National Library of Energy BETA

Sample records for management technology transfer

  1. Cast Metals Coalition Technology Transfer and Program Management Final Report

    SciTech Connect (OSTI)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration

  2. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology transfer Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year.

  3. Technology Transfer - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  4. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  5. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  6. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  7. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  8. TECHNOLOGY TRANSFER COORDINATORS

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  9. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  10. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  11. Working with SRNL - Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and universities. 803.725.4185 dale.haas@srnl.doe.gov Dale Haas Commercialization Program Manager Haas provides program management for SRNL and SRNS technology transfer...

  12. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  13. Technology Transfer Ombudsman Program

    Broader source: Energy.gov [DOE]

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

  14. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  15. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016...

  16. NREL: Technology Transfer - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question...

  17. NREL Commercialization & Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The NREL Industry Growth Forum accelerates the commercialization of clean energy technologies by: * Fostering hands-on-management and coaching for evolving clean energy companies * ...

  18. Technology Transfer | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. Text Version View a summary of our Fiscal Year 2015 technology partnership agreements. Learn more about our partnership

  19. Technology Transfer Reporting Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Reporting Form Technology Transfer Reporting Form PDF icon Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles,...

  20. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  1. Ombuds Services for Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds Program Tech Transfer Ombuds Ombuds Services for Technology Transfer Committed to the fair and equitable treatment of all employees, contractors, and persons doing...

  2. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  3. 2006 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Awards Carrying on the tradition of world-changing innovation Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

  4. 2007 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Technology Transfer Awards Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los

  5. 2008 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Technology Transfer Awards Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los

  6. 2009 Technology Transfer Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Technology Transfer Awards Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S.Department of Energy under contract DE-AC52-06NA25396. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los

  7. Technology transfer 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  8. Working with SRNL - Technology Transfer - Ombudsman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08/2015 SEARCH SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL - Technology Transfer Ombudsman SRS Entry Sign The Department of Energy and its management and operating contractors engaging in technology partnership activities share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification

  9. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  10. NREL: Technology Transfer - Cooperative Research and Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-4410. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  11. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  12. Tag: technology transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  13. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  14. Working with SRNL - Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01/2015 SEARCH SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2015 SRNL Research and Technology Recognition Reception Click to view the 2015 SRNL Research and Technology Recognition Reception Savannah River National Laboratory scientists and engineers develop technologies designed to improve environmental quality, support international nonproliferation, dispose of legacy wastes, and provide clean energy sources. SRNL is responsible for

  15. NREL: Technology Transfer - Innovative Way to Test Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  16. Steinbeis Technology Transfer Centre for Emissions Trading |...

    Open Energy Info (EERE)

    Steinbeis Technology Transfer Centre for Emissions Trading Jump to: navigation, search Name: Steinbeis Technology Transfer Centre for Emissions Trading Place: Augsburg, Bavaria,...

  17. Technology Transfer Plan

    SciTech Connect (OSTI)

    1998-12-31

    BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

  18. Annual Report on Technology Transfer and Related Technology Partnering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities FY 2009-2013 Annual Report on Technology ...

  19. A planning framework for transferring building energy technologies: Executive Summary

    SciTech Connect (OSTI)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-08-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

  20. Technology Transfer Annual Report Fiscal Year 2015

    SciTech Connect (OSTI)

    Skinner, Wendy Lee

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  1. Technology Transfer Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the ...

  2. NREL: Technology Transfer - Small Business Vouchers Pilot at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-4684. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  3. NREL: Technology Transfer - Small Business Vouchers Pilot at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address: Submit Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  4. Technology Transfer Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

  5. Geo energy research and development: technology transfer

    SciTech Connect (OSTI)

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  6. Policy_Statement_on_Technology_Transfer.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf PDF icon PolicyStatementonTechnologyTransfer.pdf More Documents & Publications...

  7. Annual Report on Technology Transfer and Related Technology Partnering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities at the National Laboratories and Other Facilities FY 2009-2013 | Department of Energy Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities FY 2009-2013 Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities FY 2009-2013 During the reporting period (2009-13), DOE has developed a sharpened focus on technology transfer activities,

  8. technology transfer | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Transfer Awards. The site has long been producing technologies initially used at Y-12 and later transferred to the private sector. The patents that were awarded were in areas

  9. Technology Transfer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Projects Patents Disclosures Contact Information Forms Strategic Partnership Projects (SPP) Contact Us Business Operations Careers/ Human Resources Directory Diversity and Inclusion Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Current Projects Patents Disclosures Contact Information Forms Strategic Partnership Projects (SPP) Technology Transfer Overview Substantial physics, engineering, and technological efforts have

  10. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Sorbent Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorbent Technologies Licensed for Use in Biomass-to- Biofuel Conversion Process with Carbon Capture and Storage Success Story The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has granted a license for two of its patented sorbent technologies: carbon dioxide (CO 2 ) removal and water-gas shift (WGS) reaction enhancement to CogniTek Management Systems "CogniTek," a renewable energy systems developer. CogniTek plans to implement a regenerable magnesium sorbent,

  11. NREL: Technology Transfer - Work-for-Other Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  12. SWAMI II technology transfer plan

    SciTech Connect (OSTI)

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-12-31

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

  13. DOE Report on Technology Transfer and Related Technology Partnering Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2014 Report to Congress June 2016 United States Department of Energy Washington, DC 20585 Message from the Technology Transfer Coordinator and Director, Office of Technology Transitions The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2014 ("Report") is prepared in accordance with the

  14. International Center for Environmental Technology Transfer |...

    Open Energy Info (EERE)

    Name: International Center for Environmental Technology Transfer Place: Yokkaichi, Japan Year Founded: 1990 Website: www.icett.or.jp Coordinates: 34.9651567, 136.6244847...

  15. Secretary Bodman Announces DOE Technology Transfer Coordinator...

    Energy Savers [EERE]

    to the global marketplace by naming Under Secretary for Science, Dr. Raymond Orbach, as Technology Transfer Coordinator, in accordance with the Energy Policy Act of 2005 (EPAct). ...

  16. Technology transfer: The winds of change

    SciTech Connect (OSTI)

    Choudhury, A.

    1994-12-31

    This talk will present a historical perspective of the legislation that facilitated technology transfer from the federal laboratory system, especially with reference to CRADAs. Some of the recently proposed legislation that could potentially impact these intellectual property provisions of GATT and NAFTA will be discussed. An overview of Martin Marietta Energy Systems, Inc.`s technology transfer activities will also be presented.

  17. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    SciTech Connect (OSTI)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities

  18. NREL Technology Transfer: Facilitating Capital Investment in Clean Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Facilitating Capital Investment in Clean Energy Technology Tom A. Williams Director, Technology Transfer Office National Renewable Energy Laboratory We Are Unique * Only national laboratory dedicated to renewable energy and energy efficiency R&D * Research spans fundamental science to technology solutions * Collaboration with industry, university and international partners is a hallmark * Research is market relevant because of a systems focus and global perspective and

  19. Mobile Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-05-15

    The order establishes requirements, assigns responsibilities, and provides guidance for federal mobile technology management and employee use of both government furnished and personally-owned mobile devices within DOE and NNSA. Establishes requirements for use of User Agreements to govern mobile devices used for official duties. Does not cancel other directives.

  20. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The unique technology allows operators to optimize the processing to improve material yield, decrease energy use, and improve safety systems. Specialty metals, such as titanium or ...

  1. NREL: Technology Transfer - Licensing Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using, and selling of the licensed technology, methods, or products. 5. Negotiate License Language The company then reviews and comments on the license agreement draft. If needed,...

  2. Business Plan Competitions and Technology Transfer

    SciTech Connect (OSTI)

    Worley, C.M.; Perry, T.D., IV

    2012-09-01

    An evaluation of business plan competitions, with a focus on the NREL-hosted Industry Growth Forum, and how it helps cleantech startups secure funding and transfer their technology to market.

  3. NWTC Researchers Recognized for Technology Transfer Excellence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    received NREL Technology Transfer Awards: one for the development of the Simulator fOr Wind Farm Applications (SOWFA) and a second for their work with Siemens on blade...

  4. Technology Transfer Ombudsman Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was ... Act of 2005, Title X, (Public Law 109-58), pages 334 through 345 of the PDF version. ...

  5. Technology_Transfer_Memo.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology_Transfer_Memo.pdf Technology_Transfer_Memo.pdf (91.42 KB) More Documents & Publications Policy_Statement_on_Technology_Transfer.pdf Policy_Statement_on_TT.pdf livermorecmp.pdf

  6. Federal Technology Transfer and the Federal Laboratory Consortium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Technology Transfer and the Federal Laboratory Consortium: Federal Technology Transfer and the Federal Laboratory Consortium: Identifying and accessing U.S. federal lab ...

  7. Technology Transfer Webinar on November 12: High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on...

  8. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  9. Targeted Technology Transfer to US Independents

    SciTech Connect (OSTI)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  10. Targeted Technology Transfer to US Independents

    SciTech Connect (OSTI)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately

  11. Technology Transfer and Commercialization Annual Report 2008

    SciTech Connect (OSTI)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  12. Clean Cast Steel Technology - Machinability and Technology Transfer

    SciTech Connect (OSTI)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  13. Technology transfer in the petrochemical industry

    SciTech Connect (OSTI)

    Tanaka, M.

    1994-01-01

    The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

  14. NETL Inventions Earn 2009 Technology Transfer Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inventions Earn 2009 Technology Transfer Awards NETL Inventions Earn 2009 Technology Transfer Awards February 13, 2009 - 12:00pm Addthis Washington, DC -- Two technologies developed by researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) have earned 2009 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium for Technology Transfer (FLC). Both technologies enable the cleaner use of coal for electricity production and have been

  15. Working with SRNL - Technology Transfer - Tech Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0/2016 SEARCH SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL - Technology Transfer Tech Briefs Examples of SRNL technologies available for collaboration (CRADA) and licensing. Environmental Stewardship Elemental Mercury Probe Environmental Biocatalyst - BioTiger(tm) Microbial Based Chlorinated Ethene Destruction Microwave Off-Gas Treatment System Groundwater and Wastewater Remediation Using Agricultural Oils In Situ Generation of Oxygen-Releasing Metal Peroxides

  16. Technology Transfer Working Group (TTWG) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Working Group (TTWG) Technology Transfer Working Group (TTWG) With the passage of the Energy Policy Act of 2005, Title X, Sec. 1001, the Secretary of Energy was directed to establish a Technology Transfer Working Group (TTWG), to include representatives from DOE National Laboratories and single purpose research facilities. The same section of the Act also directs the Secretary to appoint a Technology Transfer Coordinator. The duties of the Technology Transfer Coordinator

  17. Targeted Technology Transfer to US Independents

    SciTech Connect (OSTI)

    Schatzinger, Viola; Chapman, Kathy; Lovendahl, Kristi

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  18. Technology Transfer Ombudsman | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national laboratory and research facility has appointed a technology partnership ombudsman (ombuds). The role of the ombuds is prevention and early resolution of disputes between the lab and inventors or private companies over technology transfer

  19. Technology transfer in the national laboratories

    SciTech Connect (OSTI)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  20. MHD Technology Transfer, Integration and Review Committee

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

  1. Policy_Statement_on_Technology_Transfer.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy_Statement_on_Technology_Transfer.pdf Policy_Statement_on_Technology_Transfer.pdf (210.86 KB) More Documents & Publications Technology_Transfer_Memo.pdf Policy_Statement_on_TT.pdf Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities

  2. FLC Recognizes Laboratory's Technology Transfer Activities - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL FLC Recognizes Laboratory's Technology Transfer Activities August 19, 2004 Golden, Colo. - The Federal Laboratory Consortium for Technology Transfer (FLC) has recognized the Department of Energy's National Renewable Energy Laboratory with three regional awards for technology transfer activities. "These awards acknowledge our success in moving NREL technologies to the private sector," said Tom Williams, director of NREL's Technology Transfer Office. NREL was honored with two

  3. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

  4. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Admin Chg 1, dated 1-16-2013, supersedes DOE O 415.1.

  5. Awards recognize outstanding innovation in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards recognize outstanding innovation Awards recognize outstanding innovation in Technology Transfer The award honors inventors whose patented invention exhibits significant technical advance, adaptability to public use, and noteworthy value to the mission of the Lab. August 8, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable

  6. Mobile Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-21

    The directive will ensure that federal organizations and employees within the Department can use mobile technology to support mission requirements in a safe and secure manner.

  7. Information Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-21

    This revised Order is needed to clarify the roles and responsibilities, policies, and procedures for effectively managing IT investments to ensure mission success.

  8. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Technology for Safer,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology for Safer, Cleaner Corrosion-Protecting Metal Coatings Licensed by Pittsburgh Start-Up Success Story Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department's National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a revolutionary, cost-effective technology to reduce that impact-work that resulted in the creation of a new CMU/NETL spin-off that signed a licensing agreement with the laboratory in June. The

  9. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs The Office of Energy Efficiency and Renewable Energy's (EERE's) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE)

  10. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel Platinum/Chromium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Platinum/Chromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small, self-expanding metal mesh tube that saves thousands of lives every year by opening blocked arteries and allowing blood to flow freely again. Jointly developed by NETL and Boston Scientific Corporation, Inc., (BSCI) this novel alloy is the first austenitic stainless steel formulation to be produced for

  11. Information Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-12-23

    The Order identifies the objectives, components, and responsibilities for implementing processes to ensure the effective management of information and information systems within the Department. Supersedes DOE O 200.1.

  12. Characterization and Development of Advanced Heat Transfer Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Development of Advanced Heat Transfer Technologies Characterization and Development of Advanced Heat Transfer Technologies 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_11_kelly.pdf (1.49 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Air Cooling Technology

  13. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    SciTech Connect (OSTI)

    Hsieh, S.T.; Qiu Daxiong; Zhang Guocheng

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

  14. Information Technology Project Management - DOE Directives, Delegation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.1 Admin Chg 1, Information Technology Project Management by Denise Hill Functional areas: Administrative Change, Information Technology, Project Management, The Order provides...

  15. Composite fabrication via resin transfer molding technology

    SciTech Connect (OSTI)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  16. DOE General Counsel for Technology Transfer and Intellectual Property |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy General Counsel for Technology Transfer and Intellectual Property DOE General Counsel for Technology Transfer and Intellectual Property The Office of the Assistant General Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters relating to intellectual property (including patents, trademarks, copyrights, and technical data) and transfer of those rights from Department laboratories to the

  17. Technology Transfer: Triggering New Global Markets and Job Growth |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth September 20, 2011 - 11:33am Addthis The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013. The Global

  18. Y-12 honors inventors with Technology Transfer awards | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) inventors with Technology Transfer awards Tuesday, July 28, 2015 - 8:35am NNSA Blog , Twenty-nine Y-12 inventors were recognized for their technology and innovation during the recent 11th Annual Technology Transfer Awards. The site has long been producing technologies initially used at Y-12 and later transferred to the private sector. NNSA Blog The patents that were awarded were in areas ranging from nuclear material simulation devices to enhancing the

  19. Technology transfer package on seismic base isolation - Volume III

    SciTech Connect (OSTI)

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  20. Appropriate Technology Management Information System

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    From 1978 to 1981, the Department of Energy (DOE) awarded more than 2200 small grants worth more than $25 million to individuals, organizations and small businesses across the nation for the purposes of researching, developing and demonstrating appropriate technologies. Grants were given in the full range of technology areas, including conservation, solar, biomass, wind, geothermal, and hydro power. The final report from each DOE grantee was reviewed in an effort to extract information about new ideas and proven concepts that could be of value to the public. To manage the growing wealth of information from the grant reports, and to monitor the report review process, the Appropriate Technology Management Information System (ATMIS), a computer data base, was developed. The ATMIS can classify data into numerous categories (technology area, geographic location, project status, etc.). This manual was generated directly from the data base.

  1. Technology Transfer through the Pipeline and Other Channels: Preprint

    SciTech Connect (OSTI)

    Benner, J.; Hulstrom, R.; Sheldon, P.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Examines some success stories of tech transfer and lessons learned from these experiences that point to possible improvements to expedite transfer to future technologies.

  2. Department of Energy Issues Report on Technology Transfer and Related

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Partnering Activities for Fiscal Year 2014 | Department of Energy Department of Energy Issues Report on Technology Transfer and Related Technology Partnering Activities for Fiscal Year 2014 Department of Energy Issues Report on Technology Transfer and Related Technology Partnering Activities for Fiscal Year 2014 This Class 8 tractor-trailer by heavy-duty manufacturers Cummins and Peterbilt reaches more than 10 miles per gallon under real world driving conditions. The truck was on

  3. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs: Wind | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are U.S. Government programs in which federal agencies with large research and development (R&D) budgets set aside a small fraction of their funding for competitions among small businesses

  4. NREL Solar Cell Wins Federal Technology Transfer Prize - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Cell Wins Federal Technology Transfer Prize May 7, 2009 A new class of ultra-light, high-efficiency solar cells developed by the U.S. Department of Energy's National Renewable Energy Laboratory has been awarded a national prize for the commercialization of federally funded research. The Inverted Metamorphic Multijunction (IMM) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The

  5. Y-12 honors its inventors with Technology Transfer awards | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) its inventors with Technology Transfer awards Monday, May 23, 2016 - 10:08am Y-12 recently recognized 29 inventors at their annual Tech Transfer award ceremony. The group was awarded 13 patents and submitted more than 30 invention disclosures in the past year. OAK RIDGE, Tennessee - Twenty-nine Y-12 inventors were recognized for their technology and innovative accomplishments during the recent 12th annual Technology Transfer Awards Ceremony. The site

  6. Contacts for the Assistant General Counsel for Technology Transfer and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procurement | Department of Energy Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject Matter/Functional Area Lead Backup Technology Transfer John T. Lucas 202-586-2939 Linda Field 202-586-3440 IP Policy John T. Lucas 202-586-2939 Linda Field 202-586-3440 Litigation Administrative Claims Copyrights/Software Nathaniel Sloan 202-586-4792 Marianne Lynch 202-586-3815 Acquisition/Assistance IP Rights International

  7. Argonne Recognized for Excellence in Technology Transfer | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jason Harper Jason Harper Argonne Recognized for Excellence in Technology Transfer By Angela Hardin * April 11, 2014 Tweet EmailPrint The Federal Laboratory Consortium (FLC)...

  8. TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OF 2000 More Documents & Publications Technology Transfer Commercialization Act of 2000 E:PUBLAWPUBL404.106 Intelligence Reform and Terrorism Prevention Act - December 17, 2004

  9. DOE General Counsel for Technology Transfer and Intellectual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Office of the Assistant General Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters ...

  10. Fermilab | Office of Partnerships and Technology Transfer | Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in financial transactions, or mapping behavioral trends in the stock market. Computing Technology: Wirecap Wirecap Information is stored and transferred in packets. Every system...

  11. EERE-SBIR Technology Transfer Opportunity: H2 Safety Sensors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors for H2 EERE-SBIR Technology Transfer Opportunity Develop low cost electronics packaging manufacturable at high volume, and integrate LANL sensor into a commercial package...

  12. Laurie Bagley succeeds Lew Meixler as head of Technology Transfer |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Laurie Bagley succeeds Lew Meixler as head of Technology Transfer By Jeanne Jackson DeVoe May 6, 2015 Tweet Widget Google Plus One Share on Facebook Laurie Bagley is the new head of Technology Transfer at PPPL. (Photo by Elle Starkman/PPPL Office of Communications) Laurie Bagley is the new head of Technology Transfer at PPPL. Gallery: Lew Meixler was head of Technology Transfer at PPPL for 23 years. (Photo by Photo by Elle Starkman/PPPL Office of Communications)

  13. Methods for Climate Change Technology Transfer Needs Assessments...

    Open Energy Info (EERE)

    Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Jump to: navigation, search Tool...

  14. UNIDO ICS Portal for Technology Transfer | Open Energy Information

    Open Energy Info (EERE)

    ex.php?titleUNIDOICSPortalforTechnologyTransfer&oldid329335" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  15. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  16. National Technology Transfer and Advancement Act of 1995 [Public Law (PL)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    104-113] | Department of Energy Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] On March 7, 1996, President Clinton signed into law "The National Technology Transfer and Advancement Act of 1995." The new law, referred to as PL 104-113, serves to continue the policy changes initiated in the 1980s under Office of Management and Budget (OMB) Circular A-119 (OMB A-119), Federal

  17. Tag: technology transfer | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology transfer Tag: technology transfer Displaying 1 - 10 of 12... Category: News CNS, UT chemical sensing technology wins R&D 100 Award An inexpensive, small and portable chemical sensor developed by Consolidated Nuclear Security, LLC researchers at the Y-12 National Security Complex and the University of Tennessee received a pres More... Category: News CNS research teams named 2015 R&D 100 Award finalists CNS partners with universities on significant technology advances. More...

  18. Small Business Innovation Research and Small Business Technology Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Market » Small Business Innovation Research and Small Business Technology Transfer Small Business Innovation Research and Small Business Technology Transfer Tau Science Corporation Tau Science Corporation Tau Science Corporation have developed technology that revolutionizes PV characterization by bringing the most fundamental measure of a solar cell performance--spectral response--to application areas which are impractical or unobtainable using existing

  19. NREL Earns Federal Technology Transfer Accolades - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earns Federal Technology Transfer Accolades Technology to help bring low-cost flexible photovoltaics to market May 2, 2011 A technology from the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) for depositing crystalline silicon onto inexpensive substrate materials has been recognized with a 2011 Award for Excellence in Technology Transfer from the Federal Laboratory Consortium. The "Flexible Thin-Film Crystalline-Silicon Photovoltaics on RABiTS" project

  20. Predictive Technology Development and Crash Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Predictive Technology Development and Crash Energy Management Predictive Technology ... Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon ...

  1. Section 3: Office Portfolio Management, Bioenergy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portfolio Management 3-1 Last revised: March 2015 Section 3: Office Portfolio Management This section describes how the U.S. Department of Energy's (DOE's) Bioenergy Technologies ...

  2. 2014 WIND POWER PROGRAM PEER REVIEW-ACCELERATE TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Technology Transfer March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Accelerate Technology Transfer Development of On-Site Conical Spiral Welders for Large Turbine Towers-Eric Smith, Keystone Tower Systems, Inc. High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization Systems-Stuart Nemster, Compact Membrane Systems Advanced Manufacturing Initiative-Daniel Laird, Sandia National Laboratories Manufacturing and Supply Chain R&D,

  3. Technology transfer package on seismic base isolation - Volume I

    SciTech Connect (OSTI)

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  4. NETL Technology Transfer Case Studies and Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read more Sorbent-pelletsCariact-Q10s.jpg SORBENT TECHNOLOGIES FOR USE IN BIOMASS-TO-BIOFUEL CONVERSION NETL has granted a license for two of its patented sorbent technologies: ...

  5. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 November 8, 2007 Wakonda Technologies is the Clean Energy Entrepreneur of the Year A small company commercializing a novel solar energy technology has been named the Clean Energy...

  6. Check Heat Transfer Services; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slag on the heat transfer surfaces should be avoided. Contamination from Flue Gas and Heating Medium Problem areas from flue gas include soot, scale or oxides, sludge, and slag. ...

  7. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing technologies and equipment for wind turbine blades up to 100 m in length September ... to the nation's current energy challenges by reducing dependence on foreign oil. ...

  8. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Research Institute (EPRI) has become a sponsoring member of the Solar Technology Acceleration Center or SolarTAC-one of the world's largest solar test and...

  9. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research it made possible. December 10, 2014 NREL to Advance Technologies for Microgrid Projects The Energy Department's National Renewable Energy Laboratory (NREL) is...

  10. NREL: Technology Transfer - Nonexclusive and Exclusive Licenses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sold utilizing the licensed technology. The fees and payments vary depending on the business model, market(s), and the number of patents licensed. Exclusive NREL grants an...

  11. NREL: Technology Transfer - NREL, Collaborators Complete Gearbox...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to create an innovative drivetrain. The innovative, medium speed, medium-voltage wind turbine drivetrain design was developed with CREE, DNV KEMA, Romax Technology, and...

  12. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from inks and other solutions. July 7, 2009 NREL Collaborating with Spire to Develop Solar Cells with 42% Efficiency Through a Photovoltaic Technology Incubator Award, Spire...

  13. NREL: Technology Transfer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Get the EERE Energy Innovation Portal widget and many other great free widgets at Widgetbox Not seeing a widget? (More info) NREL developed and manages ...

  14. Competitive energy management and environmental technologies: Proceedings

    SciTech Connect (OSTI)

    1995-03-01

    This book contains the proceedings of the 17th World Energy Engineering Congress 4th Environmental Technology Expo held in December of 1994. The topics of the papers presented at this meeting include environmental management, water resource efficiency, energy management strategies, advances in lighting efficiency and applications, HVAC systems, competitive power technologies, federal energy management programs, and demand-side management. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Asian and Pacific Centre for Transfer of Technology (APCTT) ...

    Open Energy Info (EERE)

    Asia and the Pacific (UNESCAP) servicing the Asia-Pacific region. It was established in 1977 with the objective of facilitating technology transfer in the Asia-Pacific region. The...

  16. Successful Oil and Gas Technology Transfer Program Extended to 2015

    Broader source: Energy.gov [DOE]

    The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy.

  17. NREL: Technology Transfer - NREL Serves as the Energy Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager for Fuel Cell and Hydrogen Technologies. "This analysis will be used to help address infrastructure reliability, which is the leading economic and technical challenge ...

  18. Universal Gene Transfer Technology for Gram Positive Bacteria - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Universal Gene Transfer Technology for Gram Positive Bacteria Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00255_ID2139_rev.pdf (493 KB) Technology Marketing SummaryA genetic engineering technology invented at ORNL facilitates DNA delivery to a cell by using ultrasound to permeate the cell's

  19. NREL Researchers Receive Award for Excellence in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receive Award for Excellence in Technology Transfer Media may contact: George Douglas, DOE, 303-275-4096 email: George Douglas Golden, Colo., May 10, 2000 - Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory were honored May 10 with a Year 2000 Federal Laboratory Consortium Award for Excellence in Technology Transfer for the advanced direct contact condenser as applied in geothermal power plants. Award recipients are Desikan Bharathan, who developed the condenser

  20. FY05 Targeted Technology Transfer to US Independents

    SciTech Connect (OSTI)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its programs

  1. DOE Report on Technology Transfer and Related Technology Partnering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... PNNL teamed with Avegant to demonstrate military applications for the headset, such as night-time maneuvers and piloting armored or unmanned vehicles. But the technology has many ...

  2. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 (Phase I Release 2) Grant | Department of Energy Small Business Innovation Research and Small Business Technology Transfer 2013 (Phase I Release 2) Grant Small Business Innovation Research and Small Business Technology Transfer 2013 (Phase I Release 2) Grant November 26, 2012 - 2:11pm Addthis Funding: $150,000 (Phase I) and $1M (Phase II) for each awardee Open Date: 11/26/2012 Close Date: 02/05/2013 Funding Organization: Geothermal Technologies Office Funding Number: SBIR and STTR 2013

  3. Bioenergy Technologies Office Program Management Review

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office will be hosting its biennial Program Management Peer Review on June 25, 2015 at the Walter E. Washington Convention Center.

  4. Vehicle Technologies Office: Resources for Sustainability Managers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sustainability Managers Vehicle Technologies Office: Resources for Sustainability Managers Transforming the transportation system requires bringing research from the laboratory out onto the road. Sustainability managers, such as those in local and state governments, private companies, and non-profit organizations, are essential to this effort. The Vehicle Technologies Office supports programs that empower sustainability managers to reduce the use of petroleum in

  5. Federal Laboratory Consortium for Technology Transfer Awards (FLC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Laboratory Consortium for Technology Transfer Awards (FLC) Federal Laboratory Consortium (FLC) Awards This nationwide network of federal laboratories provides the forum to develop strategies and opportunities for linking the the federal laboratories' mission technologies and expertise with the marketplace, bringing laboratories together with potential users of government-developed technologies. Contact Jenna L. Montoya 505-665-4230 Email "It is really compelling to come to work

  6. Transfer and Transition: Interagency Coordination for Managing...

    Office of Scientific and Technical Information (OSTI)

    of Energy (DOE) Office of Legacy Management (LM) is anticipating adding 17 sites ... (DOI) Bureau of Land Management (BLM) for new, public land and mineral withdrawals. ...

  7. Transfer and Transition: Interagency Coordination for Managing Public Lands

    Office of Scientific and Technical Information (OSTI)

    at UMTRCA Title II Sites in Wyoming - 16614 (Conference) | SciTech Connect Conference: Transfer and Transition: Interagency Coordination for Managing Public Lands at UMTRCA Title II Sites in Wyoming - 16614 Citation Details In-Document Search Title: Transfer and Transition: Interagency Coordination for Managing Public Lands at UMTRCA Title II Sites in Wyoming - 16614 By the end of fiscal year 2025, the U.S. Department of Energy (DOE) Office of Legacy Management (LM) is anticipating adding 17

  8. Toward integrated design of waste management technologies

    SciTech Connect (OSTI)

    Carnes, S.A.; Wolfe, A.K.

    1993-11-01

    What technical, economic and institutional factors make radioactive and/or hazardous waste management technologies publicly acceptable? The goal of this paper is to initiate an identification of factors likely to render radioactive and hazardous waste management technologies publicly acceptable and to provide guidance on how technological R&D might be revised to enhance the acceptability of alternative waste management technologies. Technology development must attend to the full range of technology characteristics (technical, engineering, physical, economic, health, environmental, and socio-institutional) relevant to diverse stakeholders. ORNL`s efforts in recent years illustrate some attempts to accomplish these objectives or, at least, to build bridges toward the integrated design of waste management technologies.

  9. Fossil energy waste management. Technology status report

    SciTech Connect (OSTI)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  10. National Lab Technology Transfer Making a Difference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference August 28, 2013 - 11:10am Addthis Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United States, responsible for more than half of the load on the electric grid in many major cities. NETL work has led to a patented CO2 sorbent

  11. Bulk Data Movement for Climate Dataset: Efficient Data Transfer Management with Dynamic Transfer Adjustment

    SciTech Connect (OSTI)

    Sim, Alexander; Balman, Mehmet; Williams, Dean N.; Shoshani, Arie; Natarajan, Vijaya

    2010-07-16

    Many scientific applications and experiments, such as high energy and nuclear physics, astrophysics, climate observation and modeling, combustion, nano-scale material sciences, and computational biology, generate extreme volumes of data with a large number of files. These data sources are distributed among national and international data repositories, and are shared by large numbers of geographically distributed scientists. A large portion of data is frequently accessed, and a large volume of data is moved from one place to another for analysis and storage. One challenging issue in such efforts is the limited network capacity for moving large datasets to explore and manage. The Bulk Data Mover (BDM), a data transfer management tool in the Earth System Grid (ESG) community, has been managing the massive dataset transfers efficiently with the pre-configured transfer properties in the environment where the network bandwidth is limited. Dynamic transfer adjustment was studied to enhance the BDM to handle significant end-to-end performance changes in the dynamic network environment as well as to control the data transfers for the desired transfer performance. We describe the results from the BDM transfer management for the climate datasets. We also describe the transfer estimation model and results from the dynamic transfer adjustment.

  12. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Licenses Transformational

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licenses Transformational Technology for Carbon Dioxide Capture Success Story Carbon capture and storage from fossil fuel-based power generation systems are critical strategic components to curb emissions of atmospheric carbon dioxide (CO 2 ). Currently available carbon capture processes are limited-significantly reducing the efficiency of power generation and increasing electricity cost. Working in collaboration with partners at Carnegie Mellon University, NETL researchers have developed a

  13. File and Directory Management Tool: view, organize, transfer...

    Office of Scientific and Technical Information (OSTI)

    Title: File and Directory Management Tool: view, organize, transfer files Not Specified Authors: Smith, N. G. ; O'Neill, N. J. ; Spencer, P. N. ; Long, J. W. Publication Date: ...

  14. Small Business Innovation Research and Small Business Technology Transfer Programs

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy’s (EERE’s) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE) SBIR/STTR programs that provide grants to small businesses or individuals who can form a small business within the required application timeline.

  15. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  16. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    1999-10-31

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  17. Transfer and Transition: Interagency Coordination for Managing...

    Office of Scientific and Technical Information (OSTI)

    (LM) is anticipating adding 17 sites remediated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) to the current inventory of 90 sites that it manages. ...

  18. Director, Information Technology Management Division

    Broader source: Energy.gov [DOE]

    The National Nuclear Security Administration (NNSA) is a semi-autonomous agency of the Department of Energy (DOE). We manage a highly visible U.S. National Security Programs, enhance U.S. national...

  19. Technology Management Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Cleveland, Ohio Zip: 44108 Product: Ohio-based, developer of solid oxide fuel cell systems. References: Technology Management Inc1 This article is a stub. You can help...

  20. Berkeley Lab Dr. Elsie Quaite-Randall, MBA Chief Technology Transfer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer at Berkeley Lab Dr. Elsie Quaite-Randall, MBA Chief Technology Transfer Officer CRENEL Meeting May 22, 2015 * Provide access to Berkeley Lab's unique user facilities and ...

  1. RFID Technology for Inventory Management

    ScienceCinema (OSTI)

    None

    2012-12-31

    The Pacific Northwest National Laboratory is leveraging the use and application of radio frequency identification (RFID) technology to a variety of markets. Tagging and tracking of individual items for inventory control is revealing rich rewards through increased time efficiency and reduced human intervention.

  2. Using logic models in managing performance of research and technology...

    Office of Scientific and Technical Information (OSTI)

    Using logic models in managing performance of research and technology programs: An example ... Title: Using logic models in managing performance of research and technology programs: An ...

  3. National Interest Security Company NISC Formerly Technology Management...

    Open Energy Info (EERE)

    NISC Formerly Technology Management Services TMS Inc Jump to: navigation, search Name: National Interest Security Company (NISC) (Formerly Technology & Management Services (TMS)...

  4. Y-12 honors its inventors with Technology Transfer awards | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex Y-12 honors its inventors ... Y-12 honors its inventors with Technology Transfer awards Posted: July 22, 2015 - 11:31am Y-12 recently honored inventors at the eleventh annual Technology Transfer Awards Ceremony. Twenty-nine Y-12 inventors were recognized for their technology and innovation during the recent 11th Annual Technology Transfer Awards. The site has long been producing technologies initially used at Y-12 and later transferred to the private sector. The patents that

  5. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    SciTech Connect (OSTI)

    Sinars, Daniel

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  6. Federal Laboratory Consortium Regional Technology-Transfer Awards Salute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation, Commercialization at Sandia Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage

  7. Small Business Innovation Research/Small Business Technology Transfer

    Office of Science (SC) Website

    Meeting August, 9-10, 2016 | U.S. DOE Office of Science (SC) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F:

  8. JBEI Research Receives Strong Industry Interest in DOE Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call Research Receives Strong Industry Interest in DOE Technology Transfer Call - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  9. Innovation Technology Transfer 2005-2006 Progress Report Credits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Technology Transfer 2005-2006 Progress Report Credits Writing: Duncan McBranch, Belinda Padilla, David Holmes, Krystal Zaragoza, Shandra Clow, and Marjorie Mascheroni Editing: Marjorie Mascheroni and Krystal Zaragoza Design: Kathi G. Parker Printing Coordination: Guadalupe Archuleta Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department

  10. Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of Energy's technology transfer efforts and to heighten awareness of the importance of technology transfer activities throughout DOE. For purposes of this document, the term "technology transfer" refers to the process by which knowledge, intellectual property or capabilities developed at the Department of

  11. Security technologies and protocols for Asynchronous Transfer Mode networks

    SciTech Connect (OSTI)

    Tarman, T.D.

    1996-06-01

    Asynchronous Transfer Mode (ATM) is a new data communications technology that promises to integrate voice, video, and data traffic into a common network infrastructure. In order to fully utilize ATM`s ability to transfer real-time data at high rates, applications will start to access the ATM layer directly. As a result of this trend, security mechanisms at the ATM layer will be required. A number of research programs are currently in progress which seek to better understand the unique issues associated with ATM security. This paper describes some of these issues, and the approaches taken by various organizations in the design of ATM layer security mechanisms. Efforts within the ATM Forum to address the user communities need for ATM security are also described.

  12. EPA and the Federal Technology Transfer Act: Opportunity knocks

    SciTech Connect (OSTI)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A.

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  13. Technology transfer: Half-way houses. No. 17

    SciTech Connect (OSTI)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  14. Environmental management technology demonstration and commercialization

    SciTech Connect (OSTI)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-10-01

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  15. Environmental management technology demonstration and commercialization

    SciTech Connect (OSTI)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-12-31

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  16. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  17. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  18. Oswer source book. Volume 2. Training and technology transfer resources, 1994-1995

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This edition of The OSWER Source Book builds on the previous versions and provides a descriptive listing of the numerous technology transfer resources available to EPA staff, State and local agencies, and others concerned with hazardous and solid waste management. Volume II lists frequently requested publications issued by the Office of Solid Waste (OSW). Publications are listed in a number of ways -- by title, document number, and subject area -- to facilitate locating a particular item. Publication order forms also are provided at the conclusion of Volume II.

  19. Oswer source book, Volume 2. Training and technology transfer resources, 1994-1995

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This edition of The OSWER Source Book builds on the previous versions and provides a descriptive listing of the numerous technology transfer resources available to EPA staff, State and local agencies, and others concerned with hazardous and solid waste management. Volume II lists frequently requested publications issued by the Office of Solid Waste (OSW). Publications are listed in a number of ways -- by title, document number, and subject area -- to facilitate locating a particular item. Publication order forms also are provided at the conclusion of Volume II.

  20. Applying RFID technology in nuclear materials management.

    SciTech Connect (OSTI)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  1. Scientific Data Management Center for Enabling Technologies

    SciTech Connect (OSTI)

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  2. Vehicle Technologies Office: Resources for Fleet Managers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fleet Managers Vehicle Technologies Office: Resources for Fleet Managers Fleet managers will benefit from the lower fuel costs, more reliable fuel prices, and lower emissions that come from using alternative fuels and advanced technologies made possible through the work of the Vehicle Technologies Office (VTO). VTO provides a variety of resources - including more than 100 Clean Cities coalitions nationwide - to help fleet managers find the right technology that meets their needs. In

  3. Y-12 honors its inventors with Technology Transfer awards | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex honors its inventors ... Y-12 honors its inventors with Technology Transfer awards Posted: May 23, 2016 - 8:30am Y-12 recently recognized 29 inventors at their annual Tech Transfer award ceremony. The group was awarded 13 patents and submitted more than 30 invention disclosures in the past year. OAK RIDGE, Tennessee - Twenty-nine Y 12 inventors were recognized for their technology and innovative accomplishments during the recent 12th annual Technology Transfer Awards

  4. Office of the Assistant General Counsel for Technology Transfer and Intellectual Property

    Broader source: Energy.gov [DOE]

    The Office of the Assistant General Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters relating to...

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an

  6. Low-level waste management program and interim waste operations technologies

    SciTech Connect (OSTI)

    Mezga, L.J.

    1983-01-01

    The Department of Energy currently supports an integrated technology development and transfer program aimed at ensuring that the technology necessary for the safe management and disposal of LLW by the commercial and defense sectors is available. The program focuses on five technical areas: (1) corrective measures technology, (2) improved shallow land burial technology, (3) greater confinement disposal technology, (4) model development and validation, and (5) treatment methods for problem wastes. The results of activities in these areas are reported in the open literature and the Proceedings of the LLWMP Annual Participants Information Meeting.

  7. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  8. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect (OSTI)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  9. NREL: Technology Transfer - New Energy License Encourages Investment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Energy License Encourages Investment in Green Technologies August 5, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) has developed a new technology ...

  10. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect (OSTI)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real time

  11. Adopting LED Technology: What Federal Facility Managers Need to Know

    Broader source: Energy.gov [DOE]

    This document describes the presentation slides for the "Adopting LED Technology: What Federal Facility Managers Need to Know" webinar that took place on September 11, 2014.

  12. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  13. Using logic models in managing performance of research and technology...

    Office of Scientific and Technical Information (OSTI)

    Using logic models in managing performance of research and technology programs: An example for a Federal Energy Efficiency and Renewable Energy program Citation Details In-Document ...

  14. Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  15. MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.

  16. Small Business Innovation Research and Small Business Technology Transfer Programs: Hydropower

    Broader source: Energy.gov [DOE]

    Small Business Innovation Research and Small Business Technology Transfer are U.S. Government programs in which federal agencies with large research and development budgets set aside a small fraction of their funding for competitions among small businesses only. Small businesses that win awards in these programs keep the rights to any technology developed and are encouraged to commercialize the technology.

  17. SBIR/STTR FY16 Phase 1 Release 2 Topics AnnouncedIncludes Hydrogen Delivery and Two Technology Transfer Opportunities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2016 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Topics, including magnetocaloric materials development for hydrogen delivery and two technology transfer opportunities.

  18. NREL: Technology Transfer - Kuwait Visitors Interested in NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to improve energy efficiency in their refining operations. KOC may also apply concentrated solar power technology to produce some of the steam needed in the company's operations...

  19. NREL: Technology Transfer - NREL to Play Pivotal Role in White...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White House Initiative to Bolster America's Manufacturing Future A photo of a large scale wind turbine with foothills in the background. Experts at the National Wind Technology...

  20. NREL: Technology Transfer - New NREL Report Showcases Potential...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New NREL Report Showcases Potential of Domestic Offshore Wind Industry October 5, 2015 Several researchers at the National Wind Technology Center at the National Renewable Energy...

  1. Characterization and Development of Advanced Heat Transfer Technologies

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  2. NREL Recognized by FLC for Technology Transfer Activities - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL has several industrial partnerships related to this technology, including a 7.7 million cooperative research and development agreement and license agreement with DuPont. The ...

  3. NREL: Technology Transfer - The Quest for Inexpensive Silicon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Battelle Ventures, the affiliate fund manager of Innovation Valley Partners, to invest in and set up Ampulse. Ampulse then established a cooperative research and development...

  4. EA-1175: Proposed Title Transfer of East Tennessee Technology Park Land and Facilities, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to transfer the title of unneeded DOE real property located at the U.S. Department of Energy East Tennessee Technology Park (ETTP) in...

  5. Other Federal Agency Small Business Innovation Research and Small Business Technology Transfer Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the U.S. Department of Energy and the Office of Energy Efficiency and Renewable Energy Small Business and Innovation Research/Small Business Technology Transfer programs, other federal agencies also provide funding through their own programs.

  6. The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs, IG-0876

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research and Small Business Technology Transfer Programs DOE/IG-0876 November 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 6, 2012 MEMORANDUM FOR SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs" INTRODUCTION AND

  7. Marine and Hydrokinetic (MHK) Technology Development Risk Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework Webinar | Department of Energy Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar December 16, 2014 9:00AM to 10:30AM EST This webinar is also being offered on the same day in the afternoon at 2:00 p.m. EST. Marine and hydrokinetic (MHK) technologies convert the kinetic energy from ocean waves, tides, currents, and ocean thermal resources into electricity. The

  8. Fermilab | Office of Partnerships and Technology Transfer | Great...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a GISMO form, which asks you to describe your idea for a new technology in plain English. Just fill out the form and forward it to optt@fnal.gov. We will then schedule a...

  9. Fermilab | Office of Partnerships and Technology Transfer | Fermilab...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab has been at the forefront of detector technology for decades, working most recently on the massive CMS detector at the Large Hadron Collider in Switzerland and the next ...

  10. NREL: Technology Transfer - NREL and SkyFuel Partnership Reflects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy In this video, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee talk...

  11. Reverse licensing: international technology transfer to the United States

    SciTech Connect (OSTI)

    Sharokhi, M.

    1985-01-01

    This dissertation, theoretically and empirically, focuses on US licensees as the recipient of foreign technology, and investigates characteristics of licensees, licenses, and licensed technology. The viability of reverse licensing, as an international growth strategy, is evaluated from the standpoint of two groups of firms. The first consists of thousands of small and medium sized US manufacturing firms, with few products and virtually no R and D expenditures. Without R and D, new technology and stiff international competition, they are forced into bankruptcies despite their extreme importance in the economy (48% of private workforce, 42% of sales, and 38% of GNP). The second group consists of thousands of small and medium sized firms overseas, with a relatively good supply of technology (i.e., patents) and anxious to exploit the US market but lack required resources for FDI. Technology licensing is, perhaps, the only viable option available to them. Reverse licensing provides both groups with a mechanism for their growth, survival, and prosperity. Many US firms have utilized this strategy for many years (i.e, 118 in Ohio) for tapping foreign sources including Soviet bloc technology.

  12. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  13. Recent California water transfers: Emerging options in water management. Final report

    SciTech Connect (OSTI)

    Lund, J.R.; Israel, M.

    1992-12-01

    Report examines the recent use of water transfers in California. Emphasis is on the use of water transfers during the current drought and how planners and operators of federal, state, and local systems can integrate water transfers into the planning and operations of their systems. Through the California experience, the study identifies motivations for incorporating water transfers into water supply systems, reviews a variety of water transfer types, and discusses the integration of water transfers with traditional supply argumentation and water conservation measures. Limitations, constraints, and difficulties for employing water transfers within existing systems are also discussed. The study focuses primarily on the technical, planning, and operational aspects of water transfers, rather than the legal, economic, and social implications. Water transfers, Water management, Water bank, Water supply, Water use, Water institutions, Infrastructure, California state water project, Water rights, Drought, Surface water, Groundwater.

  14. Predictive Technology Development and Crash Energy Management

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  15. NREL: Technology Deployment - Federal Energy Management Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL helps the U.S. Department of Energy's Federal Energy Management Program (FEMP) by ... Technical Assistance NREL technical assistance to FEMP covers a variety of areas, ...

  16. Information Technology Specialist (Infrastructure Operations Manager)

    Broader source: Energy.gov [DOE]

    The Office of Science manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science. In addition, the Office of Science is the...

  17. Schedule and Information for Small Business Innovation Research and Small Business Technology Transfer Program Applicants

    Broader source: Energy.gov [DOE]

    The funding and award schedule for upcoming Office of Energy Efficiency and Renewable Energy (EERE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) grants is provided below. The grants follow a funding ladder similar to that of clean energy technology investors.

  18. Fermilab | Office of Partnerships and Technology Transfer | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More fundamental particles and forces Theory Scientific Computing Research & Development Key Discoveries Benefits of Particle Physics Particle Accelerators Leading Accelerator Technology Accelerator Complex Illinois Accelerator Research Center Advanced Superconducting Test Accelerator LHC and Future Accelerators Accelerators for Science and Society Particle Physics 101 Science of Matter, Energy, Space and Time How Particle Physics Discovery Works Worldwide Particle Physics Discoveries

  19. LANL Transfers Glowing Bio Technology to Sandia Biotech

    ScienceCinema (OSTI)

    Nakhla, Tony;

    2014-06-25

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

  20. LANL Transfers Glowing Bio Technology to Sandia Biotech

    SciTech Connect (OSTI)

    Nakhla, Tony; ,

    2012-05-21

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

  1. Vehicle Technologies Office Merit Review 2015: Technology Requirements for High Power Applications of Wireless Power Transfer

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about technology...

  2. LANL Transfers Glowing Bio Technology to Sandia Biotech

    ScienceCinema (OSTI)

    Rorick, Kevin

    2012-08-02

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

  3. LANL Transfers Glowing Bio Technology to Sandia Biotech

    SciTech Connect (OSTI)

    Rorick, Kevin

    2012-01-01

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

  4. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  5. Existing technology transfer report: analytical capabilities. Appendix B. Volume 3

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. This volume contains Appendix B with the following attachments: solvent separation procedure A; Wilsonville solvent separation procedure, distillation separation procedure; solvent separation modified Wilsonville Procedure W; statistical comparison of 3 solvent separation procedures; methods development for column chromatography, and application of gas chromatography to characterization of a hydrogen donor solvent; and high performance liquid chromatographic procedure.

  6. Ronald L. Schoff Senior Program Manager, Technology Innovation

    U.S. Energy Information Administration (EIA) Indexed Site

    Ronald L. Schoff Senior Program Manager, Technology Innovation EIA Energy Conference 2015 June 15, 2015 Value of the Integrated Grid Utility Integrated Distributed Resource Deployment 2 Electric Power Research Institute Our Mission... Safe Advancing safe, reliable, affordable and environmentally responsible electricity for society through global collaboration, thought leadership and science & technology innovation 3 The Traditional Electric Power System Central Generation Predictable

  7. U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION

    SciTech Connect (OSTI)

    Jimenez, Richard, D., Dr.

    2007-10-01

    The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused technology transfer was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Departments Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOEs Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Departments Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexicos priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexicos federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOEs technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Departments technology base to help address some of Mexicos challenging environmental

  8. Marine and Hydrokinetic Technology Development Risk Management Framework

    SciTech Connect (OSTI)

    Snowberg, David; Weber, Jochem

    2015-09-01

    Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over the development cycle. This framework is intended for the development and deployment of a single MHK technology—not for multiple device deployments within a plant. This risk framework is intended to meet DOE’s risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.

  9. Existing technology transfer report: analytical capabilities. Volume 1

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods; and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. Expertise in analytical chemistry was developed by organizing historical knowledge and assimilating new knowledge as it became available from inside and outside research facilities and the chemical literature. The data were then used to define analytical methods, instrumentation, space, staff needed to create a functional coal analysis laboratory. This report summarizes the direction and progress of the analytical development efforts during the period 1974 to 1980. 2 references, 5 figures.

  10. Shandiin/DOE intertribal energy programs: technology transfer series

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    This project entailed the continuation of solar design and construction workshops for the Navajo, Hopi, and Apache Tribes, including tribal planners, tribal staff, engineers, architects, and installers of energy systems. The project also entailed the continuation of support for the development of an energy self-sufficient community school system for the many rural Navajo communities. Great emphasis was placed in completing the second phase of development of the intertribal computer network. The development of this network will greatly benefit our nation in increased efficiency and coordination of tribal energy programs. A series of workshops was held in energy programs training for planners from the Navajo, Hopi, and Apache Tribes. The initial assessment of this program concludes that the greatest impact and return came from the Navajo Tribe's Division of Economic Development, with lesser impact upon the Community Development branches of the Hopi and Apache Tribes. The impact of microcomputer technologies upon the tribes has been shown to be profound, and the development of the intertribal computer network can be seen as a true asset to both the tribes and to the nation.

  11. Regulation control and energy management scheme for wireless power transfer

    DOE Patents [OSTI]

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  12. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    SciTech Connect (OSTI)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is

  13. Records Management Procedures for Storage, Transfer and Retrieval...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or information appropriate for preservation because of its administrative, legal, scientific,research, or historic value PDF icon Records Management Procedures for Storage,...

  14. Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.

  15. Information Technology Standards Program management plan

    SciTech Connect (OSTI)

    1998-05-01

    This document presents a logical and realistic plan to implement the Information Technology (IT) Standards Program throughout the Department of Energy (DOE). It was developed by DOE Chief Information Officer (CIO) staff, with participation from many other individuals throughout the DOE complex. The DOE IT Standards Program coordinates IT standards activities Department-wide, including implementation of standards to support the DOE Information Architecture. The Program is voluntary, participatory, and consensus-based. The intent is to enable accomplishment of the DOE mission, and the Program is applicable to all DOE elements, both Federal and contractor. The purpose of this document is to describe the key elements of the DOE IT Standards Program.

  16. NGNP Risk Management through Assessing Technology Readiness

    SciTech Connect (OSTI)

    John W. Collins

    2010-08-01

    Throughout the Next Generation Nuclear Plant (NGNP) project life cycle, technical risks are identified, analyzed, and mitigated and decisions are made regarding the design and selection of plant and sub-system configurations, components and their fabrication materials, and operating conditions. Risk resolution and decision making are key elements that help achieve project completion within budget and schedule constraints and desired plant availability. To achieve this objective, a formal decision-making and risk management process was developed for NGNP, based on proven systems engineering principles that have guided aerospace and military applications.

  17. DOE technology information management system database study report

    SciTech Connect (OSTI)

    Widing, M.A.; Blodgett, D.W.; Braun, M.D.; Jusko, M.J.; Keisler, J.M.; Love, R.J.; Robinson, G.L.

    1994-11-01

    To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performed detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.

  18. Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management

    SciTech Connect (OSTI)

    Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B.

    1996-12-31

    The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

  19. Interstate Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance

    Broader source: Energy.gov [DOE]

    Interstate Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance

  20. Contextual role of TRLs and MRLs in technology management.

    SciTech Connect (OSTI)

    Fernandez, Joseph A.

    2010-11-01

    Technology Readiness Levels (TRLs) have been used extensively from the 1970s, especially in the National Aeronautics and Space Administration (NASA). Their application was recommended by the General Accounting Office in 1999 to be used for major Department of Defense acquisition projects. Manufacturing Readiness Levels (MRLs) have been proposed for improving the way manufacturing risks and readiness are identified; they were introduced to the defense community in 2005, but have not been used as broadly as TRLs. Originally TRLs were used to assess the readiness of a single technology. With the emergence of more complex systems and system of systems, it has been increasingly recognized that TRLs have limitations, especially when considering integration of complex systems. Therefore, it is important to use TRLs in the correct context. Details on TRLs and MRLs are reported in this paper. More recent indices to establish a better understanding of the integrated readiness state of systems are presented. Newer readiness indices, System Readiness Levels (SRLs) and Integration Readiness Levels, are discussed and their limitations and advantages are presented, along with an example of computing SRLs. It is proposed that a modified SRL be considered that explicitly includes the MRLs and a modification of the TRLs to include the Integrated Technology Index (ITI) and/or the Advancement Degree of Difficulty index proposed by NASA. Finally, the use of indices to perform technology assessments are placed into the overall context of technology management, recognizing that factors to transition and manage technology include cost, schedule, manufacturability, integration readiness, and technology maturity.

  1. MHD Technology Transfer, Integration and Review Committee. Second semiannual status report, July 1988--March 1989

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee`s activities to date have focused primarily on the ``technology transfer`` aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

  2. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part B, Remedial action, robotics/automation, waste management

    SciTech Connect (OSTI)

    Fellows, R.L.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration (ER) and waste management (WN) problems at the Oak Ridge K-25 Site. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remediation, decontamination, and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume 3 B provides the Technology Evaluation Data Sheets (TEDS) for ER/WM activities (Remedial Action Robotics and Automation, Waste Management) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than each technology in Vol. 2. The TEDS are arranged alphanumerically by the TEDS code number in the upper right corner of each data sheet. Volume 3 can be used in two ways: (1) technologies that are identified from Vol. 2 can be referenced directly in Vol. 3 by using the TEDS codes, and (2) technologies and general technology areas (alternatives) can be located in the index in the front of this volume.

  3. Transfers

    Broader source: Energy.gov [DOE]

    Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. 

  4. Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited)

    SciTech Connect (OSTI)

    Ando, K. Yuasa, S.; Fujita, S.; Ito, J.; Yoda, H.; Suzuki, Y.; Nakatani, Y.; Miyazaki, T.

    2014-05-07

    Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., normally off computers. Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed.

  5. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  6. EERE-SBIR technology transfer opportunity. H2 Safety Sensors for H2

    SciTech Connect (OSTI)

    Johnston, Mariann R.

    2015-12-01

    The Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technologies Office (FCTO) works in partnership with industry (including small businesses), academia, and DOE's national laboratories to establish fuel cell and hydrogen energy technologies as economically competitive contributors to U.S. transportation needs. The work that is envisioned between the SBIR/STTR grantee and Los Alamos National Laboratory would involve Technical Transfer of Los Alamos Intellectual Property (IP) on Thin-film Mixed Potential Sensor (U.S. Patent 7,264,700) and associated know-how for H2 sensor manufacturing and packaging.

  7. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    SciTech Connect (OSTI)

    Burn, G.

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  8. International cooperation and technology transfer, a success U.S. and german environmental technology exchange

    SciTech Connect (OSTI)

    Schlessman, D.C.

    1995-12-01

    The U.S. - German Annual Environmental Technology Data Exchange (Jahrestagung Umwelttechnologie Datenaustauschabkommen) is coming up on its tenth year, and is a real success story. The 1994 program is the source of this case study, which identifies the lessons learned from nine years of running this international forum to exchange ideas, research, and technology needs. This data exchange is a component of the {open_quotes}Mutual Weapons Development Master Data Exchange Agreement US//GE.{close_quotes} This component focuses on the environmental technology that the two countries military research and development (R&D) communities are working on. Five focus areas of interest for this group are: hazardous material substitutes, air emissions reductions, soil and groundwater contamination characterization and restoration, and demilitarization and disposal of conventional munitions. Under the U.S. - German agreement, scientist and R&D organizations use this agreement to share research results and develop a forum for collaboration on similar work. This study will highlight the scope of the research presented at the 1994 exchange. In addition, the study will capture many lessons learned from administering a successful program that bridged the challenges of distance, culture, language, patient right, and government bureaucracy. A side benefit that is just now being explored is using the forum to have U.S. developed technologies introduced and accepted within the German environmental regulatory community. In these austere days in the two governments, the ultimate success of a program like this is the payback received by customers of the R&D community. The U.S. Army, Europe is one of those fortunate customers.

  9. Technologies for improved soil carbon management and environmental quality

    SciTech Connect (OSTI)

    Reicosky, D.C.

    1997-12-31

    The objective of this paper is to create an environmental awareness of and to provide insight into the future balance of environment and economic issues in developing new technologies that benefit the farmer, the public, and agricultural product sales. Agricultural impacts of tillage-induced CO{sub 2} losses are addressed along with new and existing technologies to minimize tillage-induced flow of CO{sub 2} to the atmosphere, Emphasis is placed on the carbon cycle and the cost of environmental damage to illustrate the need for improved technologies leading to reduced environmental impacts by business ventures. New technologies and concepts related to methods of tillage and stover management for carbon sequestration with the agricultural production systems are presented. 16 refs., 3 figs.

  10. Technology Integration Initiative In Support of Outage Management

    SciTech Connect (OSTI)

    Gregory Weatherby; David Gertman

    2012-07-01

    Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Often, command and control during outages is maintained in the outage control center where many of the underlying technologies supporting outage control are the same as those used in the 1980’s. This research reports on the use of advanced integrating software technologies and hand held mobile devices as a means by which to reduce cycle time, improve accuracy, and enhance transparency among outage team members. This paper reports on the first phase of research supported by the DOE Light Water Reactor Sustainability (LWRS) Program that is performed in close collaboration with industry to examine the introduction of newly available technology allowing for safe and efficient outage performance. It is thought that this research will result in: improved resource management among various plant stakeholder groups, reduced paper work, and enhanced overall situation awareness for the outage control center management team. A description of field data collection methods, including personnel interview data, success factors, end-user evaluation and integration of hand held devices in achieving an integrated design are also evaluated. Finally, the necessity of obtaining operations cooperation support in field studies and technology evaluation is acknowledged.