Powered by Deep Web Technologies
Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Depleted uranium management alternatives  

SciTech Connect (OSTI)

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

2

Depleted Uranium Hexafluoride Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

3

Excess Uranium Management  

Broader source: Energy.gov [DOE]

The Department is issuing a Request for Information on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries.

4

Overview of Depleted Uranium Hexafluoride Management Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

5

Uranium enrichment management review: summary of analysis  

SciTech Connect (OSTI)

In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices.

Not Available

1981-01-01T23:59:59.000Z

6

Depleted uranium: A DOE management guide  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

7

Excess Uranium Inventory Management Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department's surplus uranium inventory in support of meeting its critical environmental cleanup and national security missions. The Plan is not a commitment to specific activities beyond those that have already been contracted nor is it a restriction on actions that the Department may undertake in the future as a result of changing conditions. It replaces an earlier plan issued in 2008 and reflects updated information on the Department of Energy's management and disposition of its excess uranium inventories. Excess Uranium Inventory Management Plan More Documents & Publications

8

DOE Announces Policy for Managing Excess Uranium Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Policy for Managing Excess Uranium Inventory Policy for Managing Excess Uranium Inventory DOE Announces Policy for Managing Excess Uranium Inventory March 12, 2008 - 10:52am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today released a Policy Statement on the management of the Department of Energy's (DOE) excess uranium inventory, providing the framework within which DOE will make decisions concerning future use and disposition of its inventory. During the coming year, DOE will continue its ongoing program for downblending excess highly enriched uranium (HEU) into low enriched uranium (LEU), evaluate the benefits of enriching a portion of its excess natural uranium into LEU, and complete an analysis on enriching and/or selling some of its depleted uranium. Specific transactions are expected to occur in

9

Management Controls over the Department of Energy's Uranium Leasing  

Broader source: Energy.gov (indexed) [DOE]

Management Controls over the Department of Energy's Uranium Leasing Management Controls over the Department of Energy's Uranium Leasing Program, OAS-M-08-05 Management Controls over the Department of Energy's Uranium Leasing Program, OAS-M-08-05 The Department of Energy's Uranium Leasing Program was established by the Atomic Energy Act of 1954 to develop a supply of domestic uranium to meet the nation's defense needs. Pursuant to the Act, the Program leases tracts of land to private sector entities for the purpose of mining uranium ore. According to Department officials, one purpose of the Program is to obtain a fair monetary return to the Government. The Program is administered by the Department's Office of Legacy Management through a contractor. The uranium leases issued by the Department include two types of royalty

10

CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide  

Broader source: Energy.gov (indexed) [DOE]

Emergency Management - Y-12 Enriched Uranium Operations Oxide Emergency Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Emergency Management program at the Y-12 Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide

11

CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion  

Broader source: Energy.gov (indexed) [DOE]

Y-12 Enriched Uranium Operations Oxide Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

12

Excess Uranium Inventory Management Plan 2008 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Excess Uranium Inventory Management Plan 2008 Excess Uranium Inventory Management Plan 2008 Excess Uranium Inventory Management Plan 2008 On March 11, 2008, Secretary of Energy Samuel W. Bodman signed a policy statement1 on the management of the U.S. Department of Energy's (DOE) excess uranium inventory (Policy Statement). This Policy Statement provides the framework within which DOE will make decisions concerning future use and disposition of this inventory. The Policy Statement commits DOE to manage those inventories in a manner that: (1) is consistent with all applicable legal requirements; (2) maintains sufficient uranium inventories at all times to meet the current and reasonably foreseeable needs of DOE missions; (3) undertakes transactions involving non-U.S. Government entities in a transparent and competitive manner, unless the Secretary of

13

EA-1037: Uranium Lease Management Program, Grand Junction, Colorado |  

Broader source: Energy.gov (indexed) [DOE]

37: Uranium Lease Management Program, Grand Junction, Colorado 37: Uranium Lease Management Program, Grand Junction, Colorado EA-1037: Uranium Lease Management Program, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of domestic uranium and vanadium ores, to maintain a viable domestic mining and milling infrastructure required to produce and mill these ores, and to provide assurance of a fair monetary return to the U.S. Government. The Uranium Lease Management Program gives The Department of Energy the flexibility to continue leasing these lands. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 1995

14

Advanced Process Management and Implementation  

E-Print Network [OSTI]

Advanced Process Management is a method to achieve optimum process performance during the life cycle of a plant through proper design, effective automation, and adequate operator decision support. Developing a quality process model is an effective...

Robinson, J.

15

Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride  

SciTech Connect (OSTI)

The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

Dubrin, J.W., Rahm-Crites, L.

1997-09-01T23:59:59.000Z

16

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

17

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

18

Uranium Management and Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Test Program, and reporting annually to Congress on the impact of the U.S.-Russia Highly Enriched Uranium Purchase Agreement on the U.S. nuclear fuel industry. NE-54's...

19

Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Materials & Waste » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping containers. 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping

20

CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Simulation Capability for Environmental Management (ASCEM) |  

Broader source: Energy.gov (indexed) [DOE]

Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of performance and risk assessments for cleanup and closure activities throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing programs as well as collaborating with the Offices of Science,

22

Selection of a management strategy for depleted uranium hexafluoride  

SciTech Connect (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

23

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. (was Uranium Asset Management) Advance Uranium Asset Management Ltd. (was Uranium Asset Management) AREVA NC, Inc. (was COGEMA, Inc.) American Fuel Resources, LLC American Fuel Resources, LLC BHP Billiton Olympic Dam Corporation Pty Ltd AREVA NC, Inc. AREVA NC, Inc. CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd BHP Billiton Olympic Dam Corporation Pty Ltd ConverDyn CAMECO CAMECO Denison Mines Corp. ConverDyn ConverDyn Energy Resources of Australia Ltd. Denison Mines Corp. Energy Fuels Resources Energy USA, Inc. Effective Energy N.V. Energy Resources of Australia Ltd.

24

Legacy Management Work Progresses on Defense-Related Uranium Mines Report  

Broader source: Energy.gov (indexed) [DOE]

Legacy Management Work Progresses on Defense-Related Uranium Mines Legacy Management Work Progresses on Defense-Related Uranium Mines Report to Congress Legacy Management Work Progresses on Defense-Related Uranium Mines Report to Congress October 23, 2013 - 1:35pm Addthis What does this project do? Goal 4. Optimize the use of land and assets The U.S. Department of Energy Office of Legacy Management (LM) continues to work on a report to Congress regarding defense-related legacy uranium mines. LM was directed by the U.S. Congress in the National Defense Authorization Act for Fiscal Year 2013 to undertake a review of, and prepare a report on, abandoned uranium mines in the United States that provided uranium ore for atomic energy defense activities. The report is due to Congress by July 2014. LM is compiling uranium mine data from federal, state, and tribal agencies

25

Advanced Management Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Management Program Advanced Management Program Advanced Management Program Program Overview: The Advanced Management Program (AMP) is a 14-week graduate program designed for middle-and senior-level managers and leaders responsible for promoting and attaining national and international security goals through the strategic use of information and information technology. This is a highly interactive, student-centered, educational experience in which leadership skills and abilities are emphasized. AMP students form a learning community that fosters multiple perspectives on a wide range of issues. They share knowledge and best practices, strive to become better leaders and decision makers, and master the tools of lifelong learning. Interaction with fellow students, faculty, and government executive guest

26

Cost estimate report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.  

SciTech Connect (OSTI)

This report contains a cost analysis of the long-term storage of depleted uranium in the form of uranium metal. Three options are considered for storage of the depleted uranium. These options are aboveground buildings, partly underground vaults, and mined cavities. Three cases are presented. In the first case, all the depleted uranium metal that would be produced from the conversion of depleted uranium hexafluoride (UF{sub 6}) generated by the US Department of Energy (DOE) prior to July 1993 would be stored at the storage facility (100% Case). In the second case, half the depleted uranium metal would be stored at this storage facility (50% Case). In the third case, one-quarter of the depleted uranium metal would be stored at the storage facility (25% Case). The technical basis for the cost analysis presented in this report is principally found in the companion report, ANL/EAD/TM-100, ''Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride: Storage of Depleted Uranium Metal'', prepared by Argonne National Laboratory.

Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

2001-01-24T23:59:59.000Z

27

Legacy Management Work Progresses on Defense-Related Uranium...  

Broader source: Energy.gov (indexed) [DOE]

Most recently, LM visited 84 defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global...

28

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

29

Federal Energy Management Program: Advanced Technology Planning for Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Advanced Technology Planning for Energy Savings Performance Contracts to someone by E-mail Share Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Facebook Tweet about Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Twitter Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Google Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Delicious Rank Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Digg Find More places to share Federal Energy Management Program:

30

Design of Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Matveev V.Z., Morenko A.I., Shapovalov V.I. Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 37 Mira Prospect, Sarov, Russia, 607190, matveev@vniief.ru Maslov A.A., Orlov V.K., Semenov A.G., Sergeev V.M., Yuferov O.I., Visik A.M. Bochvar Institute of Inorganic Materials (VNIINM) 5-A Rogova street, p.b. 369, Moscow, Russia, 123060, majul2000@mail.ru Abstract - The report is dedicated to a problem of creation of a new generation of dual-purpose transport packing complete sets (TPCS) 1 with advanced safety. These sets are intended for transportation and storage of spent nuclear fuel assemblies (SNFA) 2 of VVER reactors and spent spark elements (SSE)

31

Advanced Waste Management Now Available as Accredited SEP Verification...  

Office of Environmental Management (EM)

Waste Management Now Available as Accredited SEP Verification Body Advanced Waste Management Now Available as Accredited SEP Verification Body October 24, 2014 - 2:58pm Addthis The...

32

Department of Energy to Continue Managing Uranium Leasing Program in Western Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) released its Record of Decision for the Programmatic Environmental Impact Statement (PEIS), announcing that it will continue managing the Uranium Leasing Program for another 10 years.

33

DOE - Office of Legacy Management -- Colonial Uranium Co - CO 10  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colonial Uranium Co - CO 10 Colonial Uranium Co - CO 10 FUSRAP Considered Sites Site: Colonial Uranium Co. (CO.10 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Grand Junction , Colorado CO.10-1 Evaluation Year: 1987 CO.10-2 Site Operations: Processed thorium concentrates for commercial market at another site. AEC purchased small quantity (100 lbs) for testing. CO.10-1 Site Disposition: Eliminated - No Authority - Commercial operation CO.10-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium CO.10-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Colonial Uranium Co. CO.10-1 - AEC Memorandum; Faulkner to Sapirie; Subject: Testing of

34

DOE - Office of Legacy Management -- Falls City Uranium Ore Stockpile...  

Office of Legacy Management (LM)

Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and...

35

CRAD, Emergency Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Emergency Management program at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

36

Advances in mesoscale thermal management technologies for microelectronics  

Science Journals Connector (OSTI)

This paper presents recent advances in a number of novel, high-performance cooling techniques for emerging electronics applications. Critical enabling thermal management technologies covered include microchannel transport and micropumps, jet impingement, ... Keywords: Mesoscale, Microelctronics, Thermal management

Suresh V. Garimella

2006-11-01T23:59:59.000Z

37

Uranium mill tailings remedial action project real estate management plan  

SciTech Connect (OSTI)

This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.

Not Available

1994-09-01T23:59:59.000Z

38

"2012 Uranium Marketing Annual Report"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012" 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012" 2010,2011,2012 "American Fuel Resources, LLC","Advance Uranium Asset Management Ltd. (was Uranium Asset Management)","Advance Uranium Asset Management Ltd. (was Uranium Asset Management)" "AREVA NC, Inc. (was COGEMA, Inc.)","American Fuel Resources, LLC","American Fuel Resources, LLC" "BHP Billiton Olympic Dam Corporation Pty Ltd","AREVA NC, Inc.","AREVA NC, Inc." "CAMECO","BHP Billiton Olympic Dam Corporation Pty Ltd","BHP Billiton Olympic Dam Corporation Pty Ltd" "ConverDyn","CAMECO","CAMECO" "Denison Mines Corp.","ConverDyn","ConverDyn"

39

Advanced Devices for Cryogenic Thermal Management  

Science Journals Connector (OSTI)

This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space?based applications of interest to NASA DoD and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE?CTSW) constructed with high purity aluminum end?pieces and an Ultem support rod for the 6 K Mid?Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST); (b) a quad?redundant DTE?CTSW assembly for the 35 K science instruments (NIRCam NIRSpec and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM); (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO); and (d) three additional devices/subsystems developed during the AFRL?sponsored CRYOTOOL program which include a dual DTE?CTSW/dual cryocooler test bed a miniaturized neon cryogenic loop heat pipe (mini?CLHP) and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above this paper describes key aspects of the development efforts including concept definition design fabrication and testing. For the latter three this paper provides brief overview descriptions as key details are provided in a related paper.

D. Bugby; C. Stouffer; J. Garzon; M. Beres; A. Gilchrist

2006-01-01T23:59:59.000Z

40

Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications.  

E-Print Network [OSTI]

??The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg (more)

Garnetti, David J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Topics in Workflow Management: Issues, Requirements, and Solutions  

E-Print Network [OSTI]

, flexible workflow management, workflow analysis 1. Introduction In recent years, a variety of approaches1 Advanced Topics in Workflow Management: Issues, Requirements, and Solutions Wil M.P. van der Systems Group Department of Computer Science Westfälische Wilhelms-Universität Münster Einsteinstrasse 62

van der Aalst, Wil

42

Advanced Waste Management Now Available as Accredited SEP Verification Body  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy is pleased to announce that Advanced Waste Management Systems Inc. (AWM) is now a fully accredited Verification Body for Superior Energy Performance (SEP). This ANSI-ANAB accreditation enables AWM to provide third-party verification for industrial facilities that wish to demonstrate energy management excellence and sustained energy savings to earn SEP certification.

43

The U.S. regulatory framework for long-term management of uranium mill tailings  

SciTech Connect (OSTI)

The US established the regulatory structure for the management, disposal, and long-term care of uranium mill tailings in 1978 with the passage of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (Pub. L. 95-604). This legislation has governed the cleanup and disposal of uranium tailings at both inactive and active sites. The passage of the UMTRCA established a federal regulatory program for the cleanup and disposal of uranium mill tailings in the US. This program involves the DOE, the NRC, the EPA, various states and tribal governments, private licensees, and the general public. The DOE has completed surface remediation at 14 sites, with the remaining sites either under construction or in planning. The DOE`s UMTRA Project has been very successful in dealing with public and agency demands, particularly regarding disposal site selection and transportation issues. The active sites are also being cleaned up, but at a slower pace than the inactive sites, with the first site tentatively scheduled for completion in 1996.

Smythe, C. [Dept. of Energy, Albuquerque, NM (United States); Bierley, D.; Bradshaw, M. [Roy F. Weston, Inc., Albuquerque, NM (United States)

1995-03-01T23:59:59.000Z

44

National low-level waste management program radionuclide report series, Volume 15: Uranium-238  

SciTech Connect (OSTI)

This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

Adams, J.P.

1995-09-01T23:59:59.000Z

45

DOE Announces Transfer of Depleted Uranium to Advance the U.S...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

transactions under the project would not have an adverse material impact on the domestic uranium mining, enrichment, or conversion industry. The completed analysis, conducted by...

46

System and method for advanced power management  

DOE Patents [OSTI]

A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

2009-07-28T23:59:59.000Z

47

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 2010 2011 2012 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. (was Uranium Asset Management) Advance Uranium Asset Management Ltd. (was Uranium Asset Management) AREVA NC, Inc. (was COGEMA, Inc.) American Fuel Resources, LLC American Fuel Resources, LLC BHP Billiton Olympic Dam Corporation Pty Ltd AREVA NC, Inc. AREVA NC, Inc. CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd BHP Billiton Olympic Dam Corporation Pty Ltd ConverDyn CAMECO CAMECO Denison Mines Corp. ConverDyn ConverDyn Energy Resources of Australia Ltd. Denison Mines Corp. Energy Fuels Resources Energy USA, Inc. Effective Energy N.V.

48

Conference on Recent Advances in the Prevention and Management  

E-Print Network [OSTI]

5th Conference on Recent Advances in the Prevention and Management of Childhood and Adolescent Obesity Photo Credit: Dan Harper Pre - Conference: September 23, 2014 Main Conference: September 24 - 26Presented by Time to Focus on Strengths: Addressing Obesity in IndigenousYouth #12;2 5th Conference on Recent

Michelson, David G.

49

Feasibility study on consolidation of Fernald Environmental Management Project depleted uranium materials  

SciTech Connect (OSTI)

In 1991, the DOE made a decision to close the FMPC located in Fernald, Ohio, and end its production mission. The site was renamed FEMP to reflect Fernald`s mission change from uranium production to environmental restoration. As a result of this change, the inventory of strategic uranium materials maintained at Fernald by DOE DP will need to be relocated to other DOE sites. Although considered a liability to the Fernald Plant due to its current D and D mission, the FEMP DU represents a potentially valuable DOE resource. Recognizing its value, it may be important for the DOE to consolidate the material at one site and place it in a safe long-term storage condition until a future DOE programmatic requirement materializes. In August 1995, the DOE Office of Nuclear Weapons Management requested, Lockheed Martin Energy Systems (LMES) to assess the feasibility of consolidating the FEMP DU materials at the Oak Ridge Reservation (ORR). This feasibility study examines various phases associated with the consolidation of the FEMP DU at the ORR. If useful short-term applications for the DU fail to materialize, then long-term storage (up to 50 years) would need to be provided. Phases examined in this report include DU material value; potential uses; sampling; packaging and transportation; material control and accountability; environmental, health and safety issues; storage; project management; noneconomic factors; schedule; and cost.

NONE

1995-11-30T23:59:59.000Z

50

Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division  

Office of Legacy Management (LM)

AUG 0 3 1998 AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly Utilized Sites Remedial Action Program (FUSRAP). As you may know, FUSRAP is no longer administered and executed by DOE as Congress transferred the program to the U.S. Army Corps of Engineers beginning.in fiscal year 1998. Nonetheless, we weighed the information included in your letter against the

51

Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site in Support of Site-Specific NEPA Requirements for Continued Cylinder Storage, Cylinder Preparation, Conversion, and Long-Term Storage Activities Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering

52

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Broader source: Energy.gov (indexed) [DOE]

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

53

FOUNDATIONS: The Science Behind Leadership & Management Advancing the Business of Science  

E-Print Network [OSTI]

FOUNDATIONS: The Science Behind Leadership & Management Advancing the Business of Science, in order to shape a systematic approach to leadership and management this course you will: · Recognize leadership and management approaches that align

Sheridan, Jennifer

54

Advanced thermal management needs for Lunar and Mars missions  

SciTech Connect (OSTI)

Significant improvements in thermal management technologies will be required to support NASA's planned Lunar and Mars missions. The developments needed include the application of advanced materials to reduce radiator system masses, enhanced survivability, and the use of alternative working fluids. Current thermal management systems utilize one of two heat rejection alternatives; either single phase pumped loops, or two phase heat pipes constructed with thick walled metal casings. These two technologies have proven themselves to be reliable performers in the transport and rejection of waste heat from spacecraft. As thermal management needs increase with increased power consumption and activity required on spacecraft, these metal based thermal management systems will become mission limiting. Investigations into the use of light weight ceramic materials for high temperature thermal management systems have been conducted by NASA, the Department of Energy, and the Department of Defense since the early 1980s, with results showing that significant mass savings can be obtained by replacing some of the metallic functions with ceramic materials.

Klein, A.C. (Department of Nuclear Engineering, Oregon State University, Corvallis, Oregon 97331 (United States)); Webb, B.J. (Umpqua Research, Inc., P.O. Box 791, Myrtle Creek, Oregon 97457 (United States))

1993-01-15T23:59:59.000Z

55

Applications of Capstone Depleted Uranium Aerosol Risk Data to Military Combat Risk Management  

SciTech Connect (OSTI)

Risks to personnel engaged in military operations include not only the threat of enemy firepower but also risks from exposure to other hazards such as radiation. Combatant commanders of the U. S. Army carefully weigh risks of casualties before implementing battlefield actions using an established paradigm that take these risks into consideration. As a result of the inclusion of depleted uranium (DU) anti-armor ammunition in the conventional (non-nuclear) weapons arsenal, the potential for exposure to DU aerosols and its associated chemical and radiological effects becomes an element of the commanders risk assessment. The Capstone DU Aerosol Study measured the range of likely DU oxide aerosol concentrations created inside a combat vehicle perforated with a DU munition, and the Capstone Human Health Risk Assessment (HHRA) estimated the associated doses and calculated risks. This paper focuses on the development of a scientific approach to adapt the risks from DUs non uniform dose distribution within the body using the current U.S. Department of Defense (DoD) radiation risk management approach. The approach developed equates the Radiation Exposure Status (RES) categories to the estimated radiological risks of DU and makes use of the Capstone-developed Renal Effects Group (REG) as a measure of chemical risk from DU intake. Recommendations are provided for modifying Army guidance and policy in order to better encompass the potential risks from DU aerosol inhalation during military operations.

Daxon, Eric G.; Parkhurst, MaryAnn; Melanson, Mark A.; Roszell, Laurie E.

2009-03-01T23:59:59.000Z

56

Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493  

SciTech Connect (OSTI)

A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be available to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site-specific receptors for the 10,000-year compliance period. This is primarily because DU waste is not highly radioactive within this time frame, the DU waste is assumed to be buried beneath zones exposed by erosion, groundwater concentrations of DU waste constituents do not exceed groundwater protection limits with in the 500-year compliance period, and the first deep lake occurrence will disperse DU waste across a large area, and will ultimately be covered by lake-derived sediment. A probabilistic PA model was constructed that considered DU waste and decay product doses to site-specific receptors for a 10,000-yr performance period, as well as deep-time effects. The quantitative results are summarized in Table VII. Doses (as TEDE) are always less than 5 mSv in a year, and doses to the offsite receptors are always much less than 0.25 mSv in a year. Groundwater concentrations of Tc-99 are always less than its GWPL except when the Tc-99 contaminated waste is disposed below grade. Even in this case, the median groundwater concentration is only 4.18 Bq/L (113 pCi/L), which is more than one order of magnitude less than the GWPL for Tc-99. The results overall suggest that there are disposal configurations that can be used to dispose of the proposed quantities of DU waste that are adequately protective of human health. (authors)

Black, Paul; Tauxe, John; Perona, Ralph; Lee, Robert; Catlett, Kate; Balshi, Mike; Fitzgerald, Mark; McDermott, Greg [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States); Shrum, Dan; McCandless, Sean; Sobocinski, Robert; Rogers, Vern [EnergySolutions, LLC, Salt Lake City, Utah 84101 (United States)

2012-07-01T23:59:59.000Z

57

Towards a desalination initiative using cogeneration with an advanced reactor type and uranium recovered from Moroccan phosphoric acid production  

Science Journals Connector (OSTI)

Morocco is known to be among the first few countries to produce phosphate and phosphoric acid. Moroccan phosphate contains substantial amounts of uranium. This uranium can be recovered from the phosphate ore as a by-product during the production of phosphoric acid. Uranium extraction processes linked with phosphoric acid fabrication have been used industrially in some countries. This is done mainly by solvent extraction. Although, the present price of uranium is low in the international market, such uranium recovery could be considered as a side product of phosphoric acid production. The price of uranium has a very small impact on the cost of nuclear energy obtained from it. This paper focuses on the extraction of uranium salt from phosphate rock. If uranium is recovered in Morocco in the proposed manner, it could serve as feed for a number of nuclear power plants. The natural uranium product would have to be either enriched or blended as mixed-oxide fuel to manufacture adequate nuclear fuel. Part of this fuel would feed a desalination initiative using a high temperature reactor of the new generation, chosen for its intrinsic safety, sturdiness, ease of maintenance, thermodynamic characteristics and long fuel life between reloads, that is, good economy. ?n international cooperation based on commercial contract schemes would concern: the general project and uranium extraction; uranium enrichment and fuel fabrication services; the nuclear power plant; and the desalination plant. This paper presents the overall feasibility of the general project with some quantitative preliminary figures and cost estimates.

Michel Lung; Abdelaali Kossir; Driss Msatef

2005-01-01T23:59:59.000Z

58

A Key Management Scheme for Secure Communications of Advanced Metering Infrastructure  

Science Journals Connector (OSTI)

Key management for secure communications of Advanced Metering Infrastructure is an unsolved problem until now. The ... proposing a key management scheme based on a hybrid-tree graph for AMI. The cyber security...

Jinshan Chen; Nian Liu; Wenxia Liu; Hong Luo

2011-01-01T23:59:59.000Z

59

Environmental Risk Management at Uranium Tailings Ponds in Mailuu-Suu, Kyrgyzstan  

Science Journals Connector (OSTI)

The complex of natural and geotechnical factors, disaster scenarios and conditions of reliable rehabilitation of uranium tailings in Mayluu Suu is considered. The forecast of consequences of destruction of the...

U. G. Aleshyn; I. A. Torgoev; G. Shmidt

2002-01-01T23:59:59.000Z

60

Landfills a thing of the past in Germany where advanced waste management By Evridiki Bersi -Kathimerini  

E-Print Network [OSTI]

Landfills a thing of the past in Germany where advanced waste management rules By Evridiki Bersi but that day has already come in Germany. On June 1, 2005, Germany imposed a ban on traditional garbage dumps, replacing them with one of the most advanced waste-management systems in the world. In the 1970s, Germany

Columbia University

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PDE Estimation Techniques for Advanced Battery Management Systems -Part I: SOC Estimation  

E-Print Network [OSTI]

- cles and renewable energy resources is battery energy storage. Advanced battery systems representPDE Estimation Techniques for Advanced Battery Management Systems - Part I: SOC Estimation S. J and renewable energy research, including advanced batteries, under the American Recovery and Rein- vestment Act

Krstic, Miroslav

62

PDE Estimation Techniques for Advanced Battery Management Systems -Part II: SOH Identification  

E-Print Network [OSTI]

vehi- cles and renewable energy resources is battery energy storage. Advanced battery systems representPDE Estimation Techniques for Advanced Battery Management Systems - Part II: SOH Identification S examines identification algorithms for state- of-health (SOH) related parameters in advanced batteries

Krstic, Miroslav

63

NETL: News Release - DOE Advances Oxycombustion for Carbon Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 17, 2005 November 17, 2005 DOE Advances Oxycombustion for Carbon Management Promising Carbon Capture Technology Moves Closer to Commercialization WASHINGTON, DC-The Department of Energy has selected two projects to demonstrate "oxycombustion" - a promising carbon capture technology - in existing coal-fired power plants. The projects, valued at nearly $10 million, are expected to help expedite the timeline for commercialization of oxycombustion technology through slip stream or pilot plant testing. In an oxycombustion-based power plant, oxygen rather than air is used to combust a fuel resulting in a highly pure carbon dioxide (CO2) exhaust that can be captured at relatively low-cost and sequestered. No commercial oxygen combustion power plants are operating today, due mainly to the high cost of producing oxygen. Significant reduction in the cost of oxygen compared to today's best cryogenic technology is a key requirement to making the oxycombustion power plant a viable future option. The two projects selected by DOE show promise for reducing those costs when compared to existing CO2 capture systems.

64

Nuclear Fuel Facts: Uranium | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Uranium Management and Uranium Management and Policy » Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite. Uranium ore can be mined from open pits or underground excavations. The ore can then be crushed and treated at a mill to separate the valuable uranium from the ore. Uranium may also be dissolved directly from the ore deposits

65

Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

66

Wireless Sensor Network for Advanced Energy Management Solutions  

SciTech Connect (OSTI)

Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were developed under this project. As an outgrowth of this program, Eaton developed a patented energy-optimizing drive control technology that is complementary to a traditional variable frequency drives (VFD) to enable significant energy savings for motors with variable torque applications, such as fans, pumps, and compressors. This technology provides an estimated energy saving of 2%-10% depending on the loading condition, in addition to the savings obtained from a traditional VFD. The combination of a VFD with the enhanced energy-optimizing controls will provide significant energy savings (10% to 70% depending on the load and duty cycle) for motors that are presently connected with across the line starters. It will also provide a more favorable return on investment (ROI), thus encouraging industries to adopt VFDs for more motors within their facilities. The patented technology is based on nonintrusive algorithms that estimate the instantaneous operating efficiency and motor speed and provide active energy-optimizing control of a motor, using only existing voltage and current sensors. This technology is currently being commercialized by Eatons Industrial Controls Division in their next generation motor control products. Due to the common nonintrusive and inferential nature of various algorithms, this same product can also include motor and equipment condition monitoring features, providing the facility owner additional information to improve process uptime and the associated energy savings. Calculations estimated potential energy savings of 261,397GWh/Yr ($15.7B/yr), through retrofitting energy-optimizing VFDs into existing facilities, and incorporating the solution into building equipment sold by original equipment manufacturers (OEMs) and installed by mechanical and electrical contractors. Utilizing MCSA and MPSA for predictive maintenance (PM) of motors and connected equipment reduces process downtime cost and the cost of wasted energy associated with shutting down and restarting the processes. Estimated savings vary depending on the industry segment and equi

Peter J. Theisen; Bin Lu, Charles J. Luebke

2009-09-23T23:59:59.000Z

67

Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration  

SciTech Connect (OSTI)

In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energys Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.?

Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

2012-09-28T23:59:59.000Z

68

DOE - Office of Legacy Management -- Westinghouse Advanced Reactors Div  

Office of Legacy Management (LM)

Advanced Reactors Div Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL LAB (PA.10 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cheswick , Pennsylvania PA.10-1 Evaluation Year: Circa 1987 PA.10-1 PA.10-4 Site Operations: 1960s and 1970s - Produced light water and fast breeder reactor fuels on a development and pilot plant scale. Closed in 1979. PA.10-2 PA.10-3 Site Disposition: Eliminated - Decommissioned and decontaminated under another Federal program. Release condition confirmed by radiological surveys. PA.10-1 PA.10-2 PA.10-3 PA.10-4 PA.10-5 Radioactive Materials Handled: Yes

69

Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride  

SciTech Connect (OSTI)

The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

1995-12-01T23:59:59.000Z

70

Secretarial Determination of No Adverse Material Impact for Uranium...  

Energy Savers [EERE]

5-15-14.pdf More Documents & Publications Excess Uranium Inventory Management Plan 2008 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the...

71

15.997 Advanced Corporate Risk Management, Spring 2007  

E-Print Network [OSTI]

Opportunity for group study by graduate students on current topics related to management not otherwise included in curriculum. From the course home page: Course Description This is a course on how corporations make use of ...

Parsons, John E.

72

12 - Advanced gas turbine asset and performance management  

Science Journals Connector (OSTI)

Abstract: A gas turbine degrades with use. The causes of degradation can often be related to the operating environment of the machine. Its consequent performance and other symptoms and changes are outlined in this chapter. Instrumentation in the engine can give, through a suitable analysis, useful clues that can benefit rectification of the causes of degradation. The interpretation of the information can be done effectively through specialist centres that can, remotely, receive information from different plants distributed widely geographically. They can handle disparate types of data coming through a range of streams. These features place complex requirements on information processing, analysis, staff preparation and management practice. This gives rise to the seven levels of gas path management: sensor, control and supervision, condition monitoring, performance and health assessment, prognostics, decision support and, finally, asset management.

T. lvarez Tejedor; R. Singh; P. Pilidis

2013-01-01T23:59:59.000Z

73

CS 525: Advanced Database Organization Study of relational, semantic, and object-oriented data models and interfaces. Database management system  

E-Print Network [OSTI]

History of database management. Goals of database system development. Relational systems Data modelsCS 525: Advanced Database Organization Objectives Study of relational, semantic, and object-oriented data models and interfaces. Database management system techniques for query optimization, concurrency

Heller, Barbara

74

Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid  

E-Print Network [OSTI]

,365 Total Project Cost $58,365 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates April 1, 2014Project Information Form Project Title Advanced Energy Management Strategy Development for Plug ­ September 30, 2015 Brief Description of Research Project Plug-in hybrid vehicles (PHEVs) have great

California at Davis, University of

75

The risk is in the relationship (not the country): Political risk management in the uranium industry in Kazakhstan  

Science Journals Connector (OSTI)

How do we account for multinational energy companies that are able to operate in risky political environments? While traditional risk indices may tell us why a country is considered a difficult operating environment, they tell us very little about why some multinationals are neverthelessly able to operate successfully in such countries over long periods of time. In fact, risk indices by their very nature make success almost impossible to capture due to their sole focus on country behavior. In reality, when a multinational energy company enters into a given country, the firm establishes relationships with a series of stakeholders, not a single host country entity; further, the behaviors of those stakeholders (good or bad) do not exist in a vacuum, but rather are largely influenced by the multinational's own behavior. In other words, the risk is in the relationship between the firm and the country's stakeholders. This article argues that success is therefore a function of the firm's ability to manage relationships among a variety of stakeholders within a given country. A case study of Cameco, a Canadian-based uranium mining multinational which has been operating in the politically risky country of Kazakhstan for two decades, bears this out.

J. Edward Conway

2013-01-01T23:59:59.000Z

76

Micro-purge low-flow sampling of uranium-contaminated ground water at the Fernald Environmental Management Project  

SciTech Connect (OSTI)

Efforts to sample representative, undisturbed distributions of uranium in ground water beneath the Fernald Environmental Management Project (FEMP) prompted the application of a novel technique that is less invasive in the monitoring well. Recent studies indicate that representative samples can and should be collected without prior well volume exchange purging or borehole evacuation. Field experiments conducted at the FEMP demonstrate that under specific sampling conditions in a well-defined hydrogeologic system, representative ground water samples for a monitoring program can be obtained without removing the conventional three well volumes from the well. The assumption is made that indicator parameter equilibration may not be necessary to determine when to collect representative samples at the FEMP. Preliminary results obtained form the field experiments suggest that this may be true. The technique employs low purge rates (< 1 L/min) with dedicated bladder pumps with inlets located in the screened interval of the well, while not disturbing the stagnant water column above the screened interval. If adopted, this technique, termed micro-purge low-flow sampling, will produce representative ground water samples significantly reduce sampling costs, and minimize waste water over the monitoring life cycle at the FEMP. This technique is well suited for sites that have been fully characterized and are undergoing long-term monitoring.

Shanklin, D.E. Sidle, W.C.; Ferguson, M.E.

1995-10-01T23:59:59.000Z

77

"2012 Uranium Marketing Annual Report"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012" 5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012" 2010,2011,2012 "AREVA NC, Inc. (was COGEMA, Inc.)","Advance Uranium Asset Management Ltd.","Advance Uranium Asset Management Ltd." "LES, LLC (Louisiana Energy Services)","AREVA NC, Inc.","AREVA NC, Inc." "NUKEM, Inc.","CNEIC (China Nuclear Energy Industry Corporation)","CNEIC (China Nuclear Energy Industry Corporation)" "UG U.S.A., Inc.","Energy Northwest","LES, LLC (Louisiana Energy Services)" "URENCO, Inc.","LES, LLC (Louisiana Energy Services)","NextEra Energy Seabrook" "USEC, Inc. (United States Enrichment Corporation)","NUKEM, Inc.","NUKEM, Inc."

78

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 AREVA NC, Inc. (was COGEMA, Inc.) Advance Uranium Asset Management Ltd. Advance Uranium Asset Management Ltd. LES (Louisiana Energy Services) AREVA NC, Inc. AREVA NC, Inc. NUKEM, Inc. CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) UG U.S.A., Inc. Energy Northwest LES, LLC (Louisiana Energy Services) URENCO, Inc. LES, LLC (Louisiana Energy Services) NextEra Energy Seabrook USEC, Inc. (United States Enrichment Corporation) NUKEM, Inc. NUKEM, Inc. Westinghouse Electric Company TENEX (Techsnabexport Joint Stock Company) TENEX (Techsnabexport Joint Stock Company) URENCO, Inc. UG U.S.A., Inc.

79

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 2010 2011 2012 AREVA NC, Inc. (was COGEMA, Inc.) Advance Uranium Asset Management Ltd. Advance Uranium Asset Management Ltd. LES, LLC (Louisiana Energy Services) AREVA NC, Inc. AREVA NC, Inc. NUKEM, Inc. CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) UG U.S.A., Inc. Energy Northwest LES, LLC (Louisiana Energy Services) URENCO, Inc. LES, LLC (Louisiana Energy Services) NextEra Energy Seabrook USEC, Inc. (United States Enrichment Corporation) NUKEM, Inc. NUKEM, Inc. Westinghouse Electric Company TENEX (Techsnabexport Joint Stock Company) TENEX (Techsnabexport Joint Stock Company) URENCO, Inc. UG U.S.A., Inc. USEC, Inc. (United States Enrichment Corporation)

80

Programmatic Environmental Assessment for the U. S. Department of Energy, Oak Ridge Operations Implementation of a Comprehensive Management Program for the Storage, Transportation, and Disposition of Potentially Reusable Uranium Materials  

Broader source: Energy.gov (indexed) [DOE]

IMPMZT IMPMZT PROGR4MMATIC ENVIRONMENTAL ASSESSME?X FOR THE U.S. DEPARTMENT OF ENERGY, OAK RIDGE OPER4TIOSS IMPLEMENTATION OF A COMPREHENSIVE MANAGEMEKT PROGK4hl FOR THE STORAGE, TRANSPORTATION, AND DISPOSITION OF POTENTIALLY REUSABLE URANJUh4 MATERIALS AGEhCY: U.S. DEPARTMENT OF ENERGY (DOE) ACTION: FINDI?iG OF NO SIGNIFICANT 1~IPAC-I SUMI\!L4RY: The U. S. DOE has completed a Programmatic Environmental Assessment (PE:,4) (DOE/E?,- 1393), which is incorporated herein by this reference. Tile purpose of the PEA is in assess potential enJ?ronmental impacts of the implementation of a comprehek-e management program for potentiaIly reusable ICW enriched uranium (LEU). norr,:al uranium (NU), and depleted uranium (DU). --l?prosimately 14,200 MTU (h?etric Tons of Uranium) of potentially reusable uranium is located at 15s

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Safe Management of Residues from Former Uranium Mining and Milling Activities in Central Asian IAEA Regional Technical Cooperation Project  

Science Journals Connector (OSTI)

Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991. Ev...

P. W. Waggitt

2008-01-01T23:59:59.000Z

82

Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance  

SciTech Connect (OSTI)

This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

none,

2012-03-01T23:59:59.000Z

83

Human-System Safety Methods for Development of Advanced Air Traffic Management Systems  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems.

Nelson, W.R.

1999-05-24T23:59:59.000Z

84

Design manual for management of solid by-products from advanced coal technologies  

SciTech Connect (OSTI)

Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

NONE

1994-10-01T23:59:59.000Z

85

Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site  

SciTech Connect (OSTI)

Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

NONE

1999-06-01T23:59:59.000Z

86

Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

NONE

1996-02-21T23:59:59.000Z

87

Final Programmatic Environmental Assessment and Finding of No Significant Impact for the U.S. Department of Energy, Oak Ridge Operations Implementation of a Comprehensive Management Program for the Storage, Transportation, and Disposition of Potentially Reusable Uranium Materials  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) proposes to implement a comprehensive management program to safely, efficiently, and effectively manage its potentially reusable low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). Uranium materials, which are presently located at multiple sites, are to be consolidated by transporting the materials to one or several storage locations, to facilitate ultimate disposition. Management would include the storage, transport, and ultimate disposition of these materials. This action is needed because of DOE's current missions and functions; increasing budget pressures; the continuing need for good stewardship of resources, including materials in inventory; and continuing DOE attention to considerations of environment, safety, and health. Also, increased pressure on the federal budget requires that DOE take a closer look at materials management in order to ensure maximum cost effectiveness. This includes an examination of feasible uses of this material, consistent with DOE's mission, as well as an examination of management methods that are consistent with environmental requirements and budgetary constraints. DOE needs to implement a long-term (greater than 20 years) management plan for its inventory of potentially reusable LEU, NU, and DU.

N /A

2002-10-16T23:59:59.000Z

88

INTEGRATED MOBILE IP AND SIP APPROACH FOR ADVANCED LOCATION MANAGEMENT Q Wang and M A Abu-Rgheff  

E-Print Network [OSTI]

INTEGRATED MOBILE IP AND SIP APPROACH FOR ADVANCED LOCATION MANAGEMENT Q Wang and M A Abu-Rgheff University of Plymouth, UK ABSTRACT The vision of ubiquitous and continuous communications for a mobile user entails several emerging mobility types, which pose new requirements for location management

Abu-Rgheff, Mosa Ali

89

Uranium hexafluoride handling. Proceedings  

SciTech Connect (OSTI)

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

90

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

91

Active load management with advanced window wall systems: Research and industry perspectives  

SciTech Connect (OSTI)

Advanced window wall systems have the potential to provide demand response by reducing peak electric loads by 20-30% in many commercial buildings through the active control of motorized shading systems, switchable window coatings, operable windows, and ventilated double-skin facade systems. These window strategies involve balancing daylighting and solar heat gains, heat rejection through ventilation, and night-time natural ventilation to achieve space-conditioning and lighting energy use reductions without the negative impacts on occupants associated with other demand responsive (DR) strategies. This paper explores conceptually how advanced window systems fit into the context of active load management programs, which cause customers to directly experience the time-varying costs of their consumption decisions. Technological options are suggested. We present pragmatic criteria that building owners use to determine whether to deploy such strategies. A utility's perspective is given. Industry also provides their perspectives on where the technology is today and what needs to happen to implement such strategies more broadly in the US. While there is significant potential for these advanced window concepts, widespread deployment is unlikely to occur with business-as-usual practice. Technologically, integrated window-lighting-HVAC products are underdeveloped. Implementation is hindered by fragmented labor practices, non-standard communication protocols, and lack of technical expertise. Design tools and information products that quantify energy performance, occupant impacts, reliability, and other pragmatic concerns are not available. Interest within the building industry in sustainability, energy-efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades in the near term--at least until the dust settles on the deregulated electricity market.

Lee, Eleanor S.; Selkowitz, Stephen E.; Levi, Mark S.; Blanc, Steven L.; McConahey, Erin; McClintock, Maurya; Hakkarainen, Pekka; Sbar, Neil L.; Myser, Michael P.

2002-06-01T23:59:59.000Z

92

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

93

URANIUM IN ALKALINE ROCKS  

E-Print Network [OSTI]

Greenland," in Uranium Exploration Geology, Int. AtomicOklahoma," 1977 Nure Geology Uranium Symposium, Igneous HostMcNeil, M. , 1977. "Geology of Brazil's Uranium and Thorium

Murphy, M.

2011-01-01T23:59:59.000Z

94

Advanced simulation capability for environmental management (ASCEM): An overview of initial results  

E-Print Network [OSTI]

Remediation within the Office of Environmental Manage- ment and manages a program that develops innovative

Williamson, M.

2012-01-01T23:59:59.000Z

95

EERE PROJECT MANAGEMENT CENTER NFPA DETERMINATION RECIPIENT:Advanced Magnet Lab  

Broader source: Energy.gov (indexed) [DOE]

OFENFRGY OFENFRGY EERE PROJECT MANAGEMENT CENTER NFPA DETERMINATION RECIPIENT:Advanced Magnet Lab Page 1 of2 STATE: FL PROJECT TITLE: A Lightweight. Direct Drive, Fully Superconducting Generator for Large Wind Turbines Funding Opportunity Announcement Number Pnx:uumeDtlnstrument Number NEPA Control Number CIO Number DE-FOA-0000439 DE-EEOOO5140 GF()"()()()5140-001 EE5140 Based on my review of.he information concerning tbe proposed action, as NEPA Compliance Officer (authorized under- DOE Order 4SI.IA), I have made tbe following determination: ex, EA, [IS APPENDIX AND NUMBER: Description: A9 Information gathering (including , but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply and

96

ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for all things nuclear as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOEs critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R&D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials.

Murray, A.; Wilmarth, B.; Marra, J.; Mcguire, P.; Wheeler, V.

2013-05-16T23:59:59.000Z

97

Professional Science Masters in Advanced Energy and Fuels Management at Southern Illinois University Carbondale  

SciTech Connect (OSTI)

There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent graduates seeking specialized training prior to entering the energy industry workforce as well as working professionals in the energy industry who require additional training and qualifications for further career advancement. It is expected that the students graduating from the program will be stewards of effective, sustainable and environmentally sound use of these resources to ensure energy independence and meet the growing demands. The application of this Professional Science Masters (PSM) program is in the fast evolving Fuels Arena. The PSM AEFM is intended to be a terminal degree which will prepare the graduates for interdisciplinary careers in team oriented environment. The curriculum for this program was developed in concert with industry to dovetail with current and future demands based on analysis and needs. The primary objective of the project was to exploit the in house resources such as existing curriculum and faculty strengths and develop a curriculum with consultations with industry to meet current and future demands. Additional objectives was to develop courses specific to the degree and to provide the students with a set of business skills in finance accounting and sustainable project management. The PSM program consists of a 36-hour curriculum structured in accord with the PSM model originally developed by the Sloan Foundation. Students are required to take 9 credit hours of business courses, 9 credit hours of science and engineering courses, 3 credit hours of policy related courses and a total of 9 credit hours of electives in business, science, engineering and policy. The program is designed to be completed in one academic year (based on full time study), with additional course work to be completed in the preceding summer semester and the capstone internship to be completed in the final summer semester.

Mondal, Kanchan [Southern Illinois University, Carbondale

2014-12-08T23:59:59.000Z

98

Self-management associated with fatigue in patients with advanced cancer : a prospective longitudinal study.  

E-Print Network [OSTI]

??Cancer-related fatigue is one of the most distressing symptoms experienced by patients with advanced cancer. This doctoral study identified that patients with advanced cancer commonly (more)

Chan, Raymond

2014-01-01T23:59:59.000Z

99

Depleted uranium  

Science Journals Connector (OSTI)

The potential health effects arising from exposure to depleted uranium have been much in the news of late. Naturally occurring uranium contains the radioisotopes 238U (which dominates, at a current molar proportion of 99.3%), 235U and a small amount of 234U. Depleted uranium has an isotopic concentration of 235U that is below the 0.7% found naturally. This is either because the uranium has passed through a nuclear reactor which uses up some of the fissile 235U that fuels the fission chain-reaction, or because it is the uranium that remains when enriched uranium with an elevated concentration of 235U is produced in an enrichment plant, or because of a combination of these two processes. Depleted uranium has a lower specific activity than naturally occurring uranium because of the lower concentrations of the more radioactive isotopes 235U and 234U, but account must be taken of any contaminating radionuclides or exotic radioisotopes of uranium if the uranium has been irradiated. Uranium is a particularly dense element (about twice as dense as lead), and this property makes it useful in certain military applications, such as armour-piercing munitions. Depleted uranium, rather than natural uranium, is used because of its availability and, since the demise of the fast breeder reactor programme, the lack of alternative use. Depleted uranium weapons were used in the Gulf War of 1990 and also, to a lesser extent, more recently in the Balkans. This has led to speculation that depleted uranium may be associated with `Gulf War Syndrome', or other health effects that have been reported by military and civilian personnel involved in these conflicts and their aftermath. Although, on the basis of present scientific knowledge, it seems most unlikely that exposure to depleted uranium at the levels concerned could produce a detectable excess of adverse health effects, and in such a short timescale, the issue has become one of general concern and contention. As a consequence, any investigation needs to be thorough to produce sufficiently comprehensive evidence to stand up to close scrutiny and gain the support of the public, whatever the conclusions. Unfortunately, it is the nature of such inquiries that they take time, which is frustrating for some. In the UK, the Royal Society has instigated an independent investigation into the health effects of depleted uranium by a working group chaired by Professor Brian Spratt. This inquiry has been underway since the beginning of 2000. The working group's findings will be reviewed by a panel appointed by the Council of the Royal Society, and it is anticipated that the final report will be published in the summer of 2001. Further details can be found at www.royalsoc.ac.uk/templates/press/showpresspage.cfm?file=2001010801.txt. Nick Priest has summarised current knowledge on the toxicity (both radiological and chemical) of depleted uranium in a commentary in The Lancet (27 January 2001, 357 244-6). For those wanting to read a comprehensive review of the literature, in 1999 RAND published `A Review of the Scientific Literature as it Pertains to Gulf War Illnesses, Volume 7: Depleted Uranium' by Naomi Harley and her colleagues, which can be found at www.rand.org/publications/MR/MR1018.7/MR1018.7.html. An interesting article by Jan Olof Snihs and Gustav Akerblom entitled `Use of depleted uranium in military conflicts and possible impact on health and environment' was published in the December 2000 issue of SSI News (pp 1-8), and can be found at the website of the Swedish Radiation Protection Institute: www.ssi.se/tidningar/PDF/lockSSIn/SSI-news2000.pdf. Last year, a paper was published in the June issue of this Journal that is of some relevance to depleted uranium. McGeoghegan and Binks (2000 J. Radiol. Prot. 20 111-37) reported the results of their epidemiological study of the health of workers at the Springfields uranium production facility near Preston during 1946-95. This study included almost 14 000 radiation workers. Although organ-specific doses due to uranium are not yet available for these worker

Richard Wakeford

2001-01-01T23:59:59.000Z

100

What is Depleted Uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is Uranium? What is Uranium? Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects What is Uranium? Physical and chemical properties, origin, and uses of uranium. Properties of Uranium Uranium is a radioactive element that occurs naturally in varying but small amounts in soil, rocks, water, plants, animals and all human beings. It is the heaviest naturally occurring element, with an atomic number of 92. In its pure form, uranium is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes, which are identified by the total number of protons and neutrons in the nucleus: uranium-238, uranium-235, and uranium-234. (Isotopes of an element have the

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - advanced aqueous reprocessing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cecil and Ida Green... then there have been major advances in our understanding of uranium geology. Because of the importance of uranium... plants are being planned, and...

102

AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo, Manager, Heat Exchange Systems Research  

E-Print Network [OSTI]

#12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo S. E. Veyo, Manager, Heat Exchange Systems Research Westinghouse Electric Corporation, R&D Center 1310 Beulah Road Pittsburgh, PA 15235 KEYWORDS: heat pump, air conditioner, electric, residential, energy, compressor, fan, blower, heat

Oak Ridge National Laboratory

103

Systems engineering approach to environmental risk management: A case study of depleted uranium at test area C-64, Eglin Air Force Base, Florida. Master`s thesis  

SciTech Connect (OSTI)

Environmental restoration is an area of concern in an environmentally conscious world. Much effort is required to clean up the environment and promote environmentally sound methods for managing current land use. In light of the public consciousness with the latter topic, the United States Air Force must also take an active role in addressing these environmental issues with respect to current and future USAF base land use. This thesis uses the systems engineering technique to assess human health risks and to evaluate risk management options with respect to depleted uranium contamination in the sampled region of Test Area (TA) C-64 at Eglin Air Force Base (AFB). The research combines the disciplines of environmental data collection, DU soil concentration distribution modeling, ground water modeling, particle resuspension modeling, exposure assessment, health hazard assessment, and uncertainty analysis to characterize the test area. These disciplines are required to quantify current and future health risks, as well as to recommend cost effective ways to increase confidence in health risk assessment and remediation options.

Carter, C.M.; Fortmann, K.M.; Hill, S.W.; Latin, R.M.; Masterson, E.J.

1994-12-01T23:59:59.000Z

104

DOE Releases Excess Uranium Inventory Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Excess Uranium Inventory Plan Excess Uranium Inventory Plan DOE Releases Excess Uranium Inventory Plan December 16, 2008 - 8:51am Addthis WASHINGTON, D.C. - The United States Department of Energy (DOE) today issued its Excess Uranium Inventory Management Plan (the Plan), which outlines the Department's strategy for the management and disposition of its excess uranium inventories. The Plan highlights DOE's ongoing efforts to enhance national security and promote a healthy domestic nuclear infrastructure through the efficient and cost-effective management of its excess uranium inventories. The Department has a significant inventory of uranium that is excess to national defense needs and is expensive both to manage and secure. "The Plan provides the general public and interested stakeholders more

105

Uranium Mining and Enrichment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Presentation » Uranium Mining and Enrichment Overview Presentation » Uranium Mining and Enrichment Uranium Mining and Enrichment Uranium is a radioactive element that occurs naturally in the earth's surface. Uranium is used as a fuel for nuclear reactors. Uranium-bearing ores are mined, and the uranium is processed to make reactor fuel. In nature, uranium atoms exist in several forms called isotopes - primarily uranium-238, or U-238, and uranium-235, or U-235. In a typical sample of natural uranium, most of the mass (99.3%) would consist of atoms of U-238, and a very small portion of the total mass (0.7%) would consist of atoms of U-235. Uranium Isotopes Isotopes of Uranium Using uranium as a fuel in the types of nuclear reactors common in the United States requires that the uranium be enriched so that the percentage of U-235 is increased, typically to 3 to 5%.

106

SciTech Connect: enriched uranium  

Office of Scientific and Technical Information (OSTI)

enriched uranium Find enriched uranium Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

107

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...Environmental Management Project (Fernald Environmental Management Project 1997; McDiarmid...Lyon, France:International Agency for Research...following exposure to radon daughters and uranium...Environmental Management Project (FEMP). 1997...

2006-01-01T23:59:59.000Z

108

EM Leads with Advanced Simulation Capability Technology | Department of  

Broader source: Energy.gov (indexed) [DOE]

with Advanced Simulation Capability Technology with Advanced Simulation Capability Technology EM Leads with Advanced Simulation Capability Technology April 4, 2013 - 12:00pm Addthis Figure 1: Advanced Simulation Capability for Environmental Management Thrust Areas. Figure 1: Advanced Simulation Capability for Environmental Management Thrust Areas. Figure 2: Spatial distribution of technetium-99 after the releases from the BC cribs using VisIt software on the Hanford Central Plateau. Figure 2: Spatial distribution of technetium-99 after the releases from the BC cribs using VisIt software on the Hanford Central Plateau. Figure 3: Conceptual model of uranium attenuation processes in the Savannah River F Area Seepage Basins plume, including adsorption/desorption (1); dissolution/precipitation (2); mixing/dilution (3); aqueous reactions (4); microbial interactions (5); and abiotic organic interactions (6).

109

Collaboration and Communication: DOE and Navajo Nation Tour Uranium...  

Broader source: Energy.gov (indexed) [DOE]

site managers, along with Navajo Nation technical staff, visited five reclaimed uranium-mine sites on tribal lands to share expertise in the use of technical approaches...

110

Active load management with advanced window wall systems: Research and industry perspectives  

E-Print Network [OSTI]

sustainability, energy- efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades

2002-01-01T23:59:59.000Z

111

Advanced simulation capability for environmental management (ASCEM): An overview of initial results  

E-Print Network [OSTI]

Research (ASCR) Offices Scientific Discovery through Advanced Computing (SciDAC) program, and the DOE National Nuclear

Williamson, M.

2012-01-01T23:59:59.000Z

112

Ex Parte Communications- Uranium Producers of America  

Broader source: Energy.gov [DOE]

On Thursday, February 12, 2015, representatives from the Uranium Producers of America (UPA) met with the Department of Energy (DOE) officials to discuss the management of the federal excess...

113

E-Print Network 3.0 - area uranium stabilization Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: area uranium stabilization Page: << < 1 2 3 4 5 > >> 1 geology and Ranger 1 open-pit uranium...

114

E-Print Network 3.0 - antei uranium deposit Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: antei uranium deposit Page: << < 1 2 3 4 5 > >> 1 geology and Ranger 1 open-pit uranium mine in...

115

E-Print Network 3.0 - albarrana uranium ores Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: albarrana uranium ores Page: << < 1 2 3 4 5 > >> 1 geology and Ranger 1 open-pit uranium mine in...

116

Depleted Uranium Health Effects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

117

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

118

E-Print Network 3.0 - advanced symptom management Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has been developing model... identified as an important aspect of UAV operation, and demands more advanced ... Source: Snooke, Neal - Department of Computer Science, University...

119

LANL researchers improve path to producing uranium compounds, candidates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Researchers improve path to producing uranium compounds Researchers improve path to producing uranium compounds LANL researchers improve path to producing uranium compounds, candidates for advanced nuclear fuels Enhance the ability to develop advanced nuclear fuels in a safer, simpler manner. April 7, 2011 This illustration shows the structures of UI4(1,4-dioxane)2 (left) and the UI3(1,4-dioxane)1.5 complexes. This illustration shows the structures of UI4(1,4-dioxane)2 (left) and the UI3(1,4-dioxane)1.5 complexes. Contact Kevin Roark Communicatons Office (505) 665-9202 Email LOS ALAMOS, New Mexico, April 7, 2010- Advances made by researchers at Los Alamos National Laboratory could enhance the ability of scientists to develop advanced nuclear fuels in a safer, simpler manner. Uranium chemistry research relies heavily on a variety of uranium "starting

120

Neurotoxicity of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a byproduct of the enrichment process of uranium for its more radioactive isotopes to be ... neurotoxicity of DU. This review reports on uranium uses and its published health effects, wit...

George C. -T. Jiang; Michael Aschiner

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

GUIDELINES FOR IMPLEMENTATION OF AN ADVANCED OUTAGE CONTROL CENTER TO IMPROVE OUTAGE COORDINATION, PROBLEM RESOLUTION, AND OUTAGE RISK MANAGEMENT  

SciTech Connect (OSTI)

This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Managing NPP outages is a complex and difficult task due to the large number of maintenance and repair activities that are accomplished in a short period of time. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information, and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status, and periodic briefings in the OCC. It is a difficult task to maintain current the information related to outage progress and discovered conditions. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across, and out of the OCC. The use of these technologies will allow information to be shared electronically, providing greater amounts of real-time information to the decision makers and allowing OCC coordinators to meet with supporting staff remotely. Passively monitoring status electronically through advances in the areas of mobile worker technologies, computer-based procedures, and automated work packages will reduce the current reliance on manually reporting progress. The use of these technologies will also improve the knowledge capture and management capabilities of the organization. The purpose of this research is to improve management of NPP outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.

Shawn St. Germain; Ronald Farris; April M. Whaley; Heather Medema; David Gertman

2014-09-01T23:59:59.000Z

122

Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration  

SciTech Connect (OSTI)

To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

Francis, C. W.

1993-09-01T23:59:59.000Z

123

Ion exchange technology in the remediation of uranium contaminated groundwater at Fernald  

SciTech Connect (OSTI)

Using pump and treat methodology, uranium contaminated groundwater is being removed from the Great Miami Aquifer at the Fernald Environmental Management Project (FEMP) per the FEMP Record of Decision (ROD) that defines groundwater cleanup. Standard extraction wells pump about 3900 gallons-per-minute (gpm) from the aquifer through five ion exchange treatment systems. The largest treatment system k the Advanced Wastewater Treatment (AWWT) Expansion System with a capacity of 1800 gpm, which consists of three trains of two vessels. The trains operate in parallel treating 600 gpm each, The two vessels in each train operate in series, one in lead and one in lag. Treated groundwater is either reinfected back into the aquifer to speed up the aquifer cleanup processor discharged to the Great Miami River. The uranium regulatory ROD limit for discharge to the river is 20 parts per billion (ppb), and the FEMP uranium administrative action level for reinfection is 10 ppb. Spent (i.e., a resin that no longer adsorbs uranium) ion exchange resins must either be replaced or regenerated. The regeneration of spent ion exchange resins is considerably more cost effective than their replacement. Therefore, a project was undertaken to learn how best to regenerate the resins in the groundwater vessels. At the outset of this project, considerable uncertainty existed as to whether a spent resin could be regenerated successfully enough so that it performed as well as new resin relative to achieving very low uranium concentrations in the effluent. A second major uncertain y was whether the operational lifetime of a regenerated resin would be similar to that of a new resin with respect to uranium loading capacity and effluent concentration behavior. The project was successful in that a method for regenerating resins has been developed that is operationally efficient, that results in regenerated resins yielding uranium concentrations much lower than regulatory limits, and that results in regenerated resins with operational lifetimes comparable to new resins.

Chris Sutton; Cathy Glassmeyer; Steve Bozich

2000-09-29T23:59:59.000Z

124

Uranium Industry Annual, 1992  

SciTech Connect (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

125

EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado  

Broader source: Energy.gov [DOE]

This EIS evaluated the potential environmental impacts of management alternatives for DOEs Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores.

126

An assessment of the radiological scenario around uranium mines in Singhbhum East district, Jharkhand, India  

Science Journals Connector (OSTI)

......storing low-specific active waste after the recovery of uranium...ore mining and radioactive waste around a storage centre from Mexico. Radioprotection...K., Puranik V. D. Long-term management of uranium mill waste: proposal for stewardship......

R. M. Tripathi; S. K. Sahoo; S. Mohapatra; A. C. Patra; P. Lenka; J. S. Dubey; V. N. Jha; V. D. Puranik

2012-07-01T23:59:59.000Z

127

Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) issued its Record of Decision for the Uranium Leasing Program on May 6, 2014, announcing that it will continue managing the Uranium Leasing Program for another 10 years.

128

In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO{sub 2}F{sub 2} deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO{sub 2}F{sub 2} deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO{sub 2}F{sub 2} source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO{sub 2}F{sub 2} deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25 demolition project. The combined review of the HMS software algorithms and supporting field measurements lead to the conclusion that the majority of process gas pipe measurements are adequately corrected for source self-attenuation using HMS4. While there will be instances where the UO{sub 2}F{sub 2} holdup mass presents an infinitely thick deposit to the NaI-HMS4 system these situations are expected to be infrequent. This work confirms that the HMS4 system can quantify UO{sub 2}F{sub 2} holdup, in its current configuration (deposition, enrichment, and geometry), below the DQO levels for the K-25 building decommissioning and demolition project. For an area measurement of process gas pipe in the K-25 building, if an infinitely thick UO{sub 2}F{sub 2} deposit is identified in the range of enrichment of {approx}4-40%, the holdup quantity exceeds the corresponding DQO established for the K-25 building demolition project.

Rasmussen B.

2010-01-01T23:59:59.000Z

129

President Truman Increases Production of Uranium and Plutonium | National  

National Nuclear Security Administration (NNSA)

Increases Production of Uranium and Plutonium | National Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Truman Increases Production of Uranium and Plutonium President Truman Increases Production of Uranium and Plutonium October 09, 1950

130

Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund  

Broader source: Energy.gov (indexed) [DOE]

0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are directly or indirectly involved with the Fund. c. Requirements and Sources of the Fund. (1) The Energy Policy Act of 1992 (EPACT) requires DOE to establish and administer the Fund. EPACT authorizes that the

131

Carbonate Leaching of Uranium from Contaminated Soils  

Science Journals Connector (OSTI)

Uranium (U) was successfully removed from contaminated soils from the Fernald Environmental Management Project (FEMP) site near Fernald, Ohio. ... The concentrations of uranium and other metals in the effluent were analyzed using a Varian Liberty 200 inductively coupled plasma atomic emission spectrophotometer (ICP-AES) or a kinetic phosphorescence analyzer (KPA). ... When 30% hydrogen peroxide (H2O2) was added prior to the carbonate solution, no increase in the removal of uranium was detected (data not shown) due to effervescence with heating, liberating carbon dioxide, and thus preventing uniform distribution of H2O2. ...

C. F. V. Mason; W. R. J. R. Turney; B. M. Thomson; N. Lu; P. A. Longmire; C. J. Chisholm-Brause

1997-09-30T23:59:59.000Z

132

Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone  

E-Print Network [OSTI]

Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone Sediments at the Hanford 300, Advanced Light Source, One Cyclotron Road, Berkeley, California 94720, United States Geological Survey Northwest Laboratory, Richland, Washington 99352 Uranium (U) solid-state speciation in vadose zone sediments

133

Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Quarterly progress report, June-September 1983  

SciTech Connect (OSTI)

This report documents progress for the following major research projects: stabilization, engineering, and monitoring alternatives assessment for improving regulation of uranium recovery operations and waste management; attenuation of radon emission from uranium tailings; assessment of leachate movement from uranium mill tailings; and methods of minimizing ground-water contaminants from in-situ leach uranium mining.

Foley, M.G.; Deutsch, W.J.; Gee, G.W.; Hartley, J.N.; Kalkwarf, D.R.; Mayer, D.W.; Nelson, R.W.; Opitz, B.E.; Peterson, S.R.; Serne, R.J.

1983-11-01T23:59:59.000Z

134

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

135

8 - Uranium  

Science Journals Connector (OSTI)

Release of uranium (U) to the environment is mainly through the nuclear fuel cycle. In oxic waters, U(VI) is the predominant redox state, while U(IV) is likely to be encountered in anoxic waters. The free uranyl ion ( UO 2 2 + ) dominates dissolved U speciation at low pH while complexes with hydroxides and carbonates prevail in neutral and alkaline conditions. Whether the toxicity of U(VI) to fish can be predicted based on its free ion concentration remains to be demonstrated but a strong influence of pH has been shown. In the field, U accumulates in bone, liver, and kidney, but does not biomagnify. There is certainly potential for uptake of U via the gill based on laboratory studies; however, diet and/or sediment may be the major route of uptake, and may vary with feeding strategy. Uranium toxicity is low relative to many other metals, and is further reduced by increased calcium, magnesium, carbonates, phosphate, and dissolved organic matter in the water. Inside fish, U produces reactive oxygen species and causes oxidative damage at the cellular level. The radiotoxicity of enriched U has been compared with chemical toxicity and it has been postulated that both may work through a mechanism of production of reactive oxygen species. In practical terms, the potential for chemotoxicity of U outweighs the potential for radiotoxicity. The toxicokinetics and toxicodynamics of U are well understood in mammals, where bone is a stable repository and the kidney the target organ for toxic effects from high exposure concentrations. Much less is known about fish, but overall, U is one of the less toxic metals.

Richard R. Goulet; Claude Fortin; Douglas J. Spry

2011-01-01T23:59:59.000Z

136

Finding of No Significant Impact for teh Uranium Leasing Program  

Broader source: Energy.gov (indexed) [DOE]

Uranium Leasing Program Uranium Leasing Program July 2007 U.S. Department of Energy Office of Legacy Management FONSI for the ULP 1 July 2007 U.S. DEPARTMET OF ENERGY OFFICE OF LEGACY MANAGEMENT FINDING OF NO SIGNIFICANT IMPACT for the URANIUM LEASING PROGRAM PROGRAMMATIC ENVIRONMENTAL ASSESSMENT Agency: Department of Energy Action: Finding of No Significant Impact Summary: In accordance with the National Environmental Policy Act (NEPA) of 1969 (Title 42 United States Code [U.S.C.] 4321 et seq.) and the Council on Environmental Quality (CEQ), the U.S. Department of Energy Office of Legacy Management (DOE) prepared the Uranium Leasing Program Programmatic Environmental Assessment (PEA) (DOE/EA-1535) to evaluate its management alternatives for the future of DOE's Uranium Leasing Program (ULP). The ULP

137

Abandoned Uranium Mines Report to Congress: LM Wants Your Input |  

Broader source: Energy.gov (indexed) [DOE]

Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input April 11, 2013 - 1:33pm Addthis C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts What does this project do? Goal 4. Optimize the use of land and assets Abandoned Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is seeking stakeholder input on an abandoned uranium mines report to Congress. On January 2, 2013, President Obama signed into law the National Defense Authorization Act for Fiscal Year 2013, which requires the Secretary of Energy, in consultation with the Secretary of the U.S Department of the Interior (DOI) and the Administrator

138

Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment |  

Broader source: Energy.gov (indexed) [DOE]

Uranium Leasing Program Draft Programmatic EIS Issued for Public Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment March 15, 2013 - 11:08am Addthis Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment DOE has issued the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)(DOE/EIS-0472D) for public review and comment. The document is available here and on the ULP PEIS website. Under the Uranium Leasing Program, the DOE Office of Legacy Management administers 31 tracts of land in Mesa, Montrose, and San Miguel counties that are leased to private entities to mine uranium and vanadium. The program covers an area of approximately 25,000 acres. No mining operations are active on the ULP lands at this time. DOE is preparing the ULP PEIS to

139

Uranium Hexafluoride (UF6)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

140

Semiconductive Properties of Uranium Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES Thomas Meek Materials Science Engineering Department University of Tennessee Knoxville, TN 37931 Michael Hu and M. Jonathan Haire Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6179 August 2000 For the Waste Management 2001 Symposium Tucson, Arizona February 25-March 1, 2001 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________ * Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Uranium industry annual 1998  

SciTech Connect (OSTI)

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

142

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

143

Depleted uranium: a contemporary controversy for the teaching of radioactivity  

Science Journals Connector (OSTI)

Depleted uranium has been used in recent military conflicts and the media have reported the danger from radioactivity. This context provides a good way to keep students' attention when introducing the subject of radioactivity at GCSE or advanced level.

Mark Whalley

2006-01-01T23:59:59.000Z

144

DOE Extends Public Comment Period for Uranium Program Environmental Impact  

Broader source: Energy.gov (indexed) [DOE]

Uranium Program Environmental Uranium Program Environmental Impact Statement DOE Extends Public Comment Period for Uranium Program Environmental Impact Statement April 18, 2013 - 1:08pm Addthis Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs, (720) 377-9672, ULinfo@lm.doe.gov GRAND JUNCTION, Colo. - The U.S. Department of Energy (DOE) today announced that the public comment period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS) has been extended to May 31, 2013. Under the Uranium Leasing Program, DOE's Office of Legacy Management manages 31 tracts of land in Mesa, Montrose, and San Miguel counties in Colorado - approximately 25,000 acres - that are leased to private entities for uranium and vanadium mining. No mining operations are active

145

Chapter 8 - Advances in Market Management Solutions for Variable Energy Resources Integration  

Science Journals Connector (OSTI)

Abstract Integration of more and more Variable Energy Resources (VER) into the system has introduced new challenges to grid and market operations. This chapter first provides an overview of wholesale electricity markets and market management systems. The intermittent nature of VERs increases the need for system ramping capability in real-time balancing market, and causes issues in long term market pricing and resource adequacy. Enhancements are being made in both market design and market analytical tools in terms of managing operational uncertainties introduced by VER integration. The rest of the chapter focuses on two areas of market enhancement. The first one is the idea to establish a ramp market in real-time balancing operation to create the right market incentives for resources to provide enough ramping energy to compensate VER volatility. The second topic is to manage short-term VER uncertainty by applying robust optimization to look-ahead unit commitment.

Xing Wang

2014-01-01T23:59:59.000Z

146

Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager  

Broader source: Energy.gov [DOE]

Before we jump into todays presentations I would like to take a few moments to describe the DOE Technical Assistance Program (TAP) a little further. TAP is managed by a team in DOEs Weatherization and Intergovernmental Program - Office of Energy Efficiency and Renewable Energy.

147

The WTERT Awards recognize outstanding contributions to advancing sustainable waste management worldwide  

E-Print Network [OSTI]

on the sustainable waste management "ladder" than the U.S., at a GDP per capita Brunner (Austria) 2008: Covanta Energy (USA); Inventor Artie Cole (USA) 2010: City, composting and waste-to- energy, 200-2014. ROK has achieved a higher standing

148

Program Managers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Managers Program Managers Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy...

149

SciTech Connect: "enriched uranium"  

Office of Scientific and Technical Information (OSTI)

enriched uranium" Find enriched uranium" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

150

Uranium industry annual 1995  

SciTech Connect (OSTI)

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

151

Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzed in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety basis. The need for a design basis reconstitution program for the ATR has been identified along with the use of sound configuration management principles in order to support safe and efficient facility operation.

G. L. Sharp; R. T. McCracken

2004-05-01T23:59:59.000Z

152

Uranium Leasing Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

» Uranium Leasing Program » Uranium Leasing Program Uranium Leasing Program Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado LM currently manages the Uranium Leasing Program and continues to administer 31 lease tracts, all located within the Uravan Mineral Belt in southwestern Colorado. Twenty-nine of these lease tracts are actively held under lease and two lease tracts have been placed in inactive status indefinitely. Administrative duties include the ongoing monitoring and oversight of leaseholders' activities and the annual inspection of these lease tracts to identify and correct safety hazards or other environmental compliance issues. Program Summary Current Status The U.S. Department of Energy (DOE) has extended the public comment

153

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

154

Aseismic design criteria for uranium enrichment plants  

SciTech Connect (OSTI)

In this paper technological, economical, and safety issues of aseismic design of uranium enrichment plants are presented. The role of management in the decision making process surrounding these issues is also discussed. The resolution of the issues and the decisions made by management are controlling factors in developing aseismic design criteria for any facility. Based on past experience in developing aseismic design criteria for the GCEP various recommendations are made for future enrichment facilities, and since uranium enrichment plants are members of the nuclear fuel cycle the discussion and recommendations presented herein are applicable to other nonreactor nuclear facilities.

Beavers, J.E.

1980-01-01T23:59:59.000Z

155

Multicomponent reactive transport modeling at the Ratones uranium mine, Cceres (Spain)  

E-Print Network [OSTI]

Multicomponent reactive transport modeling at the Ratones uranium mine, Cáceres (Spain) Modelación management. The Ratones uranium mine was abandoned and flooded in 1974. Due to its reducing underground water, uranium, reactive transport, granite hydrochemistry, Ratones mine. Resumen La inundación de minas

Politècnica de Catalunya, Universitat

156

Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)  

SciTech Connect (OSTI)

Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and ?-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 129 ppm (5274.9 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.917.6 ppm (7987.4 71.9 Bq/kg) and 17.2 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by ?- spectrometry were 1156 ppm (4728 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 0.6% and 4.7 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

2014-02-12T23:59:59.000Z

157

Advanced Load Identification and Management for Buildings: Cooperative Research and Development Final Report, CRADA Number: CRD-11-422  

SciTech Connect (OSTI)

The goal of this CRADA work is to support Eaton Innovation Center (Eaton) efforts to develop advanced load identification, management technologies, and solutions to reduce building energy consumption by providing fine granular visibility of energy usage information and safety protection of miscellaneous electric loads (MELs) in commercial and residential buildings. MELs load identification and prediction technology will be employed in a novel 'Smart eOutlet*' to provide critical intelligence and information to improve the capability and functionality of building load analysis and design tools and building power management systems. The work scoped in this CRADA involves the following activities: development and validation of business value proposition for the proposed technologies through voice of customer investigation, market analysis, and third-party objective assessment; development and validation of energy saving impact as well as assessment of environmental and economic benefits; 'smart eOutlet' concept design, prototyping, and validation; field validation of the developed technologies in real building environments. (*Another name denoted as 'Smart Power Strip (SPS)' will be used as an alternative of the name 'Smart eOutlet' for a clearer definition of the product market position in future work.)

Gentile-Polese, L.

2014-05-01T23:59:59.000Z

158

Proceedings of the Second Conference on the Human Dimensions of Wildland Fire GTR-NRS-P-84 14 CHANGE AS A FACTOR IN ADVANCING FIRE-MANAGEMENT  

E-Print Network [OSTI]

growth, advanced capability, and organizational efficiency. In most situations, change is seldom well opportunities to improve the organizational performance and effectiveness of fire management. The Wildland Fire changed business processes and improved organizational effectiveness to keep pace. The case for change has

159

CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Criticality Safety program at the Y-12 - Enriched Uranium Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

160

CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Y-12 Enriched Uranium Operations Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov (indexed) [DOE]

Y-12 Enriched Uranium Operations Oxide Conversion Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide

162

Uranium Leasing Program: Program Summary | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

which called for the continued leasing of DOE-managed lands for the exploration and production of uranium and vanadium ores. In 1996, DOE reoffered respective leases to the...

163

Uranium mining legacies remediation and renaissance development: an international overview  

Science Journals Connector (OSTI)

The uranium mining industry has a record of environmental management that has been very variable over the past 50 years. Although there have been examples of good remediation in some countries, sadly there are...

Peter Waggitt

2008-01-01T23:59:59.000Z

164

DOE Issues Record of Decision for the Uranium Leasing Program  

Broader source: Energy.gov [DOE]

In a Record of Decision (ROD) published in the Federal Register today, the Department of Energy (DOE) announced that it has decided to continue management of the Uranium Leasing Program (ULP) for...

165

Programmatic Environmental Assessment for the U. S. Department of Energy, Oak Ridge Operations Implementation of a Comprehensive Management Program for the Storage, Transportation, and Disposition of Potentially Reusable Uranium Materials  

Broader source: Energy.gov (indexed) [DOE]

93 93 FINAL Programmatic Environmental Assessment for the U.S. Department of Energy, Oak Ridge Operations Implementation of a Comprehensive Management Program for the Storage, Transportation, and Disposition of Potentially Reusable Uranium Materials FINDING OF NO SIGNIFICANT IMPMZT PROGR4MMATIC ENVIRONMENTAL ASSESSME?X FOR THE U.S. DEPARTMENT OF ENERGY, OAK RIDGE OPER4TIOSS IMPLEMENTATION OF A COMPREHENSIVE MANAGEMEKT PROGK4hl FOR THE STORAGE, TRANSPORTATION, AND DISPOSITION OF POTENTIALLY REUSABLE URANJUh4 MATERIALS AGEhCY: U.S. DEPARTMENT OF ENERGY (DOE) ACTION: FINDI?iG OF NO SIGNIFICANT 1~IPAC-I SUMI\!L4RY: The U. S. DOE has completed a Programmatic Environmental Assessment (PE:,4) (DOE/E?,- 1393), which is incorporated herein by this reference. Tile purpose of the

166

Welding of uranium and uranium alloys  

SciTech Connect (OSTI)

The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

Mara, G.L.; Murphy, J.L.

1982-03-26T23:59:59.000Z

167

FAQ 1-What is uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is uranium? What is uranium? What is uranium? Uranium is a radioactive element that occurs naturally in low concentrations (a few parts per million) in soil, rock, and surface and groundwater. It is the heaviest naturally occurring element, with an atomic number of 92. Uranium in its pure form is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes: primarily uranium-238, uranium-235, and a very small amount of uranium-234. (Isotopes are different forms of an element that have the same number of protons in the nucleus, but a different number of neutrons.) In a typical sample of natural uranium, most of the mass (99.27%) consists of atoms of uranium-238. About 0.72% of the mass consists of atoms of uranium-235, and a very small amount (0.0055% by mass) is uranium-234.

168

EPA Update: NESHAP Uranium Activities  

E-Print Network [OSTI]

for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill for Underground Uranium Mining Operations (Subpart B) #12;5 EPA Regulatory Requirements for Underground Uranium uranium mines include: · Applies to 10,000 tons/yr ore production, or 100,000 tons/mine lifetime · Ambient

169

Uranium hexafluoride public risk  

SciTech Connect (OSTI)

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

170

Uranium purchases report 1992  

SciTech Connect (OSTI)

Data reported by domestic nuclear utility companies in their responses to the 1991 and 1992 ``Uranium Industry Annual Survey,`` Form EIA-858, Schedule B ``Uranium Marketing Activities,are provided in response to the requirements in the Energy Policy Act 1992. Data on utility uranium purchases and imports are shown on Table 1. Utility enrichment feed deliveries and secondary market acquisitions of uranium equivalent of US DOE separative work units are shown on Table 2. Appendix A contains a listing of firms that sold uranium to US utilities during 1992 under new domestic purchase contracts. Appendix B contains a similar listing of firms that sold uranium to US utilities during 1992 under new import purchase contracts. Appendix C contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data.

Not Available

1993-08-19T23:59:59.000Z

171

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents [OSTI]

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

172

2013 Uranium Marketing Annual Survey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for inflation. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013). UF 6 is uranium hexafluoride. The natural UF 6 and enriched...

173

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS  

E-Print Network [OSTI]

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS Thesis. I have benefitted from conversations with many persons w~ile engaged in this project. I would like

Winfree, Erik

174

LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites | Department of  

Broader source: Energy.gov (indexed) [DOE]

Co-Hosts Internatonal Workshop on Uranium Legacy Sites Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites October 16, 2012 - 1:51pm Addthis LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites What does this project do? Goal 1. Protect human health and the environment The U.S. Department of Energy (DOE) Office of Legacy Management (LM) co-hosted, with the International Atomic Energy Agency (IAEA), a week of visits to DOE sites in Colorado and Utah, and a 4-day workshop in Grand Junction, Colorado. More than 30 visitors from 20 countries attended the event in August 2012. The IAEA International Workshop on Management and

175

Uranium industry annual 1993  

SciTech Connect (OSTI)

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

176

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2 W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W Uranium Concentrate...

177

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

Uranium Marketing Uranium Marketing Annual Report May 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2010 Uranium Marketing Annual Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity, Renewables, and Uranium Statistics. Questions about the preparation and content of this report may be directed to Michele Simmons, Team Leader,

178

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

179

Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report  

SciTech Connect (OSTI)

A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

1994-10-01T23:59:59.000Z

180

DOE Prepares Programmatic Environmental Impact Statement for the Uranium  

Broader source: Energy.gov (indexed) [DOE]

Prepares Programmatic Environmental Impact Statement for the Prepares Programmatic Environmental Impact Statement for the Uranium Leasing Program DOE Prepares Programmatic Environmental Impact Statement for the Uranium Leasing Program January 18, 2012 - 3:13pm Addthis DOE Prepares Programmatic Environmental Impact Statement for the Uranium Leasing Program What does this project do? Goal 4. Optimize the use of land and assets The U.S. Department of Energy (DOE) Office of Legacy Management is responsible for administering the DOE Uranium Leasing Program (ULP) and its 31 uranium lease tracts located in the Uravan Mineral Belt of southwestern Colorado. The ULP began in 1948 when Congress authorized the U.S. Atomic Energy Commis-sion (AEC), a predecessor agency of DOE, to withdraw lands from the public domain for the sole purpose of exploring for, developing,

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CRAD, Environmental Protection - Y-12 Enriched Uranium Operations Oxide  

Broader source: Energy.gov (indexed) [DOE]

Environmental Protection - Y-12 Enriched Uranium Operations Environmental Protection - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Environmental Protection - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Environmental Compliance program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Environmental Protection - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications

182

CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion  

Broader source: Energy.gov (indexed) [DOE]

DOE Oversight - Y-12 Enriched Uranium Operations Oxide DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications

183

Development of Novel Sorbents for Uranium Extraction from Seawater  

SciTech Connect (OSTI)

As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOEs efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

Lin, Wenbin; Taylor-Pashow, Kathryn

2014-01-08T23:59:59.000Z

184

The role of science, stakeholder engagement, and decision making process design in advancing innovation around water management in Massachusetts  

E-Print Network [OSTI]

The Sustainable Water Management Initiative is a multi-stakeholder process that the Massachusetts Executive Office of Energy and Environmental Affairs convened in early 2010 to seek advice on how to more sustainably manage ...

Corson-Rikert, Tyler Andrew

2011-01-01T23:59:59.000Z

185

Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National Nuclear  

National Nuclear Security Administration (NNSA)

Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National Nuclear Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Oak Ridge, Tenn. Selected as Uranium Enrichment Site Oak Ridge, Tenn. Selected as Uranium Enrichment Site September 19, 1942 Oak Ridge, TN

186

Process for Transition of Uranium Mill Tailings Radiation Control Act Title  

Broader source: Energy.gov (indexed) [DOE]

Uranium Mill Tailings Radiation Control Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance (March 2012) Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance (March 2012)

187

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 Mill Owner Mill Name County, State (existing and planned locations) Milling Capacity (short tons of ore per day) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished Denison White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby

188

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

6. Employment in the U.S. uranium production industry by category, 2003-13 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

189

Uranium Marketing Annual Report -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2009-13 thousands pounds U3O8...

190

Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2013 million pounds U3O8 equivalent Delivery year Total purchased Purchased from U.S....

191

Uranium Marketing Annual Report -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2013, by delivery year, 2014-23 thousand pounds U3O8 equivalent Year...

192

Uranium purchases report 1993  

SciTech Connect (OSTI)

Data reported by domestic nuclear utility companies in their responses to the 1991 through 1993 ``Uranium Industry Annual Survey,`` Form EIA-858, Schedule B,`` Uranium Marketing Activities,`` are provided in response to the requirements in the Energy Policy Act 1992. Appendix A contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data. Additional information published in this report not included in Uranium Purchases Report 1992, includes a new data table. Presented in Table 1 are US utility purchases of uranium and enrichment services by origin country. Also, this report contains additional purchase information covering average price and contract duration. Table 2 is an update of Table 1 and Table 3 is an update of Table 2 from the previous year`s report. The report contains a glossary of terms.

Not Available

1994-08-10T23:59:59.000Z

193

E-Print Network 3.0 - advanced lwr concept Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENABLING SUSTAINABLE NUCLEAR POWER Summary: and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... uranium energy...

194

Uranium purchases report 1994  

SciTech Connect (OSTI)

US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs.

NONE

1995-07-01T23:59:59.000Z

195

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

10. Uranium reserve estimates at the end of 2012 10. Uranium reserve estimates at the end of 2012 million pounds U3O8 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 1 Sixteen respondents reported reserve estimates on 71 mines and properties. These uranium reserve estimates cannot be compared with the much larger historical data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http://www.eia.gov/cneaf/nuclear/page/reserves/ures.html. Reserves, as reported here, do not necessarily imply compliance with U.S. or Canadian government definitions for purposes of investment disclosure.

196

ADVANCED PHOTON SOURCE Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC  

E-Print Network [OSTI]

activation of cancer cell growth by naturally occurring estrogen in a woman's body. Research at the APS Synchrotron Radiation Lightsource, and the Advanced Light Source, researchers have achieved a significant

Kemner, Ken

197

FAQ 5-Is uranium radioactive?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Is uranium radioactive? Is uranium radioactive? Is uranium radioactive? All isotopes of uranium are radioactive, with most having extremely long half-lives. Half-life is a measure of the time it takes for one half of the atoms of a particular radionuclide to disintegrate (or decay) into another nuclear form. Each radionuclide has a characteristic half-life. Half-lives vary from millionths of a second to billions of years. Because radioactivity is a measure of the rate at which a radionuclide decays (for example, decays per second), the longer the half-life of a radionuclide, the less radioactive it is for a given mass. The half-life of uranium-238 is about 4.5 billion years, uranium-235 about 700 million years, and uranium-234 about 25 thousand years. Uranium atoms decay into other atoms, or radionuclides, that are also radioactive and commonly called "decay products." Uranium and its decay products primarily emit alpha radiation, however, lower levels of both beta and gamma radiation are also emitted. The total activity level of uranium depends on the isotopic composition and processing history. A sample of natural uranium (as mined) is composed of 99.3% uranium-238, 0.7% uranium-235, and a negligible amount of uranium-234 (by weight), as well as a number of radioactive decay products.

198

Delayed neutron assay to test sorbers for uranium-from-seawater applications  

E-Print Network [OSTI]

Delayed Fission Neutron (DFN) assay has been applied to the measurement of uranium content in sorbers exposed to natural seawater for the purpose of evaluating advanced ion exchange resins. DFN assay was found to be ...

Nitta, Cynthia K.

1982-01-01T23:59:59.000Z

199

Office of Legacy Management | Department of Energy  

Office of Legacy Management (LM)

Office of Legacy Management Timbered ore bin and adits (mine openings) at a Defense-Related Uranium Mine located in southwestern Montrose County, Colorado Timbered ore bin and...

200

DOE Extends Public Comment Period for the Draft Uranium Leasing Program  

Broader source: Energy.gov (indexed) [DOE]

the Draft Uranium Leasing the Draft Uranium Leasing Program Programmatic Environmental Impact Statement DOE Extends Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement June 3, 2013 - 3:05pm Addthis Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs, (720) 377-9672, ULinfo@lm.doe.gov May 29, 2013 DOE Extends Public Comment Period for Uranium Program Environmental Impact Statement The U.S. Department of Energy (DOE) today announced that the public comment period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS) has been extended to July 1, 2013. Under the Uranium Leasing Program, DOE's Office of Legacy Management manages 31 tracts of land in Mesa, Montrose, and San Miguel counties in

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE Evaluates Environmental Impacts of Uranium Mining on Government Land in  

Broader source: Energy.gov (indexed) [DOE]

Evaluates Environmental Impacts of Uranium Mining on Government Evaluates Environmental Impacts of Uranium Mining on Government Land in Western Colorado DOE Evaluates Environmental Impacts of Uranium Mining on Government Land in Western Colorado March 15, 2013 - 12:20pm Addthis Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs, (720) 377-9672, ULinfo@lm.doe.gov GRAND JUNCTION, Colo. - The U.S. Department of Energy (DOE) today announced that the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS) is available for public review and comment. Under the Uranium Leasing Program, DOE's Office of Legacy Management manages 31 tracts of land in Mesa, Montrose, and San Miguel counties in Colorado - approximately 25,000 acres - that are leased to private entities for uranium and vanadium mining. No mining operations are active

202

Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy  

SciTech Connect (OSTI)

For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through cradle-to-grave case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

none,

2013-07-01T23:59:59.000Z

203

Office of Legacy Management | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Legacy Management Office of Legacy Management Bluewater, New Mexico, Disposal Site Read more Central Nevada Test Area, Nevada Read more Rocky Flats, Colorado, Site Read more Abandoned Uranium Mines Report to Congress Read more Tuba City, Arizona, Disposal Site Read more Announcements DOE has launched a website for the Asset Revitalization Initiative (ARI), a DOE-wide effort to advance the beneficial reuse of its unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources and a highly skilled workforce. The U.S. Department of Energy Office of Legacy Management has prepared the October-December 2013 Program Update newsletter. Registration is now open for the 2014 National Environmental Justice Conference &Training Program. For more information see our English or

204

Office of Legacy Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Legacy Management Office of Legacy Management Bluewater, New Mexico, Disposal Site Read more Central Nevada Test Area, Nevada Read more Rocky Flats, Colorado, Site Read more Abandoned Uranium Mines Report to Congress Read more Tuba City, Arizona, Disposal Site Read more Announcements DOE has launched a website for the Asset Revitalization Initiative (ARI), a DOE-wide effort to advance the beneficial reuse of its unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources and a highly skilled workforce. The U.S. Department of Energy Office of Legacy Management has prepared the July-September 2013 Program Update newsletter. Registration is now open for the 2014 National Environmental Justice Conference &Training Program. For more information see our English or

205

Controlling uranium reactivity March 18, 2008  

E-Print Network [OSTI]

for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

Meyer, Karsten

206

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect (OSTI)

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

207

Management Responsibilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management Responsibilities Management Responsibilities Depleted UF6 Management Responsibilities DOE has responsibility for safe and efficient management of approximately 700,000 metric tons of depleted UF6. Organizational Responsibilities In the United States, the U.S. Department of Energy is responsible for managing all the depleted uranium that has been generated by the government and has been declared surplus to national defense needs. In addition, as a result of two memoranda of agreement that have been signed between the DOE and USEC, the DOE has assumed management responsibility for approximately 145,000 metric tons of depleted UF6 that has been or will be generated by USEC. Any additional depleted UF6 that USEC generates will be USEC's responsibility to manage. DOE Management Responsibility

208

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

year, 2009-13 Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2009-13). Table 19. Foreign purchases of uranium by U.S. suppliers...

209

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

210

Design, Performance, and Sustainability of Engineered Covers for Uranium  

Broader source: Energy.gov (indexed) [DOE]

Design, Performance, and Sustainability of Engineered Covers for Design, Performance, and Sustainability of Engineered Covers for Uranium Mill Tailings Design, Performance, and Sustainability of Engineered Covers for Uranium Mill Tailings Proceedings of the Workshop on Long-Term Performance Monitoring of Metals and Radionuclides in the Subsurface: Strategies, Tools, and Case Studies. U.S. Geological Survey. April 21 and 22, 2004, Reston, Virginia. W.J. Waugh Design, Performance, and Sustainability of Engineered Covers for Uranium Mill Tailings More Documents & Publications Monitoring the Performance of an Alternative Cover Using Caisson Lysimeters Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Sustainable Disposal Cell Covers: Legacy Management Practices,

211

Chapter 2. Uranium Mining and Extraction Processes in the United States In 1946, Congress passed the Atomic Energy Act (AEA), establishing the Atomic Energy Commission  

E-Print Network [OSTI]

it is managed. This chapter examines the location and geology of uranium deposits in the United States, the methods used to mine uranium, and the methods used to extract it from ore. Many of the geological, the characteristic geologic forms of uranium ore bodies were small to moderate-sized isolated pods or linear sinuous

212

Corrosion-resistant uranium  

DOE Patents [OSTI]

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, Jr., Victor M. (Kingston, TN); Pullen, William C. (Knoxville, TN); Kollie, Thomas G. (Oak Ridge, TN); Bell, Richard T. (Knoxville, TN)

1983-01-01T23:59:59.000Z

213

Corrosion-resistant uranium  

DOE Patents [OSTI]

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

1981-10-21T23:59:59.000Z

214

Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution  

SciTech Connect (OSTI)

Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

2014-03-01T23:59:59.000Z

215

management  

National Nuclear Security Administration (NNSA)

5%2A en Management and Budget http:nnsa.energy.govaboutusouroperationsmanagementandbudget

P...

216

Agencies Assist LM to Develop Reports on Defense-Related Uranium Mines |  

Broader source: Energy.gov (indexed) [DOE]

Agencies Assist LM to Develop Reports on Defense-Related Uranium Agencies Assist LM to Develop Reports on Defense-Related Uranium Mines Agencies Assist LM to Develop Reports on Defense-Related Uranium Mines January 9, 2014 - 10:29am Addthis What does this project do? Goal 4. Optimize the use of land and assets. The U.S. Department of Energy (DOE) Office of Legacy Management (LM) has made substantial progress researching and consulting with the U.S. Environmental Protection Agency (EPA), the U.S. Department of the Interior (DOI), other relevant federal agencies, affected states and tribes, and the interested public to obtain data and other technical information that will inform the Report to Congress on defense-related legacy uranium mines. Congress directed DOE to undertake a review of, and prepare a report on, abandoned uranium mines (AUMs) in the United States that provided uranium

217

LM Progressing with Uranium Mines Report to Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Progressing with Uranium Mines Report to Congress Progressing with Uranium Mines Report to Congress LM Progressing with Uranium Mines Report to Congress July 12, 2013 - 10:50am Addthis As reported in an earlier Program Update newsletter, the U.S. Department of Energy (DOE) Office of Legacy Management (LM) is compiling data for a Report to Congress on defense-related uranium mines. DOE was directed by the U.S. Congress in this year's National Defense Authorization Act to undertake a review of, and prepare a report on, abandoned uranium mines (AUM) in the U.S. that provided ore for atomic energy defense activities. The report must be completed by July 2014. The article, "Abandoned Uranium Mines Report to Congress: LM Wants Your Input" from the January-March 2013 issue of the LM Program Update provides additional

218

Selective leaching of uranium from uranium-contaminated soils: Progress report 1  

SciTech Connect (OSTI)

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

1993-02-01T23:59:59.000Z

219

Selective leaching of uranium from uranium-contaminated soils: Progress report 1  

SciTech Connect (OSTI)

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

1993-02-01T23:59:59.000Z

220

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Rats after Implantation with Depleted Uranium Fragments Guoying Zhu 1 * Mingguang...and distribution of uranium in depleted uranium (DU) implanted rats. Materials...of chronic exposure to DU. Depleted uranium|Bone|Kidney|Distribution......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

GTRI's Convert Program: Minimizing the Use of Highly Enriched Uranium |  

National Nuclear Security Administration (NNSA)

Program: Minimizing the Use of Highly Enriched Uranium | Program: Minimizing the Use of Highly Enriched Uranium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI's Convert Program: Minimizing the Use of ... Fact Sheet GTRI's Convert Program: Minimizing the Use of Highly Enriched Uranium Apr 12, 2013

222

Y-12s Building 9212 and the Uranium Processing Facility, part...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wings. Never would a facility be designed like that today to process uranium. Yet, the workers at Y-12 have, for years, managed to sustain the Y-12 "Can Do" attitude and generate...

223

Radiation dose to members of public residing around uranium mining complex, Jaduguda, Jharkhand, India  

Science Journals Connector (OSTI)

......collection, decomposition and storage of samples prior to analysis...sample collection, analysis and storage were soaked in 10 % HNO3 for...Sahoo S. K., Puranik V. D. Long-term management of uranium mill waste: proposal for stewardship......

R. M. Tripathi; S. K. Sahoo; V. N. Jha; Rajesh Kumar; A. K. Shukla; V. D. Puranik; H. S. Kushwaha

2011-11-01T23:59:59.000Z

224

Advanced Materials Manufacturing and Innovative Technologies...  

Energy Savers [EERE]

Inform Integrity Management Plans. - Opportunities: * Leverage advances in high-performance computing and improved understanding of materials performance at condition. *...

225

EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties,  

Broader source: Energy.gov (indexed) [DOE]

2: Uranium Leasing Program, Mesa, Montrose, and San Miguel 2: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado Summary This EIS evaluates the environmental impacts of management alternatives for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. The cooperating agencies are U.S. Department of the Interior; Bureau of Land Management; U.S. Environmental Protection Agency; Colorado Department of Transportation; Colorado Division of Reclamation, Mining, and Safety; Colorado Parks and Wildlife; Mesa County Commission; Montrose County Commission; San Juan County Commission; San Miguel County Board of

226

Advanced Telemetry | Open Energy Information  

Open Energy Info (EERE)

Telemetry Jump to: navigation, search Name: Advanced Telemetry Place: San Diego, California Zip: 92131-2435 Sector: Buildings Product: San Diego-based provider of energy management...

227

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

SciTech Connect (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

228

Sixteenth water reactor safety information meeting: Proceedings: Volume 5, NUREG-1150, accident managment, recent advances in severe accident research, TMI-2, BWR Mark l shell failure  

SciTech Connect (OSTI)

This five-volume report contains 141 papers out of the 175 that were presented at the Sixteenth Water Reactor Safety Information Meeting held at the National Institute of Standards and Technology, Gaithersburg, Maryland, during the week of October 24--27, 1988. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included twenty different papers presented by researchers from Germany, Italy, Japan, Sweden, Switzerland, Taiwan and the United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This document, Volume 5, discusses NUREG-1150, Accident Management, Recent Advances in Severe Accident Research, BWR Mark I Shell Failure, and the Three Mile Island-2 Reactor.

Weiss, A.J. (comp.)

1989-03-01T23:59:59.000Z

229

Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management  

SciTech Connect (OSTI)

This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S. will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

Shawn St. Germain; Ronald Farris; Heather Medeman

2013-09-01T23:59:59.000Z

230

CRAD, Training- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

231

file://\\\\fs-f1\\shared\\uranium\\uranium.html  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

The initial uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

232

Method for fabricating uranium foils and uranium alloy foils  

DOE Patents [OSTI]

A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

2006-09-05T23:59:59.000Z

233

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

9. Summary production statistics of the U.S. uranium industry, 1993-2012 9. Summary production statistics of the U.S. uranium industry, 1993-2012 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Exploration and Development Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars)1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 Mine Production of Uranium (million pounds U3O8) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 Uranium Concentrate Production (million pounds U3O8) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1

234

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

8. U.S. uranium expenditures, 2003-2012 8. U.S. uranium expenditures, 2003-2012 million dollars Year Drilling Production Land and Other Total Expenditures Total Land and Other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Drilling: All expenditures directly associated with exploration and development drilling. Production: All expenditures for mining, milling, processing of uranium, and facility expense.

235

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......ingestion of natural uranium in food and drink, and...for the measurement of uranium in urine samples, DU...respect to potential health hazards can be detected...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Hllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

236

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......Article Assessment of exposure to depleted uranium P. Roth V. Hollriegl E. Werner...for determining the amount of depleted uranium (DU) incorporated. The problems...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Hllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

237

2013 Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

accounted for 32%. The remaining 16% originated from Brazil, China, Czech Republic, Germany, Hungary, Malawi, Namibia, Niger, Portugal, and South Africa. COOs purchased uranium...

238

U.S.Uranium Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

conditions. The uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

239

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013)....

240

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 10, 11 and 16. 2003-2013-Form EIA-858, "Uranium Marketing Annual Survey". million pounds U 3 O 8 equivalent 1 Includes purchases between...

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microsoft Word - A07DN052 Uranium Leasing Final Report 01-15-08.doc  

Broader source: Energy.gov (indexed) [DOE]

Audit Services Audit Services Audit Report Management Controls over the Department of Energy's Uranium Leasing Program OAS-M-08-05 January 2008 Department of Energy Washington, DC 20585 J a n u a r y 2 3 , 2 0 0 8 MEMORANDUM FOR THE DIRECTOR, OFFICE OF LEGACY MANAGEMENT FROM: ~ssista/nt Lnspector General for NNSA and Energy Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Management Controls over the Department of Energy's Uranium Leasing Program" BACKGROUND The Department of Energy's Uranium Leasing Program was established by the Atomic Energy Act of 1954 to develop a supply of domestic uranium to meet the nation's defense needs. Pursuant to the Act, the Program leases tracts of land to private sector entities for

242

Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management. Progress report  

SciTech Connect (OSTI)

With recent theoretical and empirical research in basic and applied psychology, human factors, and engineering, it is now sufficient to define an integrated approach to the deign of advanced displays for present and future nuclear power plants. Traditionally, the conventional displays have shown operators the individual variables on gauges, meters, strip charts, etc. This design approach requires the operators to mentally integrate the separately displayed variables and determine the implications for the plant state. This traditional approach has been known as the single-sensor-single-indicator display design and it places an intolerable amount of mental workload on operators during transients and abnormal conditions. This report discusses a new alternative approach which is the use of direct perception interfaces. Direct perception a interfaces display the underlying physical and system constraints of the situation in a directly perceptual way, such that the viewer need not reason about what is seen to identify system states, but can identify the state of the system perceptually. It is expected that displays which show the dynamics of fundamental physical laws should better support operator decisions and diagnoses of plant states. The purpose of this research project is to develop a suite of direct perception displays for PWR nuclear power plant operations.

Jones, B.; Shaheen, S.; Moray, N.; Sanderson, P.; Reising, D.V.

1993-05-21T23:59:59.000Z

243

Marathon/Vitro to seek uranium  

Science Journals Connector (OSTI)

Marathon/Vitro to seek uranium ... Last week, Marathon Oil agreed with Vitro Corp. of America to explore jointly for uranium in North America. ...

1967-03-13T23:59:59.000Z

244

Final Uranium Leasing Program Programmatic Environmental Impact...  

Broader source: Energy.gov (indexed) [DOE]

for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium...

245

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents [OSTI]

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

246

Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system  

SciTech Connect (OSTI)

Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

1991-01-01T23:59:59.000Z

247

New Fuel Cycle and Fuel Management Options in Heavy Liquid Metal-Cooled Reactors  

Science Journals Connector (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Fuel Management of Reactors Other Than Light Water Reactors

Ehud Greenspan; Pavel Hejzlar; Hiroshi Sekimoto; Georgy Toshinsky; David Wade

248

Fernald vacuum transfer system for uranium materials repackaging  

SciTech Connect (OSTI)

The Fernald Environmental Management Project (FEMP) is the site of a former Department of Energy (DOE) uranium processing plant. When production was halted, many materials were left in an intermediate state. Some of this product material included enriched uranium compounds that had to be repackaged for shipment of off-site storage. This paper provides an overview, technical description, and status of a new application of existing technology, a vacuum transfer system, to repackage the uranium bearing compounds for shipment. The vacuum transfer system provides a method of transferring compounds from their current storage configuration into packages that meet the Department of Transportation (DOT) shipping requirements for fissile materials. This is a necessary activity, supporting removal of nuclear materials prior to site decontamination and decommissioning, key to the Fernald site's closure process.

Kaushiva, Shirley; Weekley, Clint; Molecke, Martin; Polansky, Gary

2002-02-24T23:59:59.000Z

249

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Milling Capacity (short tons of ore per day) 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby Uranium One Americas, Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Changing License To Operational Standby

250

CRAD, Occupational Safety & Health - Y-12 Enriched Uranium Operations Oxide  

Broader source: Energy.gov (indexed) [DOE]

Y-12 Enriched Uranium Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Occupational Safety & Health - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Industrial Safety and Industrial Health programs at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Occupational Safety & Health - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications

251

DOE - Office of Legacy Management -- Fernald Environmental Management  

Office of Legacy Management (LM)

Fernald Environmental Management Fernald Environmental Management Project - 027 FUSRAP Considered Sites Site: Fernald Environmental Management Project (027) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center, is located about 18 miles northwest of Cincinnati, Ohio. The facility produced uranium metal products between 1953 and 1989 for use in production reactors to make plutonium and tritium at other Department of Energy (DOE) sites in support of United States defense programs. Uranium metal production ended in July 1989 and resources shifted

252

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. uranium mine production and number of mines and sources, 2003-2012 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Number of Operating Mines Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources1 1 1 2 1 1 1 2 1 1 1

253

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

254

Radiological Safety Training for Uranium Facilities  

Broader source: Energy.gov (indexed) [DOE]

DOE HDBK-1113-2008 DOE HDBK-1113-2008 April 2008 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1113-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1113-2008 iii Foreword This Handbook describes a recommended implementation process for additional training as outlined in DOE-STD-1098-99, Radiological Control (RCS). Its purpose is to assist those individuals, Department of Energy (DOE) employees, Managing and Operating (M&O) contractors, and Managing and Integrating

255

FAQ 7-How is depleted uranium produced?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

256

Uranyl Protoporphyrin: a New Uranium Complex  

Science Journals Connector (OSTI)

...received 3 times the LD50 of uranium as uranyl protoporphyrin...nitrate, had showed livers depleted of glycogen and kidneys...destruc-tion typical of uranium poisoning. The uranium-damaged...T. Godwin et al., Cancer 8, 601 (1954). 5...excretion of hexavalent uranium in man," in Proc...

ROBERT E. BASES

1957-07-26T23:59:59.000Z

257

Uranium: Environmental Pollution and Health Effects  

Science Journals Connector (OSTI)

Uranium is found ubiquitously in nature in low concentrations in soil, rock, and water. Naturally occurring uranium contains three isotopes, namely 238U, 235U, and 234U. All uranium isotopes have the same chemical properties, but they have different radiological properties. The main civilian use of uranium is to fuel nuclear power plants, whereas high enriched (in 235U) uranium is used in the military sector as nuclear explosives and depleted uranium (DU) as penetrators or tank shielding. Exposure to uranium may cause health problems due to its radiological (uranium is predominantly emitting alpha-particles) and chemical actions (heavy metal toxicity). Uranium uptake may occur by ingestion, inhalation, contaminated wounds, and embedded fragments especially for soldiers. Inhalation of dust is considered the major pathway for uranium uptake in workplaces. Soluble uranium compounds tend to quickly pass through the body, whereas insoluble uranium compounds pose a more serious inhalation exposure hazard. The kidney is the most sensitive organ for uranium chemotoxicity. An important indirect radiological effect of uranium is the increased risk of lung cancers from inhalation of the daughter products of radon, a noble gas in the uranium decay chains that transports uranium-derived radioactivity from soil into the indoor environment. No direct evidence about the carcinogenic effect of DU in humans is available yet.

D. Melo; W. Burkart

2011-01-01T23:59:59.000Z

258

The End of Cheap Uranium  

E-Print Network [OSTI]

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

Michael Dittmar

2011-06-21T23:59:59.000Z

259

Safe Operating Procedure SAFETY PROTOCOL: URANIUM  

E-Print Network [OSTI]

involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

Farritor, Shane

260

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Production: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel ... Fact Sheet Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel  

National Nuclear Security Administration (NNSA)

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Production: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel ... Fact Sheet Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel

262

A review of uranium economics  

Science Journals Connector (OSTI)

The recent increase in the demand for power for commercial use, the challenges facing fossil fuel use and the prospective of cheap nuclear power motivate different countries to plan for the use of nuclear power. This paper reviews many aspects of uranium economics, which includes the advantages and disadvantages of nuclear power, comparisons with other sources of power, nuclear power production and requirements, the uranium market, uranium pricing, spot price and long-term price indicators, and the cost of building a nuclear power facility.

A.K. Mazher

2009-01-01T23:59:59.000Z

263

Uranium Mining Life-Cycle Energy Cost vs. Uranium Resources  

Science Journals Connector (OSTI)

The long-term viability of nuclear energy systems depends on the availability of uranium and on the question, whether the overall energy balance of the fuel cycle is positive, taking into account the full life-cy...

W. Eberhard Falck

2012-01-01T23:59:59.000Z

264

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Environmental and health consequences of depleted uranium use in the 1991 Gulf...Properties, use and health effects of depleted uranium (DU): a general...J. (2002). Health effects of embedded depleted uranium. Mil Med. 167......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

265

Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy  

Science Journals Connector (OSTI)

...Molecular design for uranium neutron-capture therapy (cancer/immunotherapy...methodology for cancer therapy. Boron...system using uranium, as described...800 to =400 uranium atoms per apoferritin...uranyl ions were depleted, and loading...

J F Hainfeld

1992-01-01T23:59:59.000Z

266

Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115  

Science Journals Connector (OSTI)

Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a ... TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. T...

K. J. Mathew; G. L. Singleton; R. M. Essex

2013-04-01T23:59:59.000Z

267

Disposition of uranium-233  

SciTech Connect (OSTI)

The US is developing a strategy for the disposition of surplus weapons-usable uranium-233 ({sup 233}U). The strategy (1) identifies the requirements for the disposition of surplus {sup 233}U; (2) identifies potential disposition options, including key issues to be resolved with each option; and (3) defines a road map that identifies future key decisions and actions. The disposition of weapons-usable fissile materials is part of a US international arms-control program for reduction of the number of nuclear weapons and the quantities of nuclear-weapons-usable materials worldwide. The disposition options ultimately lead to waste forms requiring some type of geological disposal. Major options are described herein.

Tousley, D.R. [Dept. of Energy, Washington, DC (United States). Office of Fissile Materials Disposition; Forsberg, C.W.; Krichinsky, A.M. [Oak Ridge National Lab., TN (United States)

1997-10-16T23:59:59.000Z

268

Application of a Heat Integrated Post-combustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant Award Number: DE-FE0007395 DOE Project Manager: José D. Figueroa  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Heat Integrated Post- a Heat Integrated Post- combustion CO 2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant University of Kentucky Research Foundation Partnered with U.S. Department of Energy NETL Louisville Gas & Electric and Kentucky Utilities Electric Power Research Institute (with WorleyParsons) Hitachi Power Systems America Smith Management Group July 9, 2013 Goals and Objectives * Objectives 1) To demonstrate a heat-integrated post-combustion CO 2 capture system with an advanced solvent; 2) To collect information/data on material corrosion and identify appropriate materials of construction for a 550 MWe commercial-scale carbon capture plant.  To gather data on solvent degradation kinetics, water management, system dynamic control as well as other information during the long-term

269

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Domestic Uranium Production Report June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2012 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

270

2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Uranium Marketing Annual Report May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report ii

271

Uranium Enrichment's $7-Billion Uncertainty  

Science Journals Connector (OSTI)

...229 : 1407 ( 1985 ). Uranium...claims John R. Longenecker, who heads...because it be-John Longenecker '"ou have...based on gas centrifuges Finally...research on the centrifuge technology...21 June 1985, p. 1407...

COLIN NORMAN

1986-04-18T23:59:59.000Z

272

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 28, 29, 30 and 31. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". Notes: Totals may not equal sum of components because of independent...

273

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 10, 11 and 16. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". dollars per pound U 3 O 8 equivalent dollars per pound U 3 O 8...

274

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 28, 29, 30 and 31. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". million pounds U 3 O 8 equivalent million pounds U 3 O 8 equivalent...

275

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 22, 23, 25, and 27. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". - No data reported. 0 10 20 30 40 50 60 70 1994 1995 1996 1997...

276

2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3. U.S. uranium concentrate production, shipments, and sales, 2003-13" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013...

277

Uranium Resources Inc URI | Open Energy Information  

Open Energy Info (EERE)

Uranium Resources Inc URI Uranium Resources Inc URI Jump to: navigation, search Name Uranium Resources, Inc. (URI) Place Lewisville, Texas Zip 75067 Product Uranium Resources, Inc. (URI) is primarily engaged in the business of acquiring, exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References Uranium Resources, Inc. (URI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Uranium Resources, Inc. (URI) is a company located in Lewisville, Texas . References ↑ "Uranium Resources, Inc. (URI)" Retrieved from "http://en.openei.org/w/index.php?title=Uranium_Resources_Inc_URI&oldid=352580" Categories: Clean Energy Organizations

278

EIS-0111: Remedial Actions at the Former Vanadium Corporation of America Uranium Mill Site, Durango, La Plata County, Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several scenarios for management and control of the residual radioactive wastes at the inactive Durango, Colorado, uranium processing site, including a no action alternative, an alternative to manage wastes on-site and three alternatives involving off-site management and decontamination of the Durango site.

279

PIA - Savannah River Site Management and Operating Contractor...  

Energy Savers [EERE]

Management System (HRMS) Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - Advanced Test Reactor National Scientific User Facility...

280

Water: Advanced Irrigation Technologies  

Science Journals Connector (OSTI)

Abstract Limited opportunities to further expand the volume of global freshwaters allocated to irrigation means that advanced irrigation technologies, aiming to improve efficiency of existing systems, are timely needed and are of paramount importance. This article Advanced Irrigation Technologies describes the latest advances in irrigation application methods, irrigation management, and other novel developments. It provides a vision for the future, including emerging risks, opportunities, and technical challenges, as the world gears up to supply 50% more food to an additional 2 billion people by 2050.

C.B. Hedley; J.W. Knox; S.R. Raine; R. Smith

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Inositol hexaphosphate: a potential chelating agent for uranium  

Science Journals Connector (OSTI)

......and staining pigments. Depleted uranium, a by-product of uranium...177-193. 2 World Health Organization (WHO). Uranium in drinking-water...the lethal effect of oral uranium poisoning. Health Phys. (2000) 78(6......

D. Cebrian; A. Tapia; A. Real; M. A. Morcillo

2007-11-01T23:59:59.000Z

282

Variations of the Isotopic Ratios of Uranium in Environmental Samples Containing Traces of Depleted Uranium: Theoretical and Experimental Aspects  

Science Journals Connector (OSTI)

......Samples Containing Traces of Depleted Uranium: Theoretical and Experimental...for the detection of traces of depleted uranium (DU) in environmental samples...percentage composition is about 20% depleted uranium and 80% natural uranium, for......

M. Magnoni; S. Bertino; B. Bellotto; M. Campi

2001-12-01T23:59:59.000Z

283

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......after parenteral injections of depleted uranium S. Fukuda 1 * M. Ikeda 1 M...intramuscular (i.m.) injections of depleted uranium (DU) was examined and the...with uranium. INTRODUCTION Depleted uranium (DU) can affect human health......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

284

Advanced Fuel Cycles Activities in IAEA  

SciTech Connect (OSTI)

Considerable scientific and technical progress in many areas of Partitioning and Transmutation (P and T) has been recognized as probable answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. These recent global developments such as Russian initiative on Global Nuclear Infrastructure-International Fuel Centre and the US initiative on Global Nuclear Energy Partnership (GNEP) have made advanced fuel cycles as one of the decisive influencing factor for the future growth of nuclear energy. International Atomic Energy Agency has initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) with overall objective of bringing together technology holders and technology users to consider jointly the international and national actions required achieving desired innovations in nuclear reactors and fuel cycles. One of the interesting common features of these initiatives (INPRO, GNEP and GNI-IFC) is closed fast reactor fuel cycles and proliferation resistance. Any fuel cycle that integrate P and T into it is also known as 'Advanced Fuel Cycle' (AFC) that could achieve reduction of plutonium and Minor Actinide (MA) elements (namely Am, Np, Cm, etc.). In this regard, some Member States are also evaluating alternative concepts involving the use of thorium fuel cycle, inert-matrix fuel or coated particle fuel. Development of 'fast reactors with closed fuel cycles' would be the most essential step for implementation of P and T. The scale of realization of any AFC depends on the maturity of the development of all these elemental technologies such as recycling MA, Pu as well as reprocessed uranium. In accordance with the objectives of the Agency, the programme B entitled 'Nuclear Fuel cycle technologies and materials' initiated several activities aiming to strengthen the capabilities of interested Member States for policy making, strategic planning, technology development and implementation of safe, reliable, economically efficient, proliferation resistant, environmentally sound and secure nuclear fuel cycle programmes. The paper describes some on-going IAEA activities in the area of: MA-fuel and target, thorium fuel cycle, coated particle fuel, MA-property database, inert matrix fuels, liquid metal cooled fast reactor fuels and fuel cycles, management of reprocessed uranium and proliferation resistance in fuel cycle. (authors)

Nawada, H.P.; Ganguly, C. [Nuclear Fuel Cycle and Materials Section, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna (Austria)

2007-07-01T23:59:59.000Z

285

Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 ?g/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

Bush, Richard P. [U.S. Department of Energy Office of Legacy Management (United States); Morrison, Stan J. [S.M. Stoller Corporation (United States)

2012-07-01T23:59:59.000Z

286

Polyethylene Encapsulated Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

287

Hard Times in Uranium Enrichment  

Science Journals Connector (OSTI)

...either advanced centrifuges or an entirely...of an advanced centrifuge with three times...in the summer of 1985. If DOE chooses...with the advanced centrifuge, the new machines...decisions." But John Longenecker, the head of the...

COLIN NORMAN

1984-03-09T23:59:59.000Z

288

Spectrophotometric determination of tantalum in boron, uranium, zirconium, and uranium-Zircaloy-2 alloy with malachite green  

Science Journals Connector (OSTI)

Spectrophotometric determination of tantalum in boron, uranium, zirconium, and uranium-Zircaloy-2 alloy with malachite green ...

Allan R. Eberle; Morris W. Lerner

1967-01-01T23:59:59.000Z

289

Advanced Neutron Source (ANS) Project progress report FY 1992  

SciTech Connect (OSTI)

This report discusses project management, research and development, design, and safety at the Advanced Neutron Source facility.

Campbell, J.H. (ed.); Selby, D.L.; Harrington.

1993-01-01T23:59:59.000Z

290

DOE/EA-1535; Uranium Leasing Program Final Programmatic Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

Leasing Program Leasing Program Final Programmatic Environmental Assessment July 2007 Office of Legacy Management DOE/EA 1535 - Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy DOE/EA-1535 Uranium Leasing Program Final Programmatic Environmental Assessment July 2007 U.S. Department of Energy Office of Legacy Management U.S. Department of Energy Uranium Leasing Program Environmental Assessment July 2007 Doc. No. Y0011700 Page iii Contents Abbreviations and Acronyms ........................................................................................................

291

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China  

E-Print Network [OSTI]

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern Available online 25 January 2005 Abstract We show evidence that the primary uranium minerals, uraninite-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically

Fayek, Mostafa

292

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Wyoming 134 139 181 195 245 301 308 348 424 512 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W California, Montana, North Dakota, Oklahoma, Oregon, and Virginia 0 0 0 0 9 17 W W W W Total 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 7. Employment in the U.S. uranium production industry by state, 2003-2012 person-years

293

The End of Cheap Uranium  

E-Print Network [OSTI]

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

Dittmar, Michael

2011-01-01T23:59:59.000Z

294

Energy Management System Implementation ? First Webinar- Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

W1-1 | Advanced Manufacturing Office eere.energy.gov ADVANCED MANUFACTURING OFFICE Energy Management System Implementation - First Webinar- Overview Deann Desai and Ed Hardison 4...

295

Uranium Metal: Potential for Discovering Commercial Uses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium Metal Uranium Metal Potential for Discovering Commercial Uses Steven M. Baker, Ph.D. Knoxville Tn 5 August 1998 Summary Uranium Metal is a Valuable Resource 3 Large Inventory of "Depleted Uranium" 3 Need Commercial Uses for Inventory  Avoid Disposal Cost  Real Added Value to Society 3 Uranium Metal Has Valuable Properties  Density  Strength 3 Market will Come if Story is Told Background The Nature of Uranium Background 3 Natural Uranium: 99.3% U238; 0.7% U 235 3 U235 Fissile  Nuclear Weapons  Nuclear Reactors 3 U238 Fertile  Neutron Irradiation of U238 Produces Pu239  Neutrons Come From U235 Fission  Pu239 is Fissile (Weapons, Reactors, etc.) Post World War II Legacy Background 3 "Enriched" Uranium Product  Weapons Program 

296

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report - Annual Domestic Uranium Production Report - Annual With Data for 2012 | Release Date: June 06, 2013 | Next Release Date: May 2014 |full report Previous domestic uranium production reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Figure 1. U.S. Uranium drilling by number of holes, 2004-2012 U.S. uranium exploration drilling was 5,112 holes covering 3.4 million feet in 2012. Development drilling was 5,970 holes and 3.7 million feet. Combined, total uranium drilling was 11,082 holes covering 7.2 million feet, 5 percent more holes than in 2011. Expenditures for uranium drilling in the United States were $67 million in 2012, an increase of 24 percent compared with 2011. Mining, production, shipments, and sales U.S. uranium mines produced 4.3 million pounds U3O8 in 2012, 5 percent more

297

Polyethylene Encapsulation of Depleted Uranium Trioxide  

Science Journals Connector (OSTI)

Depleted uranium, in the form of uranium trioxide (UO3) powder, was encapsulated in molten polyethylene forming a stable, dense composite henceforth known as DUPoly (patent pending). Materials were fed by calibra...

J. W. Adams; P. R. Lageraaen; P. D. Kalb

2002-01-01T23:59:59.000Z

298

Statistical data of the uranium industry  

SciTech Connect (OSTI)

Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U/sub 3/O/sub 8/ sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix. (DMC)

none,

1981-01-01T23:59:59.000Z

299

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

10. Uranium reserve estimates at the end of 2012" 10. Uranium reserve estimates at the end of 2012" "million pounds U3O8" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work","W","W",101.956759 "Properties Under Development for Production","W","W","W" "Mines in Production","W",21.40601,"W" "Mines Closed Temporarily and Closed Permanently","W","W",133.139239 "In-Situ Leach Mining","W","W",128.576534

300

Y-12 Uranium Exposure Study  

SciTech Connect (OSTI)

Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

Eckerman, K.F.; Kerr, G.D.

1999-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Lost Creek ISR LLC Lost Creek Project Sweetwater, Wyoming 2,000,000 Developing

302

DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings  

Broader source: Energy.gov (indexed) [DOE]

Amends Decision for the Remediation of the Moab Uranium Mill Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah February 29, 2008 - 11:43am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced an amendment to its 2005 Record of Decision (ROD) for the Moab Uranium Mill Tailings Remedial Action (UMTRA) Project to allow for the use of truck or rail in transporting residual radioactive materials from the Moab site in Utah. These materials will be relocated to a new disposal site 30 miles north at Crescent Junction, Utah. "The Department is committed to ensuring the protection of human health and the environment in the Moab area and in the communities served by the Colorado River," Assistant Secretary for Environmental Management Jim

303

The Uranium Institute 24th Annual Symposium  

E-Print Network [OSTI]

the waste U-238 into Pu-239 for burning. By this means 100 times as much energy can be obtained from it to extract the uranium, enriching the natural uranium in the fissile isotope U-235, burning the U-235 than the uranium fuel it burns, leading to a breeder reactor. In addition, if the reactor is a fast

Laughlin, Robert B.

304

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...least some of the uranium had been irradiated...not represent a health threat, says Danesi...VISAR KRYEZIU/AP Depleted uranium is what's left...not represent a health threat, says...VISAR KRYEZIU/AP Depleted uranium is what's left...

Richard Stone

2002-09-13T23:59:59.000Z

305

D Riso-R-429 Automated Uranium  

E-Print Network [OSTI]

routinely used analytical techniques for uranium determina- tions in geological samples, fissionCM i D Riso-R-429 Automated Uranium Analysis by Delayed-Neutron Counting H. Kunzendorf, L. Løvborg AUTOMATED URANIUM ANALYSIS BY DELAYED-NEUTRON COUNTING H. Kunzendorf, L. Løvborg and E.M. Christiansen

306

An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate  

SciTech Connect (OSTI)

Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

McGinnis, Brent [Innovative Solutions Unlimited, LLC] [Innovative Solutions Unlimited, LLC

2014-04-01T23:59:59.000Z

307

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" "Mill Owner","Mill Name","County, State (existing and planned locations)","Milling Capacity","Operating Status at End of the Year" ,,,"(short tons of ore per day)",2008,2009,2010,2011,2012 "Cotter Corporation","Canon City Mill","Fremont, Colorado",0,"Standby","Standby","Standby","Reclamation","Demolished" "EFR White Mesa LLC","White Mesa Mill","San Juan, Utah",2000,"Operating","Operating","Operating","Operating","Operating"

308

Operating and life-cycle costs for uranium-contaminated soil treatment technologies  

SciTech Connect (OSTI)

The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

Douthat, D.M.; Armstrong, A.Q. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.; Stewart, R.N. [Univ. of Tennessee, Knoxville, TN (United States)

1995-09-01T23:59:59.000Z

309

DOE Signs Advanced Enrichment Technology License and Facility Lease |  

Broader source: Energy.gov (indexed) [DOE]

Advanced Enrichment Technology License and Facility Lease Advanced Enrichment Technology License and Facility Lease DOE Signs Advanced Enrichment Technology License and Facility Lease December 8, 2006 - 9:34am Addthis Announces Agreements with USEC Enabling Deployment of Advanced Domestic Technology for Uranium Enrichment WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced the signing of a lease agreement with the United States Enrichment Corporation, Inc. (USEC) for their use of the Department's gas centrifuge enrichment plant (GCEP) facilities in Piketon, OH for their American Centrifuge Plant. The Department of Energy (DOE) also granted a non-exclusive patent license to USEC for use of DOE's centrifuge technology for uranium enrichment at the plant, which will initiate the first successful deployment of advanced domestic enrichment technology in the

310

Simulation of uranium aluminide dissolution in a continuous aluminum dissolver system  

SciTech Connect (OSTI)

This mission of the Idaho Chemical Processing Plant (ICPP) is to recover highly-enriched uranium from spent nuclear reactor fuel. One fuel type is dissolved in mercury-catalyzed nitric acid, and the uranium is extracted from the resulting dissolver product by an organic solvent. This fuel is composed of an aluminum-alloy-clad matrix of particulate uranium aluminide, which dissolves more slowly than the cladding. Because of the content of fissile {sup 235}U, suspended uranium aluminide or dissolved uranyl nitrate can form a critical mass under some circumstances. The dissolver and piping are geometrically favorable from the criticality standpoint, so the digester is where a criticality event would be most likely to occur. In the digester, the mass limit for {sup 235}U (as suspended uranium aluminide particles) is approximately 790 g. depending on the uranyl nitrate concentration. In a clear dissolver product (no suspended UAl{sub 3}), the concentration limit is 7 g {sup 235}U/L (as uranyl nitrate). Both limits are substantially below the lowest values at which a criticality event could possibly occur. This document a dynamic model of uranium aluminide dissolution in a continuous dissolver system, report typical calculated results, and advance appropriate conclusions.

Evans, D.R.; Farman, R.F.; Christian, J.D.

1990-02-28T23:59:59.000Z

311

Uranium 2014 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

312

Cermet Waste Packages Using Depleted Uranium Dioxide and Steel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (865) 574-6783 Fax: (865) 574-9512 Email: forsbergcw@ornl.gov Manuscript Number: 078 File Name: DuCermet.HLWcon01.article.final Article Prepared for 2001 International High-Level Radioactive Waste Management Conference American Nuclear Society Las Vegas, Nevada April 29-May 3, 2001 Limits: 1500 words; 3 figures Actual: 1450 words; 3 figures Session: 3.6 Disposal Container Materials and Designs The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,

313

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"

314

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904 2011 5,441 3,322 5,156 3,003 10,597 6,325 2012 5,112 3,447 5,970 3,709 11,082 7,156 NA = Not available. W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-

315

Uranium: Prices, rise, then fall  

SciTech Connect (OSTI)

Uranium prices hit eight-year highs in both market tiers, $16.60/lb U{sub 3}O{sub 8} for non-former Soviet Union (FSU) origin and $15.50 for FSU origin during mid 1996. However, they declined to $14.70 and $13.90, respectively, by the end of the year. Increased uranium prices continue to encourage new production and restarts of production facilities presently on standby. Australia scrapped its {open_quotes}three-mine{close_quotes} policy following the ouster of the Labor party in a March election. The move opens the way for increasing competition with Canada`s low-cost producers. Other events in the industry during 1996 that have current or potential impacts on the market include: approval of legislation outlining the ground rules for privatization of the US Enrichment Corp. (USEC) and the subsequent sales of converted Russian highly enriched uranium (HEU) from its nuclear weapons program, announcement of sales plans for converted US HEU and other surplus material through either the Department of Energy or USEC, and continuation of quotas for uranium from the FSU in the United States and Europe. In Canada, permitting activities continued on the Cigar Lake and McArthur River projects; and construction commenced on the McClean Lake mill.

Pool, T.C.

1997-03-01T23:59:59.000Z

316

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9. Summary production statistics of the U.S. uranium industry, 1993-2012" 9. Summary production statistics of the U.S. uranium industry, 1993-2012" "Item",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,"E2003",2004,2005,2006,2007,2008,2009,2010,2011,2012 "Exploration and Development" "Surface Drilling (million feet)",1.1,0.7,1.3,3,4.9,4.6,2.5,1,0.7,"W","W",1.2,1.7,2.7,5.1,5.1,3.7,4.9,6.3,7.2 "Drilling Expenditures (million dollars)1",5.7,1.1,2.6,7.2,20,18.1,7.9,5.6,2.7,"W","W",10.6,18.1,40.1,67.5,81.9,35.4,44.6,53.6,66.6 "Mine Production of Uranium" "(million pounds U3O8)",2.1,2.5,3.5,4.7,4.7,4.8,4.5,3.1,2.6,2.4,2.2,2.5,3,4.7,4.5,3.9,4.1,4.2,4.1,4.3 "Uranium Concentrate Production" "(million pounds U3O8)",3.1,3.4,6,6.3,5.6,4.7,4.6,4,2.6,2.3,2,2.3,2.7,4.1,4.5,3.9,3.7,4.2,4,4.1

317

Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions  

Broader source: Energy.gov (indexed) [DOE]

Background Fact Sheet Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions At the direction of Energy Secretary Steven Chu, over many months, the Energy Department (DOE) has been working closely with Energy Northwest (ENW), the Tennessee Valley Authority (TVA), and USEC Inc. (USEC) to develop a plan to address the challenges at USEC's Paducah Gaseous Diffusion Plant (GDP) that advances America's national security interests, protects taxpayers, and provides benefits for TVA and the Bonneville Power Administration's (BPA's) electric ratepayers and business operations. BPA is ENW's sole customer, purchasing 100 percent of ENW's Columbia Generating Station's electric power as part of BPA's overall

318

Basic Theory of Demand-Side Management  

Science Journals Connector (OSTI)

Demand-Side Management (DSM) is pivotal in Integrated Resource ... to realize sustainable development, and advanced energy management activity. A project can be implemented only...

Zhaoguang Hu; Xinyang Han; Quan Wen

2013-01-01T23:59:59.000Z

319

EIS-0329: Advance Notice of Intent To Prepare an Environmental Impact  

Broader source: Energy.gov (indexed) [DOE]

329: Advance Notice of Intent To Prepare an Environmental 329: Advance Notice of Intent To Prepare an Environmental Impact Statement EIS-0329: Advance Notice of Intent To Prepare an Environmental Impact Statement Depleted Uranium Hexafluoride Conversion Facilities The U.S. Department of Energy (DOE) is providing advance notice of its intent to prepare an Environmental Impact Statement (EIS) on the proposed construction, operation, and decontamination/decommissioning of two depleted uranium hexafluoride (DUF6) conversion facilities, at Portsmouth, Ohio and Paducah, Kentucky. DOE intends to use the proposed facilities to convert its inventory of DUF6 to a more stable chemical form suitable for storage, beneficial use or disposal. Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities, DOE/EIS-0329 (May

320

Integrated Vehicle Thermal Management Systems (VTMS) Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer Technologies...

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network [OSTI]

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

322

Assessment of the effectiveness of the advanced programmatic risk analysis and management model (apram) as a decision support tool for construction projects  

E-Print Network [OSTI]

Construction projects are complicated and fraught with so many risks that many projects are unable to meet pre-defined project objectives. Managers of construction projects require decision support tools that can be used to identify, analyze...

Imbeah, William Kweku Ansah

2007-09-17T23:59:59.000Z

323

Management Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Immobilization Research Immobilization Research Kurt Gerdes U.S. DOE, Office of Engineering and Technology John Vienna Pacific Northwest National Laboratory Environmental Management May 19, 2009 2009 Hanford - Idaho - Savannah River Technical Exchange 2 Objectives Perform research and development to advance the waste stabilization technology options by through closely- coupled theory, experimentation, and modeling Develop solutions for Hanford, Idaho, Savannah River, and Oak Ridge wastes challenges (along with facilitating management of future wastes) Environmental Management General Approach Balance between near-term incremental technology improvements and long-term transformational solutions Address the requirements for high risk waste streams - high-level tank waste (RPP, SRS)

324

CRAD, Criticality Safety- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Criticality Safety program at the Y-12 - Enriched Uranium Facility.

325

CRAD, Conduct of Operations- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

326

CRAD, Occupational Safety & Health- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Industrial Safety and Industrial Health programs at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

327

CRAD, Radiological Controls- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Radiation Protection Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

328

CRAD, Environmental Protection- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Environmental Compliance program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

329

CRAD, DOE Oversight- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

330

CRAD, Safety Basis- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Safety Basis at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

331

Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs  

E-Print Network [OSTI]

An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

Matthews, Isaac A

2010-01-01T23:59:59.000Z

332

Uranium hexaflouride freezer/sublimer process simulator/trainer  

SciTech Connect (OSTI)

This paper describes a software and hardware simulation of a freezer/sublimer unit used in gaseous diffusion processing of uranium hexafluoride (UF{sub 6}). The objective of the project was to build a plant simulator that reads control signals and produces plant signals to mimic the behavior of an actual plant. The model is based on physical principles and process data. Advanced Continuous Simulation Language (ACSL) was used to develop the model. Once the simulation was validated with actual plant process data, the ACSL model was translated into Advanced Communication and Control Oriented Language (ACCOL). A Bristol Babcock Distributed Process Controller (DPC) Model 3330 was the hardware platform used to host the ACCOL model and process the real world signals. The DPC will be used as a surrogate plant to debug control system hardware/software and to train operators to use the new distributed control system without disturbing the process. 2 refs., 4 figs.

Carnal, C.L. (Tennessee Technological Univ., Cookeville, TN (USA)); Belcher, J.D.; Tapp, P.A.; Ruppel, F.R.; Wells, J.C. (Oak Ridge National Lab., TN (USA))

1991-01-01T23:59:59.000Z

333

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. uranium mine production and number of mines and sources, 2003-2012" 2. U.S. uranium mine production and number of mines and sources, 2003-2012" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand pounds U3O8)",0,0,0,0,0,0,0,0,0,0 "In-Situ Leaching" "(thousand pounds U3O8)","W","W",2681,4259,"W","W","W","W","W","W" "Other1" "(thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W"

334

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

335

Potential Uses of Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

336

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7. Employment in the U.S. uranium production industry by state, 2003-2012" 7. Employment in the U.S. uranium production industry by state, 2003-2012" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Wyoming",134,139,181,195,245,301,308,348,424,512 "Colorado and Texas",48,140,269,263,557,696,340,292,331,248 "Nebraska and New Mexico",92,102,123,160,149,160,159,134,127,"W" "Arizona, Utah, and Washington",47,40,75,120,245,360,273,281,"W","W" "Alaska, Michigan, Nevada, and South Dakota",0,0,0,16,25,30,"W","W","W","W" "California, Montana, North Dakota, Oklahoma, Oregon, and Virginia",0,0,0,0,9,17,"W","W","W","W"

337

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2008,2009,2010,2011,2012 "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

338

Depleted Uranium (DU) Cermet Waste Package  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

339

Depleted Uranium Uses Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

340

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry the first critical link in the fuel supply chain for nuclear reactors is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources 1 1 1 2 1 1 1 2 1 1 1 Total Mines and Sources 4 6 10 11 12 17 20 9 11 12 Other 1 Number of Operating Mines Table 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Underground Open Pit In-Situ Leaching Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012).

342

Review of uranium bioassay techniques  

SciTech Connect (OSTI)

A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

Bogard, J.S.

1996-04-01T23:59:59.000Z

343

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. 0 200 400 600 800 1,000 1,200 1,400 1,600 2004 2005 2006 2007 2008

344

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

345

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...2006 research-article Depleted uranium exposure and health effects in Gulf War...Medicine) Gulf War and health. In Depleted uranium, pyridostigmine bromide...McDiarmid, M.A , Health effects of depleted uranium on exposed Gulf War...

2006-01-01T23:59:59.000Z

346

Excretion of depleted uranium by Gulf war veterans  

Science Journals Connector (OSTI)

......Dosimetry Article Excretion of depleted uranium by Gulf war veterans R. E...personnel had potential intakes of depleted uranium (DU), including shrapnel...excretion rate. Excretion of depleted uranium by Gulf War veterans. | During......

R. E. Toohey

2003-07-01T23:59:59.000Z

347

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

348

Uranium Pollution of Meat in Tien-Shan  

Science Journals Connector (OSTI)

Uranium in water, soil, fodder and food products (especially meat) was studied in areas of former Soviet uranium industry in Tien-Shan 19501970. Uranium environment migration was very intensive in Tien-Shan, due...

Rustam Tuhvatshin; Igor Hadjamberdiev

2008-01-01T23:59:59.000Z

349

Scoping session of the programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Project  

SciTech Connect (OSTI)

This document is about the scoping session which was held at the Community Center in Falls City, Texas. The purpose was to obtain public comment on the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Project (UMTRA), specifically on the ground water project. Presentations made by the manager for the entire UMTRA program, manager of the site and ground water program, comments made by two residents of Fall City are included in this document.

none,

1992-12-31T23:59:59.000Z

350

Structural Sequestration of Uranium in Bacteriogenic Manganese...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of metal-contaminated waters (in engineered remediation technologies, for example)?" Uranium is a key contaminant of concern at US DOE sites and shuttered mining and ore...

351

Uranium Weapons Components Successfully Dismantled | National...  

National Nuclear Security Administration (NNSA)

Successfully Dismantled March 20, 2007 Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons...

352

Colorimetric detection of uranium in water  

DOE Patents [OSTI]

Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

2012-03-13T23:59:59.000Z

353

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

The initial uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

354

Adsorptive Stripping Voltammetric Measurements of Trace Uranium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurements of Trace Uranium at the Bismuth Film Electrode. Abstract: Bismuth-coated carbon-fiber electrodes have been successfully applied for adsorptive-stripping...

355

Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A...

356

Statistical data of the uranium industry  

SciTech Connect (OSTI)

Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

none,

1982-01-01T23:59:59.000Z

357

E-Print Network 3.0 - advanced technology trend Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

trend Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced technology trend Page: << < 1 2 3 4 5 > >> 1 GLOBAL ISSUES IN NUTRIENT MANAGEMENT...

358

Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings  

SciTech Connect (OSTI)

This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

Strunk, W.D.; Thornton, S.G. (eds.)

1988-01-01T23:59:59.000Z

359

Environmental monitoring for detection of uranium enrichment operations: Comparison of LEU and HEU facilities  

SciTech Connect (OSTI)

In 1994, the International Atomic Energy Agency (IAEA) initiated an ambitious program of worldwide field trials to evaluate the utility of environmental monitoring for safeguards. Part of this program involved two extensive United States field trials conducted at the large uranium enrichment facilities. The Paducah operation involves a large low-enriched uranium (LEU) gaseous diffusion plant while the Portsmouth facilities include a large gaseous diffusion plant that has produced both LEU and high-enriched uranium (HEU) as well as an LEU centrifuge facility. As a result of the Energy Policy Act of 1992, management of the uranium enrichment operations was assumed by the US Enrichment Corporation (USEC). The facilities are operated under contract by Martin Marietta Utility Services. Martin Marietta Energy Systems manages the environmental restoration and waste management programs at Portsmouth and Paducah for DOE. These field trials were conducted. Samples included swipes from inside and outside process buildings, vegetation and soil samples taken from locations up to 8 km from main sites, and hydrologic samples taken on the sites and at varying distances from the sites. Analytical results from bulk analysis were obtained using high abundance sensitivity thermal ionization mm spectrometers (TIMS). Uranium isotopics altered from the normal background percentages were found for all the sample types listed above, even on vegetation 5 km from one of the enrichment facilities. The results from these field trials demonstrate that dilution by natural background uranium does not remove from environmental samples the distinctive signatures that are characteristic of enrichment operations. Data from swipe samples taken within the enrichment facilities were particularly revealing. Particulate analysis of these swipes provided a detailed ``history`` of both facilities, including the assays of the end product and tails for both facilities.

Hembree, D.M. Jr.; Carter, J.A.; Ross, H.H.

1995-03-01T23:59:59.000Z

360

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......chemical forms of the uranium in the body after intake...REFERENCES 1 Mould R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J...Abou-Donia M. B. Depleted and natural uranium: chemistry and toxicological......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......contaminated accidentally with uranium. INTRODUCTION Depleted uranium (DU) can affect human health via chemical and radiation...B. Teratogenicity of depleted uranium aerosols: a review from...perspective. Environ. Health (2005) 4:17-35......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

362

SRP Scientific Meeting: Depleted Uranium  

Science Journals Connector (OSTI)

London, January 2002 The meeting was organised by the SRP to review current research and discuss the use, dispersion into the environment and radiological impact of depleted uranium (DU) by the UK and US in recent military conflicts. Brian Spratt chaired the morning session of the meeting and stressed the need to gauge the actual risks involved in using DU and to balance professional opinions with public mistrust of scientists and government bodies. He asked whether more could be done by the radiation protection profession to improve communication with the media, pressure groups and the public in general. Ron Brown, of the MOD Dstl Radiological Protection Services, gave a thorough overview of the origins and properties of DU, focusing on munitions, in the UK and abroad and public concerns arising from its use in the 1991 Gulf War. He gave a brief overview of past DU munitions studies by the UK and US governments and contrasted this with the lack of hard data used to back up claims made by pressure groups. He compared the known risks of DU with other battlefield risks, e.g. biological agents, chemical attacks and vaccines, and questioned whether peacetime dose limits should apply to soldiers on the battlefield. Barry Smith, of the British Geological Survey, spoke on DU transport, pathways and exposure routes focusing on groundwater as an important example in the Former Yugoslav Republic of Kosovo. He discussed the large amount of work that has already been done on natural uranium in groundwater, with particular emphasis on its mobility within the soil and rock profile being strongly dependent on precipitation and the local geochemical conditions. Therefore, generic risk assessments will not be sufficient in gauging risks to local populations after the introduction of DU into their environment; local geochemical conditions must be taken into account. However, experiments are required to fully appreciate the extent to which DU, particularly DU:Ti alloys used in munitions, disperses into the environment in a variety of soil types. Barry outlined recent computer modelling work investigating the time taken for DU to migrate from a buried munition to a borehole in three different scenarios. The modelling revealed times from 30 years to 5 ? 109 years depending on the local geochemical environment and the depth of the DU penetrator in the soil profile. This suggests the real possibility of borehole contamination within a human lifetime in wet conditions similar to those found in Kosovo. Nick Priest, of Middlesex University, discussed methods of biological monitoring for natural and depleted uranium. The preferred method of detection is by 24 h urine sampling, with measurement of the total mass or isotopic ratios of uranium using mass spectroscopy (ICPMS). This is because uranium is only deposited in new areas of bone growth, a slow process in healthy adults, the remainder is filtered by the kidneys and excreted in urine, giving a non-invasive and rapid sample collection method. Nick also described a rapid assessment technique to look for total uranium and DU in a sample, using a multi-collector ICPMS, specifically looking at the 235U:238U ratio with 236U as a tracer to determine the total mass of uranium present and its source. The MC-ICPMS method was applied in a BBC Scotland funded study of uptakes of uranium in three populations in the Balkans during March 2001. Variable levels of DU were found in each population. The age of the subject was found to influence the excretion of natural uranium and DU to the same degree, increasing age leading to increased excretion. Overall, the levels of DU were extremely small (tens of g), but DU was found to be present in each population investigated. The MC-ICPMS method is capable of detecting 1% DU in natural uranium and Nick intends to extend the study to include ground and drinking water samples and food in the same populations. Neil Stradling gave a talk on the contribution of the NRPB to the WHO report on DU published in April 2001. It addressed the biokinetics of inhaled uranium

David Kestell

2002-01-01T23:59:59.000Z

363

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

364

Secretarial Determination for the Sale or Transfer of Uranium...  

Broader source: Energy.gov (indexed) [DOE]

of Uranium.pdf More Documents & Publications Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Secretarial...

365

President Truman Increases Production of Uranium and Plutonium...  

National Nuclear Security Administration (NNSA)

Uranium and Plutonium Washington, DC President Truman approves a 1.4 billion expansion of Atomic Energy Commission facilities to produce uranium and plutonium for nuclear weapons...

366

Editorial - Depleted Uranium: A Problem of Perception rather than Reality  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Editorial Editorial - Depleted Uranium: A Problem of Perception rather than Reality R. L. Kathren Depleted uranium: a problem of perception rather than reality......

R. L. Kathren

2001-05-01T23:59:59.000Z

367

Modeling of Depleted Uranium Transport in Subsurface Systems  

Science Journals Connector (OSTI)

Groundwater and soil contamination with depleted uranium (DU) isan important public concern because ... four extremecases of climate and existing conditions of uranium penetrator fragments. The simulations demons...

J. Paul Chen; Sotira Yiacoumi

2002-10-01T23:59:59.000Z

368

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

369

3rd Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration 3rd Quarter 2014 Domestic Uranium Production Report...

370

Microbial Reduction of Uranium under Iron- and Sulfate-reducing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

371

Spatial analysis techniques applied to uranium prospecting in Chihuahua State, Mexico  

Science Journals Connector (OSTI)

To estimate the distribution of uranium minerals in Chihuahua the advanced statistical model "Maximun Entropy Method" (MaxEnt) was applied. A distinguishing feature of this method is that it can fit more complex models in case of small datasets (x and y data) as is the location of uranium ores in the State of Chihuahua. For georeferencing uranium ores a database from the United States Geological Survey and workgroup of experts in Mexico was used. The main contribution of this paper is the proposal of maximum entropy techniques to obtain the mineral's potential distribution. For this model were used 24 environmental layers like topography gravimetry climate (worldclim) soil properties and others that were useful to project the uranium's distribution across the study area. For the validation of the places predicted by the model comparisons were done with other research of the Mexican Service of Geological Survey with direct exploration of specific areas and by talks with former exploration workers of the enterprise "Uranio de Mexico". Results. New uranium areas predicted by the model were validated finding some relationship between the model predictions and geological faults. Conclusions. Modeling by spatial analysis provides additional information to the energy and mineral resources sectors.

2014-01-01T23:59:59.000Z

372

A complete remediation process for a uranium-contaminated site and application to other sites  

SciTech Connect (OSTI)

During the summer of 1996 the authors were able to test, at the pilot scale, the concept of leaching uranium (U) from contaminated soils. The results of this pilot scale operation showed that the system they previously had developed at the laboratory scale is applicable at the pilot scale. The paper discusses these results, together with laboratory scale results using soil from the Fernald Environmental Management Project (FEMP), Ohio. These FEMP results show how, with suitable adaptations, the process is widely applicable to other sites. The purpose of this paper is to describe results that demonstrate remediation of uranium-contaminated soils may be accomplished through a leach scheme using sodium bicarbonate.

Mason, C.F.V.; Lu, N.; Kitten, H.D.; Williams, M.; Turney, W.R.J.R.

1998-12-31T23:59:59.000Z

373

Advanced Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

374

ENERGY STAR Portfolio Manager 201  

Office of Energy Efficiency and Renewable Energy (EERE)

Continue to learn about EPAs new ENERGY STAR Portfolio Manager tool, with a deeper dive into more advanced functionalities such as: managing and tracking changes to your property uses over time;...

375

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...poses virtually no cancer risk. Moreover, Danesi's...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...

Richard Stone

2002-09-13T23:59:59.000Z

376

First Diode for Thermal Management of Micro and Macro Devices...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search First Diode for Thermal Management of Micro and...

377

Emergency Management Criteria & Review Approach Documents | Department of  

Broader source: Energy.gov (indexed) [DOE]

Emergency Management Criteria & Review Approach Documents Emergency Management Criteria & Review Approach Documents Emergency Management Criteria & Review Approach Documents Documents Available for Download CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II CRAD, Emergency Management - Los Alamos National Laboratory TA 55 SST Facility CRAD, Emergency Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide

378

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Ore from Underground Mines and Stockpiles Fed to Mills 1 0 W W W 0 W W W W W Other Feed Materials 2 W W W W W W W W W W Total Mill Feed W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,000 2,282 2,689 4,106 4,534 3,902 3,708 4,228 3,991 4,146 (thousand pounds U 3 O 8 ) E1,600 2,280 2,702 3,838 4,050 4,130 3,620 5,137 4,000 3,911 Deliveries (thousand pounds U 3 O 8 ) W W W 3,786 3,602 3,656 2,044 2,684 2,870 3,630 Weighted-Average Price (dollars per pound U 3 O 8 ) W W W 28.98 42.11 43.81 36.61 37.59 52.36 49.63 Notes: The 2003 annual amounts were estimated by rounding to the nearest 200,000 pounds to avoid disclosure of individual company data. Totals may not equal sum of components

379

IPNS enriched uranium booster target  

SciTech Connect (OSTI)

Since startup in 1981, IPNS has operated on a fully depleted /sup 238/U target. With the booster as in the present system, high energy protons accelerated to 450 MeV by the Rapid Cycling Synchrotron are directed at the target and by mechanisms of spallation and fission of the uranium, produce fast neutrons. The neutrons from the target pass into adjacent moderator where they slow down to energies useful for spectroscopy. The target cooling systems and monitoring systems have operated very reliably and safely during this period. To provide higher neutron intensity, we have developed plans for an enriched uranium (booster) target. HETC-VIM calculations indicate that the target will produce approx.90 kW of heat, with a nominal x5 gain (k/sub eff/ = 0.80). The neutron beam intensity gain will be a factor of approx.3. Thermal-hydraulic and heat transport calculations indicate that approx.1/2 in. thick /sup 235/U discs are subject to about the same temperatures as the present /sup 238/U 1 in. thick discs. The coolant will be light demineralized water (H/sub 2/O) and the coolant flow rate must be doubled. The broadening of the fast neutron pulse width should not seriously affect the neutron scattering experiments. Delayed neutrons will appear at a level about 3% of the total (currently approx.0.5%). This may affect backgrounds in some experiments, so that we are assessing measures to control and correct for this (e.g., beam tube choppers). Safety analyses and neutronic calculations are nearing completion. Construction of the /sup 235/U discs at the ORNL Y-12 facility is scheduled to begin late 1985. The completion of the booster target and operation are scheduled for late 1986. No enriched uranium target assembly operating at the projected power level now exists in the world. This effort thus represents an important technological experiment as well as being a ''flux enhancer''.

Schulke, A.W. Jr.

1985-01-01T23:59:59.000Z

380

Uranium in prehistoric Indian pottery  

E-Print Network [OSTI]

present in the sample, and the cross l section of the process (the measure of the probability of a neutron interacting with an uranium atom), In general, a daughter product 235 of U fission is analyzed on a detector which counts either gamma rays... for quantitative analysis of various elements on archaeological artifacts, Manganese has been determined in Mesoamerican pot sherds (Bennyhoff and Heizer 1965). A Pu-Be radioisotope neutron source with a flux of 4 x 10 4 -2 -1 neutrons cm sec was used...

Filberth, Ernest William

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

National Uranium Resource Evaluation, Tonopah quadrangle, Nevada  

SciTech Connect (OSTI)

The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

Hurley, B W; Parker, D P

1982-04-01T23:59:59.000Z

382

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

SciTech Connect (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

383

Reassessment of individual dosimetry of long-lived alpha radionuclides of uranium miners through experimental determination of urinary excretion of uranium  

Science Journals Connector (OSTI)

......iranium in urine of uranium miners as a tool for...230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45...Measurement of daily urinary uranium excretion in German...potential intakes of depleted uranium(DU). Sci......

I. Maltov; V. Beckov; L. Tomsek; M. Slezkov-Marusiakov; J. Hulka

2013-04-01T23:59:59.000Z

384

FAQ 3-What are the common forms of uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are the common forms of uranium? are the common forms of uranium? What are the common forms of uranium? Uranium can take many chemical forms. In nature, uranium is generally found as an oxide, such as in the olive-green-colored mineral pitchblende. Uranium oxide is also the chemical form most often used for nuclear fuel. Uranium-fluorine compounds are also common in uranium processing, with uranium hexafluoride (UF6) and uranium tetrafluoride (UF4) being the two most common. In its pure form, uranium is a silver-colored metal. The most common forms of uranium oxide are U3O8 and UO2. Both oxide forms have low solubility in water and are relatively stable over a wide range of environmental conditions. Triuranium octaoxide (U3O8) is the most stable form of uranium and is the form most commonly found in nature. Uranium dioxide (UO2) is the form in which uranium is most commonly used as a nuclear reactor fuel. At ambient temperatures, UO2 will gradually convert to U3O8. Because of their stability, uranium oxides are generally considered the preferred chemical form for storage or disposal.

385

Argonne's pyroprocessing and advanced reactor research featured on WGN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's pyroprocessing and advanced reactor research featured on WGN Argonne's pyroprocessing and advanced reactor research featured on WGN radio Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Argonne's pyroprocessing and advanced reactor research featured on WGN radio Uranium dendrites These tiny branches, or "dendrites," of pure uranium form when engineers

386

Advanced Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

387

Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio  

SciTech Connect (OSTI)

On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

Hazen, Terry

2002-08-26T23:59:59.000Z

388

FEMP Offers New Advanced eTraining on UESCs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Karen Thomas, senior project leader at the National Renewable Energy Laboratory, trains Federal energy management and contractingacquisition personnel seeking advanced...

389

NREL: Advanced Power Electronics - Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Research and Development The Advanced Power Electronics activity focuses on the electric drive system for hybrid electric and fuel cell vehicles. At NREL, we research and develop electronic components and systems that will overcome major technical barriers to commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. Researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. To accomplish this, the power electronics team investigates cooling and heating of advanced vehicles by looking at the thermal management of motor controllers, inverters, and traction motors with one- and two-phase cooling

390

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

391

Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Joseph W. Reiter (Primary Contact), Alexander Raymond, Channing C. Ahn (Caltech), Bret Naylor, Otto Polanco, Rajeshuni Ramesham, and Erik Lopez Jet Propulsion Laboratory (JPL) 4800 Oak Grove Drive, Mail Stop 79-24 Pasadena, CA 91109-8099 Phone: (818) 354-4224; Email: Joseph.W.Reiter@jpl.nasa.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractor: California Institute of Technology, Pasadena, CA Project Start Date: February, 2009 Project End Date: September, 2014 Fiscal Year (FY) 2012 Objectives Identify state-of-art concepts and designs for * cryosorbent-based hydrogen storage systems

392

Advanced Simulation Capability for  

Broader source: Energy.gov (indexed) [DOE]

Simulation Capability for Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing pro- grams as well as collaborating with the Offices of Science, Fossil Energy, and Nuclear Energy. Challenge Current groundwater and soil remediation challenges that will continue to be addressed in the next decade include

393

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

394

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars) 1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 (million pounds U 3 O 8 ) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 (million pounds U 3 O 8 ) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1 (million pounds U 3 O 8 ) 3.4 6.3 5.5 6.0 5.8 4.9 5.5 3.2 2.2 3.8 1.6 2.3 2.7 3.8 4.0 4.1 3.6 5.1 4.0 3.9 (person-years) 871 980 1,107 1,118 1,097 1,120 848 627 423 426 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196

395

Statistical data of the uranium industry  

SciTech Connect (OSTI)

This report is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1982. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office of the US Department of Energy. Statistical data obtained from surveys conducted by the Energy Information Administration are included in Section IX. The production, reserves, and drilling data are reported in a manner which avoids disclosure of proprietary information.

none,

1983-01-01T23:59:59.000Z

396

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

397

Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths  

E-Print Network [OSTI]

problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactiveMB. (2004). Depleted and natural uranium: chemistry and

Hwang, Chiachi

2009-01-01T23:59:59.000Z

398

Uranium contamination of the Aral Sea  

Science Journals Connector (OSTI)

Located in an endorrheic basin, the Aral Sea is mainly fed by water from two large rivers, the Syrdarya and the Amudarya. As a result, contaminants in dissolved and suspended form discharged by the rivers are accumulating in the lake. The northern Small Aral water contained 37g l?1uranium and water in the western basin of the Large Aral up to 141g l?1uranium in 2002, 2004 and 2006. The present day uranium concentrations in Aral Sea water mainly originate from the Syrdarya River due to uranium mining and tailings in the river watershed, and have been elevated up to 5 times compared to the pre-desiccation times by the ongoing desiccation in the western basin of the Large Aral. Current data indicate that groundwater does not seem to contribute much to the uranium budget. The uranium concentration in the lake is controlled by internal lake processes. Due to the high ionic strength of the Aral Sea water uranium is kept soluble. 238U/Cl?mass ratios range from 5.88 to 6.15g g?1in the Small Aral and from 3.00 to 3.32g g?1in the Large Aral. Based on the238U/Cl?mass ratios, a removal rate of 8% uranium from the water column inventory to the sediments has been estimated for anoxic waters, and it ranges between 2% and 5% in oxic waters, over periods of time without mixing. Most of the uranium removal seems to occur by co-precipitation with calcite and gypsum both in anoxic and oxic waters. According to simulations with PHREEQC, uraninite precipitation contributes little to the removal from anoxic Aral Sea water. In most of the sampled locations, water column removal of uranium matches the sediment inventory. Based on budget calculations, the future development of uranium load in the Aral Sea has been estimated for different scenarios. If the Syrdarya River discharge is below or in balance with the loss by evaporation, the uranium concentration in the Small Aral will increase from 37 g l1to 55g l?1in 20years time. When the river discharge is larger than loss by evaporation, present-day uranium concentration in the lake may be kept at the current level or even decrease slightly. From the ecotoxicological point of view, an increase in Syrdarya River discharge as the major water source will be crucial for the water quality of the Small Aral, despite its high uranium load. However, as it is intended to restore fishery in the Small Aral, accumulation of uranium in fish has to be monitored. Since the western basin of the Large Aral received no Syrdarya River water since 2005, and may become disconnected from the eastern basin, the slightly higher observed uranium removal from anoxic waters may result in a decrease in uranium concentrations in the western basin by 20% in 20years time.

Jana Friedrich

2009-01-01T23:59:59.000Z

399

Synthesis of uranium nitride and uranium carbide powder by carbothermic reduction  

SciTech Connect (OSTI)

Uranium nitride and uranium carbide are being considered as high burnup fuels in next generation nuclear reactors and accelerated driven systems for the transmutation of nuclear waste. The same characteristics that make nitrides and carbides candidates for these applications (i.e. favorable thermal properties, mutual solubility of nitrides, etc.), also make these compositions candidate fuels for space nuclear reactors. In this paper, we discuss the synthesis and characterization of depleted uranium nitride and carbide for a space nuclear reactor program. Importantly, this project emphasized that to synthesize high quality uranium nitride and carbide, it is necessary to understand the exact stoichiometry of the oxide feedstock. (authors)

Dunwoody, J.T.; Stanek, C.R.; McClellan, K.J.; Voit, S.L.; Volz, H.M. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Hickman, R.R. [NASA Marshall Space Flight Center, Huntsville, Alabama (United States)

2007-07-01T23:59:59.000Z

400

Crystal Chemistry of Early Actinides (Thorium, Uranium, and Neptunium) and Uranium Mesoporous Materials.  

E-Print Network [OSTI]

??Despite their considerable global importance, the structural chemistry of actinides remains understudied. Thorium and uranium fuel cycles are used in commercial nuclear reactors in India (more)

Sigmon, Ginger E.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Prokaryotic microorganisms in uranium mining waste piles and their interactions with uranium and other heavy metals.  

E-Print Network [OSTI]

??The influence of uranyl and sodium nitrate under aerobic and anaerobic conditions on the microbial community structure of a soil sample from the uranium mining (more)

Geiler, Andrea

2007-01-01T23:59:59.000Z

402

Application for Graduate Admission Supplementary Application Advanced Engineering Programs  

E-Print Network [OSTI]

061) Nuclear Engineering (online) (Z050) Project Management (Z063) Project Management (online) (Z040) Materials Science and Engineering (PMMS) Mechanical Engineering (PMME) Nuclear Engineering (online) (MENUApplication for Graduate Admission Supplementary Application ­ Advanced Engineering Programs Please

Rubloff, Gary W.

403

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

11 11 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Notes: Expenditures are in nominal U.S. dollars. Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Reclamation Drilling: All expenditures directly associated with exploration and development drilling.

404

Advanced Remediation Technologies  

SciTech Connect (OSTI)

The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the cleanup of nation's nuclear weapons program legacy wastes, along with waste associated with nuclear energy programs and research. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term; and the effort also has a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. This article will provide some insight into the Advanced Remediation Technologies (ART) projects that may enhance cleanup efforts and reduce life cycle costs. (authors)

Krahn, St.; Miller, C.E. [The United States Department of Energy, Office of Environmental Management, Washington, D.C. (United States)

2008-07-01T23:59:59.000Z

405

FIREPLUME model for plume dispersion from fires: Application to uranium hexafluoride cylinder fires  

SciTech Connect (OSTI)

This report provides basic documentation of the FIREPLUME model and discusses its application to the prediction of health impacts resulting from releases of uranium hexafluoride (UF{sub 6}) in fires. The model application outlined in this report was conducted for the Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted UF{sub 6}. The FIREPLUME model is an advanced stochastic model for atmospheric plume dispersion that predicts the downwind consequences of a release of toxic materials from an explosion or a fire. The model is based on the nonbuoyant atmospheric dispersion model MCLDM (Monte Carlo Lagrangian Dispersion Model), which has been shown to be consistent with available laboratory and field data. The inclusion of buoyancy and the addition of a postprocessor to evaluate time-varying concentrations lead to the current model. The FIREPLUME model, as applied to fire-related UF{sub 6} cylinder releases, accounts for three phases of release and dispersion. The first phase of release involves the hydraulic rupture of the cylinder due to heating of the UF{sub 6} in the fire. The second phase involves the emission of material into the burning fire, and the third phase involves the emission of material after the fire has died during the cool-down period. The model predicts the downwind concentration of the material as a function of time at any point downwind at or above the ground. All together, five fire-related release scenarios are examined in this report. For each scenario, downwind concentrations of the UF{sub 6} reaction products, uranyl fluoride and hydrogen fluoride, are provided for two meteorological conditions: (1) D stability with a 4-m/s wind speed, and (2) F stability with a 1-m/s wind speed.

Brown, D.F.; Dunn, W.E. [Univ. of Illinois, Champaign-Urbana, IL (United States). Dept. of Mechanical Engineering; Policastro, A.J.; Maloney, D. [Argonne National Lab., IL (United States)

1997-06-01T23:59:59.000Z

406

Acting Biomass Program Manager Dr. Valerie Reed to Host Live...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced Biofuels Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced...

407

NETL: Advanced Research - The Advanced Research (AR) Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AR Program AR Program Advanced Research The Advanced Research (AR) Program Advanced Research Program Diagram CLICK ON GRAPHIC TO ENLARGE CLICK ON GRAPHIC TO ENLARGE AR pursues projects in several key areas that are considered to be of greatest relevance and potential benefit to advanced coal and power systems. Many of AR's projects focus on "breakthrough" technologies or novel applications, striving to balance high risk against the prospect of high payoff in terms of measurable benefits to coal and power systems technologies - improved efficiencies, lower costs, new materials, and new processes. AR manages a portfolio that includes pre-commercial projects that rely on NETL's in-house facilities and depth of expertise, as well as collaborative external arrangements that draw upon diverse outside

408

Advanced Notification of Awards (ANA) User Guide  

Broader source: Energy.gov (indexed) [DOE]

Advanced Notification of Awards Advanced Notification of Awards (ANA) User Guide A service of iManage ANA User Guide Page 2 Table of Content: Introduction........................................................................... 3 Approval Process Overview.................................................... 3 Role Descriptions................................................................... 3 Accessing the ANA system..................................................... 5 Termination Guidelines.......................................................... 9 Approving Notifications......................................................... 9 Rejecting Notifications........................................................... 13 Additional System Tools: Document History.......................... 16

409

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. Forward-Cost Uranium Reserves by Mining Method, Year-End 2008 Mining Method 50 per pound 100 per pound Ore (million tons) Gradea (percent U3O8) U3O8 (million pounds) Ore...

410

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

1. U.S. Forward-Cost Uranium Reserves by State, Year-End 2008 State 50lb 100lb Ore (million tons) Gradea (%) U3O8 (million lbs) Ore (million tons) Gradea (%) U3O8 (million lbs)...

411

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect (OSTI)

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

412

Method of recovering uranium from aqueous solution  

SciTech Connect (OSTI)

Anion exchange resin derived from insoluble crosslinked polymers of vinyl benzyl chloride which are prepared by polymerizing vinyl benzyl chloride and a crosslinking monomer are particularly suitable in the treatment of uranium bearing leach liquors.

Albright, R.L.

1980-01-22T23:59:59.000Z

413

The Uranium Resource: A Comparative Analysis  

SciTech Connect (OSTI)

An analogy was drawn between uranium and thirty five minerals for which the USGS maintains extensive records. The USGS mineral price data, which extends from 1900 to the present, was used to create a simple model describing long term price evolution. Making the assumption that the price of uranium, a geologically unexceptional mineral, will evolve in a manner similar to that of the USGS minerals, the model was used to project its price trend for this century. Based upon the precedent set by the USGS data, there is an 80% likelihood that the price of uranium will decline. Moreover, the most likely scenario would see the equilibrium price of uranium decline by about 40% by mid-century. (authors)

Schneider, Erich A. [The University of Texas at Austin, 1 University Station C2200, Austin, TX, 78712 (United States); Sailor, William C. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM, 87545 (United States)

2007-07-01T23:59:59.000Z

414

Part I: Typology of Uranium Deposits  

Science Journals Connector (OSTI)

A variety of global and regional classification schemes for uranium deposits have been proposed in the past by a number of geoscientists including Heinrich (1958), Roubault (1958), Ruzicka (1971), Ziegler (197...

Franz J. Dahlkamp

2009-01-01T23:59:59.000Z

415

Uranium Marketing Annual Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Report Uranium Marketing Annual Report With Data for 2012 | Release Date: May 16, 2013 | Next Release Date: May 2014 | full report Previous uranium marketing annual reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 Go Uranium purchases and prices Owners and operators of U.S. civilian nuclear power reactors ("civilian owner/operators" or "COOs") purchased a total of 58 million pounds U3O8e (equivalent1) of deliveries from U.S. suppliers and foreign suppliers during 2012, at a weighted-average price of $54.99 per pound U3O8e. The 2012 total of 58 million pounds U3O8e increased 5 percent compared with the 2011 total of 55 million pounds U3O8e. The 2012 weighted-average price of

416

Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany  

Science Journals Connector (OSTI)

The Erzgebirge (Ore Mountains) area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called Schneeberg disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 109 Euro. A comparison with concentrations of depleted uranium at certain sites is given.

A Meinrath; P Schneider; G Meinrath

2003-01-01T23:59:59.000Z

417

DOE hands over uranium enrichment duties to government corporation  

SciTech Connect (OSTI)

In an effort to renew the United States' competitiveness in the world market for uranium enrichment services, the Department of Energy (DOE) is turning over control of its Paducah, KY, and Portsmouth, OH, enrichment facilities to a for-profit organization, the United States Enrichment Corp. (USEC), which was created by last year's Energy Policy Act. William H. Timbers, Jr., a former investment banker who was appointed acting CEO in March, said the Act's mandate will mean more competitive prices for enriched reactor fuel and greater responsiveness to utility customers. As a government corporation, USEC, with current annual revenues estimated at $1.5 billion, will no longer be part of the federal budget appropriations process, but will use business management techniques, set market-based prices for enriched uranium, and pay annual dividends to the US Treasury-its sole stockholder-from earnings. The goal is to finish privatizing the corporation within two years, and to sell its stock to investors for an estimated $1 to $3 billion. USEC's success will depend in part on developing short- and long-term marketing plants to help stanch the flow of enriched-uranium customers to foreign suppliers. (DOE already has received notice from a number of US utilities that they want to be let out of their long-term enrichment contracts as they expire over the next several years).USEC's plans likely will include exploring new joint ventures with other businesses in the nuclear fuel cycle-such as suppliers, fabricators, and converters-and offering a broader range of enrichment services than DOE provided. The corporation will have to be responsive to utilities on an individual basis.

Simpson, J.

1993-07-15T23:59:59.000Z

418

Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report  

SciTech Connect (OSTI)

Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500C to 600C) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion Design, fabricate, and assemble extrusion equipment Extrusion database on DU metal Extrusion database on U-10Zr alloys Extrusion database on U-20xx-10Zr alloys Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys Design, fabricate, and assemble equipment Sintering database on DU metal Sintering database on U-10Zr alloys Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix AMSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors Appendix BExternal presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors, Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, Uranium Powder Production Using a Hydride-Dehydride Process, Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix CFuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow, entitled Uranium Metal Powder Production, Particle Dis

Sean M. McDeavitt

2011-04-29T23:59:59.000Z

419

Advanced Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Advanced Search Most publications by Environmental Energy Technologies Division authors are searchable from this page, including peer-reviewed publications, book chapters, conference proceedings and LBNL reports. Filter Advanced Search Publications list This publications database is an ongoing project, and not all Division publications are represented here yet. For additional help see the bottom of this page. Documents Found: 4418 Title Keyword LBNL Number Author - Any - Abadie, Marc O Abbey, Chad Abdolrazaghi, Mohamad Aberg, Annika Abhyankar, Nikit Abraham, Marvin M Abshire, James B Abushakra, Bass Acevedo-Ruiz, Manuel Aceves, Salvador Ache, Hans J Ackerly, David D Ackerman, Andrew S Adamkiewicz, Gary Adams, J W Adams, Carl Adamson, Bo Addy, Nathan Addy, Susan E Aden, Nathaniel T Adesola, Bunmi Adhikari,

420

Advanced Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373  

SciTech Connect (OSTI)

In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

422

Manhattan Project: More Uranium Research, 1942  

Office of Scientific and Technical Information (OSTI)

Cubes of uranium metal, Los Alamos, 1945 MORE URANIUM RESEARCH Cubes of uranium metal, Los Alamos, 1945 MORE URANIUM RESEARCH (1942) Events > Difficult Choices, 1942 More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 During the first half of 1942, several routes to a bomb via uranium continued to be explored. At Columbia University, Harold Urey worked on the gaseous diffusion and centrifuge systems for isotope separation in the codenamed SAM (Substitute or Special Alloy Metals) Laboratory. At Berkeley, Ernest Lawrence continued his investigations on electromagnetic separation using the "calutron" he had converted from his thirty-seven-inch cyclotron. Phillip Abelson, who had moved from the Carnegie Institution and the National Bureau of Standards to the Naval Research Laboratory, continued his work on liquid thermal diffusion but with few positive results, and he had lost all contact with the S-1 Section of the Office of Scientific Research and Development. Meanwhile Eger Murphree's group hurriedly studied ways to move from laboratory experiments to production facilities.

423

Domestic Uranium Production Report - Quarterly - Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

All Nuclear Reports All Nuclear Reports Domestic Uranium Production Report - Quarterly Data for 3rd Quarter 2013 | Release Date: October 31, 2013 | Next Release Date: February 2014 | full report Previous Issues Year: 2013-Q2 2013-Q1 2012-Q4 2012-Q3 2012-Q2 2012-Q1 2011-Q4 2011-Q3 2011-Q2 2011-Q1 2010-Q4 2010-Q3 2010-Q2 2010-Q1 2009-Q4 2009-Q3 2009-Q2 2009-Q1 2008-Q4 2008-Q3 2008-Q2 2008-Q1 Go 3rd Quarter 2013 U.S. production of uranium concentrate in the third quarter 2013 was 1,171,278 pounds U3O8, down 16 percent from the previous quarter and up 12 percent from the third quarter 2012. Third quarter 2013 uranium production is at its highest level since 1999. During the third quarter 2013, U.S. uranium was produced at six U.S. uranium facilities. U.S. Uranium Mill in Production (State)

424

Y-12 Knows Uranium | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Knows Uranium Knows Uranium Y-12 Knows Uranium Posted: July 22, 2013 - 3:45pm | Y-12 Report | Volume 10, Issue 1 | 2013 Y-12 produces many forms of uranium. They may be used in chemical processing steps on-site or shipped elsewhere to serve as raw materials for nuclear fuel or as research tools. All of uranium's uses, defense related and otherwise, are critical to the nation. Y-12's understanding of uranium, coupled with the site's work with enriched uranium metal, alloys, oxides, compounds and solutions, is unique in the Nuclear Security Enterprise. "The Y-12 work force understands both established uranium science and the esoteric things related to uranium's behavior," said engineer Alan Moore. "Such a deep, detailed understanding comes from experience,

425

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect (OSTI)

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

426

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......higher fraction of depleted uranium (DU). These...in mandibular cancer patients following...Reprocessed uranium exposure and lung cancer risk. Health...and risks from uranium are not increased...The impact of depleted uranium (DU......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

427

Sizing particles of natural uranium and nuclear fuels using poly-allyl-diglycol carbonate autoradiography  

Science Journals Connector (OSTI)

......particles of natural uranium and nuclear fuels...low enriched, depleted and natural uranium and also aged...committed doses and cancer risks(4...Bristol, UK, sized uranium fragments found...nuclear fuels of depleted uranium (depUO2......

G. Hegyi; R. B. Richardson

2008-07-01T23:59:59.000Z

428

Assessing the Renal Toxicity of Capstone Depleted Uranium Oxides and Other Uranium Compounds  

SciTech Connect (OSTI)

The primary target for uranium toxicity is the kidney. The most frequently used guideline for uranium kidney burdens is the International Commission on Radiation Protection (ICRP) value of 3 g U/g kidney, a value that is based largely upon chronic studies in animals. In the present effort, we have developed a risk model equation to assess potential outcomes of acute uranium exposure. Twenty-seven previously published case studies in which workers were acutely exposed to soluble compounds of uranium (as a result of workplace accidents) were analyzed. Kidney burdens of uranium for these individuals were determined based on uranium in the urine, and correlated with health effects observed over a period of up to 38 years. Based upon the severity of health effects, each individual was assigned a score (- to +++) and then placed into an Effect Group. A discriminant analysis was used to build a model equation to predict the Effect Group based on the amount of uranium in the kidneys. The model equation was able to predict the Effect Group with 85% accuracy. The risk model was used to predict the Effect Group for Soldiers exposed to DU as a result of friendly fire incidents during the 1991 Gulf War. This model equation can also be used to predict the Effect Group of new cases in which acute exposures to uranium have occurred.

Roszell, Laurie E.; Hahn, Fletcher; Lee, Robyn B.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

429

Computational Design of Advanced Nuclear Fuels  

SciTech Connect (OSTI)

The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

2014-06-03T23:59:59.000Z

430

Management Plan Management Plan  

E-Print Network [OSTI]

; and 5) consistency with the Endangered Species Act and Clean Water Act. In addition, the management plan Plan, Management Plan Page MP­ 1 #12;Management Plan water quality standards, instream flows, privateManagement Plan Management Plan "Management and restoration programs for native salmonids have

431

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

432

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Super HigH-TemperaTure alloyS and Super HigH-TemperaTure alloyS and CompoSiTeS From nb-W-Cr SySTemS Description The U.S. Department of Energy's Office of Fossil Energy (DOE-FE) has awarded a three-year grant to the University of Texas at El Paso (UTEP) and Argonne National Laboratory (ANL) to jointly explore the high-temperature properties of alloys composed of niobium (Nb), tungsten (W), and chromium (Cr). The grant is administered by the Advanced Research (AR) program of the National

433

Mission Advancing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Renewed Prosperity Through Technological Innovation - Letter from the Director NETL: the ENERGY lab 4 6 3 Contents Technology Transfer Patents and Commercialization Sharing Our Expertise Noteworthy Publications 60 62 63 64 66 Environment, Economy, & Supply Carbon Capture and Storage Partnerships Work to Reduce Atmospheric CO 2 Demand-Side Efficiencies New NETL Facility Showcases Green Technologies Environment & Economy Materials Mercury Membranes NETL Education Program Produces Significant Achievement Monitoring Water Economy & Supply NETL's Natural Gas Prediction Tool Aids Hurricane Recovery Energy Infrastructure

434

Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities  

SciTech Connect (OSTI)

Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (brownfield) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

2014-01-08T23:59:59.000Z

435

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

436

Advanced LIGO  

E-Print Network [OSTI]

The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

The LIGO Scientific Collaboration

2014-11-17T23:59:59.000Z

437

DUF6 Management Cost Analysis Report (CAR): Part 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . Cost Analysis Report for the Long-Term Management of May 1997 Figure 4.5 Total Costs of Manufacture of Metal Options 900 800 700 Ctj 300 3 200 100 0 Metal Shielding Oxide Shielding Depleted Uranium Hexafluoride and Oxide Shielding s Decontamination & Decommissioning QI Operations & Maintenance s Regulatory Compliance u Balance of Plant u Manufacturing Facilities s Manufacturing Equipment u Engineering Development 57 ..- . Cost Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride May 1997 4.4 Long-term Storage Storage of depleted uranium is predicated on its use at some later date. In the engineering analysis, storage options are defined by the type of storage facility, and suboptions are defined by the chemical form in which the depleted uranium is stored. The types of storage facilities analyzed are (1) buildings, (2) below ground vaults,

438

DOE Uranium Leasing Program - Lease Tract Metrics  

Broader source: Energy.gov (indexed) [DOE]

Uranium Leasing Program -- Lease Tract Metrics Uranium Leasing Program -- Lease Tract Metrics Lease Tract Lessee Lease Date Bid (%) Reclamation Bond a Total Acres Acres Excluded b Comment C-JD-5 Gold Eagle Mining, Inc. 04/30/08 12.00 37,000 150.71 C-JD-5A Golden Eagle Uranium, LLC 06/27/08 20.10 5,000 24.54 C-JD-6 Cotter Corporation 04/30/08 14.20 19,000 530.08 C-JD-7 c Cotter Corporation 04/30/08 27.30 1,206,000 493.01 C-JD-8 Cotter Corporation 04/30/08 36.20 4,000 954.62 C-JD-8A No bids received - remains inactive N/A N/A N/A 77.91 C-JD-9 Cotter Corporation 04/30/08 24.30 72,000 1,036.50 C-SR-10 Golden Eagle Uranium, LLC 06/27/08 13.10 5,000 637.64 C-SR-11 Cotter Corporation 04/30/08 11.67 43,000 1,303.22 200.25 Summit Canyon area excluded from lease tract C-SR-11A Golden Eagle Uranium, LLC 06/27/08 14.30 5,000 1,296.81 C-SR-12 Colorado Plateau Partners 06/27/08

439

NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...  

National Nuclear Security Administration (NNSA)

Releases NNSA Authorizes Start-Up of Highly Enriched Uranium ... NNSA Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 applicationmsword icon R-10-01...

440

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...transmission of genetic damage by depleted uranium and tungsten alloy Alexandra Miller...The radioactive heavy metal, depleted uranium (DU), an alpha-particle emitter...fragments will affect the long-term health of offspring conceived by these...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 May 2005...Proc Amer Assoc Cancer Res, Volume 46, 2005 Depleted uranium internal contamination...Proc Amer Assoc Cancer Res, Volume 46, 2005] 2080 Depleted uranium is a heavy metal...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

442

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Proc Amer Assoc Cancer Res, Volume 47, 2006 Depleted uranium - induced malignant...Proc Amer Assoc Cancer Res, Volume 47, 2006] 5215 Depleted uranium (DU) has been...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

443

Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia)  

Science Journals Connector (OSTI)

During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative to the in-situ natural uranium present. After the military activities, most...

Mirjana B. Radenkovi?; Svjetlana A. Cupa?

2008-01-01T23:59:59.000Z

444

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

445

Numerical simulation for formed projectile of depleted uranium alloy  

Science Journals Connector (OSTI)

The numerical simulation for forming projectile of depleted uranium alloy with the SPH (Smooth Particle Hydrodynamic ... . To describe the deformed behaviors of the depleted uranium alloy under high pressure and ...

Song Shun-cheng; Gao Ping; Cai Hong-nian

2003-09-01T23:59:59.000Z

446

Geothermal: Sponsored by OSTI -- Reservoir Pressure Management  

Office of Scientific and Technical Information (OSTI)

Reservoir Pressure Management Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

447

Retrieval of buried depleted uranium from the T-1 trench  

SciTech Connect (OSTI)

The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

Burmeister, M. [Rocky Mountain Remediation Services, Golden, CO (United States); Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Greengard, T. [Kaiser-Hill Co., Golden, CO (United States)]|[Science Applications International Corp. (United States); Hull, C. [S.M. Stoller Corp., Boulder, CO (United States); Barbour, D.; Quapp, W.J. [Starmet Corp. (United States)

1998-07-01T23:59:59.000Z

448

Uranium Sequestration via Phosphate Infiltration/Injection Test...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Immediate sequestration - Stable mineral form * Apatite formation - Sorbent for uranium - Conversion to autunite 5 Advantages of Phosphate Technology * Direct treatment...

449

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05/2007 05/2007 NitrogeN evolutioN aNd CorrosioN MeChaNisMs With oxyCoMbustioN of Coal Description Under a grant from the University Coal Research (UCR) program, Brigham Young University (BYU) is leading a three-year research effort to investigate the physical processes that several common types of coal undergo during oxy-fuel combustion. Specifically, research addresses the mixture of gases emitted from burning, particularly such pollutants as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ), and the potential for corrosion at the various stages of combustion. The UCR program is administered by the Advanced Research Program at the National Energy Technology Laboratory (NETL), under the U.S. Department of Energy's Office of

450

Depleted uranium plasma reduction system study  

SciTech Connect (OSTI)

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

451

Depleted uranium hexafluoride: Waste or resource?  

SciTech Connect (OSTI)

the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

1995-07-01T23:59:59.000Z

452

Method for fluorination of uranium oxide  

DOE Patents [OSTI]

Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

Petit, George S. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

453

Modeling Uranium-Proton Ion Exchange in Biosorption  

E-Print Network [OSTI]

threatening heavy metals because of its high toxicity and some radioactivity. Excessive amounts of uranium seaweed biomass was used to remove the heavy metal uranium from the aqueous solution. Uranium biosorption the heavy metal uptake performance of different biosorbents.LangmuirandFreundlichmodelsoftengenerally fit

Volesky, Bohumil

454

Bioremediation of Uranium Plumes with Nano-scale  

E-Print Network [OSTI]

(IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

Fay, Noah

455

EPA Uranium Program Update Loren W. Setlow and  

E-Print Network [OSTI]

30, 2008 #12;2 Overview EPA Radiation protection program Uranium reports and abandoned mine lands and Liability Act #12;4 Uranium Reports and Abandoned Mine Lands Program ·Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium Mining, Volume I: Mining and Reclamation Background (Revised

456

Soil to plant transfer of 238 Th on a uranium  

E-Print Network [OSTI]

Soil to plant transfer of 238 U, 226 Ra and 232 Th on a uranium mining-impacted soil from species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed The radioactive waste (e.g. tailings) produced by uranium mining activities contains a series of long

Hu, Qinhong "Max"

457

Caulobacter crescentus as a Whole-Cell Uranium Biosensor  

Science Journals Connector (OSTI)

...results, we constructed a uranium reporter that places...strongly upregulated under uranium stress conditions. MATERIALS...Pb(NO3)2], and depleted uranyl nitrate [UO2...and by Damon Runyon Cancer Research Foundation fellowship...specificity for chelated uranium(VI): isolation and...

Nathan J. Hillson; Ping Hu; Gary L. Andersen; Lucy Shapiro

2007-09-28T23:59:59.000Z

458

Plutonium recovery from spent reactor fuel by uranium displacement  

DOE Patents [OSTI]

A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, J.P.

1992-03-17T23:59:59.000Z

459

Estimating terrestrial uranium and thorium by antineutrino flux measurements  

E-Print Network [OSTI]

of uranium and thorium concentrations in geological reservoirs relies largely on geochemi- cal modelEstimating terrestrial uranium and thorium by antineutrino flux measurements Stephen T. Dye, and approved November 16, 2007 (received for review July 11, 2007) Uranium and thorium within the Earth produce

Mcdonough, William F.

460

A Geostatistical Study of the Uranium Deposit at Kvanefjeld,  

E-Print Network [OSTI]

with the geology. It is also shown that, although anisotropy exists, the uranium variation has a secondRisa-R-468 A Geostatistical Study of the Uranium Deposit at Kvanefjeld, The Ilimaussaq Intrusion A GEOSTATISTICAL STUDY OF THE URANIUM DEPOSIT AT KVANEFJELD, THE ILIMAUSSAQ INTRUSION, SOUTH GREENLAND Flemming

Note: This page contains sample records for the topic "management advance uranium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EPA ENERGY STAR Webcast- Portfolio Manager 201  

Broader source: Energy.gov [DOE]

Continue to learn about EPAs new ENERGY STAR Portfolio Manager tool, with a deeper dive into more advanced functionalities such as: managing and tracking changes to your property uses over time;...

462

U. S. forms uranium enrichment corporation  

SciTech Connect (OSTI)

After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel.

Seltzer, R.

1993-07-12T23:59:59.000Z

463

Effects of various uranium leaching procedures on soil: Short-term vegetation growth and physiology. Progress report, April 1994  

SciTech Connect (OSTI)

Significant volumes of soil containing elevated levels of uranium exist in the eastern United States. The contamination resulted from the development of the nuclear industry in the United States requiring a large variety of uranium products. The contaminated soil poses a collection and disposal problem of a magnitude that justifies the development of decontamination methods. Consequently, the Department of Energy (DOE) Office of Technology Development formed the Uranium Soils Integrated Demonstration (USID) program to address the problem. The fundamental goal of the USID task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than what can be done using current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics and without generating waste that is difficult to manage and/or dispose of. However, procedures developed for removing uranium from contaminated soil have involved harsh chemical treatments that affect the physicochemical properties of the soil. The questions are (1) are the changes in soil properties severe enough to destroy the soil`s capacity to support and sustain vegetation growth and survival? and (2) what amendments might be made to the leached soil to return it to a reasonable vegetation production capacity? This study examines the vegetation-support capacity of soil that had been chemically leached to remove uranium. The approach is to conduct short-term germination and phytotoxicity tests for evaluating soils after they are subjected to various leaching procedures followed by longer term pot studies on successfully leached soils that show the greatest capacity to support plant growth. This report details the results from germination and short-term phytotoxicity testing of soils that underwent a variety of leaching procedures at the bench scale at ORNL and at the pilot plant at Fernald.

Edwards, N.T.

1994-08-01T23:59:59.000Z

464

Evaporation of Enriched Uranium Solutions Containing Organophosphates  

SciTech Connect (OSTI)

The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The preliminary SRTC data, in conjunction with information in the literature, is promising. However, very few experiments have been run, and none of the results have been confirmed with repeat tests. As a result, it is believed that insufficient data exists at this time to warrant Separations making any process or program changes based on the information contained in this report. When this data is confirmed in future testing, recommendations will be presented.

Pierce, R.A.

1999-03-18T23:59:59.000Z

465

Uranium in the Savannah River Site environment  

SciTech Connect (OSTI)

The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a ``living document`` that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

1992-12-09T23:59:59.000Z

466

Uranium in the Savannah River Site environment  

SciTech Connect (OSTI)

The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a living document'' that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

1992-12-09T23:59:59.000Z

467

Production and Characterization of Monodisperse Plutonium, Uranium, and Mixed Uranium?Plutonium Particles for Nuclear Safeguard Applications  

Science Journals Connector (OSTI)

Production and Characterization of Monodisperse Plutonium, Uranium, and Mixed Uranium?Plutonium Particles for Nuclear Safeguard Applications ... In order to prevent nuclear proliferation, the isotopic analysis of uranium and plutonium microparticles has strengthened the means in international safeguards for detecting undeclared nuclear activities. ...

Y. Ranebo; N. Niagolova; N. Erdmann; M. Eriksson; G. Tamborini; M. Betti

2010-04-23T23:59:59.000Z

468

Education: The Advanced IRP Seminar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Education: The Advanced IRP Seminar The Center has now run four seminars on advanced integrated resource planning (IRP) for state public utility commission staff members from around the country. Technology transfer is a central aspect of the Energy Analysis Program's IRP project. Reviewing utility IRP filings by state utility regulatory commissions is a new challenge to commissioners because many IRP concepts, especially those dealing with demand-side management, are unfamiliar. At the request of the National Association of Regulatory Utility Commissioners, the EAP designed a seminar on leading IRP issues for state commission staff who must review these utility filings. The fourth annual LBL Advanced IRP Seminar in early June hosted staff members from 22 utility regulatory commissions representing 21 state

469

Advanced Simulation Capability of Environmental Management |...  

Broader source: Energy.gov (indexed) [DOE]

The mission of ASCEM is to develop a modular and extensible open-source, high performance computing (HPC) modeling system for multiphase, multicomponent, multiscale subsurface...

470

Advanced Topics for the Portfolio Manager Initiative  

Broader source: Energy.gov (indexed) [DOE]

the kind of square footage we're talking about. It is not an insignificant amount of penetration into the building sector, which is fantastic. So, this is just - it's going to...

471

Advanced Management of Compressed Air Systems  

Broader source: Energy.gov [DOE]

Find out how a compressed air system works and the benefits of optimal compressed air system performance. This training is designed to help end users as well as industry solution providers learn...

472

Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants  

SciTech Connect (OSTI)

Isotopically depleted UF{sub 6} (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF{sub 6}. Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wall pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life.

Barlow, C.R.; Alderson, J.H.; Blue, S.C.; Boelens, R.A.; Conkel, M.E.; Dorning, R.E.; Ecklund, C.D.; Halicks, W.G.; Henson, H.M.; Newman, V.S.; Philpot, H.E.; Taylor, M.S.; Vournazos, J.P. [Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.; Russell, J.R. [USDOE Oak Ridge Field Office, TN (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States); Ziehlke, K.T. [MJB Technical Associates (United States)

1992-07-01T23:59:59.000Z

473

Uranium in natural waters sampled within former uranium mining sites in Kazakhstan and Kyrgyzstan  

Science Journals Connector (OSTI)

New data are presented on 238U concentrations in surface and ground waters sampled at selected uranium mining sites in Kazakhstan and Kyrgyzstan and in water supplies of settlements located in the vicinity of the...

B. M. Uralbekov; B. Smodis; M. Burkitbayev

2011-09-01T23:59:59.000Z

474

Possibility of nuclear pumped laser experiment using low enriched uranium  

SciTech Connect (OSTI)

Possibility to perform experiments for nuclear pumped laser oscillation by using low enriched uranium is investigated. Kinetic analyses are performed for two types of reactor design, one is using highly enriched uranium and the other is using low enriched uranium. The reactor design is based on the experiment reactor in IPPE. The results show the oscillation of nuclear pumped laser in the case of low enriched uranium reactor is also possible. The use of low enriched uranium in the experiment will make experiment easier.

Obara, Toru; Takezawa, Hiroki [Center for Research into Innovative Nuclear Energy Systems Tokyo Institute of Technology 2-12-1-N1-19, Ookayama Meguro-ku, Tokyo 152-8550 (Japan)

2012-06-06T23:59:59.000Z

475

Reassessment of individual dosimetry of long-lived alpha radionuclides of uranium miners through experimental determination of urinary excretion of uranium  

Science Journals Connector (OSTI)

......the occurrence of lung cancers(1). External gamma...been measured in Czech uranium mines since 1960s(2...Measurement of daily urinary uranium excretion in German peacekeeping...potential intakes of depleted uranium(DU). Sci. Total......

I. Maltov; V. Beckov; L. Tomsek; M. Slezkov-Marusiakov; J. Hulka

2013-04-01T23:59:59.000Z

476

Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides  

Science Journals Connector (OSTI)

......238U and 230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45(3...Measurement of daily urinary uranium excretion in German peacekeeping...assess potential intakes of depleted uranium(DU). Sci. Total Environ......

I. Maltov; V. Beckov; L. Tomsek; J. Hulka

2011-11-01T23:59:59.000Z

477

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect (OSTI)

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.