wang, Siyu Yue, USA {yanzhiwa, siyuyue, pedram}@usc.edu Abstract--Plug-in electric vehicles (PEVs) are key new energy

Pedram, Massoud

104

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open  

Open Energy Info (EERE)

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Agency/Company /Organization: International Energy Agency Focus Area: Vehicles Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf The primary role of this EV/PHEV Roadmap is to help establish a vision for technology deployment; set approximate, feasible targets; and identify steps required to get there. It also outlines the role for different stakeholders and how they can work together to reach common objectives, and the role for government policy to support the process. References

105

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

106

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

107

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles Hui Zhang1 , Leon M -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain

Tolbert, Leon M.

108

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

109

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

110

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Peer Evaluation More Documents & Publications Clean Cities Recovery Act: Vehicle & Infrastructure Deployment Overview of the DOE Advanced Combustion Engine R&D Plug-In...

111

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Natural Gas Infrastructure Charging Rate Reduction - and Natural Gas Infrastructure Charging Rate Reduction - SDG&E to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Digg

112

DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million for Plug-in Hybrid Electric Vehicle 0 Million for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development projects. The selected projects will accelerate the development of PHEVs capable of traveling up to 40 miles without recharging, which includes most daily roundtrip commutes and satisfies 70 percent of the average daily travel in the U. S. The projects will also address critical barriers to achieving

113

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction - Dataset Fact 843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a...

114

An Optimization Model for Plug-In Hybrid Electric Vehicles  

SciTech Connect

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2011-01-01T23:59:59.000Z

115

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology | Open  

Open Energy Info (EERE)

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Focus Area: Electricity Topics: Policy Impacts Website: www.nrel.gov/vehiclesandfuels/vsa/pdfs/40485.pdf Equivalent URI: cleanenergysolutions.org/content/cost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Fuel Efficiency Standards This paper presents a comparison of the costs and benefits of plug-in hybrid electric vehicles (PHEVs) relative to hybrid electric and conventional vehicles. A detailed simulation model is used to predict

116

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ready for Electric Drive: the Plug-In Vehicle and Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a Plug-In Vehicle & Infrastructure Workshop that brought together nearly 200 attendees and 600 web participants to discuss near-term actions to accelerate deployment of electric-drive vehicles. The program demonstrated how federal leadership can speed up preparation for vehicles expected in showrooms at the end of this year. This leadership complements the Obama

117

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

118

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Journals Connector (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z

119

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department, in partnership with industry and national laboratories, is helping to improve the efficiency and affordability of plug-in electric vehicles through battery research.

120

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-29678 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results Tyler Gray Jeffrey Wishart Matthew Shirk July 2013 The Idaho National Laboratory is a U.S....

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fact #789: July 22, 2013 Comparison of State Incentives for Plug-In Electric Vehicle Purchases  

Energy.gov (U.S. Department of Energy (DOE))

In addition to a Federal government tax credit up to $7,500, consumers who purchase plug-in electric vehicles (PEVs) may also receive state government incentives which are different for each state....

122

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

Williams, Brett D

2010-01-01T23:59:59.000Z

123

The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions  

E-Print Network (OSTI)

electric vehicles (PHEVs) that can be powered by grid electricity for an initial distance, say 60 km, but are otherwise powered by gasoline until the battery is recharged (e.g. the Chevrolet Volt) and Electric vehiclesThe Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid

124

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger concerning the electrical machine control. This paper deals with the control of this drive [1], focusing

Paris-Sud XI, Université de

125

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

126

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

127

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions 1015325 Final Report, July 2007 Each of the ... scenarios showed significant Greenhouse Gas reductions due to PHEV fleet penetration ... ... PHEVs adoption results in significant reduction in the consumption of petroleum fuels. ' ' DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING

128

Environmental and Energy Implications of Plug-In Hybrid-Electric Vehicles  

Science Journals Connector (OSTI)

Environmental and Energy Implications of Plug-In Hybrid-Electric Vehicles ... PHEVs are similar to conventional hybrids (HEVs), but with a larger battery typically providing an all-electric range of some 30–60 km (20–40 miles) and, crucially, the means to charge the battery from an ordinary electric outlet. ... The U.S. electrical infrastructure is divided into regions under the supervision of the North American Electric Reliability Council (NERC) (14). ...

Craig H. Stephan; John Sullivan

2008-01-16T23:59:59.000Z

129

Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis  

E-Print Network (OSTI)

for internal combustion engine (ICE)-only vehicles. Engineering cost estimates for the PHEV, as well Engineering ABSTRACT The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions, depending on the cost-competitiveness of the vehicle, the relative cost of refined fuels and electricity

130

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles Plug-in Hybrid Electric Vehicles Learn More About the New Label Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that can be powered by both gasoline and electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

131

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network (OSTI)

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton University

Victoria, University of

132

Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis  

E-Print Network (OSTI)

Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general-in hybrid electric vehicles Environmental policy Emissions a b s t r a c t The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low-carbon alternative to today's gasoline- and diesel-powered

133

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS  

E-Print Network (OSTI)

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset with the emerging plug-in hybrid electric vehicle (PHEV) technology to meet the majority of the daily energy needs

134

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

135

AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

136

Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets  

SciTech Connect

This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

Short, W.; Denholm, P.

2006-04-01T23:59:59.000Z

137

Power Conditioning for Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

Farhangi, Babak

2014-07-25T23:59:59.000Z

138

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

139

EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Clean Energy Grand Challenge to have the U.S. become the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

140

Plug-in Hybrid Electric Vehicle On-Road Emissions Characterization and Demonstration Study  

E-Print Network (OSTI)

On-road emissions and operating data were collected from a plug-in hybrid electric vehicle (PHEV) over the course of 6months spanning August 2007 through January 2008 providing the first comprehensive on-road evaluation of the PHEV drivetrain...

Hohl, Carrie

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Plug-in electric vehicles as dispersed energy storage interactions with a smart office building  

Science Journals Connector (OSTI)

Renewable energy resources (RESs) with plug-in electric vehicles (PEVs) are being gradually accepted by society for their low carbon emission merits. However reverse power from the RES will result in the grid node's voltage rise and cause protection malfunction. As large amount of PEVs plug in the grid their overall charging power tends to be uncertain due to their complex charging behavior. At the same time if the renewable energy is integrated into the same grid the gird will face a great technological challenge. In this paper a smart building energy management system (SBEMS) is proposed to mitigate negative impact of RES and PEVs to power grid and optimize the operation of the building. The proposed SBEMS is also capable with PEVs system integration photovoltaic (PV) power forecasting optimization algorithm implementation and environmental evaluation criteria. Since PV's output is sensitive to the meteorology a 1-day-ahead power forecasting model is needed and presented. The economic system of PEVs is particularly complex because it needs optimization across multiple time steps and is strongly influenced by tariff structures. Furthermore the optimization problem to minimize the total building operational cost including PEVs charging cost is formulated while satisfying the supply and demand balance and complicated operating constraints of every energy supply equipment and devices. The simulation results have shown that the SBEMS can effectively reduce the PEVs charging cost building operation cost and the environment punishment fee. It is also important for the SBEMS to be responsible for the power grid operational indices. So the trade-off between economic consideration and load factor should be made. It is verified that the SBEMS is beneficial to the PEVs owners building operator environment and grid.

Qian Dai; Shanxu Duan; Tao Cai; Changsong Chen

2013-01-01T23:59:59.000Z

142

Communities Plug In To Electric Vehicle Readiness | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electric vehicle readiness projects from throughout the country. | Photo by Ken Kelly, National Renewable Energy Laboratory EV Everywhere: 10 Ways Communities Can Pave the...

143

Wireless Plug-in Electric Vehicle (PEV) Charging  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a convenient, safe and flexible means to charge electric vehicles. Vehicle to WPT base unit communications (radio) in regulation outer loop Lightest, most compact secondary coil,...

144

Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)  

Reports and Publications (EIA)

Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

2009-01-01T23:59:59.000Z

145

Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis  

E-Print Network (OSTI)

The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition ...

Reilly, John M.

146

Edmund G. Brown, Jr. PLUG-IN HYBRID ELECTRIC VEHICLE  

E-Print Network (OSTI)

· Environmentally Preferred Advanced Generation · Industrial/Agricultural/Water End Use Energy Efficiency of Water and Power; MercedesBenz; Natural Resources Defense Council; Nissan; Pacific Gas and Electric Co are focused on the following RD&D program areas: · Buildings End-Use Energy Efficiency · Energy

147

Evaluating the Impact of Plug-in Hybrid Electric Vehicles on Regional Electricity Supplies  

SciTech Connect

Plug-in Hybrid Electric Vehicles (PHEVs) have the potential to increase the use of electricity to fuel the U.S. transportation needs. The effect of this additional demand on the electric system will depend on the amount and timing of the vehicles' periodic recharging on the grid. We used the ORCED (Oak Ridge Competitive Electricity Dispatch) model to evaluate the impact of PHEVs on the Virginia-Carolinas (VACAR) electric grid in 2018. An inventory of one million PHEVs was used and charging was begun in early evening and later at night for comparison. Different connection power levels of 1.4 kW, 2 kW, and 6 kW were used. The results include the impact on capacity requirements, fuel types, generation technologies, and emissions. Cost information such as added cost of generation and cost savings versus use of gasoline were calculated. Preliminary results of the expansion of the study to all regions of the country are also presented. The results show distinct differences in fuels and generating technologies when charging times are changed. At low specific power and late in the evening, coal was the major fuel used, while charging more heavily during peak times led to more use of combustion turbines and combined cycle plants.

Hadley, Stanton W [ORNL

2007-01-01T23:59:59.000Z

148

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids, Part 1: Technical

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

149

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

automobile manufacturers are currently introducing electricautomobile mass market. EDVs come in the form of plug-in hybrid electric

Greer, Mark R

2012-01-01T23:59:59.000Z

150

Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Workplace Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for Workplace Charging . . . . . . . 9 Workplace Charging Management and Policy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Workplace Charging Installation . . . . . . . . . . . . . . . . . . . . . . 16 Electrifying Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Clean Cities Helps Establish Charging Infrastructure The U .S . Department of Energy's Clean Cities program supports local actions to reduce petroleum use in transportation . Nearly 100 Clean Cities coalitions across the country work

151

Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord  

SciTech Connect

This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

Steve Schey; Jim Francfort

2014-10-01T23:59:59.000Z

152

Summary Report: Clean Cities Plug-In Electric Vehicle Community Readiness Partners Discussion Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org 2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org MAY 7, 2012 4:30 PM - 6:00 PM LOS ANGELES, CA SUMMARY REPORT: CLEAN CITIES PLUG-IN ELECTRIC VEHICLE COMMUNITY READINESS PARTNERS DISCUSSION GROUP By: Nick Nigro, Center for Climate and Energy Solutions An opportunity to discuss challenges and share best practices regarding efforts to prepare your community/region for plug-in electric vehicles and charging infrastructure deployment Center for Climate and Energy Solutions 2 Table of Contents Table of Contents 2 About this Report 3 Disclaimer 3 Acknowledgements 3 Session Overview 4 Vehicle Demand and Availability 4 Law and Regulatory Environment 5 Public EVSE Signage 5 ADA Compliance 7 Multi-unit Dwellings 7

153

Effects of Plug-In Hybrid Electric Vehicles on Ozone Concentrations in Colorado  

Science Journals Connector (OSTI)

Effects of Plug-In Hybrid Electric Vehicles on Ozone Concentrations in Colorado ... Changes in PM10 and PM2.5 concentrations in Colorado (and most areas of the western U.S. outside California) were negligible. ... The biogenic, area, and mobile source inventories were provided by the National Park Service (17) based on an updated version of the Western Regional Air Partnership (WRAP) inventories from 2002 used for the Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) study. ...

Gregory L. Brinkman; Paul Denholm; Michael P. Hannigan; Jana B. Milford

2010-07-15T23:59:59.000Z

154

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network (OSTI)

expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from powerEstimating the potential of controlled plug-in hybrid electric vehicle charging to reduce

Michalek, Jeremy J.

155

Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid  

E-Print Network (OSTI)

,365 Total Project Cost $58,365 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates April 1, 2014Project Information Form Project Title Advanced Energy Management Strategy Development for Plug ­ September 30, 2015 Brief Description of Research Project Plug-in hybrid vehicles (PHEVs) have great

California at Davis, University of

156

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Electric Vehicle Handbook Plug-In Electric Vehicle Handbook for Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation

157

A Novel Quantum Particle Swarm Optimization for Power Grid with Plug-In Electric Vehicles in Shanghai  

Science Journals Connector (OSTI)

This paper studies the plug-in electric vehicles charging/discharging mode under the intelligent power grid in Shanghai with the objective of minimizing ... vehicles charging/discharging optimization model is bui...

Jinwei Gu; Manzhan Gu; Quansheng Shi

2014-01-01T23:59:59.000Z

158

Within-day recharge of plug-in hybrid electric vehicles: Energy impact of public charging infrastructure  

Science Journals Connector (OSTI)

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers’ within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Jing Dong; Zhenhong Lin

2012-01-01T23:59:59.000Z

159

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

SciTech Connect

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

160

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles  

Science Journals Connector (OSTI)

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles ... We do not consider other life cycle stages of the vehicles (e.g., manufacturing and end-of-life) or energy supply infrastructure (e.g., facility construction, maintenance, decommissioning, and labor). ... Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids. ...

Leon Raykin; Heather L. MacLean; Matthew J. Roorda

2012-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are neededCost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b

Michalek, Jeremy J.

162

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Charging Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation deployment initiative . It is supported

163

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

7951 7951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

164

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

951 951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

165

A Queueing Based Scheduling Approach to Plug-In Electric Vehicle Dispatch in Distribution Systems  

E-Print Network (OSTI)

Large-scale integration of plug-in electric vehicles (PEV) in power systems can cause severe issues to the existing distribution system, such as branch congestions and significant voltage drops. As a consequence, smart charging strategies are crucial for the secure and reliable operation of the power system. This paper tries to achieve high penetration level of PEVs with the existing distribution system infrastructure by proposing a smart charging algorithm that can optimally utilize the distribution system capacity. Specifically, the paper proposes a max-weight PEV dispatch algorithm to control the PEV charging rates, subject to power system physical limits. The proposed max-weight PEV dispatch algorithm is proved to be throughput optimal under very mild assumptions on the stochastic dynamics in the system. This suggests that the costly distribution system infrastructure upgrade can be avoided, or failing that, at least successfully deferred. The proposed PEV dispatch algorithm is particularly attractive in ...

Li, Qiao; Ilic, Marija D

2012-01-01T23:59:59.000Z

166

A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles  

SciTech Connect

In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

2014-01-01T23:59:59.000Z

167

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

the automobile market, Plug- In Hybrid Electric Vehicles (electric vehicles. Because of these factors, the automobileELECTRIC ONLY Figure 5.5c Temporal Trip Distribution Source Energy Profiles Conclusions and Future Research Commercial PHEV release in the automobile

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

168

How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and  

E-Print Network (OSTI)

How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and produce less pollution. Examining other aspects of electric vehicles besides tailpipe emissions may show they are not so green. In order to determine how environmentally friendly electric

Toohey, Darin W.

169

Price-Based Distributed Control for Networked Plug-in Electric Vehicles Bahman Gharesifard Tamer Basar Alejandro D. Dominguez-Garcia  

E-Print Network (OSTI)

Price-Based Distributed Control for Networked Plug-in Electric Vehicles Bahman Gharesifard Tamer the charging and discharging processes of plug-in electric vehicles (PEVs) via pricing strategies. Our. In the retail market layer, the aggregator offers some price for the energy that PEVs may provide; the objective

Liberzon, Daniel

170

Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data  

SciTech Connect

Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

Wu, Xing [Lamar University] [Lamar University; Dong, Jing [Iowa State University] [Iowa State University; Lin, Zhenhong [ORNL] [ORNL

2014-01-01T23:59:59.000Z

171

On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems  

E-Print Network (OSTI)

Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

2011-01-01T23:59:59.000Z

172

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs and Emissions Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Technical Report NREL/TP-640-41410 May 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Prepared under Task No. WR61.2001 Technical Report NREL/TP-640-41410 May 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

173

Adaptive three-phase power-flow solutions for smart grids with plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This paper introduces an adaptive three-phase power flow method for smart grids with plug-in hybrid electric vehicles (PHEVs). The proposed method is developed based on the loop frame of reference. The operations of smart grids are inherently unbalanced because of the incomplete three-phase feeder arrangements, nonsymmetrical conductor spacing of three-phase underground cables and overhead lines, unbalanced loads, and a variety of distributed energy resources (DERs). Therefore, the proposed method was developed based on the actual phase (a–b–c) frame, rather than the sequence-component frame. To adapt the network topologies of smart grids, two solution strategies are used, one for radial smart grids and the other for non-radial smart grids. To demonstrate the validity and capability of the proposed algorithm, four IEEE feeder systems and an actual Taiwan Power Company (Taipower) distribution system are used as benchmarks for comparison purposes. The test results show that the proposed method is accurate, efficient, and adaptable, and it therefore has good potential for smart grid energy management system (EMS) applications.

Nien-Che Yang; Wei-Chih Tseng

2015-01-01T23:59:59.000Z

174

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

175

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

SciTech Connect

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

176

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

177

Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers  

SciTech Connect

To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

178

eVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric andIn Hybrid Electric and  

E-Print Network (OSTI)

eVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric andIn Hybrid Electric and gov PlugPlug In Hybrid Electric andIn Hybrid Electric and AllAllElectric Vehicles Electric Vehicles www.inl.g October 2, 2014 Richard "Barney" Carlson w INL/MIS-14-32984 y Shawn Salisbury

California at Davis, University of

179

10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1-in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum

Kammen, Daniel M.

180

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset  

Energy.gov (U.S. Department of Energy (DOE))

Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hybrid and Plug-In Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

into an electric power source. Although most U.S. electricity production contributes to air pollution, the U.S. Environmental Protection Agency categorizes all-electric vehicles...

182

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

power required by the electric motor. The characteristics ofthe battery size and the electric motor and engine powers,electric range and electric motor power (mid-size passenger

Burke, Andrew

2009-01-01T23:59:59.000Z

183

Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers  

SciTech Connect

Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

184

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...  

Energy Savers (EERE)

hybrid vehicles and all-electric vehicles. Hybrid Electric Vehicles derive all of their energy from gasoline and cannot be plugged into any outlet. Fact 843 Dataset Supporting...

185

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

How Plug-in Hybrids Save Money How Plug-in Hybrids Save Money Plug-in hybrid recharging Plug-in hybrids reduce fuel costs by Using high-capacity batteries that allow them to operate on electricity from the outlet for significant distances-electricity typically costs less than half as much as gasoline Using a larger electric motor that typically allows the vehicle to use electricity at higher speeds than regular hybrids Using regenerative braking to recover energy typically wasted when you apply the brakes Plug-in hybrid designs differ, and your driving habits, especially the distance you drive between re-charging, can have a big effect on your fuel bill. My Plug-in Hybrid Calculator estimates gasoline and electricity costs for any available plug-in hybrid using your driving habits and fuel costs.

186

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

187

Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.  

SciTech Connect

This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. (Decision and Information Sciences); ( ES); (ED); (Kyungwon Univ.)

2011-07-01T23:59:59.000Z

188

Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Consumers Consumers Plug-In Electric Vehicle Handbook for Consumers 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

189

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Híbridos Eléctricos Enchufables Híbridos Eléctricos Enchufables Aprenda más acerca del Nuevo Engomado Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Tecnología y Combustible para Vehículos La esquina superior derecha del engomado muestra el texto y el ícono que identifica que el vehículo puede utilizar gasolina y electricidad. Usted verá otro texto e íconos diferentes en los engomados de otros vehículos; Vehículo de Gasolina Vehículo de Diesel Vehículo de Gas Natural Comprimido Vehículo de Célula de Combustible

190

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

A spatially explicit agent-based vehicle consumer choice model is developed to explore sensitivities and nonlinear interactions between various potential influences on plug-in hybrid vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold effects, homophily, and conformity) and media influences. Preliminary simulations demonstrate how such a model could be used to identify nonlinear interactions among potential leverage points, inform policies affecting PHEV market penetration, and help identify future data collection necessary to more accurately model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate that PHEV market penetration could be enhanced significantly by providing consumers with ready estimates of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower-cost PHEV batteries.

Margaret J. Eppstein; David K. Grover; Jeffrey S. Marshall; Donna M. Rizzo

2011-01-01T23:59:59.000Z

191

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction  

Energy.gov (U.S. Department of Energy (DOE))

The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass-marketed plug-in...

192

Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Modeling grid-connected hybrid electric vehicles using advisor, in: Applications and Advances, 2001. The Sixteenth Annual Battery Con- ference on, IEEE. pp.

2014-07-22T23:59:59.000Z

193

Clean Cities Now, Vol. 15, No. 1, April 2011: Plugging In, Cities are planning for electric vehicle infrastructure (Brochure), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 April 2011 Clean Cities TV to Broadcast Coalition Successes Keeping Trash from Going to Waste with Renewable Natural Gas Renewable Fuels in New Jersey Raleigh, NC Los Angeles, CA Houston, TX Oregon Cities are planning for electric vehicle infrastructure Plugging In Dear Readers, In preparation for the widespread adoption of all-electric and plug-in hybrid electric vehicles, city officials, utility companies, and local leaders are working together to speed up permitting processes for installing home charging equipment. To help cities navigate this new territory, Clean Cities devel- oped case studies detailing the experiences of four electric vehicle pacesetters-the state of Oregon, Houston, Los Angeles, and Raleigh, North Carolina-that are leading the charge. Our feature article on

194

Plug in America | Open Energy Information  

Open Energy Info (EERE)

by cleaner, cheaper, domestic electricity to reduce our nation's dependence on petroleum and improve the global environment. References: Plug-in America1 This article is a...

195

Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil  

Science Journals Connector (OSTI)

Several studies have proposed different tools for analyzing the integration of variable renewable energy into power grids. This study applies an optimization tool to model the expansion of the electric power system in northeastern Brazil, enabling the most efficient dispatch of the variable output of the wind farms that will be built in the region over the next 20 years. The expected combined expansion of wind generation with conventional inflexible generation facilities, such as nuclear plants and run-of-the-river hydropower plants, poses risks of future mismatch between supply and demand in northeastern Brazil. Therefore, this article evaluates the possibility of using a fleet of plug-in hybrid electric vehicles (PHEVs) to regularize possible energy imbalances. Findings indicate that a dedicated fleet of 500 thousand \\{PHEVs\\} in 2015, and a further 1.5 million in 2030, could be recharged overnight to take advantage of the surplus power generated by wind farms. To avoid the initial costs of smart grids, this article suggests, as a first step, the use of a governmental PHEV fleet that allows fleet managers to control battery charging times. Finally, the study demonstrates the advantages of optimizing simultaneously the power and transport sectors to test the strategy suggested here.

Bruno Soares M.C. Borba; Alexandre Szklo; Roberto Schaeffer

2012-01-01T23:59:59.000Z

196

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

197

Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction  

SciTech Connect

Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

Malikopoulos, Andreas [ORNL

2013-01-01T23:59:59.000Z

198

Sliding mode-based DTC-SVM control of permanent magnet synchronous motors for plug-in electric and hybrid vehicles  

Science Journals Connector (OSTI)

This paper presents a sliding mode controller design for a permanent magnet synchronous motor used in an integrated powertrain for plug-in electric and hybrid vehicles. In order to adapt to complicated driving environment and improve the robustness of the system, a sliding mode-based torque controller is developed. At the same time, a sliding mode speed controller is also proposed to meet the need of gear shift of the integrated powertrain. The stability and robustness of the proposed controllers are analysed. Computer simulations are performed to verify the effectiveness of the proposed control system. The simulation results illustrate that fast response and small ripples are achieved using the proposed control scheme. It is also shown that the control system is robust against load variations, measurement errors and parameter uncertainty. In addition, the transition during shift is smooth. Therefore, the proposed control scheme is suitable for control of the propulsion motor for plug-in electric and hybrid vehicles.

Hong Fu; Yaobin Chen; Guangyu Tian; Quanshi Chen

2011-01-01T23:59:59.000Z

199

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods Part 2: Experimental Evaluation of Emissions Reduction Methodologies  

SciTech Connect

Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple 'cold' start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts. A continuation of previous analytical work, this research, experimentally verifies a vehicle supervisory control system for a pre-transmission parallel PHEV powertrain architecture. Energy management strategies are evaluated and implemented in a virtual environment for preliminary assessment of petroleum displacement benefits and rudimentary drivability issues. This baseline vehicle supervisory control strategy, developed as a result of this assessment, is implemented and tested on actual hardware in a controlled laboratory environment over a baseline test cycle. Engine cold start events are aggressively addressed in the development of this control system, which leads to enhanced pre-warming and energy-based engine warming algorithms that provide substantial reductions in tailpipe emissions over the baseline supervisory control strategy. The flexibility of the PHEV powertrain allows for decreased emissions during any engine starting event through powertrain 'torque shaping' algorithms. The results of the research show that PHEVs do have the potential for substantial reductions in fuel consumption. Tailpipe emissions from a PHEV test platform have been reduced to acceptable levels through the development and refinement of vehicle supervisory control methods only. Impacts on fuel consumption were minimal for the emissions reduction techniques implemented.

Smith, David E [ORNL] [ORNL; Lohse-Busch, Henning [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Irick, David Kim [ORNL] [ORNL

2010-01-01T23:59:59.000Z

200

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

Science Journals Connector (OSTI)

Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and \\{SUVs\\} in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives.

Scott B. Peterson; Jeremy J. Michalek

2013-01-01T23:59:59.000Z

202

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

with the electric motor to maximize efficiency. 3 “Pure” EVsbattery and electric motor to increase the efficiency of thebattery and electric motor to increase the efficiency of the

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

203

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

a PHEV has both an electric motor and a heat engine—usuallythe vehicle only by an electric motor using electricity fromand forth with the electric motor to maximize efficiency.

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

204

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

sources. So where are our electric automobiles? The answeron what is an electric automobile. We have seen variations

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

205

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...cell, and plug-in hybrid electric vehicles. Electric and Hybrid Vehicles: Power Sources...Sustainability, Infrastructure and the Market, ed...Assessment of Plug-in Hybrid Electric Vehicles...and vehicle-to-grid services. Environ...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

206

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...and plug-in hybrid electric vehicles. Electric and Hybrid Vehicles: Power...Sustainability, Infrastructure and the Market...of Plug-in Hybrid Electric Vehicles...vehicle-to-grid services. Environ...Department of Energy (2010) The...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

207

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

battery and electric motor to increase the efficiency of thebattery and electric motor to increase the efficiency of theand electric motor are used to improve the efficiency of the

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

208

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

chemistries. In summary, electric-drive interest groups,the present and future of electric-drive vehicles, including24 -vii- 1.0 Introduction Electric-drive continues to pique

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

209

Plug-in Hybrid Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Links Plug-in Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Plug-in Hybrid Vehicles and Manufacturers Chevrolet Volt Official site for the Chevrolet Volt Cadillac ELR Official site for the Cadillac ELR (arriving early 2014) Ford C-MAX Energi Plug-in Hybrid Official site for the C-MAX Energi Plug-in Hybrid Ford Fusion Energi Plug-in Hybrid Official site for the Fusion Energi Plug-in Hybrid Honda Accord Plug-in Official site for the Honda Accord Plug-in Hybrid Toyota Prius Plug-in Official site for the Toyota Prius Plug-in Hybrid Plug-in-Related Information and Tools

210

The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids  

E-Print Network (OSTI)

solar thermal, stationary batteries, thermal storage, andThe model allows the EV batteries to transfer electricity toPV, and stationary batteries as options, e) an everything

Stadler, Michael

2010-01-01T23:59:59.000Z

211

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

212

Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

213

Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

214

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging PHEVs, as well as the powertrain technology and fuel sources for PHEVs.

215

Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services  

Science Journals Connector (OSTI)

In addition to using a cleaner source of fuel, PHEVs may further increase the efficiency of electric generators and reduce overall emissions by providing two vehicle-to-grid (V2G) services (6, 7): energy storage and ancillary services (AS). ... This also demonstrates the importance of detailed emissions impact studies for other power systems: ERCOT is a unique power system in that it has a great deal of natural gas and wind generation, and the emissions impacts of PHEVs may be different in other power systems. ...

Ramteen Sioshansi; Paul Denholm

2009-01-22T23:59:59.000Z

216

Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maintenance and Safety Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on AddThis.com...

217

Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

UC Davis Pioneers UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on AddThis.com...

218

Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North Carolina Airport North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail Share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Facebook Tweet about Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Twitter Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Google Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Delicious Rank Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Digg Find More places to share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on AddThis.com...

219

Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Developing Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on AddThis.com...

220

Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Los Angeles' Sets the Los Angeles' Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on AddThis.com... April 18, 2011

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Los Angeles Saves With Los Angeles Saves With Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on AddThis.com...

222

Plug In Partners | Open Energy Information  

Open Energy Info (EERE)

Plug-In Partners Plug-In Partners Place Austin, Texas Zip 78704 Sector Vehicles Product Focused on promotion of flexible-fuel Plug-in Hybrid Electric Vehicles (PHEV). Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Microsoft Word - Plug-in Hybrids.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Released on the Potential of Plug- Released on the Potential of Plug- In Hybrid Electric Vehicles JANUARY 2007 A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Researchers also found that in the Midwest and East there is sufficient

224

DOE Releases Electricity Subsector Cybersecurity Risk Management...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline DOE Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline...

225

246 Int. J. Electric and Hybrid Vehicles, Vol. 3, No. 3, 2011 Copyright 2011 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

@ieee.org *Corresponding author Abstract: This paper studies the power management of a plug-in hybrid electric vehicle vehicles and plug-in hybrid electric vehicles. #12;Power management of PHEV using quadratic programming 247. Pure battery powered electric vehicle (EV) is considered as the future because it does not rely

Mi, Chunting "Chris"

226

Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fun Fact Friday: Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition September 27, 2013 - 11:50am Addthis Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Today we are introducing a new weekly feature on EERE Blog that highlights-you guessed it-fun facts about clean energy. For our inaugural edition, we are spotlighting plug-in hybrid electric vehicles (PHEVs). With the ability to use their internal combustion engine after

227

Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-in Hybrid Edition Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition September 27, 2013 - 11:50am Addthis Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Today we are introducing a new weekly feature on EERE Blog that highlights-you guessed it-fun facts about clean energy. For our inaugural edition, we are spotlighting plug-in hybrid electric vehicles (PHEVs). With the ability to use their internal combustion engine after

228

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting ape030bennion2012o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies...

229

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation ape030bennion2011o.pdf More Documents & Publications Motor Thermal Control Electric Motor Thermal Management Electric Motor Thermal Management...

230

Green Power: Make Your Plug-in Vehicle Even Greener  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power: Make Your Plug-in Vehicle Even Greener Green Power: Make Your Plug-in Vehicle Even Greener Your plug-in hybrid or all-electric vehicle can help reduce oil dependence. It can also reduce emissions of greenhouse gases (GHGs) that lead to climate change if the electricity you use is produced by renewable energy. Even if most of the electricity in your area is generated by coal or other fossil fuels, you may be able to purchase green power for your vehicle. What Is Green Power? Green Power is electricity generated wholly or in part from renewable energy sources, such as wind and solar power, geothermal, hydropower, and various forms of biomass. The actual electricity delivered to your outlet may not be green, but your purchase of green power ensures that the power company generates that amount of power from renewable energy or purchases it from another provider

231

Honey, Did You Plug in the Prius? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? July 7, 2009 - 5:07pm Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition An unexpected snowfall in late March prompted me to take my two daughters, Paloma and Ava, for a memorable afternoon of sledding and hot chocolate. However, before leaving home, I unplugged a cord from the standard 110-volt wall socket in my garage and did likewise from the port on the back of my 2007 Toyota Prius. I rolled up the cord, placed it in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before recharging. Yes, I'm fortunate to be one of the only private owners of a plug-in

232

Honey, Did You Plug in the Prius? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? July 7, 2009 - 5:07pm Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition An unexpected snowfall in late March prompted me to take my two daughters, Paloma and Ava, for a memorable afternoon of sledding and hot chocolate. However, before leaving home, I unplugged a cord from the standard 110-volt wall socket in my garage and did likewise from the port on the back of my 2007 Toyota Prius. I rolled up the cord, placed it in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before recharging. Yes, I'm fortunate to be one of the only private owners of a plug-in

233

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Vehicle (BEV) with an electric motor capable of supplyingmode operation uses the electric motor to run during low-PHEV x can be run on the electric motor only for the first x

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

234

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

An overview. Electric Power Systems Research 79(4), 511-520.research has shown that EDVs offer a number of potential complementarities to the conventional system of electric power

Greer, Mark R

2012-01-01T23:59:59.000Z

235

Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size  

Energy.gov (U.S. Department of Energy (DOE))

Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

236

Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in January 2000 and 324 were sold in the first month. The Chevrolet Volt, a hybrid-electric plug-in, and the...

237

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

by adding additional batteries to the design, allowing theincreases. Advanced Batteries for Electric-Drive Vehicles (generally require larger batteries with correspondingly

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

238

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

PHEV impact on wind energy market (Short et al. , 2006) andVehicles in California Energy Markets, TransportationElectric Vehicles on Wind Energy Markets, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

239

Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles: A Survey  

SciTech Connect

The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

Malikopoulos, Andreas [ORNL

2014-01-01T23:59:59.000Z

240

Economic Assessment and Impacts Assessment of Plug-In Hybrid Vehicles on Electric Utilities And Regional U.S. Power Grids  

SciTech Connect

Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

2007-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Economic Assessment And Impacts Assessment Of Plug-In Hybrid Vehicles On Electric Utilities And Regional U.S. Power Grids  

SciTech Connect

Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

2007-01-22T23:59:59.000Z

242

Electric Power Controller for Steering Wheel Management in Electric Cars  

E-Print Network (OSTI)

Electric Power Controller for Steering Wheel Management in Electric Cars Vicente Milanés, Joshué-- Autonomous vehicles, Power control, System analysis and design, Intelligent transportation systems. I they are named hydraulic power steering (HPS) systems. If an electric motor is used then they are named electric

Paris-Sud XI, Université de

243

A Life-Cycle Approach To Technology, Infrastructure, And Climate Policy Decision Making: Transitioning To Plug-In  

E-Print Network (OSTI)

A Life-Cycle Approach To Technology, Infrastructure, And Climate Policy Decision Making: Transitioning To Plug-In Hybrid Electric Vehicles And Low-Carbon Electricity A Dissertation Submitted in partial) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use

244

Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles  

Science Journals Connector (OSTI)

Infrastructure and transport requirements, though often generic, were always included. ... vehicles (PHEV), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector; however, meaningful GHG emissions redns. ... storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and elec. ...

Guillaume Majeau-Bettez; Troy R. Hawkins; Anders Hammer Strømman

2011-04-20T23:59:59.000Z

245

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

SciTech Connect

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

246

Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million to Support Plug-In Hybrid 0 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis WASHINGTON, DC -- As part of the Department of Energy's commitment to advancing the next generation of electric vehicles in the United States, Energy Secretary Steven Chu today announced the selection of a new demonstration and testing project to develop a plug-in hybrid electric vehicle (PHEV) school bus to be used in fleets across the country. Navistar Corporation (Fort Wayne, IN) has been selected by the Department of Energy (DOE) for negotiation of a cost-shared award of up to $10 million to develop, test, and deploy an electric hybrid school bus. PHEVs will play an important role in achieving America's energy independence by

247

VEHICLE-INFRASTRUCTURE INTEGRATION (VII) ENABLED PLUG-IN HYBRID ELECTRIC VEHICLES (PHEVS) FOR TRAFFIC AND ENERGY MANAGEMENT.  

E-Print Network (OSTI)

??Vehicle Infrastructure Integration (VII) program (also known as IntelliDrive) has proven the potential to improve transportation conditions by enabling the communication between vehicles and infrastructure,… (more)

Kang, Xueying

2009-01-01T23:59:59.000Z

248

Plug-in Electric Vehicle Outreach  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Green Car of the Year in 2013, and the 2013 Car of the Year by both Motor Trend and Automobile Magazine. PEV Outreach Resources for Your Employees Photo by Dennis Schroeder, NREL...

249

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

250

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

251

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity 2012 DOE Hydrogen...

252

Concept for Management of the Future Electricity System (Smart...  

Open Energy Info (EERE)

Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System Country Denmark...

253

ELECTRICITY SUBSECTOR CYBERSECURITY RISK MANAGEMENT PROCESS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUBSECTOR CYBERSECURITY SUBSECTOR CYBERSECURITY RISK MANAGEMENT PROCESS U.S. Department of Energy May 2012 DOE/OE-0003 Acknowledgments This electricity subsector cybersecurity Risk Management Process (RMP) guideline was developed by the Department of Energy (DOE), in collaboration with the National Institute of Standards and Technology (NIST) and the North American Electric Reliability Corporation (NERC). Members of industry and utility-specific trade groups were included in authoring this guidance designed to be meaningful and tailored for the electricity sector. The primary goal of this guideline is to describe an RMP that is tuned to the specific needs of electricity subsector organizations. The NIST Special Publication (SP) 800-39, Managing Information Security Risk, provides the foundational methodology for this document. The NIST Interagency Report

254

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

255

DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Provide up to $14 Million to Develop Advanced Batteries for to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles April 5, 2007 - 12:17pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions to improving battery performance so vehicles can deliver up to 40 miles of electric range without recharging. This would include most roundtrip daily commutes. "President Bush is committed to developing alternative fuels and

256

A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues  

E-Print Network (OSTI)

The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

Shidore, Neeraj Shripad

2012-07-16T23:59:59.000Z

257

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric...efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in...average car vs. $0.004mi for an electric car on an average driving time and location...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

258

Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

259

Review article Influence of electric conductivity management  

E-Print Network (OSTI)

Review article Influence of electric conductivity management on greenhouse tomato yield and fruit quality Martine DORAISa,b*, Athanasios P. PAPADOPOULOSa, André GOSSELINb a Greenhouse and Processing Crops Horticulture, Université Laval, Sainte-Foy, QC, G1K 7P4, Canada (Received 3 August 2000; revised 6 February

Boyer, Edmond

260

Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy  

Science Journals Connector (OSTI)

Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affect the potential for large GHG emissions reductions with PHEVs for several decades. ... Life cycle GHG emissions (g CO2-eq/km) of conventional vehicles (CVs), hybrid electric vehicles (HEVs), and plug-in hybrids (PHEVs) with all-electric ranges of 30, 60, or 90 km. ...

Constantine Samaras; Kyle Meisterling

2008-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Bottling Electricity: Storage as a Strategic Tool for Managing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a...

262

Federal Tax Credits for Plug-in Hybrids Purchased in or after 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Plug-in Hybrids Federal Tax Credits for Plug-in Hybrids Photo of cash and keys Federal Tax Credit Up To $7,500! Plug-in hybrid-electric vehicles (PHEVs) purchased in or after 2010 may be eligible for a federal income tax credit of up to $7,500. The credit amount will vary based on the capacity of the battery used to fuel the vehicle. Small neighborhood electric vehicles do not qualify for this credit, but they may qualify for another credit. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% BMW Jan. 1, 2010, to Present TBD TBD TBD 2014 BMW i3 Sedan w/ Range Extender 2014 i3 Sedan w/ Range Extender $7,500 -- -- -- Fisker Jan. 1, 2010, to Present TBD TBD TBD Fisker Karma 2012 Fisker Karma Sedan $7,500 -- -- -- Ford Motor Co. Jan. 1, 2010, to Present TBD TBD TBD

263

DOE Releases Electricity Subsector Cybersecurity Risk Management Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Electricity Subsector Cybersecurity Risk Management Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline DOE Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline May 23, 2012 - 9:30am Addthis News Media Contact: (202) 586-4940 For Immediate Release: May 23, 2012 Department of Energy Releases Electricity Subsector Cybersecurity Risk Management Process (RMP) Guideline Public-Private Sector Collaboration Produces Guidance to Help Electric Utilities Better Understand and Assess Cybersecurity Risk WASHINGTON, DC - The Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability, in collaboration with the National Institute of Standards and Technology (NIST) and the North American Electric Reliability Corporation (NERC), today released guidance to help

264

Q&A: Plugging In with a Power Lineman | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q&A: Plugging In with a Power Lineman Q&A: Plugging In with a Power Lineman Q&A: Plugging In with a Power Lineman October 18, 2012 - 4:17pm Addthis To commemorate what BPA considers a 75-year partnership with the Columbia River, which is the cornerstone of BPA's relationship with the people and utilities of the Northwest, BPA releases the second video of a series detailing its history. You can see the rest of the series on BPA's 75th Anniversary YouTube channel. Teresa Waugh Public Affairs Specialist, Bonneville Power Administration What does a power lineman do? Linemen work on the complex electrical systems that power our homes and businesses. They climb poles to perform maintenance and work to restore downed power lines after storms. This Q&A and video are part of a series produced by the Bonneville Power

265

Brookings-Google Plug-in Hybrid Summit, Washington, DC, July 2008 Version date: September 7, 2008  

E-Print Network (OSTI)

spectrum that stretches from fossil fuel-powered conventional vehicles (CVs) through hybrid electric-in Hybrid Electric Vehicles Daniel M. Kammen,* , Derek M. Lemoine , Samuel M. Arons and Holmes Hummel Energy.642.1640; fax: 510.642.1085; Email: kammen@berkeley.edu Executive Summary Plug-in hybrid electric vehicles

Kammen, Daniel M.

266

Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop to someone by E-mail Share Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Facebook Tweet about Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Twitter Bookmark Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Google Bookmark Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Delicious Rank Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Digg Find More places to share Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on AddThis.com... Conferences & Workshops

267

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

268

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents (OSTI)

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2006-12-12T23:59:59.000Z

269

Federal Energy Management Program: Energy Cost Calculator for Electric and  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Cost Energy Cost Calculator for Electric and Gas Water Heaters to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Digg Find More places to share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on AddThis.com...

270

Hierarchical Control and Management of Virtual Microgrids for Vehicle Electrification  

E-Print Network (OSTI)

of electrical power generation and delivery. A Smart Grid is an intelligent and automated energy grid and new types of loads such as plug-in (hybrid) electric vehicles (PEVs); (2) optimizing systemHierarchical Control and Management of Virtual Microgrids for Vehicle Electrification Feng Lina

Zhang, Hongwei

271

Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint  

E-Print Network (OSTI)

Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some...

Jackson, C. E.

1984-01-01T23:59:59.000Z

272

Managing Wind Power Forecast Uncertainty in Electric Grids.  

E-Print Network (OSTI)

??Electricity generated from wind power is both variable and uncertain. Wind forecasts provide valuable information for wind farm management, but they are not perfect. Chapter… (more)

Mauch, Brandon Keith

2012-01-01T23:59:59.000Z

273

Managing Total Corporate Electricity/Energy Market Risks  

Science Journals Connector (OSTI)

This paper starts with a short history of the use of value-at-risk techniques in financial risk management. The specific and often unique risk management challenges faced by electricity companies are then desc...

Alex Henney; Greg Keers

2000-01-01T23:59:59.000Z

274

Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)  

SciTech Connect

This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

Narumanchi, S.

2014-09-01T23:59:59.000Z

275

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D

2007-01-01T23:59:59.000Z

276

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D

2010-01-01T23:59:59.000Z

277

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D

2007-01-01T23:59:59.000Z

278

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D

2010-01-01T23:59:59.000Z

279

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2010-01-01T23:59:59.000Z

280

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

storage, and initial cost barriers—enable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

Williams, Brett D

2010-01-01T23:59:59.000Z

282

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2010-01-01T23:59:59.000Z

283

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2007-01-01T23:59:59.000Z

284

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2007-01-01T23:59:59.000Z

285

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Price EDrive PriusPM synchron AC PM synchron AC Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2010-01-01T23:59:59.000Z

286

Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation  

SciTech Connect

Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

2012-01-01T23:59:59.000Z

287

Electricity derivatives and risk management S.J. Denga,*  

E-Print Network (OSTI)

Electricity derivatives and risk management S.J. Denga,* , S.S. Orenb a School of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720, USA Abstract Electricity of electricity production and distribution. Uncontrolled exposure to market price risks can lead to devastating

288

Managing Wind-based Electricity Generation and Storage  

E-Print Network (OSTI)

Managing Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable

Sadeh, Norman M.

289

Fact #752: November 5, 2012 Western Europe Plug-in Car Sales...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

chart). France accounted for 22.3% of Western European plug-in car sales, followed by Germany at 17.3%. Plug-in Car Market Share, 2012* (Plug-in Sales as a Share of Total Car...

290

Bottling Electricity: Storage as a Strategic Tool for Managing Variability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bottling Electricity: Storage as a Strategic Tool for Managing Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) The objectives of this report are to provide the Secretary of Energy with the Electricity Advisory Committee's proposed five-year plan for integrating basic and applied research on energy storage technology applications. This report recommends policies that the U.S. Department of Energy (DOE) should consider as it develops and implements an energy storage technologies program, as authorized by the Energy Independence and Security Act of 2007. Bottling Electricity: Storage as a Strategic Tool for Managing Variability

291

U.S. electric utility demand-side management 1995  

SciTech Connect

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-01-01T23:59:59.000Z

292

Moving Forward with the Electric Sector Cybersecurity Risk Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moving Forward with the Electric Sector Cybersecurity Risk Moving Forward with the Electric Sector Cybersecurity Risk Management Maturity Initiative Moving Forward with the Electric Sector Cybersecurity Risk Management Maturity Initiative January 20, 2012 - 10:28am Addthis Since the January 5, 2012 launch of the "Electric Sector Cybersecurity Risk Management Maturity" program, a White House initiative led by the Department of Energy in partnership with the Department of Homeland Security (DHS) to create a more comprehensive and consistent approach to protecting the nation's electric grid against cyber attacks, we have seen a tremendous response from the electric sector. More and more companies are stepping forward, saying they want to participate. We are capitalizing on the growing momentum in several ways. One of our

293

Fuel Economy of the 2014 Toyota Prius Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius Plug-in Hybrid Toyota Prius Plug-in Hybrid Search for Other Vehicles View the Mobile Version of This Page Compare Side-by-Side 4 cyl, 1.8 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 50 Combined 51 City 49 Highway Elec+Reg. Gas 95 Combined 29 kw-hrs/100 miles *Miles per Gallon Equivalent - 1 gallon of gasoline=33.7 kw-hr Unofficial MPG Estimates Shared by Vehicle Owners My MPG Owner MPG Estimates are not yet available for this vehicle. How can I Share My MPG? Vehicle Specification Data EPA Size Class Additional Information Midsize Cars Drive Front-Wheel Drive Gas Guzzler no Turbocharger no Supercharger no Passenger Volume 94ft3 (Hatchback) Luggage Volume 22ft3 (Hatchback) Engine Descriptor Additional Information PHEV

294

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network (OSTI)

to as Demand-Side Management (DSM) and are extremely rigorous in scope. Electric utilities have pursued many different DSM policies and strategies during the past decade. These programs have addressed various technologies and have included rebates for efficient...

Epstein, G. J.; Fuller, W. H.

295

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

296

Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)  

SciTech Connect

Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

297

U.S. electric utility demand-side management 1996  

SciTech Connect

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-12-01T23:59:59.000Z

298

Power Forecasting for Plug-in Electric Vehicles  

E-Print Network (OSTI)

the tradeoff between energy supply and environment pollution. As the international oil price was continuously of the most heated-discussed issues. Energy shortage and environment pollution are the main bottleneck

Lavaei, Javad

299

Wireless Plug-in Electric Vehicle (PEV) Charging  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

current sensor scale calibration May-2012 Milestone: Demonstrate antenna design with field shaping and shielding sufficient to meet ICNIRP field levels GoNo-Go Decision:...

300

Plug-In Electric Vehicle Integration with Renewables  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy standards, while five have adopted voluntary standards (4). The variability of renewable energy generation creates integration challenges (5, 6). PEVs represent a new,...

302

Progress towards Managing Residential Electricity Demand: Impacts of  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress towards Managing Residential Electricity Demand: Impacts of Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India Title Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India Publication Type Conference Paper Refereed Designation Unknown LBNL Report Number LBNL-2322E Year of Publication 2009 Authors McNeil, Michael A., and Maithili Iyer Date Published 06/2009 Keywords Air Conditioners, Appliance Efficiency, appliance energy efficiency, energy efficiency, greenhouse gas emissions, india, Labels, MEPS, refrigerators, Standards and labeling URL https://isswprod.lbl.gov/library/view-docs/public/output/rpt77250.PDF Refereed Designation Unknown Attachment Size

303

Concept for Management of the Future Electricity System (Smart Grid  

Open Energy Info (EERE)

Concept for Management of the Future Electricity System (Smart Grid Concept for Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .  

E-Print Network (OSTI)

??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the… (more)

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

305

Install Electric Vehicle Charging at Work  

Energy.gov (U.S. Department of Energy (DOE))

Employers who install workplace charging for plug-in electric vehicles (PEVs) demonstrate leadership, show a willingness to adopt advanced technology, and increase consumer exposure and access to...

306

Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch  

E-Print Network (OSTI)

and faculty. There were many people who helped me during my doctoral studies. First, I want to thank my co-advisors for wind farm management, but they are not perfect. Chapter 2 presents a model of a wind farm with compressed air energy storage (CAES) participating freely in the day-ahead electricity market without

307

Electric power management for the International Space Station experiment racks  

SciTech Connect

An intelligent, all solid state, electric power management system for International Space Station experiment racks is described. This power system is implemented via redundant internal microcomputers, controlling hybridized solid state power controllers in response to 1553B data bus commands. The solid state power controllers are programmable for current trip level and for normally-open or normally-closed operation.

Burcham, M. [Boeing Missile and Space, Huntsville, AL (United States); Darty, M.A.; Thibodeau, P.E. [McDonnell Douglas Aerospace, Huntsville, AL (United States); Coe, R. [SCI Systems, Inc., Huntsville, AL (United States); Dunn, M. [Europa Ltd., Glenrothes (United Kingdom)

1995-12-31T23:59:59.000Z

308

Self-learning control system for plug-in hybrid vehicles  

DOE Patents (OSTI)

A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

DeVault, Robert C [Knoxville, TN

2010-12-14T23:59:59.000Z

309

Power Management Strategy for a Parallel Hybrid Electric Truck Power Management Strategy for a Parallel Hybrid Electric Truck  

E-Print Network (OSTI)

. The design procedure starts by defining a cost function, such as minimizing a combination of fuel consumption of a small increase in fuel consumption. #12;Power Management Strategy for a Parallel Hybrid Electric Truck I. INTRODUCTION Medium and heavy trucks running on diesel engines serve an important role in modern societies

Grizzle, Jessy W.

310

Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...  

Energy Savers (EERE)

2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost Fact 595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings...

311

Ford Plug-In Project: Bringing PHEVs to Market | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ford Plug-In Project: Bringing PHEVs to Market Ford Plug-In Project: Bringing PHEVs to Market 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

312

Ford Plug-In Project: Bringing PHEVs to Market | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ford Plug-In Project: Bringing PHEVs to Market Ford Plug-In Project: Bringing PHEVs to Market 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and...

313

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

314

The electricity consumption impacts of commercial energy management systems  

SciTech Connect

An investigation of energy management systems (EMS) in large commercial and institutional buildings in North Carolina was undertaken to determine how EMS currently affect electricity consumption and what their potential is for being used to reduce on-peak electricity demand. A survey was mailed to 5000 commercial customers; the 430 responses were tabulated and analyzed; EMS vendors were interviewed, and 30 sites were investigated in detail. The detailed assessments included a site interview and reconstruction of historic billing data to evaluate EMS impact, if any. The results indicate that well-tuned EMS can result in a 10 to 40 percent reduction in billed demand, and smaller reductions in energy.

Buchanan, S.; Taylor, R.; Paulos, S.; Warren, W.; Hay, J.

1989-02-01T23:59:59.000Z

315

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

E-Print Network (OSTI)

potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles mustValuation of plug-in vehicle life-cycle air emissions and oil displacement benefits Jeremy J

Michalek, Jeremy J.

316

Managing Variable Energy Resources to Increase Renewable Electricity's  

E-Print Network (OSTI)

Are There Challenges in Integrating Wind and Solar Power into the Power Grid? 10 What National and State PoliciesManaging Variable Energy Resources to Increase Renewable Electricity's Contribution to the Grid P oG MEllon founDatIon, thE u.s. DEpaRtMEnt of EnERGy's natIonal EnERGy tEChnoloGy laboRatoRy, thE El

317

Managing Variable Energy Resources to Increase Renewable Electricity's  

E-Print Network (OSTI)

Are There Challenges in Integrating Wind and Solar Power into the Power Grid? 10 What National and State PoliciesManaging Variable Energy Resources to Increase Renewable Electricity's Contribution to the Grid P oG MEllon founD atIon, thE u.s. DEpaRtMEnt of EnERGy 's natIonal E nERGy t EChnolo Gy laboRatoRy, thE El

318

Vehicle Technologies Office: Electric Drive Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

319

Dynamic competition between plug-in hybrid and hydrogen fuel cell vehicles for personal transportation  

Science Journals Connector (OSTI)

This article addresses the issue of the diffusion of hydrogen cars in the market, particularly the competition with electric cars for the replacement of conventional vehicles. Using the multi-technological competition model developed by Le Bas and Baron-Sylvester’s (Diffusion technologique non binaire et schéma épidémiologique. Une reconsidération. Economie Appliquée 1995; tome XLVIII(3):71–101), it is shown that the early deployment of plug-in hybrid vehicles—the only electric technology which can compete with fuel cell cars in the multipurpose vehicle field—risks closing the market for hydrogen in the future. Moreover, the advent of the hydrogen vehicle depends on the rapid advancements in fuel cell technologies, as well as on the existence of an infrastructure with a sufficient coverage.

Nuno Bento

2010-01-01T23:59:59.000Z

320

Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Oregon Leads the Oregon Leads the Charge for Plug-In Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Google Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Delicious Rank Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Digg Find More places to share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on AddThis.com...

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle  

E-Print Network (OSTI)

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor

Mi, Chunting "Chris"

322

Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric Vehicles  

E-Print Network (OSTI)

Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric@elpl.snu.ac.kr Abstract--To improve the cycle efficiency and peak output power density of energy storage systems in electric vehicles (EVs), supercapacitors have been proposed as auxiliary energy storage elements

Pedram, Massoud

323

School of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research Team  

E-Print Network (OSTI)

elsewhere as "electric" vehicles). A plug-in electric vehicle is powered by plugging into a specializedSchool of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research together with the electric motor. A Nissan Leaf is an example of a plug-in electric vehicle. A plug

Craft, Christopher B.

324

Optimal energy management strategy for hybrid electric tracked vehicles  

Science Journals Connector (OSTI)

A Dynamic Programming (DP) technique is used to design an optimal power distribution energy management strategy between the diesel engine-generator and traction battery for a hybrid electric tracked vehicle. A mathematical model incorporating the vehicle's dynamics, driving schedule data from the field tests and powertrain is developed. A control strategy based on the passive power covering concept is initially designed. An optimal one is then designed through the DP approach and DP-based battery sizing is properly adopted. The performance of the new control strategy is tested through simulations. Significant fuel economy improvement is observed.

Yuan Zou; Feng-Chun Sun; Cheng-Ning Zhang; Jun-Qiu Li

2012-01-01T23:59:59.000Z

325

Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicle” designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

Eskandari Halvaii, Ali

2012-07-16T23:59:59.000Z

326

A functional analysis of electrical load curve modelling for some households specific electricity end-uses  

E-Print Network (OSTI)

domestic end-uses, the development of plug-in hybrid and electric vehicles, the increase of heat pumps heating systems such as heat pumps in new building or which will replace old installed fossil fuels based systems; · integration of new end-uses such as Plug-in Electric Vehicles and an always growing number

Paris-Sud XI, Université de

327

Compact Fluorescent Plug-In Ballast-in-a-Socket  

SciTech Connect

The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

Rebecca Voelker

2001-12-21T23:59:59.000Z

328

Wiedenhfer et al. Inter-Organizational Crisis Management Infrastructure for Electrical Power Breakdowns  

E-Print Network (OSTI)

learning. Keywords Crisis management, user-centered design, inter-organizational communication and learningWiedenhöfer et al. Inter-Organizational Crisis Management Infrastructure for Electrical Power Breakdowns Inter-Organizational Crisis Management Infrastructures for Electrical Power Breakdowns Torben

329

U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX 5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities August 1, 2012 - 5:37am Addthis PROBLEM: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities PLATFORM: Citrix Access Gateway 9.x ABSTRACT: Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system. reference LINKS: Citrix Knowledge Center Secunia Advisory SA45299 Secunia Research Secunia Research CVE-2011-2592 CVE-2011-2593 IMPACT ASSESSMENT: High Discussion: Research has discovered two vulnerabilities in Citrix Access Gateway Plug-in for Windows, which can be exploited by malicious people to

330

Workplace Charging Challenge Partner: Portland General Electric  

Energy.gov (U.S. Department of Energy (DOE))

Since the late 1990s, Portland General Electric (PGE) has offered plug-in electric vehicle (PEV) charging for its employees. With the advent of the modern Level 2 and DC Quick-Charging standards,...

331

Second law analysis of a liquid cooled battery thermal management system for hybrid and electric vehicles.  

E-Print Network (OSTI)

??As hybrid and electric vehicles continue to evolve there is a need for better battery thermal management systems (BTMS), which maintain uniformity of operating temperature… (more)

Ramotar, Lokendra

2010-01-01T23:59:59.000Z

332

AVTA: ARRA EV Project Electric Grid Impact report | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

300 DC fast chargers. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. EV Project - A First Look at the Impact of Electric...

333

Abstract--We consider the management of electric vehicle (EV) loads within a market-based Electric Power System  

E-Print Network (OSTI)

battery charging while engaging in energy and reserve capacity transactions in the wholesale power market day-ahead and real-time power market framework similar to that used in the major USA power pools (PJMAbstract--We consider the management of electric vehicle (EV) loads within a market-based Electric

Caramanis, Michael

334

A Local Look At Plug-In Vehicles  

Science Journals Connector (OSTI)

Second, electrical utilities are slowly moving to better pricing options that could lower the cost of charging an electric car. ...

JEFF JOHNSON

2012-04-30T23:59:59.000Z

335

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

336

Strength and stability of microbial plugs in porous media  

SciTech Connect

Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reduction was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.

Sarkar, A.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sharma, M.M.; Georgiou, G. [Univ. of Texas, Austin, TX (United States)

1995-12-31T23:59:59.000Z

337

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks  

E-Print Network (OSTI)

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks management system for hybrid electric vehicles (HEV), using neural networks (NN), was developed and tested. The system minimizes the energy requirement of the vehicle and can work with different primary power sources

Catholic University of Chile (Universidad Católica de Chile)

338

Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 29, 1: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China to someone by E-mail Share Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Facebook Tweet about Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Twitter Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Google Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Delicious Rank Vehicle Technologies Office: Fact #751: October 29, 2012

339

Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 2, 5: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost to someone by E-mail Share Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Facebook Tweet about Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Twitter Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Google Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Delicious Rank Vehicle Technologies Office: Fact #595: November 2, 2009

340

FC/Battery Power Management for Electric Vehicle Based Interleaved dc-dc Boost Converter Topology  

E-Print Network (OSTI)

FC/Battery Power Management for Electric Vehicle Based Interleaved dc- dc Boost Converter Topology power systems in electric vehicle application, in order to decrease the FC current ripple. Therefore the performance of the FC system during transient and instantaneous peak power demands in electric vehicle

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Managing Short-Term Electricity Contracts Under Uncertainty: A Minimax Approach  

E-Print Network (OSTI)

, the price of which follows supply and demand imbalances. Electricity prices, which were tightly controlled that occurred in the Midwest during the week of June 22, 1998, when the day-ahead electricity price departedManaging Short-Term Electricity Contracts Under Uncertainty: A Minimax Approach Samer Takriti

Ahmed, Shabbir

342

Cyber-Physical Systems for Optimal Energy Management Scheme of Autonomous Electric Vehicle  

Science Journals Connector (OSTI)

......cyber-physical systems; autonomous electric vehicle; energy management...applications [e.g., autonomous electric vehicle (AEV) with wireless...systems, such as aircrafts and automobiles, to large-scale systems...infrastructure that supplies electric energy for the recharging......

Jiafu Wan; Hehua Yan; Di Li; Keliang Zhou; Lu Zeng

2013-08-01T23:59:59.000Z

343

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

a PHEV has both an electric motor and a heat engine—usuallyusing the battery and electric motor to increase the ef?passes energy to the electric motor (discharges) as needed

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

344

Preliminary Evaluation of Load Management for Electricity End Users  

E-Print Network (OSTI)

The planning, design and implementation of load management is complex and expensive. The results of a load management program are subject to numerous uncertainties related to load characteristics, power cost savings, load management costs...

Collier, S. E.

1984-01-01T23:59:59.000Z

345

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

346

JET: Electricity cost-aware dynamic workload management in geographically distributed datacenters  

Science Journals Connector (OSTI)

Abstract The ever-increasing operational cost of geographically distributed datacenters has become a critical issue for cloud service providers. To cut the electricity cost of geographically distributed datacenters, several workload management schemes have been proposed. These include Electricity price-aware InteR-datacenter load balancing (EIR), which reduces the electricity cost of active servers by dispatching the workload to datacenters with lower electricity prices, and Cooling-aware IntrA-datacenter load balancing (CIA), which decreases the power consumption of a datacenter by consolidating the workload on servers with high cooling efficiency. However, these existing schemes could incur some undesired results. For example, EIR may result in high electricity cost of cooling systems due to random workload distribution in datacenters. CIA could lead to high electricity cost of active servers since it does not consider the variation of electricity prices. In this paper, we propose a joint inter- and intra-datacenter workload management scheme, Joint ElectriciTy price-aware and cooling efficiency-aware load balancing (JET), to cut the electricity cost of geographically distributed datacenters. JET uses a short processing time to calculate the optimal workload distribution, which trades off the electricity cost of active servers and cooling systems by alternately selecting the electricity prices or the efficiency of a cooling system as the dominating factor to the electricity cost of geographically distributed datacenters. Extensive evaluations show that JET outperforms the existing schemes and achieves substantial reduction in the electricity cost of geographically distributed datacenters.

Zehua Guo; Zhemin Duan; Yang Xu; H. Jonathan Chao

2014-01-01T23:59:59.000Z

347

Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use...

348

Energy Department Releases Updated eGallon Prices as Electric...  

Energy Savers (EERE)

market continues to grow, electric vehicles will play a key role in our effort to reduce air pollution and slow the effects of climate change." Plug-In Electric Vehicle Sales...

349

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network (OSTI)

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand ........................................................................ 28 Possible Future Trends for Plug-in Hybrid Electric Vehicles .............................................................. 23 Electricity Demand Growth in the West

350

The Impacts of Utility-Sponsored Demand-Side Management Programs on Industrial Electricity Consumers  

E-Print Network (OSTI)

One of the most pressing issues in electric utility regulation today is the extent to which demand-side management (DSM) programs should be promoted by utilities. DSM refers to energy-efficiency or conservation measures, such as insulation, more...

Rosenblum, J. I.

351

Novel Latent Heat Storage Devices for Thermal Management of Electric Vehicle Battery Systems  

Science Journals Connector (OSTI)

A major aspect for safe and efficient operation of battery electric vehicles (BEV) is the thermal management of their battery systems. As temperature uniformity and level highly ... performance and the lifetime, ...

Ch. Huber; A. Jossen; R. Kuhn

2014-01-01T23:59:59.000Z

352

Heat transfer and thermal management of electric vehicle batteries with phase change materials  

Science Journals Connector (OSTI)

This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material ( ... process to absorb the heat generated by a battery. A new configuratio...

M. Y. Ramandi; I. Dincer; G. F. Naterer

2011-07-01T23:59:59.000Z

353

Method and system for managing an electrical output of a turbogenerator  

DOE Patents (OSTI)

The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

2010-08-24T23:59:59.000Z

354

DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sweden Sign MOU to Advance Market Integration of Plug-in Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles July 7, 2008 - 2:15pm Addthis GOTLAND, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Director General of the Swedish Energy Agency, Tomas KÃ¥berger today signed a memorandum of understanding (MOU) to collaboratively work on accelerating consumer acceptance and commercialization of plug-in hybrid vehicles. The MOU outlines a one year, $1 million cost-sharing arrangement that will be equally funded by DOE and the Swedish Energy Agency. "Today's announcement furthers the historic energy cooperation commitment between the United States and Sweden as we work together to advance the

355

V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Google Chrome Flash Plug-in Lets Remote Users Conduct 4: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks June 24, 2013 - 12:56am Addthis PROBLEM: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks PLATFORM: Google Chrome prior to 27.0.1453.116 ABSTRACT: A vulnerability was reported in Google Chrome. REFERENCE LINKS: Stable Channel Update SecurityTracker Alert ID: 1028694 CVE-2013-2866 IMPACT ASSESSMENT: Medium DISCUSSION: A remote user can create specially crafted Flash content that, when loaded by the target user, will display the Flash settings in a transparent manner, which may allow the remote user to cause the target user to modify their Flash settings. This may allow the remote user to obtain potentially

356

Fact #788: July 15, 2013 State and Private Consumer Incentives for Plug-In Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Many states offer their own consumer incentives for plug-in vehicles, such as HOV lane exemptions and tax credits/rebates, as shown in the table below. In some states there are also private...

357

Commercial and Industrial Conservation and Load Management Programs at New England Electric  

E-Print Network (OSTI)

England Electric has initiated, through its three retail subsidiaries, an ambitious load management and conservation program designed to reduce its projected 1991 summer peak by 230 megawatts and save 335,000 megawatthours per year. The effort... headquartered in Westborough, Massachusetts. Subsidiaries include three retail operating companies -- Massachusetts Electric Company, which serves 850,000 customers in 146 communities; The Narragansett Electric Company, which serves 294,000 customers in 27...

Gibson, P. H.

358

DOE - Office of Legacy Management -- Pinellas Plant General Electric...  

Office of Legacy Management (LM)

Protection FACT SHEET Location of the Pinellas County, Florida, Site Office of Legacy Management Pinellas County, Florida, Site This fact sheet provides information about...

359

Rotational Programs General Electric Operations Management Leadership Program, Edison Engineering  

E-Print Network (OSTI)

://nestlepurinacareers.com/CollegeStudents/ManagementTraineeOpportunities.aspx Praxair Commercial Leadership Development Program http://www.praxair.com/praxair.nsf/0/0AC4813647AD

360

DOE - Office of Legacy Management -- General Electric Co - Shelbyville - IN  

Office of Legacy Management (LM)

Electric Co - Shelbyville - Electric Co - Shelbyville - IN 07 FUSRAP Considered Sites Site: General Electric Co - Shelbyville (IN.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: General Electric Plant IN.07-1 Location: Shelbyville , Indiana IN.07-1 Evaluation Year: 1994 IN.07-2 Site Operations: Compacted approximately 500 pounds of thorium (small pieces) into electrodes on 25 and 26 June, 1956. IN.07-1 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope of activities conducted at the site IN.07-1 IN.07-2 IN.07-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium IN.07-1 Radiological Survey(s): Yes IN.07-1 Site Status: Eliminated from consideration under FUSRAP

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electric Generating and Transmission Facilities – Emissions Management (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section details responsibilities of the Iowa Utility Board, including the policies for electricity rate-making for the state of Iowa, certification of natural gas providers, and other policies...

362

ELECTRICAL ENGINEERING 4PL4 ENERGY SYSTEM AND MANAGEMENT FALL 2010  

E-Print Network (OSTI)

ELECTRICAL ENGINEERING 4PL4 ENERGY SYSTEM AND MANAGEMENT FALL 2010 Course Outline (dated Aug 23 OR ORAL). COURSE LOADING: · Lectures: 3 hours/week · Study time: 6 hours/week · Laboratory (4; systemwide energy flow and control; modeling and simulation; economics and management; fault prediction

Haykin, Simon

363

Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management  

SciTech Connect

The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

A. David Lester

2008-10-17T23:59:59.000Z

364

Definition: Electric Vehicle Charging Station | Open Energy Information  

Open Energy Info (EERE)

Vehicle Charging Station Vehicle Charging Station Jump to: navigation, search Dictionary.png Electric Vehicle Charging Station An electric vehicle charging station that uses communications technology to enable it to intelligently integrate two-way power flow enabling electric vehicle batteries to become a useful utility asset.[1] View on Wikipedia Wikipedia Definition An electric vehicle charging station, also called EV charging station, electric recharging point, charging point and EVSE (Electric Vehicle Supply Equipment), is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles, including all-electric cars, neighborhood electric vehicles and plug-in hybrids. As plug-in hybrid electric vehicles and battery electric vehicle ownership is

365

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities  

E-Print Network (OSTI)

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options sensitive impacts on electricity demand growth by different demand-side management (DSM) scenarios countries. The research showed that demand side management strategies could result in significant reduction

de Weck, Olivier L.

366

Shifting primary energy source and NOx emission location with plug-in hybrid vehicles  

Science Journals Connector (OSTI)

Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1–3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial effects would be more pronounced. In such a case, it would also be possible to realize reductions in greenhouse gas emissions. The significance of the electric power generation mix for plug-in hybrid vehicles and battery electric vehicles is a key aspect of Argonne National Laboratories' well-to-wheel study which focuses on petroleum use and greenhouse gas emissions (Elgowainy et al 2010). The study evaluates possible reductions in petroleum use and GHG emissions in the electric power systems in four major regions of the United States as well as the US average generation mix, using Argonne's GREET life-cycle analysis model. Two PHEV designs are investigated through a Powertrain System Analysis Toolkit (PSAT) model: the power-split configuration (e.g. the current Toyota Prius model with Hymotion conversion), and a future series configuration where the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle. Since the petroleum share is small in the electricity generation mix for most regions in the United States, it is possible to achieve significant reductions in petroleum use by PHEVs. However, GHG reduction is another story. In one of the cases in the study, PHEVs in the charge depleting mode and recharging from a mix with a large share of coal generation (e.g., Illinois marginal mix) produce GHG emissions comparable to those of baseline gasoline internal combustion engine vehicles (with a range from ?15% to +10%) but significantly higher than those of gasoline hybrid electric vehicles (with a range from +20% to +60%). In what is called the unconstrained charging scenario where investments in new generation capacity with high efficiency and low carbon intensity are envisaged, it becomes possible to achieve significant reductions in both petroleum use and GHG emissions. In a PhD dissertation at Utrecht University, van Vliet (2010) presents a comprehensive analysis of alternatives to gasoline and diesel by looking at various fuel and vehicle technologies. Three chapters are of particular interest from the

Deniz Karman

2011-01-01T23:59:59.000Z

367

Electric Vehicle Handbook: Electrical Contractors (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electrical Electrical Contractors Plug-In Electric Vehicle Handbook for Electrical Contractors 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Installing and Maintaining EVSE . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18 Electrifying the Future . . . . . . . . . . . . . . . 19 Clean Cities Helps Deploy PEV Charging Infrastructure Installing plug-in electric vehicle (PEV) charg- ing infrastructure requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Depart- ment of Energy's flagship alternative-transportation deployment initiative . It is supported by a diverse and capable team of stakeholders from private companies, utilities, government agencies, vehicle

368

Energy Conservation and Management for Electric Utility Industrial Customers  

E-Print Network (OSTI)

Figure 5 Steam/Organic Fluid Rankine-Cycle Power System Absorption Cooling Systems The absorpt i on cool i ng system mode 1ed for the EC&M computer mode 1 is a type of heat pump whd ch is driven directly by a thermal input without th~ need for a...&M Applications Identified from Plant Data EC&M Technology ? Heat Exchangers ? Waste heat boiler ? Rankine cycle ? Heat pump --Closed cycle --Open cycle ? Thermal energy storage ? GT/electric generator/chiller Industrial Application Process...

McChesney, H. R.; Obee, T. N.; Mangum, G. F.

369

NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)  

SciTech Connect

Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

Not Available

2014-06-01T23:59:59.000Z

370

Let's keep timetables realistic in moving toward a low-carbon electricity future  

SciTech Connect

The paper discusses technology transformation (energy efficiency, renewables, carbon capture and storage, advanced coal technologies, new nuclear energy, plug-in hybrid electric vehicles), economic analysis, and economic safeguards when moving towards a low-carbon electricity future.

Shea, Q.

2008-04-15T23:59:59.000Z

371

EV Everywhere EV Everywhere Grand Challenge - Electric Drive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as...

372

EV Everywhere Grand Challenge - Electric Drive (Power Electronics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as...

373

National Fuel Cell Electric Vehicle Learning Demonstration Final...  

Energy Savers (EERE)

on the potential for plug-in electric vehicles (PEVs) to improve the United States' oil-dependency situation. The Learning Demonstration vehicle data were evaluated to see how...

374

Community Readiness Project Helps State Get Ready for Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE)

Oregon is planning for the large-scale deployment of hybrid and all-electric vehicles to reach the state's goal of 30,000 plug-in vehicles by 2015.

375

Workplace Charging Challenge Partner: Pacific Gas & Electric Company  

Energy.gov (U.S. Department of Energy (DOE))

In keeping with its strong support for clean transportation, PG&E employees now have an opportunity to charge plug-in electric vehicles (PEVs) at seven locations, including the main office in...

376

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

377

JASPER: An Eclipse Plug-In to Facilitate Software Maintenance Tasks  

E-Print Network (OSTI)

JASPER: An Eclipse Plug-In to Facilitate Software Maintenance Tasks Michael J. Coblenz Computer, and code frag- ments. JASPER is a new system that allows users to collect rele- vant artifacts that JASPER will significantly reduce time spent on redundant navigations. In addition, JASPER will facili

Myers, Brad A.

378

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...Committee on Assessment of Resource Needs for Fuel Cell and Hydrogen Technol-ogies and National Research Council...com-parison of series hybrid, plug-in hybrid, fuel cell and regular cars. J Power Sources 195:6570 ZZQQhy6585. 38...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

379

From Gasoline Alleys to Electric Avenues  

Science Journals Connector (OSTI)

...From Gasoline Alleys to Electric Avenues 10.1126...for next-generation electric cars could help make...next-generation hybrid vehicle. Like today's hybrids...have dual gasoline and electric engines. But whereas...authorizing $1 million for rebates for future plug-in hybrid...

Eli Kintisch

2008-02-08T23:59:59.000Z

380

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...monthly averages of wind power production...negative. Very large wind power penetration...forms. Plug-in hybrid electric vehicles...excesses in electricity system, while energy-rich...storage. Potential wind-generated electricity...only wind but also solar. The additional...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo, Manager, Heat Exchange Systems Research  

E-Print Network (OSTI)

#12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo S. E. Veyo, Manager, Heat Exchange Systems Research Westinghouse Electric Corporation, R&D Center 1310 Beulah Road Pittsburgh, PA 15235 KEYWORDS: heat pump, air conditioner, electric, residential, energy, compressor, fan, blower, heat

Oak Ridge National Laboratory

382

Integrated electricity and heating demand-side management for wind power integration in China  

Science Journals Connector (OSTI)

Abstract The wind power generation system will play a crucial role for developing the energy conservative, environmentally friendly, and sustainable electric power system in China. However, the intermittency and unpredictability of wind power has been an obstacle to the deployment of wind power generation, especially in the winter of northern China. In northern China, a combined heat and power (CHP) unit has been widely utilized as a heat and electricity source. Considering the flexible operation of CHP with introduction of electric heat pumps (EHPs), this paper proposes a new method of electricity and heating demand side management to facilitate the wind power integration with the purpose of energy conservation in a unit-commitment problem. The thermal characteristics of demand side such as the thermal inertia of buildings and thermal comfort of end users are taken into consideration. Moreover the distributed electric heat pumps (EHPs) widely used by city dwellers are introduced into the wind-thermal power system as the heating source and spinning reserve so as to increase the flexibility of heating and electricity supply. The simulation results show that the new method can integrate more wind power into power grid for electricity and heating demand to reduce the coal consumption.

Yulong Yang; Kai Wu; Hongyu Long; Jianchao Gao; Xu Yan; Takeyoshi Kato; Yasuo Suzuoki

2014-01-01T23:59:59.000Z

383

Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam  

Science Journals Connector (OSTI)

Abstract To enhance the heat transfer of phase change material in battery thermal management system for electric vehicle, a battery thermal management system by using paraffin/copper foam was designed and experimentally investigated in this paper. The thermal performances of the system such as temperature reduction and distribution are discussed in detail. The results showed that the local temperature difference in both a single cell and battery module were increased with the increase of discharge current, and obvious fluctuations of local temperature difference can be observed when the electric vehicle is in road operating state. When the battery is discharging at constant current, the maximum temperature and local temperature difference of the battery module with paraffin/copper foam was lower than 45 °C and 5 °C, respectively. After the battery thermal management system was assembled in electric vehicle, the maximum temperature and local temperature difference in road operating state was lower than 40 °C and 3 °C, respectively. The experimental results demonstrated that paraffin/copper foam coupled battery thermal management presented an excellent cooling performance.

Zhonghao Rao; Yutao Huo; Xinjian Liu; Guoqing Zhang

2014-01-01T23:59:59.000Z

384

V-174: RSA Authentication Manager Writes Operating System, SNMP, and HTTP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: RSA Authentication Manager Writes Operating System, SNMP, 4: RSA Authentication Manager Writes Operating System, SNMP, and HTTP Plug-in Proxy Passwords in Clear Text to Log Files V-174: RSA Authentication Manager Writes Operating System, SNMP, and HTTP Plug-in Proxy Passwords in Clear Text to Log Files June 10, 2013 - 12:47am Addthis PROBLEM: RSA Authentication Manager Writes Operating System, SNMP, and HTTP Plug-in Proxy Passwords in Clear Text to Log Files PLATFORM: RSA Authentication Manager 8.0 ABSTRACT: A vulnerability was reported in RSA Authentication Manager. REFERENCE LINKS: RSA SecurityTracker Alert ID: 1028638 CVE-2013-0947 IMPACT ASSESSMENT: Medium DISCUSSION: The system may write operating system, SNMP, and HTTP plug-in proxy passwords in clear text to log and configuration files. IMPACT: A local user can obtain operating system, SNMP, and HTTP plug-in proxy

385

Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand  

E-Print Network (OSTI)

INDUSTRIAL-LOAD-SHAPI1IG: TIlE PRACTICE OF AND PROSPECTS FOR UTILITY/INDUSTRY COOPERATION TO MAUGE PEAK ELECTRICITY DEMAND Donald J. BuIes and David E. Rubin Consultants, Pacific Gas and Electric Company San Francisco, California Michael F.... Maniates Energy and Resources Group, University of California Berkeley, California ABSTRACT Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a gf...

Bules, D. J.; Rubin, D. E.; Maniates, M. F.

386

Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ii This page intentionally left blank. iii CONTENTS ACKNOWLEDGMENTS ........................................................................................................ xi NOTATION .............................................................................................................................. xiii EXECUTIVE SUMMARY ...................................................................................................... 1 ES.1 CD Operation of Gasoline PHEVs and BEVs ......................................................... 2 ES.1.1 Petroleum Displacement ............................................................................. 2 ES.1.2 GHG Emissions .......................................................................................... 3

387

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

388

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

are significant trade-offs between energy and power with allis the inherent trade-off between energy density and powerof the energy density/power capability trade-offs inherent

Burke, Andrew

2009-01-01T23:59:59.000Z

389

High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

390

Plug-In Electric Vehicle R&D on High Energy Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

391

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

392

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

393

SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

394

Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

395

Optimal Control of Plug-In Hybrid Electric Vehicles with Market ...  

E-Print Network (OSTI)

is transformed into other forms of energy, such as original potential energy of the ..... The overall energy conversion coefficient, e.g., ?u?d, is around 0.6-0.8.

2014-01-13T23:59:59.000Z

396

Potential impacts of plug-in hybrid electric vehicles on regional power generation  

SciTech Connect

Simulations predict that the introduction of PHEVs could impact demand peaks, reduce reserve margins, and increase prices. The type of power generation used to recharge the PHEVs and associated emissions will depend upon the region and the timing of the recharge. (author)

Hadley, Stanton W.; Tsvetkova, Alexandra A.

2009-12-15T23:59:59.000Z

397

Plug-in Hybrid Electric Vehicles: A Viable Option for Sweden?.  

E-Print Network (OSTI)

??Transportation accounts for around one third of CO2 emissions in Sweden. Personal cars in Sweden have one of the highest average fuel demands per km… (more)

Ramirez, Angel

2007-01-01T23:59:59.000Z

398

Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Estimates from the GREET model (see Argonne National Laboratory's information on GREET) show that passenger car PHEV10s produce about 29% fewer carbon emissions than a conventional vehicle, when...

399

Lifecycle Energy Management in the Tohoku Electric Power headquarters building-APCBC  

E-Print Network (OSTI)

in ICEBO (Asia Pacific Conference on Building Commissioning) Sept. 2014, Beijing, China ICEBO2014 NSRI Hideki Yuzawa ?2014 yuzawa@nikken.jp Passion for sustainable cities 1 ESL-IC-14-09-07 Proceedings of the 14th International Conference for Enhanced... Building Operations, Beijing, China, September 14-17, 2014 ICEBO2014 NSRI Hideki Yuzawa ?2014 yuzawa@nikken.jp Passion for sustainable cities 2 Acknowledgements Building Manager / Tohoku electric power co., Inc Shinji Okuda, Tokuro Kurihara, Akinori...

Yuzawa, H.

2014-01-01T23:59:59.000Z

400

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in  

NLE Websites -- All DOE Office Websites (Extended Search)

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in The "Other" Energy in Buildings: Wireless Power Metering of Plug-in Devices in Building 90 and Homes Speaker(s): Steven Lanzisera Date: June 17, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Although these devices have been studied for 30 years, they are not as well understood as the other end-uses due to their great variety and difficulty in collecting representative energy data for them. This talk describes a method for collecting device-level energy use data for these devices using a relatively low-cost wireless mesh networking technology. Over 600 meters were deployed across B90 and three homes to

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

402

www.steps.ucdavis.edu Selling Plug-in Vehicles: Lessons from the  

E-Print Network (OSTI)

Research Analyst, PH&EV Research Center Dr. Tom Turrentine ­ Director, Plug-in Hybrid & EV Research Center key retail-level challenges #12;3 The study is led by the UC Davis PH&EV Center · Under a grant from sales and leases of ZEVs." (p. 15) #12;5 Automaker-dealer relations have a long history · The preferred

California at Davis, University of

403

Aging Management Guideline for commercial nuclear power plants: Electrical switchgear. Final report  

SciTech Connect

This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Toman, G.; Gazdzinski, R.; Schuler, K. [Ogden Environmental and Energy Services Co., Inc., Blue Bell, PA (United States)

1993-07-01T23:59:59.000Z

404

VOLTTRON: An Agent Execution Platform for the Electric Power System  

SciTech Connect

Volttron is an agent execution platform that is engineered for use in the electric power system. Volttron provides resource guarantees for agents and the platform including memory and processor utilization; authentication and authorization services; directory services for agent and resource location; and agent mobility. Unlike most other agent platforms, Volttron does not depend on a single agent authoring language. Instead, we chose to design and implement Volttron as a platform service and framework that is decoupled from the agent execution environment. A prototype implementation of Volttron has been written in Python (using Python v2.7.2) and we have executed agents written in Python and Java and as shell scripts. The intended use of Volttron is in the power distribution system for managing distributed generation, demand-response, and plug-in electric vehicles.

Akyol, Bora A.; Haack, Jereme N.; Ciraci, Selim; Carpenter, Brandon J.; Vlachopoulou, Maria; Tews, Cody W.

2012-06-05T23:59:59.000Z

405

Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost  

Energy.gov (U.S. Department of Energy (DOE))

The recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future....

406

How green was my electricity? : designing incentives to co-optimize waste management and energy development in New England  

E-Print Network (OSTI)

Waste management is a complex issue, often out of sight and mind, but with the potential for significant negative environmental, social, and economic impacts. Electricity resource planning is equally complex and can ...

Larsen, Walker (Walker Andrew)

2008-01-01T23:59:59.000Z

407

Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles  

Science Journals Connector (OSTI)

A transient numerical model of a lithium ion battery (LiB) pack with air cooled thermal management system is developed and validated for electric vehicle applications. In the battery model, the open circuit volta...

G. Y. Cho; J. W. Choi; J. H. Park; S. W. Cha

2014-08-01T23:59:59.000Z

408

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

409

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

410

Global potential for wind-generated electricity  

Science Journals Connector (OSTI)

...Annual wind energy potential...Monthly wind energy potential for...on a U.S. national basis depending...electricity to other energy forms. Plug-in...transmission grid. Expansion...in potential renewable resources, not...relating to the integration of electricity...relates to the challenge of matching...

Xi Lu; Michael B. McElroy; Juha Kiviluoma

2009-01-01T23:59:59.000Z

411

Alternative Fuels Data Center: Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center: Electricity on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Prices Find electricity fuel prices and trends. Electricity can be used to power all-electric vehicles and plug-in hybrid

412

Development of a thermal and electrical energy management in residential building micro-grid  

Science Journals Connector (OSTI)

Global warming and pressing concern about CO2 emission along with increasing fuel and oil cost have brought about great challenges for energy companies and homeowners. In this regard a potential candidate solution is widely used for Distributed Energy Resources which are capable of providing high quality low-cost heat and power to off-grid or remote facilities. To appropriately manage thermal and electrical energy a Smart Energy Management System (SEMS) with hierarchical control scheme has been presented. The developed SEMS model results in mixed integer non-linear programming optimization problem with the objective function of minimizing the operation cost as well as considering emissions. Moreover the optimization problem has been solved for deterministic and stochastic scheduling algorithms. The novelty of this work is basically reliant on using data mining approach to reduce forecasting error. Several case studies have been carried out to evaluate the performance of proposed data mining method on both energy cost and expected cost.

B. Vahidi

2014-01-01T23:59:59.000Z

413

A method for the prediction of future driving conditions and for the energy management optimisation of a hybrid electric vehicle  

Science Journals Connector (OSTI)

Vehicular communications are expected to enable the development of Intelligent Cooperative Systems for solving crucial problems related to mobility: road safety, traffic management etc. Information and Communication Technologies could also play an important role in order to optimise the energy management of conventional, hybrid and electrical vehicles and, thus, to reduce their environment impact. In particular, vehicular communications could be used to predict driving conditions with the objective to determine future load power demand. An adaptive energy management strategy for series Hybrid Electric Vehicles (HEVs) based on genetic algorithm optimised maps and the Simulation of Urban Mobility (SUMO) predictor is presented here.

Teresa Donateo; Damiano Pacella; Domenico Laforgia

2012-01-01T23:59:59.000Z

414

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

415

V-174: RSA Authentication Manager Writes Operating System, SNMP...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SNMP, and HTTP plug-in proxy passwords. SOLUTION: The vendor has issued a fix (8.0 Patch 1 (P1)). Addthis Related Articles V-195: RSA Authentication Manager Lets Local Users...

416

Next-generation building energy management systems and implications for electricity markets.  

SciTech Connect

The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A. (Mathematics and Computer Science); (Citizens Utility Board); (BuildingIQ Pty Ltd, Australia); (PJM Interconnection LLC)

2011-08-11T23:59:59.000Z

417

Questions, Answers and Clarifications Used MediumDuty Electric Vehicle Repower Demonstration  

E-Print Network (OSTI)

). Q5. A plug-in hybrid electric vehicle repower could provide some electric drive with an engine a hybrid solution (i.e. electric + renewable based pneumatic for hilly drive) as a part-duty gasoline and diesel vehicles to all-electric drive. The demonstration projects will identify and address

418

Design of a reference control architecture for the energy management of electric vehicles  

Science Journals Connector (OSTI)

The High-Voltage (HV) network within an Electric Vehicle (EV) will typically comprise different energy sources such as fuel cells, batteries and ultracapacitors integrated together through the use of both unidirectional and bidirectional DC-DC converters. Given the multitude of feasible HV network designs, there are obvious advantages in having a unifying control architecture that facilitates the Energy Management (EM) control task. Within this paper, a control Reference Architecture (RA) is proposed that can be employed as a template for the design of the EM control function. Example EM control systems are presented each derived from the same RA, but relating to a different physical configuration of HV network. Simulation results are presented to verify the functional performance of the control systems. In each case, the design trade-offs associated with the functional performance of the EM strategy and the non-functional requirements of modularity and reusability are discussed.

James Marco; Nicholas D. Vaughan

2012-01-01T23:59:59.000Z

419

Demand side management of electric car charging: Benefits for consumer and grid  

Science Journals Connector (OSTI)

Ireland is currently striving to source 10% of the energy required for its transport fleet from renewable energy sources by 2020. As part of the measures being implemented in order to help realise this ambitious target a number of Government schemes have been introduced to financially subsidise the purchase of alternative energy vehicles in an effort to achieve 10% EV (electric vehicle) penetration in the country's road fleet by 2020. The replacement of ICE (internal combustion engine) vehicles with EV equivalents poses challenges for grid operators while simultaneously offering opportunities in terms of distributed energy storage and flexible load. This paper examines how optimising the charging cycles of an electric car using DSM (Demand Side Management) based on a number of criteria could be used to achieve financial savings, increased demand on renewable energy, reduce demand on thermal generation plant, and reduce peak load demand. The results demonstrate that significant gains can be achieved using currently available market data which highlights the point that DSM can be implemented without any further technological advents.

P. Finn; C. Fitzpatrick; D. Connolly

2012-01-01T23:59:59.000Z

420

Load-side Demand Management in Buildings using Controlled Electric Springs  

E-Print Network (OSTI)

The concept of demand-side management for electricand simulation of demand-side management potential in urbanin smart grids, demand side management has been a keen topic

Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

422

Transportation Center Seminar "Electric Vehicle Recharging: Decision Support  

E-Print Network (OSTI)

Transportation Center Seminar "Electric Vehicle Recharging: Decision Support Tools for Drivers Conference Center Refreshments available at 3:30 pm Abstract: Plug-in electric vehicles (PEVs) have become a practical and affordable alternative in recent years to conventional gasoline-powered vehicles

Bustamante, Fabián E.

423

Techno-economic and behavioural analysis of battery electric, hydrogen  

E-Print Network (OSTI)

(BEV) and hydrogen fuel cell plug-in hybrid electric vehicles (FCHEV) in the UK using cost predictions comparing fuel cell and combustion engine range extenders for electric vehicles (Burke 2007), BEVs and FCVs vehicles in a future sustainable road transport system in the UK ICEPT Working Paper January 2011 Ref

424

Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China  

Energy.gov (U.S. Department of Energy (DOE))

In 2011, plug-in car sales in the U.S. were 0.28% of the U.S. car market, and grew to 0.44% of the U.S. car market in the first eight months of 2012. Western Europe has also increased their plug-in...

425

On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach  

Science Journals Connector (OSTI)

Abstract Against the background of the ambitious German targets for renewable energy and energy efficiency, this paper investigates the economic potential for thermal load management with virtual power plants consisting of micro-cogeneration plants, heat pumps and thermal storage within the residential sector. An optimising energy system model of the electricity and residential heat supply in Germany is developed in the TIMES (The Integrated MARKAL EFOM System) modelling framework and used to determine capacity developments and dispatch of electricity and residential heat generation technologies until 2050. The analysed scenarios differ with respect to the rate of technological development of heat and power devices, fuel and CO2 prices as well as renewable electricity expansion. Results show that high fuel prices and a high renewable electricity expansion favour heat pumps and insulation measures over micro-cogeneration, whereas lower fuel prices and lower renewable electricity expansion relatively favour the expansion of micro-cogeneration. In the former case heat pump capacities increase to around 67 GWel, whereas in the latter case the total capacity of micro-cogeneration reaches 8 GWel. With the aid of thermal storage, this provides considerable flexibility for electrical load shifting through heat pumps and electricity generation from micro-cogeneration in residential applications, needed for the integration of fluctuating renewable electricity technologies.

Daniel Fehrenbach; Erik Merkel; Russell McKenna; Ute Karl; Wolf Fichtner

2014-01-01T23:59:59.000Z

426

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet)  

SciTech Connect

Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that 'preconditioning' a vehicle-achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term.

Not Available

2012-06-01T23:59:59.000Z

427

University partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E&E reporter  

E-Print Network (OSTI)

the purchase of battery electric and fuel cell powered vehicles." ARB and the Chinese government agencyUniversity partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E to speed adoption of plug-in electric and fuel-cell electric vehicles, the school said yesterday. UC Davis

California at Davis, University of

428

Optimal energy management of a micro-grid with renewable energy resources and demand response  

Science Journals Connector (OSTI)

With the introduction of smart energy grids and extensive penetration of renewable energy resources in distribution networks Micro-Grids (MGs) which are comprised of various alternative energy resources and Advanced Metering Infrastructure (AMI) systems for better implementation of DR programs are effectively employed. The design and development of Smart Energy Management Systems (SEMSs) for MGs are interesting and attractive research problems. In this paper a new SEMS architecture is presented to solve the multi-objective operation management and scheduling problem in a typical MG while considering different energy resource technologies Plug-in Hybrid Electric Vehicles (PHEVs) and DR programs. The energy management problem is formulated as a constrained mixed integer nonlinear multi-objective optimization problem in which the MG's total operating cost and net emissions must be minimized simultaneously. Three different optimization algorithms are used to solve the above mentioned problem and their outputs (Pareto optimal solutions) for the same problem are compared and analyzed.

M. Parvizimosaed; F. Farmani; A. Anvari-Moghaddam

2013-01-01T23:59:59.000Z

429

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles  

E-Print Network (OSTI)

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries to the safety and performance of electric-drive batteries. The innovative Isothermal Battery Calorimeters (IBCs

430

Modeling of passive thermal management for electric vehicle battery packs with PCM between cells  

Science Journals Connector (OSTI)

Abstract A passive thermal management system is examined for an electric vehicle battery pack. Phase change material (PCM) is infused in foam layers separating the lithium-ion (Li-ion) cells. Known operating conditions lead to selecting a suitable PCM for the application, n-octadecane wax. Suitable porous foam for infusion is decided on through experimentation. Finite volume based simulations are conducted to study the thermal behavior of a 4 cell sub-module. The effect of different discharge rates are compared for this sub-module, with and without the PCM's presence. The results show that the maximum temperature in the system is decreased up to 7.3 K by replacing dry foam with PCM-soaked “wet foam”. The addition of PCM also makes the temperature distribution more uniform across the cells. The modeling results give indication of the quantity of PCM required, show the influence of the transient melt behavior under dynamic operating conditions, and examine design constraints associated with this approach.

N. Javani; I. Dincer; G.F. Naterer; G.L. Rohrauer

2014-01-01T23:59:59.000Z

431

Lesson 2 - Electricity Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - Electricity Basics 2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities in the generation, transmission, and distribution of electricity. Topcis addressed include: Basics of electricity Generating electricity Using steam, turbines, generator Similarities of power plants Distributing Electricity Generation Transmission Distribution Power grid

432

The City of Vancouver's Approach to Electric Vehicles: Malcolm Shield, Climate Policy Manager  

E-Print Network (OSTI)

' Drives, Community Events, EV Ambassadors #12;Thank-you! 10 10 Questions? #12;Electric Vehicles: Timeline1 The City of Vancouver's Approach to Electric Vehicles: 7 Pillars Malcolm Shield, Climate Policy. Integrated EV Charging and Cellular Infrastructure Trial 6 #12;5. CoV Fleet EVs 7 · First Mitsubishi Electric

California at Davis, University of

433

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

An entity that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge battery electric and plug-in hybrid electric...

434

Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support  

Science Journals Connector (OSTI)

Abstract Demand fluctuation in electric power systems is undesirable from many points of view; this has sparked an interest in demand-side strategies that try to establish mechanisms that allow for a flatter demand curve. Particularly interesting is load shifting, a strategy that considers the shifting of certain amounts of energy demand from some time periods to other time periods with lower expected demand, typically in response to price signals. In this paper, an optimization-based model is proposed to perform load shifting in the context of smart grids. In our model, we define agents that are responsible for load, generation and storage management; in particular, some of them are electric vehicle aggregators. An important feature of the proposed approach is the inclusion of electric vehicles with vehicle-to-grid capabilities; with this possibility, electric vehicles can provide certain services to the power grid, including load shifting and congestion management. Results are reported for a test system based on the IEEE 37-bus distribution grid; the effectiveness of the approach and the effect of the hourly energy prices on flattening the load curve are shown.

M.A. López; S. de la Torre; S. Martín; J.A. Aguado

2015-01-01T23:59:59.000Z

435

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...greenhouse gas and SO2 emissions...greenhouse gas (GHG) emissions...electricity generation, oil refining...from coal-fired power plants. Fig...electricity generation mixes as the...natural gas, coal, nuclear...hydroelectric power is assumed...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

436

Demand response based congestion management in a mix of pool and bilateral electricity market model  

Science Journals Connector (OSTI)

The independent system operator (ISO) is a key element in the deregulated structure with one of the responsibilities of transmission congestion management (CM). The ISO opts market based solutions to manage conge...

Ashwani Kumar; Charan Sekhar

2012-06-01T23:59:59.000Z

437

DOE - Office of Legacy Management -- General Electric Co - San Jose - CA 13  

Office of Legacy Management (LM)

General Electric Co - San Jose - CA General Electric Co - San Jose - CA 13 FUSRAP Considered Sites Site: General Electric Co. - San Jose (CA.13 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: San Jose , California CA.13-1 Evaluation Year: 1995 CA.13-2 Site Operations: Fabricated uranium metal. CA.13-1 Site Disposition: Eliminated - No Authority - NRC licensed CA.13-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.13-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to General Electric Co. - San Jose CA.13-1 - General Electric Letter; MacCready to Travis; Subject: Extrusion of Uranium Dioxide for General Electric - APED; Circa 1957

438

EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition  

E-Print Network (OSTI)

and regional resolution the likely grid impacts of defensible penetration scenario in the US for the 2030 impacts of generating electricity, which then in turn has electric rate impacts to rate payers are the impacts of a plausible penetration of plug- in hybrid electric vehicles (PHEVs) on the electricity

439

Cyber-Physical Systems for Optimal Energy Management Scheme of Autonomous Electric Vehicle  

Science Journals Connector (OSTI)

......consumption status and demand from AEV and charging...vehicle; energy management; event-based...the optimal energy management scheme for AEV with...of CPS for energy management framework (EMF...the consumption side to collect and analyze...consumption status and demand, and then make......

Jiafu Wan; Hehua Yan; Di Li; Keliang Zhou; Lu Zeng

2013-08-01T23:59:59.000Z

440

Coordinated Home Energy Management for Real-Time Power Balancing  

E-Print Network (OSTI)

This paper proposes a coordinated home energy management system (HEMS) architecture where the distributed residential units cooperate with each other to achieve real-time power balancing. The economic benefits for the retailer and incentives for the customers to participate in the proposed coordinated HEMS program are given. We formulate the coordinated HEMS design problem as a dynamic programming (DP) and use approximate DP approaches to efficiently handle the design problem. A distributed implementation algorithm based on the convex optimization based dual decomposition technique is also presented. Our focus in the current paper is on the deferrable appliances, such as Plug-in (Hybrid) Electric Vehicles (PHEV), in view of their higher impact on the grid stability. Simulation results shows that the proposed coordinated HEMS architecture can efficiently improve the real-time power balancing.

Chang, Tsung-Hui; Scaglione, Anna

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Puget Sound Area Electric Reliability Plan. Appendix D, Conservation, Load Management and Fuel Switching Analysis : Draft Environmental Impact Statement.  

SciTech Connect

Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

442

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network (OSTI)

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The… (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

443

Living with Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Living with Electric Vehicles Living with Electric Vehicles JOHN DAVIS: On any given weekend, somewhere you'll find a gathering of cars and a group of enthusiasts assembled around them. Be the hotrods classics or sports cars, each genre of the car's evolution has developed loyal following. And electric cars are no exception. The recent National Plug-in day included events held at hundreds of sites across the U.S. enticing EV aficionados to check out the latest models and share their passion for gas-free motoring. JOHN BARRACCA: The dealer gives you 9.3 gallons. I haven't used all of that yet. But, when I get 3 gallons low, I put 3 gallons in. So, I'm still at almost a full tank. The last time I put 3 gallons in was February and this is September 23rd. JOHN DAVIS: All of the owners we talked with were pleased with their plug-in car's fuel

444

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

445

A Service-Oriented Architecture for Electric Power Transmission System Asset Management  

E-Print Network (OSTI)

of Electrical & Computer Engineering Iowa State University Ames, IA 50011-1040 USA {jpathak, power plants and support structures. Maintaining these assets to reliably deliver electric energy at low prices is critical for a nation's growth and development. Towards this end, we describe a novel service

Honavar, Vasant

446

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

e.g. photovoltaic (PV) systems, batteries, and asynchronoushas full use of the PEVs’ batteries within the constraintsfor example to use the batteries for arbitrage on the

Momber, Ilan

2010-01-01T23:59:59.000Z

447

The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids  

E-Print Network (OSTI)

absorption solar photo- stationary storage chiller thermalPV), solar thermal, stationary batteries, thermal storage,

Stadler, Michael

2010-01-01T23:59:59.000Z

448

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

449

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

450

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

times between trips to gasoline stations. For some people,the reduction in trips to gasoline stations was more than asome people identify gasoline stations as dangerous or dirty

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

451

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of EnergyLight Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

452

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

by the Fraunhofer Institute for Systems and Innovationsby the Fraunhofer Institute for Systems and Innovationswith the Fraunhofer Institute For Systems and Innovations

Momber, Ilan

2010-01-01T23:59:59.000Z

453

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Fraunhofer Institute for Systems and Innovation Research (Fraunhofer Institute For Systems and Innovations Research,Fraunhofer Institute for Systems and Innovations Research,

Momber, Ilan

2010-01-01T23:59:59.000Z

454

The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids  

E-Print Network (OSTI)

with or without combined heat and power). Also, mobilestorage, and combined heat and power (CHP) systems with and

Stadler, Michael

2010-01-01T23:59:59.000Z

455

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

456

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

457

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

safety and cost. Third, Li-Ion battery designs are betterattributes of one type of Li-Ion battery cannot necessarilycapabilities. In any case, Li-Ion battery technologies hold

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

458

Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the U.S. Power System - PNNL-  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Assessment of Energy Storage Systems Regional Assessment of Energy Storage Systems for the Northwest Power Pool Collaboration with the Bonneville Power Administration Michael Kintner-Meyer, Ph.D. . Contact: email: Michael.Kintner-Meyer@pnl.gov phone: 509.375.4306 Program Review Energy Storage Systems Program (ESS) Washington, DC November 2, 2010 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Pacific Northwest National Laboratories Goal and Motivation to Collaborate with BPA Goal: Explore the following questions Explore how much energy storage does the nation need? What kind of storage? Where to place it? Motivation for collaboration with BPA BPA initiated analysis toward storage strategy PNNL needed detailed data What questions do we address? What are the likely balancing requirements for the NWPP in a 14.4 GW wind scenario

459

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

Li-Ion (Johnston Controls Saft—JCS). Whereas EPRI’s analysisLi-Ion (Johnston Controls Saft—JCS). To understand Figure 3,Co 0.1 Al 0.05 )O 2 JCI-Saft 3 Pilot 1 nickel, (Graphite)

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

460

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...and integrate energy storage. The...characteristics of the grid as a supply chain...electric power infrastructure functions largely...a majority of energy is generated...as plug-in hybrids (PHEVs), provided...stability, high-energy density, safety...automotive and grid applications...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

462

Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program  

SciTech Connect

The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

Caille, Gary

2013-12-13T23:59:59.000Z

463

A Greener Focus: 2012 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Greener Focus: 2012 Ford Focus Electric Greener Focus: 2012 Ford Focus Electric JOHN DAVIS: With its 2012 re-design, the Focus compact has become Ford's core global program. Focus is already generating offspring, including small vans, a high performance hatchback, and this car - the Ford Focus Electric. It's actually one of only several new plug-ins and hybrids due from the blue oval this year. So let's go for a drive in the EV Focus and see if this green approach means greener pastures for Ford. At first glance, the 2012 Ford Focus Electric doesn't look that much different than the compact, front-

464

Flexible qos-managed status dissemination middleware framework for the electric power grid  

Science Journals Connector (OSTI)

Electric power grids are complex interconnected systems that in North America can span more than a thousand miles. They must be operated such that the dynamic balance between supply and demand is maintained. Grids exhibit many power dynamics that are ...

Kjell Harald Gjermundrod / David E. Bakken

2006-01-01T23:59:59.000Z

465

Marginal Cost Pricing: An Efficient Tool to Ensure Electricity Demand Side Management  

Science Journals Connector (OSTI)

The constant adaptation between electricity supply and demand can be achieved in two ways : On the supply side, through the construction of additional facilities, and on the demand side, by implementing tariffs, ...

B. Lescoeur; J. B. Galland; E. Husson

1988-01-01T23:59:59.000Z

466

Multicriteria decision making in electricity demand management: the case of Kuwait  

Science Journals Connector (OSTI)

Electricity demand in Kuwait has substantially increased over the years and this increase is attributed to population growth, increase in the number of buildings, and the extensive use of air-conditioning system during the very hot weather in the summer. The amount of electrical energy generated reached 48 444 308 megawatt hour (MWH) in 2007. Such growth calls for extensive investment in the continuous expansion of the existing power plants and constructing new ones. To rationalise the consumption of electricity, several conservation policies have to be implemented. In this work, we have attempted to diagnose such problem and solicit expert opinions in order to provide the proper remedies. Because the problem comprises several criteria that are subjective in nature, multicriteria decision-making approaches were suggested. The Analytical Hierarchy Process (AHP) was used as a decision tool to assess the different policies that could be used to bring about electricity conservation.

Mohammed Hajeeh

2010-01-01T23:59:59.000Z

467

Cyber-Physical Systems for Optimal Energy Management Scheme of Autonomous Electric Vehicle  

Science Journals Connector (OSTI)

......autonomous electric vehicle (AEV) in smart grid. We first give a brief overview...communication technologies for CPS, smart grid, AEV and its path planning, energy-efficient...sensor networks (WSNs) navigation, smart grid communication architecture for EMF......

Jiafu Wan; Hehua Yan; Di Li; Keliang Zhou; Lu Zeng

2013-08-01T23:59:59.000Z

468

Reliability Modeling of Cyber-Physical Electric Power Systems: A System-Theoretic Framework  

E-Print Network (OSTI)

generation sources, e.g., wind, photovoltaics (PV), new loads, such as plug-in hybrid electric vehicles (PHEV]. In this regard, next generation electric power systems envisioned under the US DOE Smart Grid initiative and its the tight coupling between this communication and control infrastructure and the physical components

Liberzon, Daniel

469

Vehicle-Grid Interface Key to Smart Charging Plug-in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

electrification is an important electrification is an important element in the nation's plan to transition from petroleum to electricity as the main energy source for urban/ suburban transportation - to enhance energy security, reduce environmental impact and maintain mobility in a carbon- constrained future. Well over half of America's passenger cars travel between 20 and 40 miles daily - a range that electric vehicles (EVs)

470

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...Litman and Doherty (82) estimate noise costs at $0.011mi ($2007) for an average car vs. $0.004mi for an electric car on an average driving time and location. At these rates, an electric vehicle could provide about $800 of additional...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

471

Modeling, control, and power management of a power electrical system including two distributed generators based on fuel cell and supercapacitor  

Science Journals Connector (OSTI)

This paper focuses on Distributed Generator (DG) integration in Power Electrical System (PES) for dispersed nodes. The main objective of the DG use can be classified into two aspects: a load following service and ancillary service systems. In this study the DG system contains a Fuel cell and a Supercapacitor storage device. A gas turbine system is modeled in order to estimate the PES frequency behavior under a variable power demand. The main goal of this work is to develop a DG control strategy with the aim to smooth the frequency and the voltage peak variations. To assess the different management stages the power flow exchanged between DGs and PES is depicted and discussed for different power demand variations. The results found with the DGs integration strategy confirm the frequency and voltage regulations and also prove the well power flow management.

L. Krichen

2013-01-01T23:59:59.000Z

472

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

SciTech Connect

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

473

Sliding force measurements on the LHC RF contact Plug In Modules at 15 K and in UHV  

E-Print Network (OSTI)

Some sliding RF contacts mounted in the Plug In Modules in the LHC interconnects failed during a thermal cycle between 4.2 K and room temperature. Gold-coated copperberyllium RF fingers buckled during the warm up of the machine, indicating that one or more parameters during operation (e.g. the friction coefficient under vacuum) could be different from what was used in the calculations. This report describes the measurement of the longitudinal forces acting on the sliding RF fingers at operating vacuum and temperatures.

Artoos, K; Renaglia, T

2008-01-01T23:59:59.000Z

474

Secretary Chu Announces up to $10 Million to Support Plug-In...  

Energy Savers (EERE)

Wayne, IN) has been selected by the Department of Energy (DOE) for negotiation of a cost-shared award of up to 10 million to develop, test, and deploy an electric hybrid...

475

Fact #665: March 7, 2011 Garage Availability for Plug-in Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

According to the 2009 American Housing Survey, two-thirds of all housing units in the U.S. have a garage or carport. The access to electricity that a garage or carport may provide is important for...

476

Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a limited amount of all-electric driving range that is drawn from a plug and uses a gasoline engine to provide additional range when the battery is depleted. The automakers have...

477

A N-dimensional Stochastic Control Algorithm for Electricity Asset Management on PC cluster  

E-Print Network (OSTI)

levels. The necessity to deal with a lot of stocks (mainly water stocks used by hydraulic power plant, the electric- ity and fuel market prices, the hydraulicity, and the availability of the thermal production of data and computation evolving at each time step, and to compute Monte-Carlo simulations requiring data

Paris-Sud XI, Université de

478

Impact of Industrial Electric Rate Structure on Load Management - A Utility Viewpoint  

E-Print Network (OSTI)

A few years ago our response to an inquiry regarding availability of electric service for a large industrial load was something like: 'Let us put this into our production model to determine whether we will have adequate generating capacity to commit...

Richardson, J. A.

1984-01-01T23:59:59.000Z

479

Knowledge Management and Visualization in Support of Vulnerability Assessment of Electricity Production  

SciTech Connect

With the rapid growth in demand of electricity, vulnerability assessment of electricity production and its availability has become essential to our economy, national defense, and quality of life. The main focus to date has generally been on protecting power plants and energy transmission systems. However, the extraction and delivery of fuels is also a critical component of the value chain for electricity production. A disruption at any point in the infrastructure could result in lost power production and delivery. The need for better analysis of fuel delivery vulnerabilities is pressing. Therefore, the purpose of this paper is to present the preliminary results of a research project that aims to analyze the vulnerability associated with delivery of fuels and to ensure availability of fuel supplies, by providing insight into likely vulnerability problems so that solutions and preventative methods may be devised. In this research project, a framework for electricity production vulnerability assessment was proposed. Different data sources were integrated into a data warehouse to allow interactive analysis of enormous historical datasets for coal transactions and coal transportation. By summarizing and slicing the historical datasets into different data cubes, the enormous datasets were able to be analyzed and visualized. An interactive GIS interface allows users to interact with it to perform different queries and then visualize the results. The analyses help decision makers understand the impact of fuel delivery disruption and the vulnerabilities in the coal transportation system. Thus, solutions and policies might be advised to avoid disruptions.

Dodrill, Keith; Garrett, J.H. (Carnegie Mellon); Matthews, S. (Carnegie Mellon); Shih, C-Y. (Carnegie Mellon); Soibelman, L. (Carnegie Mellon); McSurdy, S.

2007-01-01T23:59:59.000Z

480

A novel memory management scheme for residential gateways  

Science Journals Connector (OSTI)

Home gateways must manage services despite limited memory resources. In home gateway models (e.g., OSGi), services are implemented as software bundles (or plug-ins) that can be downloaded from the Internet and executed in the gateway. Services, in gateways, ... Keywords: Memory management, Pervasive computing, Smart homes

Ibrahim Kamel; Beizhong Chen

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "managers plug-in electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Golden Valley Electric Association - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Golden Valley Electric Association - Residential Energy Efficiency Rebate Program for Builders Golden Valley Electric Association - Residential Energy Efficiency Rebate Program for Builders < Back Eligibility Construction Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Alaska Program Type Utility Rebate Program Rebate Amount Fluorescent Lamps: $10-$20 CFL Fixtures: $3 LED Lamp: $10 Photocell/Motion Detector: $10 High Intensity Discharge Fixture: $20 Insulating Blanket for Water Heater: $10 Water Heater Timer: $30 Timer Controlling Exterior Vehicle Plug-In Outlet: $20 Switch Controlling Exterior Vehicle Plug-In Outlet: $10 Provider Golden Valley Electric Association Golden Valley Electric Association's (GVEA) Builder $ense program targets

482

An improved energy management strategy for FC/UC hybrid electric vehicles propelled by motor-wheels  

Science Journals Connector (OSTI)

Abstract The hybridization of the fuel-cell electric-vehicle (FCEV) by a second energy source has the advantage of improving the system's dynamic response and efficiency. Indeed, an ultra-capacitor (UC) system used as an energy storage device fulfills the FC slowest dynamics during fast power transitions and recovers the braking energy. In FC/UC hybrid vehicles, the search for a suitable power management approach is one of the main objectives. In this paper, an improved control strategy managing the active power distribution between the two energy sources is proposed. The UC reference power is calculated through the DC link voltage regulation. For the FC power demand, an algorithm with five operating modes is developed. This algorithm, depending on the UC state of charge (SOC) and the vehicle speed level, minimizes the FC power demand transitions and therefore ameliorates its durability. The traction power is provided using two permanent magnetic synchronous motor-wheels to free more space in the vehicle. The models of the FC/UC vehicle system parts and the control strategy are developed using MATLAB software. Simulation results show the effectiveness of the proposed energy management strategy.

Islem Lachhab; Lotfi Krichen

2014-01-01T23:59:59.000Z

483

Abstract This paper reviews specific issues and challenges in reactive power management within the competitive electricity  

E-Print Network (OSTI)

, points out various deficiencies in the reactive power procurement in the US markets and provides recommendations for, and lists a number of challenges in the reactive power supply and usage area. Basically of the same type as active power or active energy. Many reactive power management issues concern the static

Gross, George

484

Connectivity Enhanced Energy Management and Control for EREVs: Cooperative Research and Development Final Report, CRADA Number CRD-11-457  

SciTech Connect

The projected trend in personal mobility is the use of range extended electric vehicles (EREVs) and plug in hybrids (PHEVs). Although batteries with high power density and compact high power electric machines provide appreciable 'all electric' range, there still exists the need for an onboard range extender. The use of connectivity information such as route, elevation/curvature, traffic etc. enables substantial real world improvement in system efficiency and fuel economy of EREVs and plug-in hybrids through efficient use of stored electrical energy.

Gonder, J.

2014-08-01T23:59:59.000Z

485

Clean Cities: Electric Vehicle Community Readiness Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Electric Vehicle Community Readiness Workshop to someone by E-mail Share Clean Cities: Electric Vehicle Community Readiness Workshop on Facebook Tweet about Clean Cities: Electric Vehicle Community Readiness Workshop on Twitter Bookmark Clean Cities: Electric Vehicle Community Readiness Workshop on Google Bookmark Clean Cities: Electric Vehicle Community Readiness Workshop on Delicious Rank Clean Cities: Electric Vehicle Community Readiness Workshop on Digg Find More places to share Clean Cities: Electric Vehicle Community Readiness Workshop on AddThis.com... Conferences & Workshops Clean Cities 20th Anniversary Electric Vehicle Community Readiness Stakeholder Summit Waste-to-Wheels Plug-In Vehicle & Infrastructure

486

What Do You Think of Electric 'Cars of the Future'? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What Do You Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? April 29, 2010 - 7:30am Addthis On Tuesday, Shannon wrote about plug-in hybrid electric vehicles and all-electric vehicles. DOE is has a number of projects in the works to encourage development and adoption of these vehicles. While the flying "cars of the future" we imagined in years past have not come to fruition, plug-in and all-electric vehicles have given us a new vision for the "cars of the future," and it's an efficient one! What do you think of electric "cars of the future"? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment

487

What Do You Think of Electric 'Cars of the Future'? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Think of Electric 'Cars of the Future'? Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? April 29, 2010 - 7:30am Addthis On Tuesday, Shannon wrote about plug-in hybrid electric vehicles and all-electric vehicles. DOE is has a number of projects in the works to encourage development and adoption of these vehicles. While the flying "cars of the future" we imagined in years past have not come to fruition, plug-in and all-electric vehicles have given us a new vision for the "cars of the future," and it's an efficient one! What do you think of electric "cars of the future"? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail

488

Roadmap for Testing and Validation of Electric Vehicle Communication Standards  

SciTech Connect

Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2012-07-12T23:59:59.000Z

489

Using existing network infrastructure to estimate building occupancy and control plugged-in devices in user workspaces  

Science Journals Connector (OSTI)

Buildings are a major consumer of energy. We believe that energy can be saved with the notion of implicit occupancy sensing where existing IT infrastructure can be used to replace and/or supplement explicit dedicated sensors to determine building occupancy and drive building operation. Implicit sensing has the promise to be both lower in cost than explicit sensing based on PIR and ultrasound sensors and to offer additional useful data about the occupants of a building. Our implicit sensing methods are largely based on monitoring IP and MAC addresses in Wi-Fi access points and in routers, and then correlating these addresses to the occupancy of a floor, area, or room of a building. We experimentally evaluate the feasibility of this dual-use of IT infrastructure. We demonstrate an application of implicit sensing to sense the pending occupancy of a user workspace and automatically control the plugged-in devices in the workspace.

Ken Christensen; Ryan Melfi; Bruce Nordman; Ben Rosenblum; Raul Viera

2014-01-01T23:59:59.000Z

490

Alternative Fuels Data Center: All-Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

All-Electric Vehicles All-Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: All-Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: All-Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Google Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Delicious Rank Alternative Fuels Data Center: All-Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: All-Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles All-Electric Vehicles Content on this page requires a newer version of Adobe Flash Player.

491

On-board prediction of future speed profile for energy management of hybrid electric vehicles  

Science Journals Connector (OSTI)

Vehicular communications could be exploited for energy management of vehicles. We propose a system which provides that a vehicle estimates its future speed profile gathering status messages broadcasted by the surrounding vehicles and/or the infrastructure and inputting them in a traffic simulator used as a predictor. The system has been validated by simulation considering an urban scenario inspired to the Ecotekne campus at the University of Salento and a Manhattan scenario, very challenging in relation to the prediction of the speed profile. Simulation results have shown that the prediction error is quite low for the first scenario. In the Manhattan scenario, the error is quite high in case each vehicle limits itself to send messages only to its neighbours and does not transmit the information regarding its route. However, the error can be significantly reduced if route information is broadcasted and the infrastructure relays the messages transmitted by vehicles. The proposed system has been tested in the Ecotekne campus.

Giovanni Ciccarese; Teresa Donateo; Cosimo Palazzo

2012-01-01T23:59:59.000Z

492

Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project, July 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Review of Independent Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project July 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ......................................................................................................................................1 2.0 Scope .........................................................................................................................................1 3.0 Background ...............................................................................................................................2

493

Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project, July 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Review of Independent Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project July 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ......................................................................................................................................1 2.0 Scope .........................................................................................................................................1 3.0 Background ...............................................................................................................................2

494

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ELECTRICITY ADVISORY COMMITTEE MISSION The mission of the Electricity Advisory Committee is to provide advice to the U.S. Department of Energy in implementing the Energy Policy Act of 2005, executing the Energy Independence and Security Act of 2007, and modernizing the nation's electricity delivery infrastructure. ELECTRICITY ADVISORY COMMITTEE GOALS The goals of the Electricity Advisory Committee are to provide advice on: * Electricity policy issues pertaining to the U.S. Department of Energy * Recommendations concerning U.S. Department of Energy electricity programs and initiatives * Issues related to current and future capacity of the electricity delivery system (generation, transmission, and distribution, regionally and nationally)

495

Short-term and long-term success of electrical cardioversion in atrial fibrillation in managed care system  

E-Print Network (OSTI)

electrical cardioversion (logistic regression) Parameter p-value Age: ? 65 vs.electrical cardioversion (logistic regression) Parameter p-value Age: ? 65 and > 65 years Sex: Male vs.

Kuppahally, Suman S; Foster, Elyse; Shoor, Stanford; Steimle, Anthony E

2009-01-01T23:59:59.000Z

496

Linkages between demand-side management and congestion in the European electricity transmission system  

Science Journals Connector (OSTI)

Abstract We evaluate the possibility to reduce congestion in the transmission grid through large-scale implementation of demand-side management (DSM) in the form of load shifting for the EU-27 countries, Norway, and Switzerland for Year 2020. A linear, cost-minimising, dispatch model that includes a DC load-flow description of the transmission system and a general representation of load shifting is used. It is assumed that the EU Member States fulfil the targets for Year 2020 in their national renewable energy action plans. In the model calculations, a reference case without load shifting is compared with cases in which the load shifting is 5%, 10%, 15% or 20% of the load. The possibility to shift load in time is added exogenously and economic incentives for DSM are not evaluated. Three types of congestion are identified: peak-load-hour congestion, low-load-hour congestion and all-hour congestion. Peak-load-hour congestion is reduced as the DSM share of the load increases, whereas low-load-hour congestion, which is typically associated with a high level of wind generation, persists at all the DSM penetration levels investigated. We show that all-hour congestion occurs between systems that have large differences in supply structure, and that the impact of DSM on all-hour congestion is low.

Lisa Göransson; Joel Goop; Thomas Unger; Mikael Odenberger; Filip Johnsson

2014-01-01T23:59:59.000Z

497

Innovation management: experience from the perspective of the electric power industry  

Science Journals Connector (OSTI)

IBERDROLA's Corporate Unit for Research and Development (R&D) is charged with the task of defining the strategy, general policies, and criteria of technological innovation that shape the development of projects and the utilisation and commercialisation of products and services. With this aim in view, several tools to assist innovation management have been developed. The Technological Information Office (GIT) and the Database of Research Concepts and Contacts have been designed to promote knowledge of the firm's sphere of action. The role of the R&D Project Appraisal Methodology is to aid in the selection of innovative projects that afford a competitive advantage to the firm. The GIT is a service of IBERDROLA that responds to the technological monitoring requests of the professionals who work in the areas of Research, Technological Development, and Innovation. The GIT is part of an in-house information service and acts in the capacity of information broker making use of the technology of the World Wide Web (Intranet). The Database of Research Concepts and Contacts is one of the underpinnings of the GIT. This database furnishes information relative to leading institutions and researchers in their fields who carry out activities in technological areas of interest to IBERDROLA. The information gathered defines the scientific and technological environment that serves the firm as benchmark. The aim of R&D project appraisal methodology is to optimise the allocation of R&D resources through the prioritisation and selection of R&D projects and programs. To evaluate the merits of each project, as well as the costs and risks associated, criteria consistent with IBERDROLA's strategic objectives have been established. This article explains the characteristics of these tools and their different stages of exploitation, as well as the results obtained.

Elena Moline; Jose Luis de la Fuente

2002-01-01T23:59:59.000Z

498

EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Drive (Power Electric Drive (Power Electronics and Electric Machines) Workshop Tuesday, July 24, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the Power Electronics and Electric Machines (PEEM) goals of the EV Everywhere Grand Challenge. This input will advise the aggressive next-generation technology research and development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. The EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric Machines) Workshop was attended by senior officials of the Department of Energy and representatives from the following

499

Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting  

Science Journals Connector (OSTI)

Abstract Worldwide implementation of demand side management (DSM) programs has had positive impacts on electrical energy consumption (EEC) and the examination of their effects on long-term forecasting is warranted. The objective of this study is to investigate the effects of historical DSM data on accuracy of EEC modeling and long-term forecasting. To achieve the objective, optimal artificial neural network (ANN) models based on improved particle swarm optimization (IPSO) and shuffled frog-leaping (SFL) algorithms are developed for EEC forecasting. For long-term EEC modeling and forecasting for the U.S. for 2010–2030, two historical data types used in conjunction with developed models include (i) EEC and (ii) socio-economic indicators, namely, gross domestic product, energy imports, energy exports, and population for 1967–2009 period. Simulation results from IPSO-ANN and SFL-ANN models show that using socio-economic indicators as input data achieves lower mean absolute percentage error (MAPE) for long-term EEC forecasting, as compared with EEC data. Based on IPSO-ANN, it is found that, for the U.S. EEC long-term forecasting, the addition of DSM data to socio-economic indicators data reduces MAPE by 36% and results in the estimated difference of 3592.8 MBOE (5849.9 TW h) in EEC for 2010–2030.

F.J. Ardakani; M.M. Ardehali

2014-01-01T23:59:59.000Z

500

Vehicle-Grid Interoperability | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

a test vehicle using the laboratory's solar-powered charging station. As plug-in electric vehicles (EVs) become more common, the challenges to managing their interactions with...