National Library of Energy BETA

Sample records for manage engine operation

  1. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  2. Systems Engineering Management Plan for Tank Farm Restoration and Safety Operations Project W-314

    SciTech Connect (OSTI)

    MCGREW, D.L.

    2000-04-19

    The Systems Engineering Management Plan for Project W-314 has been prepared within the guidelines of HNF-SD-WM-SEMP-002, TWRS Systems Engineering Management Plan. The activities within this SEMP have been tailored, in accordance with the TWRS SEMP and DOE Order 430.1, Life Cycle Asset Management, to meet the needs of the project.

  3. ARM - ARM Engineering and Operations Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send ARM Engineering and Operations Contacts Technical Coordination Office Person Role Responsible Area PhoneEmail Jim Mather ARM Technical DirectorEngineering Manager...

  4. Study of Engine Operating Parameter Effects on GDI Engine Particle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Results show ...

  5. Operational Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operational Management Operational Management Operational Management Leadership Contact Information Office of Resource Management and Planning U.S. Department of Energy, MA-1.1 ...

  6. Pressurized-fluid-operated engine

    SciTech Connect (OSTI)

    Holleyman, J.E.

    1990-01-30

    This patent describes a pressurized-fluid-operated reciprocating engine for providing output power by use of a pressurized gas that expands within the engine without combustion. It comprises: an engine block having a plurality of cylinders within which respective pistons are reciprocatable to provide a rotary power output; gas inlet means connected with the engine block for introducing a pressurized gas into the respective cylinders in a predetermined, timed relationship to provide a smooth power output from the engine; gas outlet means connected with the engine block for conveying exhaust gas from the respective cylinders after the gas expanded to move the pistons within the cylinders; and recirculation means extending between the inlet means and the outlet means for recirculation a predetermined quantity of exhaust gas. The recirculation means including ejector means for drawing exhaust gas into the recirculation means.

  7. Engine and method for operating an engine

    DOE Patents [OSTI]

    Lauper, Jr., John Christian; Willi, Martin Leo; Thirunavukarasu, Balamurugesh; Gong, Weidong

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  8. ARM - ARM Engineering and Operations Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMARM Engineering and Operations Contacts About Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Facility Documents ARM Management Plan (PDF, 1.3MB) Field Campaign Guidelines (PDF, 574KB) ARM Climate Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear from you! Send us a note below or call us at

  9. Career Map: Engineering Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering Manager Career Map: Engineering Manager Two engineering managers wearing hard hats inspect a wind component. Engineering Manager Position Title Engineering Manager Alternate Title(s) n/a Education & Training Level Bachelor's degree in relevant engineering discipline required Education & Training Level Description Engineering managers typically have at least a bachelor's degree and significant work experience. Brief job description The engineering manager plans, coordinates,

  10. Engine systems and methods of operating an engine

    DOE Patents [OSTI]

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  11. General Engineer (Project Manager)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  12. Waste shipment engineering data management plan

    SciTech Connect (OSTI)

    Marquez, D.L.

    1995-05-01

    This plan documents current data management practices and future data management improvements for TWRS Waste Shipment Engineering.

  13. APPA Engineering and Operations Technical Conference

    Broader source: Energy.gov [DOE]

    The 2014 APPA Engineering and Operations Technical Conference is designed for public power professionals charged with designing, developing, and maintaining the nation's electric system.

  14. Operational Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Operational Management The Office of Management supports many leadership responsibilities for the Department of Energy (DOE), providing support for project and contract management and other administrative functions. For example, the office oversees more than $22 billion in annual contract obligations and $2 billion in financial assistance obligations. It supports the management of the Department's multi-billion dollar project portfolio, and provides the Secretary of Energy and senior

  15. Data Management Facility Operations Plan (Program Document) ...

    Office of Scientific and Technical Information (OSTI)

    Program Document: Data Management Facility Operations Plan Citation Details In-Document Search Title: Data Management Facility Operations Plan The Data Management Facility (DMF) is ...

  16. ARM Operations and Engineering Procedure Mobile Facility Site...

    Office of Scientific and Technical Information (OSTI)

    ARM Operations and Engineering Procedure Mobile Facility Site Startup Citation Details In-Document Search Title: ARM Operations and Engineering Procedure Mobile Facility Site Startup ...

  17. PHEV Engine Control and Energy Management Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H. Chambon (PI) Oak Ridge National Laboratory PHEV Engine Control and Energy Management Strategy This presentation does not contain any proprietary, confidential, or otherwise ...

  18. PHEV Engine Cold Start Emissions Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Start Emissions Management PHEV Engine Cold Start Emissions Management Coordination of engine and powertrain supervisory control strategies to minimize cold start emissions ...

  19. Managing Design and Construction Using Systems Engineering for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A by Roland Frenck Functional areas: Construction and Engineering, Program Management This...

  20. PHEV Engine Control and Energy Management Strategy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program ...

  1. PIA - Savannah River Site Management and Operating Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor ...

  2. Multicylinder Diesel Engine Design for HCCI operation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_deojeda.pdf More Documents & Publications Multicylinder Diesel Engine Design for HCCI Operation Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Multicylinder Diesel Engine for Low Temperature Combustion Operation

  3. Alignment: Achieving Management & Operational Excellence | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To help realize the Management and Operations goal within the DOE Strategic Plan, Secretary Chu established the Associate Deputy Secretary (ADS) position in February 2011. In ...

  4. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion Demonstrator for High Efficiency Clean Combustion Multicylinder Diesel Engine Design for HCCI Operation Impact of Variable Valve Timing on Low Temperature Combustion

  5. Use of Management and Operating or Other Facility Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50.2C, Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area by Andrew Geary Functional areas: Work for...

  6. System and method of vehicle operating condition management

    DOE Patents [OSTI]

    Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.

    2015-10-20

    A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.

  7. Mechanical Design Engineering, MDE, Accelerator Operations and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOT-MDE's primary responsibilities include supporting accelerator operations, maintenance, and performance improvement projects; developing leadership roles in projects...

  8. Enterprise Assessments Operational Awareness Record of the Follow-up Review of Engineeing Configuration Management Processes at the Waste Isolation Pilot Plant- June 2015

    Broader source: Energy.gov [DOE]

    Operational Awareness Record of the Follow-up Review of Engineering Configuration Management Processes at the Waste Isolation Pilot Plant

  9. ARM Operations and Engineering Procedure Mobile Facility Site Startup

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect ARM Operations and Engineering Procedure Mobile Facility Site Startup Citation Details In-Document Search Title: ARM Operations and Engineering Procedure Mobile Facility Site Startup This procedure exists to define the key milestones, necessary steps, and process rules required to commission and operate an Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), with a specific focus toward on-time product delivery to the ARM Data Archive. The

  10. Oak Ridge Operations Office of Environmental Management Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Office of Environmental Management Overview Oak Ridge Operations Office of Environmental Management Overview PDF icon Oak Ridge Operations Office of Environmental ...

  11. Oak Ridge Operations Office of Environmental Management Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Operations Office of Environmental Management Overview Oak Ridge Operations Office of Environmental Management Overview PDF icon Oak Ridge Operations Office of...

  12. Operations managers conference: summary of proceedings

    SciTech Connect (OSTI)

    None,

    1982-02-01

    The Association for Energy Systems, Operations, and Programming (AESOP) was created to provide Department of Energy (DOE) and DOE-contractor management personnel with a means for acquiring and exchanging information concerning effective management of ADP resources and personnel as well as a variety of computer applications. AESOP serves as a forum for the data processing management of more than 50 DOE offices and private corporations under contract to DOE. AESOP Operations Managers Conferences are held approximately every 18 months. Conference topics include personnel problems, training situations, reorganization plans, and work scheduling. Security and other issues affecting ADP procedures and personnel are also often addressed. Papers published in this volume of the proceedings have been summarized from speeches and discussions that were presented at the seventh AESOP Operations Managers Conference.

  13. Association of Energy Engineers Certified Energy Manager Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Guidelines Association of Energy Engineers Certified Energy Manager Program Becomes First Credential Recognized under Better Buildings Workforce Guidelines September ...

  14. Integrated Engineering, Construction, and Management Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Engineering, Construction, and Management Solutions Washington Group International Contact: Susan Scott Public Affairs (505) 234-7204 http://www.wipp.ws Washington TRU Solutions LLC Washington TRU Solutions LLC Waste Isolation Pilot Plant Waste Isolation Pilot Plant P.O. Box 2078 P.O. Box 2078 Carlsbad, New Mexico 88221 Carlsbad, New Mexico 88221 For immediate release For immediate release Firm Awarded WIPP Records Demonstration Contract CARLSBAD, N.M., February 17, 2005 - Washington

  15. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect (OSTI)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  16. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    SciTech Connect (OSTI)

    Heywood, John; Jo, Young Suk; Lewis, Raymond; Bromberg, Leslie; Heywood, John

    2015-10-31

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  17. Rotating cylinder engine and method of operating the engine

    SciTech Connect (OSTI)

    Schaich, W. A.

    1985-12-17

    Method and apparatus for producing rotation of a power output shaft comprises a plurality of peripherally spaced cylinders disposed in generally tangential relationship to the periphery of a housing defining a cylindrical fluid pressure chamber and connected at their inner ends to such fluid pressure chamber. The housing is mounted on, and co-rotatable with the output shaft. The gas pressure in such chamber is regulated to maintain a selected value above ambient. Cooperating pistons in each of the cylinders are interconnected by connecting rods to a unidirectional clutch mounted in the fluid pressure chamber on a fixed shaft, thus forcing the cylinders to rotate when pressured gas is introduced in the outer ends of the cylinders. Inlet and exhaust valves are provided in a cylinder head mounted in the outer end of each cylinder and are operable by contact with the outer face of the respective piston. A radial exhaust port is uncovered by each piston as it nears the end of its power stroke, thus reducing the fluid pressure on the outer piston face to ambient and permitting the regulated gas pressure in the fluid pressure chamber to effect the return of the pistons to their outermost positions relative to the respective cylinders, thus producing a net unidirectional torque on the housing to rotate the output shaft.

  18. Systems engineering management and implementation plan for Project W-465, immobilized low-activity waste plan

    SciTech Connect (OSTI)

    Latray, D.A.

    1998-05-15

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-465 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

  19. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    SciTech Connect (OSTI)

    Wecks, M.D.

    1998-04-15

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

  20. DOE Awards Management and Operating Contract for DOE's Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management and Operating Contract for DOE's Strategic Petroleum Reserve DOE Awards Management and Operating Contract for DOE's Strategic Petroleum Reserve September 18, 2013 - ...

  1. Preliminary Notice of Violation, URS Global Management & Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    URS Global Management & Operations Services - NEA-2011-04 Preliminary Notice of Violation, URS Global Management & Operations Services - NEA-2011-04 September 1, 2011 Issued to ...

  2. SES Performance Management System Policy and Operating Procedures

    Broader source: Energy.gov [DOE]

    The SES Performance Management System Policy and Operating Procedures are designed to provide the framework for DOE’s performance management system. This performance management system applies to...

  3. High load operation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P.; Kieser, Andrew J.; Liechty, Michael P.; Hardy, William L.; Rodman, Anthony; Hergart, Carl-Anders

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  4. Multicylinder Diesel Engine Design for HCCI Operation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 07 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_deojeda.pdf More Documents & Publications Multicylinder Diesel Engine for Low Temperature Combustion Operation Impact of Variable Valve Timing on Low Temperature Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean

  5. DOE - Office of Legacy Management -- Idaho National Engineering and

    Office of Legacy Management (LM)

    Environmental Laboratory - 015 Idaho National Engineering and Environmental Laboratory - 015 FUSRAP Considered Sites Site: Idaho National Engineering and Environmental Laboratory (015) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: In operation since 1949, the Idaho National Engineering and Environmental Laboratory (INEEL) is a Department

  6. Systems engineering management plans. (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... The Systems Engineering Management Plan (SEMP) is a comprehensive and effective tool used ...

  7. Audit of Construction Management at the Idaho National Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT OF CONSTRUCTION MANAGEMENT AT THE IDAHO NATIONAL ENGINEERING LABORATORY The Office of Inspector General wants to make the distribution of its reports as customer friendly and ...

  8. PIA - Savannah River Site Management and Operating Contractor (HRMS) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor (HRMS) PIA - Savannah River Site Management and Operating Contractor (HRMS) PDF icon PIA - Savannah River Site Management and Operating Contractor (HRMS) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA -

  9. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  10. Configuration management program plan for Hanford site systems engineering

    SciTech Connect (OSTI)

    Kellie, C.L.

    1996-03-28

    This plan establishes the integrated management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford Site Technical Baseline.

  11. Using Process Safety Management to improve plant operability

    SciTech Connect (OSTI)

    Sutton, I.S.

    1995-12-31

    The Process Safety Management (PSM) standard, 29 CFR 1910.119, was published in draft from in July 1990 and has been in force since May 1992. The standard requires that all companies that handle hazardous materials must have in place a management program to minimize the chance of accidents, and to reduce the consequences of such accidents should they occur. The purpose of this paper is to provide some preliminary guidance as to how PSM activities can be managed so that, as the compliance part of the work is completed, the best return on the investment can be achieved. One final point should be made about safety and operability. The two are closely linked, but they are not identical. In other words, a safety improvement program will almost certainly lead to reduced economic losses, similarly a reliability improvement program will almost certainly reduce injuries, but there are some differences that need to be taken account. These include: (1) Additional safety equipment may reduce reliability. (2) A reliable plant does not undergo many shutdowns. Therefore, operators have less practice with the implementation of shutdown and startup procedures than they would otherwise. (3) Unsafe engineering practices, such as the use of temporary bypasses and jumper lines, may increase operability, but they reduce safety.

  12. A power system includes an engine, a motor/generator operatively connected to the engine, and a starter operatively connected to at least one of the engine and the motor/generator.

    DOE Patents [OSTI]

    Hoff, Brian D.; Algrain, Marcelo C.

    2008-12-09

    A power system includes an engine, a motor/generator operatively connected to the engine, and a starter operatively connected to at least one of the engine and the motor/generator.

  13. DOE - Office of Legacy Management -- Hanford Engineer Works - WA 01

    Office of Legacy Management (LM)

    Hanford Engineer Works - WA 01 FUSRAP Considered Sites Site: Hanford Engineer Works (WA.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.hanford.gov/ Documents Related to Hanford Engineer Works

  14. Engineering to Control Noise, Loading, and Optimal Operating Points

    SciTech Connect (OSTI)

    Mitchell R. Swartz

    2000-11-12

    Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems.

  15. Federal Energy and Water Management Award Winner 22nd Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22nd Operations Group Fuel Efficiency Office Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office PDF icon fewm13mcconnellafbhighres.pdf ...

  16. DOE - Office of Legacy Management -- Marion Engineer Depot - OH 45

    Office of Legacy Management (LM)

    Engineer Depot - OH 45 FUSRAP Considered Sites Site: MARION ENGINEER DEPOT (OH.45) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: South of Harding Highway (Route 309) at County Route 98, Marion County , Marion , Ohio OH.45-2 Evaluation Year: 1990 OH.45-2 Site Operations: The Engineer Depot was built in 1942 - at one time was the largest warehousing facilities of its kind in the U.S. AEC New York Operations Office provided radiation

  17. V-174: RSA Authentication Manager Writes Operating System, SNMP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: RSA Authentication Manager Writes Operating System, SNMP, and HTTP Plug-in Proxy Passwords in Clear Text to Log Files V-174: RSA Authentication Manager Writes Operating System,...

  18. DOE Selects ASE to Manage and Operate its National Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASE to Manage and Operate its National Renewable Energy Laboratory DOE Selects ASE to Manage and Operate its National Renewable Energy Laboratory July 29, 2008 - 2:40pm Addthis ...

  19. Tank waste remediation system systems engineering management plan

    SciTech Connect (OSTI)

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

  20. Configuration management program plan for Hanford site systems engineering

    SciTech Connect (OSTI)

    Hoffman, A.G.

    1994-11-14

    This plan establishes the integrated configuration management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford site technical baseline.

  1. Association of Energy Engineers Certified Energy Manager Program Becomes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Credential Recognized under Better Buildings Workforce Guidelines | Department of Energy Association of Energy Engineers Certified Energy Manager Program Becomes First Credential Recognized under Better Buildings Workforce Guidelines Association of Energy Engineers Certified Energy Manager Program Becomes First Credential Recognized under Better Buildings Workforce Guidelines September 14, 2015 - 12:36pm Addthis Last spring, the Energy Department (DOE) launched its Better Buildings

  2. DOE Names Interim Manager for Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Names Interim Manager for Idaho Operations Office Dennis Miotla, the Office of Nuclear Energy's Deputy Assistant Secretary Dennis Miotla for Nuclear Power Deployment, has been named the interim manager of the U.S. Department of Energy's Idaho Operations Office, while the Department recruits a permanent manager. Mr. Miotla will succeed Elizabeth Sellers, who has served as Idaho Operations Office Manager from April, 2003. Sellers plans to retire from federal service in February. "Under

  3. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOE Patents [OSTI]

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  4. Tank waste remediation system systems engineering management plan

    SciTech Connect (OSTI)

    Peck, L.G.

    1996-02-06

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation Systems (TWRS) implementation of U.S. Department of Energy (DOE) Systems Engineering (SE) policy provided in Tank Waste Remediation System Systems Engineering Management Policy, DOE/RL letter, 95-RTI-107, Oct. 31, 1995. This SEMP defines the products, process, organization, and procedures used by the TWRS Program to accomplish SE objectives. This TWRS SEMP is applicable to all aspects of the TWRS Program and will be used as the basis for tailoring SE to apply necessary concepts and principles to develop and mature the processes and physical systems necessary to achieve the desired end states of the program.

  5. RFP: Management and Operation of the National Renewable Energy Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy RFP: Management and Operation of the National Renewable Energy Laboratory RFP: Management and Operation of the National Renewable Energy Laboratory Request for Proposals (RFP) Number DE-RP36-07GO97036: Management and Operation of the National Renewable Energy Laboratory. PDF icon Solicitation, Offer and Award (SF-33) PDF icon Section B: Supplies, Services and Costs PDF icon Section C: Description, Specifications and Work Statements PDF icon Section D - G: Section D,

  6. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  7. Introduction SCADA Security for Managers and Operators | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCADA Test Bed introduction to managers and operators in the field- To establish a National capability to support industry and government in addressing control system cyber ...

  8. Team Based Program Design Management and Research Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team Based Program Design Management and Research Operations Involvement in Nanoscale Materials ES&H August 2009 Presenter: Kevin Sheffield, Pacific Northwest National Laboratory ...

  9. MEMORANDUM FORMA TTHEW S. MCCORMICK MANAGER RICHLAND OPERATIONS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , SUBJECT: ENVIRONMENTAL MANAGEMENT Delegation of Acquisition Executive AuthorJty for Capital Asset Projects at. Richland Operations Office In accordance with the guidelines of...

  10. Department of Energy to Compete Management and Operating Contract...

    Office of Science (SC) Website

    Department of Energy to Compete Management and Operating Contract for Brookhaven National ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  11. Department of Energy to Compete Management and Operating Contracts...

    Office of Science (SC) Website

    Department of Energy to Compete Management and Operating Contracts for Three Office of ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  12. Department of Energy to Compete Management & Operating Contract...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy security," DOE Assistant Secretary for Energy Efficiency and Renewable Energy Alexander A. Karsner said "Holding competitions for the management and operation of our world ...

  13. Report on Audit of Department of Energy Management and Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT OF DEPARTMENT OF ENERGY MANAGEMENT AND OPERATING CONTRACTOR AVAILABLE FEES The Office of Inspector General wants to make the distribution of its reports as customer friendly ...

  14. Method for operating a spark-ignition, direct-injection internal combustion engine

    DOE Patents [OSTI]

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  15. Operational concepts and implementation strategies for the design configuration management process.

    SciTech Connect (OSTI)

    Trauth, Sharon Lee

    2007-05-01

    This report describes operational concepts and implementation strategies for the Design Configuration Management Process (DCMP). It presents a process-based systems engineering model for the successful configuration management of the products generated during the operation of the design organization as a business entity. The DCMP model focuses on Pro/E and associated activities and information. It can serve as the framework for interconnecting all essential aspects of the product design business. A design operation scenario offers a sense of how to do business at a time when DCMP is second nature within the design organization.

  16. Guide for Operational Configuration Management Program Part II

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-01-18

    This Standard presents the program criteria and implementation guidance for an operational configuration management (CM) program for Department of Energy (DOE) facilities. This Standard is applicable to DOE nuclear facilities in the operational phase.

  17. Energy Department Awards New Contract to Manage and Operate Brookhaven...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The award was the result of a DOE competition for the management and operations (M&O) contract for the laboratory, which has been operated by BSA for the Department since 1998. A ...

  18. Information Technology Specialist (Infrastructure Operations Manager)

    Broader source: Energy.gov [DOE]

    The Office of Science manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science. In addition, the Office of Science is the...

  19. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOE Patents [OSTI]

    Flowers, Daniel L. (San Leandro, CA)

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  20. Management & Operating Subcontract Reporting Capability (MOSRC) Downloads |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Management & Operating Subcontract Reporting Capability (MOSRC) Downloads File FY2015 MO Small Business Subcontracting Summary Report PDF icon MOSRC Field Definitions File FY2015 MO Small Business Subcontracting Report_Public.xlsx More Documents & Publications Service Contract Inventory Federal Reporting Recipient Information Federal Reporting Recipient Information

  1. 33 CFR 209.140 Operations of the Corps of Engineers under the...

    Open Energy Info (EERE)

    Corps of Engineers under the Federal Power ActLegal Abstract Outlines policies and procedures applicable to those operations in which the Corps of Engineers may be called upon to...

  2. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doe logo Media Contact: Brad Bugger (208) 526-0833 For Immediate Release: Wednesday, June 29, 2011 IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER Idaho Falls, ID � The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE's Idaho site. Cooper has more than 30 years of experience in commercial and

  3. Management and Operating Contractors' Subcontract Audit Coverage, IG-0885

    Office of Environmental Management (EM)

    Management and Operating Contractors' Subcontract Audit Coverage DOE/IG-0885 April 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 April 17, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report on "Management and Operating Contractors' Subcontract Audit Coverage" BACKGROUND The Department of Energy (Department) employs 28 Management and

  4. Memory alloy heat engine and method of operation

    DOE Patents [OSTI]

    Johnson, Alfred Davis

    1977-01-01

    A heat engine and method of operation employing an alloy having a shape memory effect. A memory alloy element such as one or more wire loops are cyclically moved through a heat source, along a path toward a heat sink, through the heat sink and then along another path in counter-flow heat exchange relationship with the wire in the first path. The portion of the wire along the first path is caused to elongate to its trained length under minimum tension as it is cooled. The portion of the wire along the second path is caused to contract under maximum tension as it is heated. The resultant tension differential between the wires in the two paths is applied as a force through a distance to produce mechanical work. In one embodiment a first set of endless memory alloy wires are reeved in non-slip engagement between a pair of pulleys which are mounted for conjoint rotation within respective hot and cold reservoirs. Another set of endless memory alloy wires are reeved in non-slip engagement about another pair of pulleys which are mounted in the respective hot and cold reservoirs. The pulleys in the cold reservoir are of a larger diameter than those in the hot reservoir and the opposite reaches of the wires between the two sets of pulleys extend in closely spaced-apart relationship in counter-flow heat regenerator zones. The pulleys are turned to move the two sets of wires in opposite directions. The wires are stretched as they are cooled upon movement through the heat regenerator toward the cold reservoirs, and the wires contract as they are heated upon movement through the regenerator zones toward the hot reservoir. This contraction of wires exerts a larger torque on the greater diameter pulleys for turning the pulleys and supplying mechanical power. Means is provided for applying a variable tension to the wires. Phase change means is provided for controlling the angular phase of the pulleys of each set for purposes of start up procedure as well as for optimizing engine operation under varying conditions of load, speed and temperatures.

  5. ARM - AMF2 Management and Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images ... 2009-2010 Shouxian, China, 2008 Black Forest, ... on Vessel position and weather is located here. ...

  6. Department of Energy to Compete Management and Operating Contracts for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Three Office of Science Laboratories | Department of Energy and Operating Contracts for Three Office of Science Laboratories Department of Energy to Compete Management and Operating Contracts for Three Office of Science Laboratories November 17, 2006 - 9:25am Addthis WASHINGTON, DC -- The U.S. Department of Energy (DOE) announced today that it plans to begin competing the management and operating (M&O) contracts for three of its Office of Science national laboratories over the next 18

  7. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    SciTech Connect (OSTI)

    Noonan, Nicholas James

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  8. Earned Value Management System (EVMS) Corrective Action Standard Operating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedure | Department of Energy (EVMS) Corrective Action Standard Operating Procedure Earned Value Management System (EVMS) Corrective Action Standard Operating Procedure This EVMS Corrective Action Standard Operating Procedure (ECASOP) serves as PM's primary reference for development of Corrective Action Requests (CARs) and Continuous Improvement Opportunities (CIOs), as well as the assessment of contractors procedures and implementation associated with Variance Analysis Reports (VARs) and

  9. Extending operating range of a homogeneous charge compression ignition engine via cylinder deactivation

    DOE Patents [OSTI]

    Hergart, Carl-Anders; Hardy, William L.; Duffy, Kevin P.; Liechty, Michael P.

    2008-05-27

    An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.

  10. Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine

    Broader source: Energy.gov [DOE]

    ORNL and UW collaboration in evaluating and developing RCCI operation in fully built multi-cylinder engine to address hardware, aftertreatment, and control challenges

  11. DOE Idaho Operations Office Manager Elizabeth Sellers leaving Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Idaho Operations Office Manager Elizabeth Sellers leaving Department Elizabeth Sellers, manager of the U.S. Department of Energy�s Idaho Operations Office, announced today that she will retire from United States government service in February. Elizabeth Sellers, manager of the U.S. Department of Energy�s Idaho Operations Office �I have thoroughly enjoyed my time in Idaho, and my 26 years serving the United States Department of Energy,� said Sellers, who has served the DOE since 1983.

  12. ALIGNMENT: ACHIEVING MANAGEMENT AND OPERATIONAL EXCELLENCE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ALIGNMENT: A CHIEVING M ANAGEMENT A ND O PERATIONAL E XCELLENCE December 1 , 2 011 Secretary C hu r eleased t he D OE S trategic P lan i n M ay 2 011, w hich e stablished a v ision f or transformational c lean e nergy, s cience, a nd s ecurity s olutions t hat a re s ignificant, t imely, a nd c ost effective. S uccessfully a chieving t his v ision w ill r equire a s ustained c ommitment t o m anagement a nd operational e xcellence f rom H eadquarters t o e very s ite o ffice, s ervice c enter, a

  13. Labor Standards for DOE Management and Operating Contracts

    Broader source: Energy.gov [DOE]

    This Flash is issued to provide you an Acquisition Letter containing information and guidance regarding application of labor standards at the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) management and operating (M&O) contract facilities.

  14. DOE to Compete Contract for Management and Operation of Pacific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WASHINGTON, D.C. -- The U.S. Department of Energy (DOE) announced today that it intends to seek competitive bids for the management and operations contract for the Pacific ...

  15. Arbitration Guidance for Management & Operating Contractors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Arbitration Guidance for Management & Operating Contractors Arbitration Guidance for Management & Operating Contractors The Office of the General Counsel, in conjunction with the Office of the General Counsel of the NNSA, has reviewed the question of whether M&O contractors can include binding arbitration in their contracts with third-parties. PDF icon Arbitration_Guidance_for_MO_Contractors.pdf More Documents & Publications Microsoft Word - Arbitration Guidance for

  16. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    SciTech Connect (OSTI)

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-03-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. {copyright} {ital 1996 American Institute of Physics.}

  17. CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  18. Process for Managing and Customizing HPC Operating Systems

    SciTech Connect (OSTI)

    Brown, David ML

    2014-04-02

    A process for maintaining a custom HPC operating system was developed at the Environmental Molecular Sciences Laboratory (EMSL) over the past ten years. This process is generic and flexible to manage continuous change as well as keep systems updated while managing communication through well defined pieces of software.

  19. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  20. Effect of Engine Operating Condition and Coolant Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    In this work, the performance of a stand-alone EGR cooler attached to a 6.4L turbodiesel engine is being investigated by analyzing the microstructure and chemical composition of ...

  1. Teaching Radioactive Waste Management in an Undergraduate Engineering Program - 13269

    SciTech Connect (OSTI)

    Ikeda, Brian M.

    2013-07-01

    The University of Ontario Institute of Technology is Ontario's newest university and the only one in Canada that offers an accredited Bachelor of Nuclear Engineering (Honours) degree. The nuclear engineering program consists of 48 full-semester courses, including one on radioactive waste management. This is a design course that challenges young engineers to develop a fundamental understanding of how to manage the storage and disposal of various types and forms of radioactive waste, and to recognize the social consequences of their practices and decisions. Students are tasked with developing a major project based on an environmental assessment of a simple conceptual design for a waste disposal facility. They use collaborative learning and self-directed exploration to gain the requisite knowledge of the waste management system. The project constitutes 70% of their mark, but is broken down into several small components that include, an environmental assessment comprehensive study report, a technical review, a facility design, and a public defense of their proposal. Many aspects of the project mirror industry team project situations, including the various levels of participation. The success of the students is correlated with their engagement in the project, the highest final examination scores achieved by students with the strongest effort in the project. (authors)

  2. Department of Energy Awards Contract for Management and Operation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory to the University of Chicago Argonne, LLC | Department of Energy Contract for Management and Operation of Argonne National Laboratory to the University of Chicago Argonne, LLC Department of Energy Awards Contract for Management and Operation of Argonne National Laboratory to the University of Chicago Argonne, LLC July 31, 2006 - 4:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has awarded a new $2.5 billion, five-year contract for management and

  3. Using an operator training simulator in the undergraduate chemical engineering curriculim

    SciTech Connect (OSTI)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    An operator training simulator (OTS) is to the chemical engineer what a flight simulator is to the aerospace engineer. The basis of an OTS is a high-fidelity dynamic model of a chemical process that allows an engineer to simulate start-up, shut-down, and normal operation. It can also be used to test the skill and ability of an engineer or operator to respond and control some unforeseen situation(s) through the use of programmed malfunctions. West Virginia University (WVU) is a member of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA). Working through the NETL-RUA, the authors have spent the last four years collaborating on the development of a high-fidelity OTS for an Integrated Gasification Combined Cycle (IGCC) power plant with CO{sub 2} capture that is the cornerstone of the AVESTARTM (Advanced Virtual Energy Simulation Training And Research) Center with sister facilities at NETL and WVU in Morgantown, WV. This OTS is capable of real-time dynamic simulation of IGCC plant operation, including start-up, shut-down, and power demand load following. The dynamic simulator and its human machine interfaces (HMIs) are based on the DYNSIM and InTouch software, respectively, from Invensys Operations Management. The purpose of this presentation is to discuss the authors’ experiences in using this sophisticated dynamic simulation-based OTS as a hands-on teaching tool in the undergraduate chemical engineering curriculum. At present, the OTS has been used in two separate courses: a new process simulation course and a traditional process control course. In the process simulation course, concepts of steady-state and dynamic simulations were covered prior to exposing the students to the OTS. Moreover, digital logic and the concept of equipment requiring one or more permissive states to be enabled prior to successful operation were also covered. Students were briefed about start-up procedures and the importance of following a predetermined sequence of actions in order to start-up the plant successfully. Student experience with the dynamic simulator consisted of a six-hour training session in which the Claus sulfur capture unit of the IGCC plant was started up. The students were able to operate the simulator through the InTouch-based HMI displays and study and understand the underlying dynamic modeling approach used in the DYNSIM-based simulator. The concepts learned during the training sessions were further reinforced when students developed their own DYNSIM models for a chemical process and wrote a detailed start-up procedure. In the process control course, students learned how the plant responds dynamically to changes in the manipulated inputs, as well as how the control system impacts plant performance, stability, robustness and disturbance rejection characteristics. The OTS provided the opportunity to study the dynamics of complicated, “real-life” process plants consisting of hundreds of pieces of equipment. Students implemented ideal forcing functions, tracked the time-delay through the entire plant, studied the response of open-loop unstable systems, and learned “good practices” in control system design by taking into account the real-world events where significant deviations from the “ideal” or “expected” response can occur. The theory of closed-loop stability was reinforced by implementing limiting proportional gain for stability limits of real plants. Finally, students were divided into several groups where each group was tasked to control a section of the plant within a set of operating limits in the face of disturbances and simulated process faults. At the end of this test, they suggested ways to improve the control system performance based on the theory they learned in class and the hands-on experience they earned while working on the OTS.

  4. Method and apparatus of parallel computing with simultaneously operating stream prefetching and list prefetching engines

    DOE Patents [OSTI]

    Boyle, Peter A.; Christ, Norman H.; Gara, Alan; Mawhinney, Robert D.; Ohmacht, Martin; Sugavanam, Krishnan

    2012-12-11

    A prefetch system improves a performance of a parallel computing system. The parallel computing system includes a plurality of computing nodes. A computing node includes at least one processor and at least one memory device. The prefetch system includes at least one stream prefetch engine and at least one list prefetch engine. The prefetch system operates those engines simultaneously. After the at least one processor issues a command, the prefetch system passes the command to a stream prefetch engine and a list prefetch engine. The prefetch system operates the stream prefetch engine and the list prefetch engine to prefetch data to be needed in subsequent clock cycles in the processor in response to the passed command.

  5. Fuel Requirements for HCCI Engine Operation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DEER Conference Presentation: Southwest Research Institute PDF icon 2002_deer_ryan.pdf More Documents & Publications HCCI - A Technical Review and Progress Report 2006 Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Chemical Kinetic Research on HCCI & Diesel Fuels

  6. Particulate Matter Characteristics for Highly Dilute Stoichiometric GDI Engine Operations

    Broader source: Energy.gov [DOE]

    The overall goal of this study is to help identify which conditions and potential mechanisms impede soot formation in GDI operations.

  7. System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    SciTech Connect (OSTI)

    VAN BEEK, J.E.

    2000-05-05

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

  8. Westinghouse receives high marks for management, operation of WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receives High Marks For Management, Operation of WIPP CARLSBAD, N.M., January 11, 2000 - The Westinghouse Waste Isolation Division (WID) received high marks from the U.S. Department of Energy (DOE) for its management and operation of the Waste Isolation Pilot Plant (WIPP) in fiscal year 1999. For the 12-month performance evaluation period from October 1, 1998 through September 30, 1999, Westinghouse received 94.9 of a possible 100 points. The DOE considers a score of 86 to 95 as good. A score

  9. DOE Idaho Operations Office Manager Elizabeth Sellers leaving Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAREWELL OPEN HOUSE SET FOR ELIZABETH SELLERS A farewell open house has been scheduled for Elizabeth Sellers, who is retiring as manager of the U.S. Department of Energy's Idaho Operations Office. The gathering is open to the public, and is scheduled for Jan. 22 from 3 p.m. to 5 p.m. at The Art Museum of Eastern Idaho, 300 S. Capital Ave., Idaho Falls. Light refreshments will be served. Ms. Sellers has managed the Idaho Operations Office, which has oversight of the Idaho National Laboratory,

  10. ARM Operations and Engineering Procedure Mobile Facility Site Startup

    SciTech Connect (OSTI)

    Voyles, Jimmy W

    2015-05-01

    This procedure exists to define the key milestones, necessary steps, and process rules required to commission and operate an Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), with a specific focus toward on-time product delivery to the ARM Data Archive. The overall objective is to have the physical infrastructure, networking and communications, and instrument calibration, grooming, and alignment (CG&A) completed with data products available from the ARM Data Archive by the Operational Start Date milestone.

  11. Subcontracting practices at the Nevada Operations Office and its management and operating contractor

    SciTech Connect (OSTI)

    1996-05-10

    The Department of Energy (Department), Nevada Operations office (Nevada) is responsible for following established policy in obtaining necessary support services through its Contract Management Division. The objective of the audit was to determine whether Nevada and its Management and Operating (M&O) contractors were following Federal and Department policies with regard to directed support service subcontracts. The audit showed that program offices in Nevada and Headquarters were directing the Nevada M&O contractor to award subcontracts to specific companies or individuals. The subcontractors reported either directly to a program office or to a national laboratory. Furthermore, the subcontractors` work products were delivered directly to the requesting program office. The M&O contractor had only administrative responsibility for the subcontracts awarded. This occurred because Nevada had not established adequate internal controls over the process of procuring support service. As a result, the M&O contractor was paid a higher award fee for managing the Department`s contracts and may have incurred additional costs in staffing its procurement office. We recommended that the Manager, Nevada Operations Office, discontinue directed support service subcontracts to its M&O contractor and act to strengthen internal controls over subcontracting. Nevada management partially concurred with the recommendations but did not believe the directed procurements cited in the report were inappropriate. Details of management`s comments and our responses are included in Part III.

  12. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  13. Concept of Operations for Real-time Airborne Management System

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Taira, Randal Y.; Orr, Heather M.

    2013-03-04

    The purpose of this document is to describe the operating concepts, capabilities, and benefits of RAMS including descriptions of how the system implementations can improve emergency response, damage assessment, task prioritization, and situation awareness. This CONOPS provides general information on operational processes and procedures required to utilize RAMS, and expected performance benefits of the system. The primary audiences for this document are the end users of RAMS (including flight operators and incident commanders) and the RAMS management team. Other audiences include interested offices within the Department of Homeland Security (DHS), and officials from other state and local jurisdictions who want to implement similar systems.

  14. Internal combustion engine for natural gas compressor operation

    DOE Patents [OSTI]

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  15. Emergency Management Fundamentals and the Operational Emergency Base Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides information about the emergency management fundamentals imbedded in the requirements of DOE O 151.1C, as well as acceptable methods of meeting the requirements for the Operational Emergency Base Program, which ensures that all DOE facilities have effective capabilities for all emergency response. Supersedes DOE G 151.1-1, Volume 1.

  16. Reactor engineering support of operations at Three Mile Island nuclear station

    SciTech Connect (OSTI)

    Tropasso, R.T.

    1995-12-31

    The purpose of this paper is to detail the activities in which plant nuclear engineering personnel provide direct support to plant operations. The specific activities include steady-state, transient, and shutdown/refueling operation support as well as special project involvement. The paper is intended to describe the experiences at Three Mile Island (TMI) in which significant benefit to the success of the activity is achieved through the support of the nuclear engineers.

  17. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  18. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  19. Rotary internal combustion engine and method of operation

    SciTech Connect (OSTI)

    Ballinger, M.S.

    1988-05-03

    A rotor is formed to include recesses each of which engages a portion of a rotary piston. The remaining portions of the rotary pistons project radially outwardly from the periphery of the rotor to a position contiguous the inner surface of a peripheral stator wall. The peripheral stator wall includes endwardly projecting lobes. The lobes are elongated axially of the engine and present convex surfaces of circular curvature which conform in size and shape to concave pockets formed in side portion of the rotary pistons. During rotation of the rotary assembly the piston pockets move into and then out from a meshing engagement with the lobes. One of the lobes carries an igniter. An explosive lean mixture is drawn into the side pocket of a piston as the piston moves past an inlet opening. This mixture is compressed by the engagement of the piston pocket and the lobe. Ignition of the compressed charged creates an explosive force acting on the rotor assembly, causing it to rotate.

  20. The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories

    Broader source: Energy.gov [DOE]

    The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories was presented to CRENEL 9/15/2014.

  1. 2014 Annual Planning Summary for the Environmental Management Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Environmental Management Energy Technology Engineering Center.

  2. DOE - Office of Legacy Management -- Era Tool and Engineering...

    Office of Legacy Management (LM)

    Era Tool and Engineering Co - IL 29 FUSRAP Considered Sites Site: Era Tool and Engineering Co. (IL.29 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated...

  3. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    SciTech Connect (OSTI)

    Ryu, Jun-hyung

    2013-07-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  4. Sandia National Laboratories is a multi-program laboratory managed and operated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2007-6815P 10/2007 S AN DI A N AT I ON AL L AB O R AT O RIES Microsystems & Engineering Sciences Applications (MES A) MESA combines silicon processing, packaging and integration, and fabrication of compound- semiconductor devices under one roof. MESA

  5. Effects of Ignition and Injection Perturbation under Lean and Dilute GDI Engine Operation

    SciTech Connect (OSTI)

    Wallner, Thomas; Kaul, Brian C; Sevik, James; Scarcelli, Riccardo; Wagner, Robert M

    2015-01-01

    Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution levels were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms. Ignition perturbation was phased early/late of MBT timing, and injection perturbation was set fuel rich/lean of the given air-to-fuel ratio. COVIMEP was used to define acceptable operation limits when comparing different perturbation cases. Overall sensitivity data shows COVIMEP is more sensitive to injection perturbation over ignition perturbation. This is because of the greater effect injection perturbation has on combustion phasing, ignition delay, and combustion duration.

  6. 2013 Federal Energy and Water Management Award Winner 4th Civil Engineering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Squadron | Department of Energy 4th Civil Engineering Squadron 2013 Federal Energy and Water Management Award Winner 4th Civil Engineering Squadron PDF icon fewm13_seymourjohnson_highres.pdf PDF icon fewm13_seymourjohnson.pdf More Documents & Publications Federal Energy and Water Management Award Winners Ronald Allard, Joseph Eberly, Amy Hudson, James B. Shaffer Federal Energy and Water Management Award Winners Christine Hull 2013 Federal Energy and Water Management Award Winner

  7. Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation

    DOE Patents [OSTI]

    Dec, John E.; Sjoberg, Carl-Magnus G.

    2006-10-31

    A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

  8. Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-15

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  9. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    SciTech Connect (OSTI)

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissions is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.

  10. Eight Y-12 employees awarded master's in engineering management | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Complex Eight Y-12 employees ... Eight Y-12 employees awarded master's in engineering management Posted: March 28, 2014 - 3:22pm Eight employees at Y-12 recently earned a master's in industrial engineering with a concentration in engineering management at the University of Tennessee-Knoxville. Students pursuing this degree complete the 16-course, four-semester program as an ensemble, attending all-day Friday classes not held on the university campus. "This particular

  11. Revised Acquisition Letter 2013-11- Non-Management and Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earned Value Management Clause Revised Acquisition Letter 2013-11- Non-Management and Operating (Non-M&O) Contractor Business Systems Clauses for Section H - Earned Value ...

  12. Project Execution Plan, Waste Management Division, Nevada Operations Office, U.S. Department of Energy, April 2000

    SciTech Connect (OSTI)

    DOE /NV

    2000-04-01

    This plan addresses project activities encompassed by the U.S. Department of Energy/Nevada Operations Office Waste Management Division and conforms to the requirements contained in the ''Life Cycle Asset Management,'' U.S. Department of Energy Order O430.1A; the Joint Program Office Policy on Project Management in Support of DOE Order O430.1, and the Project Execution and Engineering Management Planning Guide. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the state of Nevada; and traditional project management philosophies such as the development of life cycle costs, schedules, and work scope; identification of roles and responsibilities; and baseline management and controls.

  13. ULEV potential of a DI/TCI diesel passenger car engine operated on dimethyl ether

    SciTech Connect (OSTI)

    Kapus, P.E.; Cartellieri, W.P.

    1995-12-31

    This paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME) with the aim of demonstrating its potential of meeting ULEV (ultra low emission vehicle) emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of he baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation. The paper presents engine test results achieved with DME under various operating conditions and compares these results to those achieved with the diesel version of the same engine.The FTP 75 cycle results were projected from steady state engine maps using a vehicle simulation program taking into account vehicle data and road resistance data of a given vehicle.The cycle results are also compared to actual chassis dynamometer results achieved with the diesel version of the same engine installed in the same vehicle.the passenger car DI/TCI engine adapted for and operated on DME shows very promising results with respect to meeting ULEV NOx emissions without any soot emissions and without the need for a DENOX catalyst. DME fuel consumption on energy basis can be kept very close to the DI diesel value. An oxidation catalyst will be necessary to meet the stringent CO and HC ULEV emission limits.

  14. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    SciTech Connect (OSTI)

    Jacques Hugo; David Gertman

    2014-04-01

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

  15. Policy Flash 2013-30 Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts

    Broader source: Energy.gov [DOE]

    Attached is Policy Flash 2013-30 Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts

  16. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  17. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    SciTech Connect (OSTI)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  18. Standard Review Plan Preparation for Facility Operations Strengthening Line Management Oversight and

    Office of Environmental Management (EM)

    Standard Review Plan Preparation for Facility Operations Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities August 2013 2 OFFICE OF ENVIRONMENTAL MANAGEMENT Standard Review Plan (SRP) Preparation for Facility Operations Applicability CD-0 CD-1 CD-2 CD-3 CD-4 Operation Post Operation August 2013 3 Table of Contents Objective ......................................................................................................................................... 4

  19. A magnetically coupled Stirling engine driven heat pump: Design optimization and operating cost analysis

    SciTech Connect (OSTI)

    Vincent, R.J.; Waldron, W.D.

    1990-01-01

    A preliminary design for a 2nd generation, gas-fired free-piston Stirling engine driven heat pump has been developed which incorporates a linear magnetic coupling to drive the refrigerant compressor piston. The Mark 2 machine is intended for the residential heat pump market and has 3 Ton cooling capacity. The new heat pump is an evolutionary design based on the Mark 1 free-piston machine which was successfully developed and independently tested by a major heat pump/air conditioning manufacturer. This paper briefly describes test results that were obtained with the Mark 1 machine and then presents the design and operating cost analysis for the Mark 2 heat pump. Operating costs by month are given for both Chicago and Atlanta. A summary of the manufacturing cost estimates obtained from Pioneer Engineering and Manufacturing Company (PEM) are also given. 9 figs., 3 tabs.

  20. DOE/SC-ARM-14-016 ARM Operations and Engineering Procedure Mobile Facility Site Startup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 ARM Operations and Engineering Procedure Mobile Facility Site Startup JW Voyles May 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  1. DOE-STD-1073-93-Pt. 1; DOE Standard Guide for Operational Configuration Management Program

    Energy Savers [EERE]

    1 CHAPTER 2 IMPLEMENTATION GUIDANCE FOR OPERATIONAL CONFIGURATION MANAGEMENT This guidance is appropriate for high-hazard facilities expected to operate for an extended period. Since DOE facilities vary in hazard level and circumstances of operation, a graded approach to implementation should be adopted. 2.1 PROGRAM MANAGEMENT ELEMENT The program management element of a configuration management (CM) program coordinates program development and implementation and ensures overall program

  2. Energy Department Awards New Contract to Manage and Operate Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded a new five-year, $3.2 billion contract to Brookhaven Science Associates (BSA) to manage and operate Brookhaven National Laboratory. The award was the result of a DOE competition for the management and operations (M&O) contract for the laboratory, which has been operated by BSA for the Department since 1998.

  3. System and method of cylinder deactivation for optimal engine torque-speed map operation

    DOE Patents [OSTI]

    Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min

    2014-11-11

    This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.

  4. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect (OSTI)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  5. Operating Experience Level 3, Safe Management of Mercury | Department...

    Broader source: Energy.gov (indexed) [DOE]

    to raise awareness about mercury hazards and to reinforce the informaiton in Safety and Health Bulleting 2005-08, Safe Management of Mercury. OE-3 2012-03: Safe Management of...

  6. EM Richland Operations Office Manager Reflects on River Corridor's Safe, Successful Cleanup

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – This month, Stacy L. Charboneau marks her first year as manager of EM’s Richland Operations Office (RL), responsible for management and oversight of cleanup of the 586-square-mile Hanford Site.

  7. Human Factors Engineering (HFE) insights for advanced reactors based upon operating experience

    SciTech Connect (OSTI)

    Higgins, J.; Nasta, K.

    1997-01-01

    The NRC Human Factors Engineering Program Review Model (HFE PRM, NUREG-0711) was developed to support a design process review for advanced reactor design certification under 10CFR52. The HFE PRM defines ten fundamental elements of a human factors engineering program. An Operating Experience Review (OER) is one of these elements. The main purpose of an OER is to identify potential safety issues from operating plant experience and ensure that they are addressed in a new design. Broad-based experience reviews have typically been performed in the past by reactor designers. For the HFE PRM the intent is to have a more focussed OER that concentrates on HFE issues or experience that would be relevant to the human-system interface (HSI) design process for new advanced reactors. This document provides a detailed list of HFE-relevant operating experience pertinent to the HSI design process for advanced nuclear power plants. This document is intended to be used by NRC reviewers as part of the HFE PRM review process in determining the completeness of an OER performed by an applicant for advanced reactor design certification. 49 refs.

  8. Operations Program Management (OPM) Homepage | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Laboratories » OPM Home Operations Program Management (OPM) OPM Home About Science Laboratories Infrastructure (SLI) Program Safeguards & Security (S&S) Program Sustainability Contact Information Operations Program Management U.S. Department of Energy SC-33/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-8429 F: (301) 903-7047 More Information » Print Text Size: A A A FeedbackShare Page The Office of Operations Program Management supports the

  9. DOE Selects ASE to Manage and Operate its National Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy ASE to Manage and Operate its National Renewable Energy Laboratory DOE Selects ASE to Manage and Operate its National Renewable Energy Laboratory July 29, 2008 - 2:40pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced the Alliance for Sustainable Energy (ASE) LLC has been selected as the management and operating contractor for DOE's National Renewable Energy Laboratory (NREL) in Golden, Colorado. The cost-plus award-fee contract is

  10. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site | Department of Energy Nuclear Solutions, LLC to Manage and Operate its Savannah River Site DOE Selects Savannah River Nuclear Solutions, LLC to Manage and Operate its Savannah River Site January 10, 2007 - 10:24am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Savannah River Nuclear Solutions (SRNS), LLC has been selected as the management and operating contractor for DOE's Savannah River Site (SRS) in Aiken, South Carolina. The

  11. Top Operations and Maintenance (O&M) Efficiency Opportunities at DoD/Army Sites - A Guide for O&M/Energy Managers and Practitioners

    SciTech Connect (OSTI)

    Sullivan, Gregory P.; Dean, Jesse D.; Dixon, Douglas R.

    2007-05-25

    This report, sponsored the Army's Energy Engineering Analysis Program, provides the Operations and Maintenance (O&M) Energy manager and practitioner with useful information about the top O&M opportunities consistently found across the DoD/Army sector. The target is to help the DoD/Army sector develop a well-structured and organized O&M program.

  12. EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

  13. PROJECT MANAGEMENT RISK COMMITTEE (PMRC) STANDARD OPERATING PROCEDURE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Any deviation to this procedure must be approved by the PMRC Chair. Secretariat Functions ... advising the PMRC Chair and the Chief Executive for Project Management (CE) on all ...

  14. Department of Energy Awards Contract for Management and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    science opportunities at Argonne while providing strong management capability and commitments by the new contractor team," said DOE Under Secretary for Science Raymond L. Orbach. ...

  15. Audit of Management and Operating Contractor Overtime Costs,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Management's detailed comments, along with auditor responses, where appropriate, are ... not follow the directive system for communication of proposed changes including the ...

  16. DOE - Office of Legacy Management -- Combustion Engineering Co...

    Office of Legacy Management (LM)

    CT.03-1 Site Operations: Used natural, enriched, and highly enriched uranium to make fuel assemblies for the AEC. CT.03-3 CT.03-4 Site Disposition: Eligible CT.03-1 Radioactive ...

  17. Chapter 70 - DOE Management and Operating Contracts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon 70.7ch3ContractorHumanResourceManagement1.pdf ...h6PatentandDataRights1.pdf PDF icon 70.7ch7FinancialManagement1.pdf PDF icon 70.7ch8BusinessandContractMan...

  18. I Mr. Sam Popowcer, PE Senior Project Manager BCM Engineers, Inc.

    Office of Legacy Management (LM)

    wrgv %%A% Washington, DC 20585 WY, 0 I Mr. Sam Popowcer, PE Senior Project Manager BCM Engineers, Inc. 1 Plymouth Meeting Mall Plymouth Meeting, Pennsylvania 19462 Dear Mr. Popowcer: This is a follow-up letter to our telephone conversation of July 24, 1991. Your company is providing research services to the U.S. Army Corps of Engineers for the Department of Defense former site restoration program. You requested information from the Department of Energy (DOE) concerning the Ashland Site in

  19. Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine

    Broader source: Energy.gov [DOE]

    Determine operating conditions to achieve HECC operation, understand limitations of HECC operation, and determine sensitivies to operating parameter variations

  20. Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-12

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  1. Oak Ridge Operations Office of Environmental Management Overview

    Office of Environmental Management (EM)

    Oak Ridge Environmental Management Program Moving to the Future by Cleaning up the Past Sue Cange Acting Manager May 16, 2012 Oak Ridge Cleanup Work is Urgent and Essential * Our Mission: Complete the cleanup of the Oak Ridge Reservation to protect the region's health and environment; make clean land available for future use; and ensure DOE's ongoing vital missions * Our Vision: The Oak Ridge Reservation will be remediated, modernized and reindustrialized 2 ETTP ORNL Y-12 * More than 700,000

  2. ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES

    SciTech Connect (OSTI)

    Murray, A.; Wilmarth, B.; Marra, J.; Mcguire, P.; Wheeler, V.

    2013-05-16

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for all things nuclear as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOEs critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R&D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials.

  3. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    SciTech Connect (OSTI)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand filter is then backwashed into the STSC. The STSC and STS cask are then inerted and transported to T Plant.

  4. National Security Campus Management and Operating (M&O) Contract

    National Nuclear Security Administration (NNSA)

    Competition | National Nuclear Security Administration National Security Campus Management and Operating (M&O) Contract Competition Contract Competition Home Page Welcome to the National Nuclear Security Administration's website for the National Security Campus (NSC) Management and Operating Contract Competition. The NSC in Kansas City, MO, is situated on approximately 177 acres. The facility is leased for the NNSA by the General Services Administration. Satellite operations include

  5. Department of Energy to Compete Management & Operating Contract for its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory | Department of Energy & Operating Contract for its National Renewable Energy Laboratory Department of Energy to Compete Management & Operating Contract for its National Renewable Energy Laboratory June 6, 2007 - 1:25pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will compete the management and operating (M&O) contract for its National Renewable Energy Laboratory (NREL) in Golden, Colorado, the nation's

  6. Environmental surveillance for EG&G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    SciTech Connect (OSTI)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG&G Idaho, Inc., performed at EG&G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

  7. Operational feasibility of underwater Stirling engine systems using oxygen-seawater extraction

    SciTech Connect (OSTI)

    Potter, I.J.; Reader, G.T.

    1995-12-31

    The exploration of the oceans whether for societal, commercial, scientific or military reasons requires efficient and cost effective underwater vehicles. In turn, these vessels require efficient means of producing on board power for the propulsion and hotel load requirements of long endurance missions. The Stirling engine, because of its inherent closed-cycle operation, has long been an attractive candidate for underwater use and now has proved its reliability and maintainability in the arduous environment of a naval submarine application. More recently the Stirling has been considered for use in small long endurance unmanned underwater vessels (UUVs). However, with these type of vehicles the need to carry an on board oxygen supply in a very confined space has presented a number of design problems. The concept of using multi-stage vehicles with disposable energy pods has been explored and appears attractive although a major change in submarine design philosophy will be required if such vehicles are to launched from submarines. Another approach is to use a more space efficient source of oxygen. As seawater contains dissolved oxygen then if this source could be utilized to meet all or at least part of the engine`s need than a major design problem could be overcome. In this paper the findings of an initial study into the use of membranes or artificial gill techniques to provide oxygen for a Stirling powered DARPA type vehicle are presented. It has been found that only in certain sea areas is the concept of oxygen extraction feasible for use with power systems. Even in situations where there are sufficient levels of dissolved oxygen the gill system approach appears to have limited utility for UUV applications and a number of practical problems still need to be addressed.

  8. Direct Measurement and Chemical Speciation of Top Ring Zone Liquid During Engine Operation

    SciTech Connect (OSTI)

    Splitter, Derek A; Burrows, Barry Clay; Lewis Sr, Samuel Arthur

    2015-01-01

    The present manuscript consists of proof of concept experiments involving direct measurements and detailed chemical speciation from the top ring zone of a running engine. The work uses a naturally aspirated single cylinder utility engine that has been modified to allow direct liquid sample acquisition from behind the top ring. Samples were analyzed and spectated using gas chromatographic techniques. Results show that the liquid mixture in the top ring zone is neither neat lubricant nor fuel but a combination of the two with unique chemical properties. At the tested steady state no-load operating condition, the chemical species of the top ring zone liquid were found to be highly dependent on boiling point, where both low reactivity higher boiling point fuel species and lubricant are observed to be the dominant constituents. The results show that at least for the tested condition, approximately 25% of the top ring zone is comprised of gasoline fuel like molecules, which are dominated by high octane number aromatic species, while the remainder of the liquid is comprised of lubricant like species.

  9. A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators.

    SciTech Connect (OSTI)

    Wagner, Gregory John; Collis, Samuel Scott; Templeton, Jeremy Alan; Lehoucq, Richard B.; Parks, Michael L.; Jones, Reese E.; Silling, Stewart Andrew; Scovazzi, Guglielmo; Bochev, Pavel B.

    2007-10-01

    This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect on and coupling to the continuum level is frequently unclear.

  10. DOE/NNSA Strategic Performance Evaluation Plan (PEP) FOR MANAGEMENT AND OPERATION OF THE PANTEX PLANT

    National Nuclear Security Administration (NNSA)

    FOR MANAGEMENT AND OPERATION OF THE PANTEX PLANT Babcock and Wilcox Technical Services Pantex, LLC Contract Number: DE-AC54-00AL66620 Performance period: October 01, 2013 through September 30, 2014 J D. Woolery P e dent and General Manager B cock & Wilcox Technical Services Pantex, LLC Prime Contract Manager Babcock & Wilcox Technical Services Pantex, LLC ~~~-~-(/ () 1 3 even C. Er Manager, NNSA Production Office National Nuclear Security Administration eb . lein Contracting Officer

  11. Systems Engineering Plan and project record Configuration Management Plan for the Mixed Waste Disposal Initiative

    SciTech Connect (OSTI)

    Bryan, W.E.; Oakley, L.B.

    1993-04-01

    This document summarizes the systems engineering assessment that was performed for the Mixed Waste Disposal Initiative (MWDI) Project to determine what types of documentation are required for the success of the project. The report also identifies the documents that will make up the MWDI Project Record and describes the Configuration Management Plan describes the responsibilities and process for making changes to project documentation.

  12. Idaho National Engineering Laboratory nonradiological waste management information for 1994 and record to date

    SciTech Connect (OSTI)

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1995-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1994. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  13. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date

    SciTech Connect (OSTI)

    Randall, V.C.; Sims, A.M.

    1993-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  14. Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-23

    This Guide provides the Department of Energy's federal project directors with the methodologies and tools needed to plan, implement and complete assigned projects using a Systems Engineering approach in accordance with the requirements of DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. No cancellations.

  15. Operational concepts for the Environmental Restoration and Waste Management Configuration Study

    SciTech Connect (OSTI)

    1990-12-01

    DOE has initiated a planning process in anticipation of upgrading all DOE waste management operations and facilities. The EM Configuration Study examines four areas: (1) planning considerations, (2) system configuration, (3) operational concepts, and (4) resource assessments. Each area is addressed by a different team. Objective of the Operational Concepts Team 3 study is to investigate, identify, define, and evaluate alternative ways to manage DOE waste management facilities, while taking into consideration the information gathered by the other EM Configuration teams. This report provides information and criteria for evaluating the relative effectiveness and efficiency of various organizational alternatives that can be used to operate and manage DOE waste facilities. Intent of this report is not to select one best management alternative but rather to provide recommendations, conclusions, and background information from which decisions will be made at a future date.

  16. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cellulosic materials (Patent) | DOEPatents Engineered microbes and methods for microbial oil overproduction from cellulosic materials Title: Engineered microbes and methods for microbial oil overproduction from cellulosic materials The invention relates to engineering microbial cells for utilization of cellulosic materials as a carbon source, including xylose. Inventors: Stephanopoulos, Gregory ; Tai, Mitchell Issue Date: 2015-08-04 OSTI Identifier: 1207280 Assignee: Massachusetts Institute

  17. DOE, Invensys Operations Management to Develop, Deploy Operator Training System for Supercritical Coal Power Plants

    Broader source: Energy.gov [DOE]

    A new U.S. Department of Energy cooperative research and development agreement to develop, test, and deploy a dynamic simulator and operator training system could eventually help commercialize important carbon capture technologies at the nation’s power plants.

  18. PPPO/DUF6 Engineering and Operations Technical Services GSA Contract...

    Office of Environmental Management (EM)

    ... economics, industrial management, marketing, quantitative methods, or organization ... manage presentations, and use of digital office software to manage and create documents. ...

  19. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management. Part 1

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management.

  20. Management and operating contractor plan for transition to the project Hanford Management Contractor

    SciTech Connect (OSTI)

    Waite, J.L., Westinghouse Hanford

    1996-06-27

    This is Revision 1 to the M{ampersand}O Contractor Plan for Transition to the Project Hanford Management Contractor.

  1. Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts

    Broader source: Energy.gov [DOE]

    The attached Acquisition Letter is issued to provide updated guidance on the unique acquisition planning procedures associated with management and operating (M%26O) contracts. Acquisition Letter 2009-3 is cancelled.

  2. DOE to Compete Contract for Management and Operation of Pacific Northwest National Laboratory

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. -- The U.S. Department of Energy (DOE) announced today that it intends to seek competitive bids for the management and operations contract for the Pacific Northwest National...

  3. Management Policy for Planning, Programming, Budgeting, Operation, Maintenance and Disposal of Real Property

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish Department of Energy (DOE) management policy for the planning, programming, budgeting, operation, maintenance and disposal of real property owned by the United States and under the custody and control of DOE.

  4. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-29

    To establish policies and procedures for management of DOE, including NNSA, Management and Operating (M&O) and other facility management contractor employees assigned to the Washington, D.C., area. Cancels DOE O 350.2.

  5. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-18

    The Order establishes policies and procedures for managing DOE and NNSA management and operating (M&O) contractors and other facility management contractor employees assigned to the Washington, D.C., area.

  6. ADMINISTRATIVE CHANGE TO NAP-25, Management and Operating Contractor Business Meals and Light Refreshment

    National Nuclear Security Administration (NNSA)

    NAP-25 Admin Chg 1 1 10-10-13 ADMINISTRATIVE CHANGE TO NAP-25, Management and Operating Contractor Business Meals and Light Refreshment Locations of Changes: Page Paragraph Changed To Every Header BOP-03.08 NAP-25 Cover Office of Acquisition &Supply Management Office of Acquisition & Project Management Cover Footer Office of Acquisition &Supply Management Office of Acquisition Management 1 1 Removed: FAR 31.205-14 and 1 1 Acquisition Letter 2005-12 Acquisition Letter 2012-05 1 3 Add:

  7. U.S. Department of Energy Awards Contract for Management and Operation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC | Department of Energy Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC U.S. Department of Energy Awards Contract for Management and Operation of Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC November 1, 2006 - 9:25am Addthis BATAVIA, ILLINOIS -- The U.S. Department of Energy (DOE) has awarded a new $1.575 billion, five-year contract for management and operation of

  8. DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory | Department of Energy Argonne National Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate Argonne National Laboratory April 19, 2006 - 10:23am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the issuance of a final Request for Proposals (RFP) for the competitive selection of an approximated $2.54 billion, five-year management and operating contract for Argonne National Laboratory (ANL), a DOE Office

  9. DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermi National Accelerator Laboratory | Department of Energy Fermi National Accelerator Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate Fermi National Accelerator Laboratory July 10, 2006 - 2:57pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the issuance of a final Request for Proposals (RFP) for the competitive selection of an approximately $1.58 billion, five-year management and operating contract for Fermi National

  10. DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    its Princeton Plasma Physics Laboratory | Department of Energy Princeton Plasma Physics Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate its Princeton Plasma Physics Laboratory July 3, 2008 - 2:15pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its Request for Proposals (RFP) for the competitive selection of a contractor to manage and operate Princeton Plasma Physics Laboratory (PPPL), a DOE Office of Science research facility

  11. ARM Tropical Western Pacific (TWP) Operations Management and Support: Securing ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Western Pacific (TWP) Operations Management and Support: Securing ARM Data K. L. Nitschke South Pacific Regional Environment Programme Apia, Samoa L. Jones Los Alamos National Laboratory Los Alamos, New Mexico C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction The Tropical Western Pacific Office (TWPO) (a) has been tasked with providing operational management and support for three (b) climate station instrument facilities in the Tropical Western pacific

  12. Project Management Plan/Progress Report UT/GTKS Training Program Development for Commercial Building Operators

    SciTech Connect (OSTI)

    None, None

    2013-03-31

    Universidad del Turabo (UT), in a collaborative effort with Global Turn Key Services, Inc. (GTKS), proposed to develop a training program and a commercialization plan for the development of Commercial Building Operators (CBOs). The CBOs will operate energy efficient buildings to help maintain existing buildings up to their optimal energy performance level, and ensure that net-zero-energy buildings continuously operate at design specifications, thus helping achieve progress towards meeting BTP Strategic Goals of creating technologies and design approaches that enable net-zero-energy buildings at low incremental costs by 2025. The proposed objectives were then: (1) Develop a Commercial Building Operator (CBO) training program and accreditation that will in turn provide a certification to participants recognized by Accreditation Boards such as the North American Board of Certified Energy Practitioners (NABCEP) and Leadership in Energy & Environmental Designs (LEED). (2) Develop and implement a commercialization and sustainability plan that details marketing, deployment, financial characterization, job placement, and other goals required for long-term sustainability of the project after the funding period. (3) After program development and deployment, provide potential candidates with the knowledge and skill sets to obtain employment in the commercial building green energy (net-zero-energy building) job market. The developed CBO training program will focus on providing skills for participants, such as displaced and unemployed workers, to enter the commercial building green energy (net-zeroenergy building) job market. This course was designed to allow a participant with minimal to no experience in commercial building green technology to obtain the required skill sets to enter the job market in as little as 12 weeks of intensive multi-faceted learning. After completion of the course, the CBO staff concluded the participant will meet minimum established accreditation standards established by UT and will complete the contact hours required of training to apply to the Certification on Energy Management (CEM) offered by the Association of Energy Engineers (AEE). The CBO training program consists of a combination of theory (classroom), online & computer simulation, laboratory & hands on (onsite) training lessons. The training is addressed four basic learning elements: (1) Learn the Technology; (2) Practice Skills with hands-on the Energy Simulation Builder program; (3) Final Project and Presentation; and, (4) Accreditation and Certifications.

  13. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assetsimagesicon-science.jpg Engineering National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  14. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  15. CRAD, Emergency Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Emergency Management program at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

  16. The low temperature differential Stirling engine with working fluid operated on critical condition

    SciTech Connect (OSTI)

    Naso, V.; Dong, W.; Lucentini, M.; Capata, R.

    1998-07-01

    The research and development of low temperature differential Stirling engine has a great potential market since a lot of thermal energy at low temperature can supply it and the cost of this kind of engine is lower than general Stirling engine. The characteristics of low compression ratio and low differential temperature Stirling engine may be satisfied with working fluid compressed on critical conditions. By combining two phase heat transfer with forced convective flow in compression space and through the regenerator in the engine, a new heat transfer coefficient emerges capable of absorbing and releasing high heat fluxes without the corresponding low temperature increase. The current analysis focuses on the study of Stirling engines with working fluid compressed on critical conditions, thus at two-phase heat transfer in compression space and regenerator of the engine under forced convective flow conditions.

  17. DOE Awards Management and Operating Contract for DOE’s Strategic Petroleum Reserve

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy announced that Fluor Federal Petroleum Operations, LLC, has been awarded a management and operating contract valued at $1.46 billion to run DOE’s Strategic Petroleum Reserve (SPR) for a period of five years, after which the DOE has an option for an additional five years of performance.

  18. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  19. DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    its Ames Laboratory | Department of Energy Ames Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate its Ames Laboratory June 29, 2006 - 2:48pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its Request for Proposals (RFP) for the competitive selection of a management and operating (M&O) contractor to operate Ames Laboratory, a DOE Office of Science (SC) research facility in Ames, Iowa. This competition for a contractor is the

  20. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  1. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  2. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  3. Method of operating a thermal engine powered by a chemical reaction

    DOE Patents [OSTI]

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  4. Method of operating a thermal engine powered by a chemical reaction

    DOE Patents [OSTI]

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  5. Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W., Rahm-Crites, L.

    1997-09-01

    The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  7. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT

    SciTech Connect (OSTI)

    LESKO KF; BERRIOCHOA MV

    2010-02-26

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business constructioin subcontractors while performing high hazard work in a safe and productive manner. Previous to the WRPS contract, construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper descirbes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method (John E Schaufelberger, Len Holm, "Management of Construction Projects, A Constructor's Perspective", University of Washington, Prentice Hall 2002). This method was implemented in the first quarter of Fiscal Year 2009 (FY2009), where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by URS personnel. Each small contractor is mentored and supported utilizing the principles of the Construction Industry Institute (CII) Partnering process. Some of the key mentoring and partnering areas that are explored in this paper are, internal and external safety professional support, subcontractor safety teams and the interface with project and site safety teams, quality assurance program support to facilitate compliance with NQA-1, construction, team roles and responsibilities, work definition for successful fixed price contracts, scheduling and interface with project schedules and cost projection/accruals. The practical application of the CII Partnering principles, with the Construction Management expertise of URS, has led to a highly successful construction model that also meets small business contracting goals.

  8. Engineer

    Energy Savers [EERE]

    of Energy January 2013 Achieving Management and ... Page 22 Project Attributes Helpful Hint: Adding or changing ... BCPs (most recent approval first), Unapproved BCPs, Approved ...

  9. Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap

    SciTech Connect (OSTI)

    Bunting, Bruce G; Farrell, John T

    2006-01-01

    The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCI combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.

  10. AWEA Wind Project Operations and Maintenance and Safety Seminar

    Broader source: Energy.gov [DOE]

    The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

  11. The potential impacts of sodium management on Frit Development for Coupled Operations

    SciTech Connect (OSTI)

    Johnson, F. C.; Edwards, T. B.; Peeler, D. K.

    2015-06-10

    In this report, Section 2.0 provides a description of sodium management and its impact on the glass waste form, Section 3.0 provides background information on phase separation, Section 4.0 provides the impact of sodium management on SB9 frit development efforts and the results of a limited scoping study investigating phase separation in potential DWPF frits, and Section 5.0 discusses potential technical issues associated with using a phase separated frit for DWPF operations.

  12. 17.6 - Origin, Characteristics, and Significance of the DOE's Management and Operating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chapter 17.6 (October 2007) 1 DISCUSSION OF THE ORIGIN, CHARACTERISTICS, AND SIGNIFICANCE OF THE DEPARTMENT OF ENERGY's MANAGEMENT AND OPERATING (M&O) FORM OF CONTRACT INTRODUCTION. "Management and operating" (M&O) contract is a term used to describe the contracts that are central to the Department of Energy's (DOE's) business model. The term was adopted formally in a memorandum from the Secretary of Energy, dated October 5, 1983. 1 However, these contracts predate the

  13. Management and Operating (M&O) Contracts | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management and Operating (M&O) Contracts Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act NEPA Documents Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Kenneth Tarcza U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-4444 Acquisition and Assistance Management and Operating (M&O) Contracts Print Text Size: A

  14. Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems: Preprint

    SciTech Connect (OSTI)

    Tatur, M.; Nanjundaswamy, H.; Tomazic, D.; Thornton, M.

    2008-08-01

    This paper documents the impact of biodiesel blends on engine-out emissions as well as overall system performance in terms of emissions control system calibration and overall system efficiency.

  15. Dynamic estimator for determining operating conditions in an internal combustion engine

    DOE Patents [OSTI]

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  16. Fuel injection system and method of operating the same for an engine

    DOE Patents [OSTI]

    Topinka, Jennifer Ann (Niskayuna, NY); DeLancey, James Peter (Corinth, NY); Primus, Roy James (Niskayuna, NY); Pintgen, Florian Peter (Niskayuna, NY)

    2011-02-15

    A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

  17. Federal Energy and Water Management Award Winner 22nd Operations Group Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Office | Department of Energy 22nd Operations Group Fuel Efficiency Office Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office PDF icon fewm13_mcconnellafb_highres.pdf PDF icon fewm13_mcconnellafb.pdf More Documents & Publications Air Force Achieves Fuel Efficiency through Industry Best Practices Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in

  18. Characterization ReportOperational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada Geotechnical Sciences

    2005-06-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report – Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations.

  19. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  20. Backup power working group best practices handbook for maintenance and operation of engine generators, Volume 1. Revision 1

    SciTech Connect (OSTI)

    Gross, R.; Padgett, A.B.; Burrows, K.P.; Fairchild, P.N.; Lam, T.; Janes, J.

    1997-06-01

    This handbook is divided into the four chapters. Chapter one covers the design, procurement, storage, handling and testing of diesel fuel oil to be used in DOE backup power supplies. Chapter two discusses the selection of automatic transfer switches to be used in DOE backup power supplies. Chapter three is about low voltage open frame air circuit breaker operation, testing, and maintenance for DOE backup power supplies. And chapter four covers installation, design, and maintenance of engine cooling water and jacket water systems.

  1. Electrical Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Contract Management Office (CMO) (TED), Engineering and Technical Services (TE), Transmission Services (T). The function of the Contract Management Office (CMO) is...

  2. Farm operator perceptions of water quality protective pest management practices: Selected survey findings

    SciTech Connect (OSTI)

    Zimmerman, R.; Blair, J.; Webb, B.

    1995-12-01

    The use of pesticides in agriculture often poses a tension between water quality and environmental protection goals on the one hand and the viability of food supplies on the other hand. Pesticides used for field crops (e.g., corn, soy beans and wheat) have been detected in waterbodies, and according to some studies, are apparently finding their way into water supplies. A considerable amount of discretion is allowed in farm operator`s choice of pest management practices, and voluntary behavior becomes an important factor in promoting environmentally protective practices. Thus, it is important to know the attitudes of farmers who make pest management decisions including pesticide choices, toward the use of various water quality protective pest management practices. A number of studies show that more general environmental attitudes reflect a general world view that shapes attitudes toward particular environmental issues. This paper addresses the relationship between the more general environmental attitudes of farmers to their attitudes toward water quality issues and pest management practices which are protective of water quality. Some of the personal tradeoffs farmers are willing to make to enhance environmental controls on pesticides are also explored. Results are based on preliminary findings from a survey of farm operators who grow corn, soybeans and other field crops in three eastern states. The survey was conducted via a mail questionnaire to 2,700 farmers with telephone follow-up during the Fall of 1994. Implications of the findings for pest management in general are discussed.

  3. Acquisition Letter 2014-01: Management and Operating Contractors' Audit Coverage of Cost_Reimbursement Subcontracts

    Broader source: Energy.gov [DOE]

    The subject Acquisition Letter's purpose is to achieve greater Department-wide emphasis on auditing cost type subcontracts by providing guidance for monitoring management and operating contractors' fulfillment of their contractual obligation to provide adequate audit coverage of cost-type subcontracts.

  4. Reissuance of Acquisition Letter on Meal Costs in Management and Operation Contracts

    Broader source: Energy.gov [DOE]

    This AL is a reissuance (under the new AL number of 2012-05) of the AL on Meal Costs in Management and Operating Contracts that was originally issued on August 2, 2005 (under AL number 2005-12). It provides additional application guidance on: understanding the standards for reimbursement of contractor meal costs

  5. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  7. Engine performance comparison associated with carburetor icing during aviation grade fuel and automotive grade fuel operation. Final report Jan-Jul 82

    SciTech Connect (OSTI)

    Cavage, W.; Newcomb, J.; Biehl, K.

    1983-05-01

    A comprehensive sea-level-static test cell data collection and evaluation effort to review operational characteristics of 'off-the-shelf' carburetor ice detection/warning devices for general aviation piston engine aircraft during operation on aviation grade fuel and automotive grade fuel. Presented herein are results, observations and conclusions drawn from over 250 hours of test cell engine operation on 100LL aviation grade fuel, unleaded premium and unleaded regular grade automotive fuel. Sea-level-static test cell engine operations were conducted utilizing a Teledyne Continental Motors 0-200A engine and a Cessna 150 fuel system to review engine operational characteristics of 100LL aviation grade fuel and various blends of automotive grade fuel as well as carburetor ice detectors/warning devices sensitivity/effectiveness during actual carburetor icing. The primary purpose of test cell engine operation was to observe real-time carburetor icing characteristics associated with possible automotive grade fuel utilization by piston-powered light general aviation aircraft. In fulfillment of this task, baseline engine operations were established with 100LL aviation grade fuel followed by various blend of automotive grade fuel prior to imposing carburetor icing conditions and assessing operational characteristics.

  8. Policy Flash 2013-40 Acquisition Guide Chapter 43.3 Maintaining Alignment of Project Management with Contract Management of Non-Management and Operating (M&O) Cost Reimburstment Contracts

    Broader source: Energy.gov [DOE]

    Attached is Policy Flash 2013-40 Acquisition Guide Chapter 43.3 Maintaining Alignment of Project Management with Contract Management of Non-Management and Operating (M&O) Cost Reimbursement...

  9. Effect of Engine Operating Condition and Coolant Temperature on EGR Cooler

    Broader source: Energy.gov (indexed) [DOE]

    Deposit Microstructure and Chemical Composition | Department of Energy In this work, the performance of a stand-alone EGR cooler attached to a 6.4L turbodiesel engine is being investigated by analyzing the microstructure and chemical composition of the deposits in the fouled heat exchanger surfaces, at two engine loads: medium and low, and at two coolant temperatures: 85˚C and 40˚C. PDF icon p-22_prabhakar.pdf More Documents & Publications EGR Cooler Fouling - Visualization of

  10. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

    SciTech Connect (OSTI)

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies by developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  11. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies bymore » developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.« less

  12. Coal-water slurry fuel internal combustion engine and method for operating same

    DOE Patents [OSTI]

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  13. NNSA Strategic Performance Evaluation Plan (PEP) FOR MANAGEMENT AND OPERATION OF

    National Nuclear Security Administration (NNSA)

    MANAGEMENT AND OPERATION OF Los Alamos National Security, LLC Contract Number: DE-AC52-06NA25396 Performance period: October 01, 2012 through September 30, 2013 Director ry '1'/r/;L Steven K. Shook Date Chief, Prime Contracts Office Los Alamos National Laboratory Kevin W. Smith Manager Los Alamos Site Office :dd:.- Date ty Ad~i]~/2-- Robert M. Poole Date Contracting Officer Los Alamos Site Office National Nuclear Security Administration Signature of Charles McMillan Signature of Charles McMillan

  14. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-31

    To establish policies and procedures for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), management and operating (M&O) and other facility management contractor employees assigned to the Washington, D.C. area. Supersedes DOE O 350.2A

  15. TO : S. R. Sapirie, Manager C&c Ridge Operations Office FROM

    Office of Legacy Management (LM)

    3@ceW emdtid#m . UNITED STATES GOVERNMENT TO : S. R. Sapirie, Manager C&c Ridge Operations Office FROM SULtJECTC TESTING OF SARPLR GF THORITE 'XRXX3lTRATE Symbol: RMtCWT ' .. DATE November 21r, 19% W&have received several inquirie s recently from mine owners and operators'in the western states, principally Colorado, who are potential producers of thorite concentrates. Upon the basis of preliminary data presently available there is a possibility that significant quantities of thorium may

  16. Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operation Operations Engineering, (J4200) 5555...

  17. Environmental Management Richland Operations Office FY 2014 President's Budget FY 2015 Budget Request Regulator Briefing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management Advisory Board (EMAB) Environmental Management

  18. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuels characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the projects objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  19. Nevada National Security Site Management and Operating (M&O) Contract

    National Nuclear Security Administration (NNSA)

    Competition | National Nuclear Security Administration Nevada National Security Site Management and Operating (M&O) Contract Competition Contract Competition Home Page Welcome to the National Nuclear Security Administration's website for the Nevada National Security Site (NNSS) M&O Contract Competition. The NNSS is a geographically diverse outdoor testing, training, and evaluation complex situated on approximately 1,360 square miles. The facility helps ensure the security of the

  20. U.S. Department of Energy Awards Contract for Management and Operation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC | U.S. DOE Office of Science (SC) U.S. Department of Energy Awards Contract for Management and Operation of Fermi National Accelerator Laboratory to the Fermi Research Alliance, LLC News News Home Featured Articles Science Headlines 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of

  1. DOE/SC-ARM-14-008 Data Management Facility Operations Plan NN Keck

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Data Management Facility Operations Plan NN Keck January 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

  2. DOE Awards Management and Operating Contract for DOE’s Waste Isolation Pilot Plant

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – The U.S. Department of Energy (DOE) announced today that Nuclear Waste Partnership LLC (members comprised of URS Energy & Construction, Inc., of Boise, Idaho, and Babcock & Wilcox Technical Services Group, Inc., of Lynchburg, Virginia, and Major Subcontractor, AREVA Federal Services LLC, of Bethesda, Maryland) has been awarded a $1.3 billion contract for management and operating (M&O) at DOE’s Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  3. Sandia National Laboratories is a multi-program laboratory managed and operated

    National Nuclear Security Administration (NNSA)

    National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-2392 R Ten-Year Site Plan Fiscal Year 2016 FY 2016 Ten-Year Site Plan Page | iii Table of Contents 1.0 Executive Summary

  4. Type B Accident Investigation Board Report on the October 15, 2001, Grout Injection Operator Injury at the Cold Test Pit South, Idaho National Engineering and Environmental Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Mark W. Frei, Acting Manager, Idaho Operations Office, U. S. Department of Energy.

  5. DOE Backup Power Working Group Best Practices Handbook for Maintenance and Operation of Engine Generators, Volume II

    SciTech Connect (OSTI)

    Gross, R.E.

    1998-10-30

    The lubricating oil system provides a means to introduce a lubricant in the form of a film to reduce friction and wear between surfaces that bear against each other as they move.1 The oil film which is established also cools the parts by carrying generated heat away from hot surfaces, cleans and carries dirt or metal wear particles to the filter media, and helps seal the piston to the cylinder during combustion. Most systems are pressure lubricated and distribute oil under pressure to bearings, gears, and power assemblies. Lubricating oil usually reaches main, connecting rod, and camshaft bearings through drilled passages in the cylinder block and crankshaft or through piping and common manifolds.Many parts rely on oil for cooling, so if the lube oil system fails to perform its function the engine will overheat. Metal to metal surfaces not separated by a thin film of oil rapidly build up frictional heat. As the metals reach their melting point, they tend to weld together in spots or streaks. Lube oil system failures can cause significant damage to an engine in a short period of time. Proper maintenance and operation of the lubricating oil system is essential if your engine is to accomplish its mission.

  6. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    SciTech Connect (OSTI)

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)

  7. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

  8. FY11 annual Report: PHEV Engine Control and Energy Management Strategy

    SciTech Connect (OSTI)

    Chambon, Paul H

    2011-10-01

    Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to real-time Hardware-In-the-Loop platform.

  9. Municipal solid waste management: Identification and analysis of engineering indexes representing demand and costs generated in virtuous Italian communities

    SciTech Connect (OSTI)

    Gamberini, R. Del Buono, D.; Lolli, F.; Rimini, B.

    2013-11-15

    Highlights: Collection and analysis of real life data in the field of Municipal Solid Waste (MSW) generation and costs for management. Study of 92 virtuous Italian communities. Elaboration of trends of engineering indexes useful during design and evaluation of MSWM systems. - Abstract: The definition and utilisation of engineering indexes in the field of Municipal Solid Waste Management (MSWM) is an issue of interest for technicians and scientists, which is widely discussed in literature. Specifically, the availability of consolidated engineering indexes is useful when new waste collection services are designed, along with when their performance is evaluated after a warm-up period. However, most published works in the field of MSWM complete their study with an analysis of isolated case studies. Conversely, decision makers require tools for information collection and exchange in order to trace the trends of these engineering indexes in large experiments. In this paper, common engineering indexes are presented and their values analysed in virtuous Italian communities, with the aim of contributing to the creation of a useful database whose data could be used during experiments, by indicating examples of MSWM demand profiles and the costs required to manage them.

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  12. START-3: Operational Evaluations of the ISUS Engine Ground Demonstration Thermionic Power System

    SciTech Connect (OSTI)

    Luchau, D.W.; Luke, J.R.; Wyant, F.J.

    1998-10-08

    START-3 was a test program conducted in order to demonstrate and characterize the operational performance of the prototype Integrated Solar Upper Stage (ISUS) thermionic power system. The test device consisted of a graphite thermal storage uni~ multilayer foil insulation, and sixteen thermionic converters electrically connected in a series array. Several thermal input conditions were achieved during the test, which resulted in measuring converter performance at average converter hot shoe temperatures in the range of 1600 K to 2000 K. Results indicate that the ;hermionic converter; did not perform as weil as expected in the array individual sixteen converters is currently being performed.

  13. User`s guide to the FFTF Plant Operational Data Management System (B1039)

    SciTech Connect (OSTI)

    Nelson, J.V. Jr.

    1994-07-25

    The FFTF Plant Operational Data Management (PODM) System provides capabilities for storing, managing and retrieving data recorded by FFTF plant computers [the Plant Data System (PDS), in particular]. The PODM system is currently implemented on SUN{sup TM} Workstations{sup (R)}. This guide contains a description of the PODM System, and instructions for using programs available for retrieving and processing FFTF data stored in the data base. Section 2.0 provides a brief overview and the background of the system. The organization and content of the data base are described in more detail in Sections 3.0 and 4.0. Available computer programs are described in sections 5.0 and 6.0 while subroutines that can be called by a user`s FORTRAN program are described in section 7.0.

  14. Consent to Subcontracts under Management and Operating (M&O) Contracts

    Broader source: Energy.gov [DOE]

    Reference earlier Policy Flash 2011-103, Consent to Subcontracts on Management and Operating Contracts. The Flash had discussed the possibility of an Acquisition Letter and possibly a DEAR amendment to improve Consent to Subcontract efficiency and to ensure we apply our limited resources to those subcontract actions that truly pose the most risk. Closer analysis revealed that only a change to Acquisition Guide Chapter 70.7, Chapter 10, paragraph B, was needed to accomplish these process improvements. The revised chapter has been issued. A copy is attached.

  15. Warehouses in New York, New York To: J. LaGrone Manager Oak Ridge Operations Office

    Office of Legacy Management (LM)

    ,' .sd "IcI.V.2 U".W.. . ..* . . .._ inemo+indUm DATE: ADO 031sso .~.. - -.-. - ._ xiveI,,-r &8/ ",P& -gm?j4P hw 4 1 REPLY t-0 ATTNOF: EM-40 (A. Williams, 3-5439) /"Y . SUBJECT: Authorization for Remedial Action at the Former Baker and Williams Warehouses in New York, New York To: J. LaGrone Manager Oak Ridge Operations Office The site of the former Baker and Williams Warehouses in New York City is hereby authorized for remedial action under the Formerly Utilized

  16. Technical work plan for Surface Impoundments Operable Unit engineering support studies

    SciTech Connect (OSTI)

    1995-11-01

    This document provides a comprehensive work plan which, when utilized as a data collection guide for field activities, will provide the necessary information required to complete a report on geotechnical properties of the sediments contained in the Surface Impoundments Operable Unit at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Detailed guidance is provided for the following activities: collection of samples from the impoundments; compressive strength testing of the raw sediments; compressive strength testing of the structurally modified (lime and cement additives) sediments; testing for sediment physical properties and settling rates; testing for sediment dewatering characteristics; testing for radiation activity during the field work; testing for polymer additions that may enhance settling. The work plan additionally provides guidance and examples for the preparation of documents necessary to establish readiness for safe and satisfactory performance of the field activities. An outline for the format requested for a report of these data is also provided.

  17. Supplemental Requirements for the Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-10-19

    The Notice supplements review and approval requirements of DOE O 350.2A, Use of Management and Operating (M&O) or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area, dated 10-29-03.

  18. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - ADAMANT CIRCULAR SAW OENHP{number_sign}: 2001-05, VERSION A

    SciTech Connect (OSTI)

    Unknown

    2002-01-01

    Florida International University's (FIU) Hemispheric Center for Environmental Technology (HCET) evaluated five saws for their effectiveness in cutting up specially prepared fiberglass-reinforced plywood crates. These crates were built as surrogates for crates that presently hold radioactive contaminated glove boxes at the Department of Energy's (DOE) Los Alamos facility. The Adamant circular saw was assessed on August 14, 2001. During the FIU test of efficacy, a team from the Operating Engineers National Hazmat Program (OENHP) evaluated the occupational safety and health issues associated with this technology. The Adamant was only used during a limited ''test'' on a regular plywood crate due to safety considerations of the tool for this application. The Adamant circular saw, a counter-rotating twin-cutter, constructed with blades that work differently than conventional cutting wheels with twin blades, each rotating in opposite directions. It is used to cut wood and metals. Each blade is approximately 8 3/4 inches in diameter with a maximum cutting depth of 2 1/2 inches. The machine has two rotation speeds: 1,900 and 2,900 rotations per minute (rpm). The saw is operated with an interlocked, guarded trigger switch located at the end of the saw opposite the cutting blades. To operate the saw, the safety interlock must be depressed prior to powering the saw with the trigger control. The saw is supported by a handle at the front of the saw near the cutting blades. The top part of the blades is guarded near the handle, with approximately three-fourths of the face of the blades exposed. The Adamant circular saw is an innovative technology used to cut metals and wood. Its safety features include: interlocking switch for powering the saw, overload indicator and shutoff, and an electronic brake that stops the engine immediately when the start button is released. The top part of the blades is guarded near the motor. With approximately three-fourths of the face of the blades open, the operator is exposed to the potential risk of serious and minor cuts and abrasions when using and handling the saw. There is also potential for damage to the blades if the saw is not stored properly. Without guarding on the lower part of the blades, these can be damaged if the saw is dropped or rested on the cutting blades. Based upon the industrial hygiene sampling conducted for the other four saws demonstrated at FIU, noise levels, nuisance dust, and airborne fiberglass may be a problem when using this technology for the cutting of fiberglass-reinforced plywood crates. No industrial hygiene sampling was conducted while the Adamant saw was in use. Engineering controls should be used to eliminate these problems whenever possible. Where this is not possible, administrative controls, training, and proper personal protective equipment (PPE) should be used. Respirators should be used if engineering controls do not sufficiently control the dust or fiberglass generated. Respirators should be equipped with an organic vapor and acid gas cartridge with High Efficiency Particulate Air (HEPA) filter, since during the demonstration, the workers complained of an odd smell, which may have been the breakdown of the fiberglass.

  19. Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management

    SciTech Connect (OSTI)

    Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B.

    1996-12-31

    The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

  20. FY12 annual Report: PHEV Engine Control and Energy Management Strategy

    SciTech Connect (OSTI)

    Chambon, Paul H

    2012-05-01

    The objectives are: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; (2) Optimize integration of engine control strategies with hybrid supervisory control strategies in order to reduce cold start emissions and fuel consumption of PHEVs; and (3) Ensure that development of new vehicle technologies complies with existing emission standards.

  1. U.S. Department of Energy Awards Contract for Management and Operation of Ames Laboratory to Iowa State University

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) has awarded a new $150 million, five-year contract for management and operation of Ames Laboratory to Iowa State University (ISU).

  2. Use of Management and Operating Contractor and National Laboratory Employees for Services in the D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-05

    This Notice provides requirements for Headquarters use of employees from Management and Operating (M&O) contractors and National Laboratories and establishes limitations on payments to those employees whose assignments to Headquarters exceed 365 days.

  3. Energy Department Awards Contract to the University of California to Manage and Operate Lawrence Berkeley National Laboratory

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -- The Department of Energy (DOE) has awarded a new five-year contract to the University of California to manage and operate its Lawrence Berkeley National Laboratory (LBNL).  The...

  4. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - DEWALT RECIPROCATING SAW OENHP{number_sign}: 2001-01, VERSION A

    SciTech Connect (OSTI)

    Unknown

    2002-01-31

    Florida International University's (FIU) Hemispheric Center for Environmental Technology (HCET) evaluated five saws for their effectiveness in cutting specially prepared fiberglass-reinforced plywood crates. These crates were built as surrogates for crates that presently hold radioactively contaminated glove boxes at the Department of Energy's (DOE) Los Alamos facility. The DeWalt reciprocating saw was assessed on August 13, 2001. During the FIU test of efficacy, a team from the Operating Engineers National Hazmat Program (OENHP) evaluated the occupational safety and health issues associated with this technology. The DeWalt reciprocating saw is a hand-held industrial tool used for cutting numerous materials, including wood and various types of metals depending upon the chosen blade. Its design allows for cutting close to floors, corners, and other difficult areas. An adjustable shoe sets the cut at three separate depths. During the demonstration for the dismantling of the fiberglass-reinforced plywood crate, the saw was used for extended continuous cutting, over a period of approximately two hours. The dismantling operation involved vertical and horizontal cuts, saw blade changes, and material handling. During this process, operators experienced vibration to the hand and arm in addition to a temperature rise on the handgrip. The blade of the saw is partially exposed during handling and fully exposed during blade changes. Administrative controls, such as duty time of the operators and the machine, operator training, and personal protective equipment (PPE), such as gloves, should be considered when using the saw in this application. Personal noise sampling indicated that both workers were exposed to noise levels exceeding the Occupational Safety and Health Administration's (OSHA) Action Level of 85 decibels (dBA) with time-weighted averages (TWA's) of 88.3 and 90.6 dBA. Normally, a worker would be placed in a hearing conservation program if his TWA was greater than the Action Level. In this case, however, monitoring was conducted during a simulation, not during the actual work conducted at the worksite. Additional sampling should be conducted at the worksite to determine the actual noise levels for the workers. Until it is determined that the actual TWA's are less than the Action Level, the workers should use PPE. A training program on the proper use and wearing of the selected PPE should be provided to each worker. Nuisance dust monitoring yielded a concentration of 10.69 milligrams per cubic meter (mg/m{sup 3}). Although this is less than the OSHA Permissible Exposure Limit (PEL) of 15 mg/m{sup 3}, it is above the American Conference of Governmental Industrial Hygienists' (ACGIH) Threshold Limit Value (TLV) of 10 mg/m{sup 3}. Fiberglass dust monitoring yielded a fiber count of 1.7 fibers per cubic centimeter (f/cc). This is above the PEL and the TLV of 1.0 f/cc. Therefore, controls should be implemented (engineering or PPE) to reduce the workers' exposure to the dust. Respirators should be used if engineering controls do not sufficiently control the dust or fiberglass generated. Respirators should be equipped with an organic vapor and acid gas cartridge with a High Efficiency Particulate Air (HEPA) filter, since during the demonstration, the workers complained of an odd smell, which may have been from the breakdown of the fiberglass.

  5. Environmental restoration and waste management site-specific plan for Richland Operations Office. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This document was prepared to implement and support the US Department of Energy-Headquarters (DOE-HQ) national plan. The national plan, entitled Environmental Restoration and Waste Management Five-Year Plan (DOE 1990b) (hereinafter referred to as the DOE-HQ Five-Year Plan) is the cornerstone of the US Department of Energy's (DOE) long-term strategy in environmental restoration and waste management. The DOE-HQ Five-Year Plan addresses overall philosophy and environmental and waste-related activities under the responsibilities of the DOE Office of Environmental Restoration and Waste Management. The plan also reaffirms DOE-HQ goals to bring its nuclear sites into environmental compliance in cooperation with its regulators and the public, and to clean up and restore the environment by 2019 (the commitment for the Hanford Site is for one year sooner, or 2018). This document is part of the site-specific plan for the US Department of Energy-Richland Operations Office (DOE-RL). It is the first revision of the original plan, which was dated December 1989 (DOE-RL 1989a). This document is a companion document to the Overview of the Hanford Cleanup Five-Year Plan (DOE-RL 1989d) and The Hanford Site Environmental Restoration and Waste Management Five-Year Plan Activity Data Sheets (DOE-RL 1991). Although there are three documents that make up the complete DOE-RL plan, this detailed information volume was prepared so it could be used as a standalone document. 71 refs., 40 figs., 28 tabs.

  6. SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management ...

  7. Management of Public Communications Publications, and Scientific, Engineering, and Technical Publications

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1979-08-10

    This order prescribes policies, standards, and procedures for effective management of Department of Energy (DOE) publications.

  8. DRAFT - DOE O 350.2C, Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes policies and procedures for managing DOE and NNSA management and operating (M&O) contractors and other facility management contractor employees assigned to the Washington, D.C., area.

  9. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - EVOLUTION 180 CIRCULAR SAW OENHP: 2001-03, VERSION A

    SciTech Connect (OSTI)

    Unknown

    2002-01-25

    Florida International University's (FIU) Hemispheric Center for Environmental Technology (HCET) evaluated five saws for their effectiveness in cutting specially prepared fiberglass-reinforced plywood crates. These crates were built as surrogates for crates that presently hold radioactively contaminated gloveboxes at the Department of Energy's (DOE) Los Alamos facility. The Evolution 180 circular saw was assessed on August 14, 2001. During the FIU test of efficacy, a team from the Operating Engineers National Hazmat Program (OENHP) evaluated the occupational safety and health issues associated with this technology. The Evolution 180 is a portable, metal cutting circular saw with a 7-inch diameter blade. The blade is contained within the main housing and has a retractable lower blade guard to prevent operator access to the blade during operation and shutdown. The saw is equipped with a chip collector. The maximum cutting thickness for metal is one-quarter inch and can cut steel tubing and pipe 2 inches in diameter. The unit is operated with an on/off guarded trigger switch and is supported with the hand guide mounted to the side of the saw. An adjustable lever sets the depth of the cut. The machine's circuitry will automatically shut the saw motor off if excessive overload is detected during operation. The one-half hour demonstration involved vertical and horizontal cuts and blade changes. During this process, operators experienced binding of the saw. This caused the blade to become hot, causing the sawdust collected in the chip collector to smoke. Care should be exercised to use the appropriate blade for the application, operator training, and personal protective equipment (PPE). Personal noise sampling indicated that neither worker was over the Occupational Safety and Health Administration's (OSHA) Action Level of 85 decibels (dBA) with time-weighted averages (TWA's) of 69.1 and 68.8 dBA. The personal noise sample taken during the special demonstration with the stainless steel plate had a TWA of 69.8 dBA. These data are not entirely representative as they were gathered during a simulation and not at the actual worksite. Additional sampling should be conducted on-site, but the workers should wear hearing protection until it is determined that it is no longer necessary. The total nuisance dust sample for the Evolution 180 circular saw was 3.5 milligrams per cubic meter (mg/m{sup 3}), which is lower than the OSHA Permissible Exposure Limit (PEL) of 15 mg/m{sup 3} and the American Conference of Governmental Industrial Hygienists' (ACGIH) Threshold Limit Value (TLV) of 10 mg/m{sup 3}. The fiber analysis yielded 1.74 fibers per cubic centimeter (f/cc), which is above the PEL of 1 f/cc. Although the nuisance dust levels were low, fiberglass dust levels were higher than the PEL. Since fiberglass dust is known to be a strong skin irritant and a possible human carcinogen, the workers should continue to wear appropriate suits and gloves, as well as a full-face air-purifying respirator. The respirator should be equipped with a combination organic vapor and acid gas cartridge in combination with a High Particulate Air (HEPA) filter, since particulate filter, since during the demonstration, the workers complained of an odd smell, which may have been from the breakdown of the fiberglass.

  10. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  11. Maintenance and operations contractor plan for transition to the project Hanford management contract (PHMC)

    SciTech Connect (OSTI)

    Waite, J.L.

    1996-04-12

    This plan has been developed by Westinghouse Hanford Company (WHC), and its subcontractors ICF Kaiser Hanford (ICF KH) and BCS Richland, Inc. (BCSR), at the direction of the US Department of Energy (DOE), Richland Operations Office (RL). WHC and its subcontractors are hereafter referred to as the Maintenance and Operations (M and O) Contractor. The plan identifies actions involving the M and O Contractor that are critical to (1) prepare for a smooth transition to the Project Hanford Management Contractor (PHMC), and (2) support and assist the PHMC and RL in achieving transition as planned, with no or minimal impact to ongoing baseline activities. The plan is structured around two primary phases. The first is the pre-award phase, which started in mid-February 1996 and is currently scheduled to be completed on June 1, 1996, at which time the contract is currently planned to be awarded. The second is the follow-on four-month post-award phase from June 1, 1996, until October 1, 1996. Considering the magnitude and complexity of the scope of work being transitioned, completion in four months will require significant effort by all parties. To better ensure success, the M and O Contractor has developed a pre-award phase that is intended to maximize readiness for transition. Priority is given to preparation for facility assessments and processing of personnel, as these areas are determined to be on the critical path for transition. In addition, the M and O Contractor will put emphasis during the pre-award phase to close out open items prior to contract award, to include grievances, employee concerns, audit findings, compliance issues, etc.

  12. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - PORTER-CABLE CIRCULAR SAW OENHP: 2001-04, VERSION A

    SciTech Connect (OSTI)

    Unknown

    2002-01-15

    Florida International University's (FIU) Hemispheric Center for Environmental Technology (HCET) evaluated five saws for their effectiveness in cutting specially prepared fiberglass-reinforced plywood crates. These crates were built as surrogates for crates that presently hold radioactively contaminated glove boxes at the Department of Energy's (DOE) Los Alamos facility. The Porter-Cable circular saw was assessed on August 15-16, 2001 (Porter-Cable No.1 and Porter-Cable No.2, respectively). During the FIU test of efficacy, a team from the Operating Engineers National Hazmat Program (OENHP) evaluated the occupational safety and health issues associated with this technology. The Porter-Cable saw is a straightforward machine for cutting wood of varying thickness. The blade is fully guarded with a fixed upper and a lower retractable guard. The lower guard retracts as the blade engages the work piece. The unit is operated with an on/off guarded trigger switch and is supported with a handgrip mounted near the front of the saw. The saw is equipped with a directional nozzle, which aims sawdust away from the operator and the line of cut. An optional vacuum system, attached to the directional nozzle, is used to remove and collect dust. During the demonstration of Porter-Cable No.1, personal noise sampling indicated that one worker was under and one was at the Occupational Safety and Health Administration's (OSHA) Action Level of 85 decibels (dBA) with time-weighted averages (TWA's) of 82.7 and 84.6 dBA, respectively. During the demonstration of Porter-Cable No.2, however, both workers did exceed the Action Level with TWA's of 89.7 and 90.0 dBA. These data are not entirely representative as they were gathered during a simulation and not at the actual worksite. Additional sampling should be conducted on-site, but the workers should wear hearing protection until it is determined that it is no longer necessary. The total nuisance dust sample for Porter-Cable No.1 was 3.53 milligrams per cubic meter (mg/m{sup 3}), which is lower than the OSHA Permissible Exposure Limit (PEL) of 15 mg/m{sup 3} and the American Conference of Governmental Industrial Hygienists' (ACGIH) Threshold Limit Value (TLV) of 10 mg/m{sup 3}. Porter-Cable No.2's nuisance dust results yielded a value of 22.05 mg/m{sup 3}, which is over the PEL and TLV. The fiber analysis for the first demonstration yielded 12.9 fibers per cubic centimeter (f/cc), which is much higher than the PEL of 1 f/cc. Galson Laboratories considered the fiber analysis for the second demonstration void due to the overloading of dust on the filter. Kickback, the sudden reaction to a pinched blade, is possible with this saw and could cause the saw to lift up and out of the work piece and toward the operator. Proper work position and firm control of the saw minimizes the potential for a sprain or strain. Care needs to be exercised to support the work piece properly and to not force the tool.

  13. Tank waste remediation system engineering plan

    SciTech Connect (OSTI)

    Rifaey, S.H.

    1998-01-09

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

  14. ARM - Engineering Change Request & Engineering Change Order Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resources, as soon as possible, when operational, science, or engineering needs require a quick engineering response where no design or redesign is required. Engineering Consultant...

  15. Hoffman Joins Safety Management Elite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hoffman Joins Safety Management Elite CARLSBAD, N.M., June 21, 2001 - Paul Hoffman of Westinghouse TRU Solutions LLC (WTS) has joined the ranks of the safety management elite in the United States by earning his Certificate in Safety Management. WTS is the management and operating contractor for the U.S. Department of Energy at the Waste Isolation Pilot Plant (WIPP). The Certificate in Safety Management is awarded by the American Society of Safety Engineers (ASSE) to recognize completion of

  16. General Engineer / Nuclear Engineer

    Broader source: Energy.gov [DOE]

    The Idaho Operations Office (DOE-ID) manages and oversees work done at the Idaho National Laboratory (INL), the DOE's lead nuclear energy laboratory in the United States. DOE-ID supports the...

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  18. Office of Inspector General report on audit of Department of Energy management and operating contractor available fees

    SciTech Connect (OSTI)

    1996-05-01

    The Office of Procurement and Assistance Management has proposed changes to the method used to annually calculate and negotiate ``for profit`` management and operating contractor available fees. This proposal will increase contractor fees in exchange for the contractor`s purported assumption of additional risk. In 1991, the Department, through the Accountability Rule, increased contractor fees as an incentive to improve contractor performance and accountability. Despite the lack of measurable benefits of this effort, the Department is crafting a new fee policy which will, depending upon how it is executed, increase fees above the amount provided through the Accountability Rule as an incentive to the Department`s management and operating contractors. The objective of the audit was to determine whether the Department`s proposed change to the fee structure for determining management and operating contractor fees will be cost effective. This report describes the study`s approach, its findings and recommendations, management and auditor comments, and includes appendices with further data.

  19. Redesignation Order No. 00-09.01-01 to the Manager of Department of Energy Idaho Operations Office

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-05-12

    Redesignation of the Manager of the Idaho Operations Office as the representative to perform as the "authorized representative," as that term is used in the NRC regulations at 10 CFR 72.16(b), and as name holder of the NRC license under 10 CFR 72 for the Idaho Spent Fuel Facility Independent Spent Fuel Storage Installation.

  20. Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report

    SciTech Connect (OSTI)

    Bern, J.; Neufeld, R. D.; Shapiro, M. A.

    1980-11-30

    Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

  1. TWRS Systems Engineering Working Plan

    SciTech Connect (OSTI)

    Eiholzer, C.R.

    1994-09-16

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations.

  2. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies. Structural health and prognostics management for offshore O&M

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies bymoredeveloping an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.less

  3. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  4. Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-23

    The goal of this Guide is to provide the Department of Energy's federal project directors (FPDs) with the knowledge, methodologies, and tools needed to meet Order 413.3A's requirement that they plan, implement and complete their assigned project(s) using a System Engineering approach.

  5. Managing Design and Construction Using Systems Engineering for Use with DO EO 413.3A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-23

    The goal of this Guide is to provide the Department of Energy's federal project directors (FPDs) with the knowledge, methodologies, and tools needed to meet Order 413.3A's requirement that they plan, implement and complete their assigned project(s) using a System Engineering approach.

  6. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Barber, James; Buckley, James

    2003-02-23

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

  7. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems

    Broader source: Energy.gov [DOE]

    Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Process Description and Operating History for the CPP-601/-640/-627 Fuel Reprocessing Complex at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    E. P. Wagner

    1999-06-01

    The Fuel Reprocessing Complex (FRC) at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory was used for reprocessing spent nuclear fuel from the early 1950's until 1992. The reprocessing facilities are now scheduled to be deactivated. As part of the deactivation process, three Resource Conservation and Recovery Act (RCRA) interim status units located in the complex must be closed. This document gathers the historical information necessary to provide a rational basis for the preparation of a comprehensive closure plan. Included are descriptions of process operations and the operating history of the FRC. A set of detailed tables record the service history and present status of the process vessels and transfer lines.

  9. Incorporation of the Department of Energy Acquisition Guide Chapter 16.2, Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts

    Broader source: Energy.gov [DOE]

    This subject guide chapter provides guidance for Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts.

  10. U. S. Department of Energy Savannah River Operations Office - Leadership -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T. Zack Smith T. Zack Smith T. Zack Smith Deputy Manager U. S. Department of Energy Savannah River Operations Office T. Zack Smith Mr. Smith is the Deputy Manager for the U. S. Department of Energy Savannah River Operations Office. Reporting to the Site Manager, he has broad leadership responsibility for approximately $1 billion in annual operating and construction activities. Mr. Smith is a career member of the Senior Executive Service with more than 27 years of engineering and field

  11. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

    Broader source: Energy.gov [DOE]

    This EIS considers programmatic (DOE-wide) alternative approaches to safely, efficiently, and responsibly manage existing and projected quantities of spent nuclear fuel until the year 2035. This amount of time may be required to make and implement a decision on the ultimate disposition of spent nuclear fuel. DOE's spent nuclear fuel responsibilities include fuel generated by DOE production, research, and development reactors; naval reactors; university and foreign research reactors; domestic non-DOE reactors such as those at the National Institute of Standards and Technology and the Armed Forces Radiobiology Research Institute; and special-case commercial reactors such as Fort St. Vrain and the Lynchburg Technology Center.

  12. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    1998-03-01

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  13. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect (OSTI)

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  14. Re-engineering the Federal planning process: A total Federal planning strategy, integrating NEPA with modern management tools

    SciTech Connect (OSTI)

    Eccleston, C.H.

    1997-09-05

    The National Environmental Policy Act (NEPA) of 1969 was established by Congress more than a quarter of a century ago, yet there is a surprising lack of specific tools, techniques, and methodologies for effectively implementing these regulatory requirements. Lack of professionally accepted techniques is a principal factor responsible for many inefficiencies. Often, decision makers do not fully appreciate or capitalize on the true potential which NEPA provides as a platform for planning future actions. New approaches and modem management tools must be adopted to fully achieve NEPA`s mandate. A new strategy, referred to as Total Federal Planning, is proposed for unifying large-scale federal planning efforts under a single, systematic, structured, and holistic process. Under this approach, the NEPA planning process provides a unifying framework for integrating all early environmental and nonenvironmental decision-making factors into a single comprehensive planning process. To promote effectiveness and efficiency, modem tools and principles from the disciplines of Value Engineering, Systems Engineering, and Total Quality Management are incorporated. Properly integrated and implemented, these planning tools provide the rigorous, structured, and disciplined framework essential in achieving effective planning. Ultimately, the goal of a Total Federal Planning strategy is to construct a unified and interdisciplinary framework that substantially improves decision-making, while reducing the time, cost, redundancy, and effort necessary to comply with environmental and other planning requirements. At a time when Congress is striving to re-engineer the governmental framework, apparatus, and process, a Total Federal Planning philosophy offers a systematic approach for uniting the disjointed and often convoluted planning process currently used by most federal agencies. Potentially this approach has widespread implications in the way federal planning is approached.

  15. Advanced engine management of individual cylinders for control of exhaust species

    DOE Patents [OSTI]

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  16. Multi-Scale Multi-Dimensional Li-Ion Battery Model for Better Design and Management (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Smith, K.

    2008-10-01

    The developed model used is to provide a better understanding and help answer engineering questions about improving the design, operational strategy, management, and safety of cells.

  17. ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen

    2004-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  18. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  19. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  20. General Engineer

    Broader source: Energy.gov [DOE]

    This position is located in Office of Standard Contract Management, within the Office of the General Counsel (GC). The purpose of the position is to conduct technical and engineering reviews of the...

  1. SWiFT Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  2. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-01-01

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  3. Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1991-12-31

    Collectively, the organizations participating in the Site Operator Program have over forty years of EV experience and have operated electric vehicles (EVs) for over 600,000 miles, providing the most extensive EV operating and knowledge base in the country. The Site Operator Program is intended to provide financial and technical support and organizational resources to organizations active in the advancement of electric vehicles. Support is provided for the demonstration of vehicles and the test and evaluation of vehicles, components, and batteries. Support is also provided for the management and support of the program for the participating organizations. The Program provides a forum for participants to exchange information among the group, as well as with vehicle and equipment manufacturers and suppliers, and the public. A central data base at the Idaho National Engineering Laboratory provides a repository for-data on the vehicles being operated by the Program participants. Data collection emphasis is in the areas of operations, maintenance, and life cycle costs.

  4. Management of Public Communications Publications and Scientific, Engineering, and Technical Publications

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-08-25

    To prescribe policies, standards, and procedures for effective management of Department of Energy (DOE) publications. Cancels DOE O 1340.1 dated 8-10-79 and DOE N 1350.1 dated 5-12-81. Chg 1 dated 4-14-83. Canceled by DOE O 1340.1B dated 1-7-93.

  5. Report on Audit of the Department of Energy Program Offices' Use of Management and Operating Contractor Employees, IG-0392

    Energy Savers [EERE]

    U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES AUDIT OF THE DEPARTMENT OF ENERGY PROGRAM OFFICES' USE OF MANAGEMENT AND OPERATING CONTRACTOR EMPLOYEES The Office of Inspector General wants to make the distrution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following addresses: Department of energy Headquarters Gopher

  6. EA-1982: Parker-Davis Transmission System Routine Operation and Maintenance Project and Proposed Integrated Vegetation Management Program

    Broader source: Energy.gov [DOE]

    Western Area Power Administration prepared an EA that assesses potential environmental impacts of the proposed continuation of operation and maintenance activities and implementation of a vegetation management program on Western’s Parker-Davis Transmission System in Arizona, California, and Nevada. These actions would occur on existing transmission line and access road rights-of-way, and at substations and maintenance facilities associated with the transmission system.

  7. Environmental Management Richland Operations Office FY 2014 President's Budget FY 2015 Budget Request Regulator Briefing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Meeting FY 2016 President's Budget FY 2017 Estimated Requirements Jonathan (JD) Dowell, Deputy Manager April 28, 2015 Public Meeting - Office of River Protection April 2015 2 Hanford Cleanup Work - Office of River Protection (ORP)  Manage 56 million gallons of waste in single-shell and double-shell tanks  Construct Waste Treatment and Immobilization Plant (WTP)  Treat tank waste for disposition C-102 Single Shell Tank Public Meeting - Office of River Protection April 2015 3 2015

  8. Application for managing model-based material properties for simulation-based engineering

    DOE Patents [OSTI]

    Hoffman, Edward L.

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  9. Facilities Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations » Facilities Management Facilities Management INL is a multiprogram, federally funded research and development center (FFRDC) emphasizing applied engineering to provide solutions for use across the DOE complex, as well as regionally, nationally, and world wide. INL is a multiprogram, federally funded research and development center (FFRDC) emphasizing applied engineering to provide solutions for use across the DOE complex, as well as regionally, nationally, and world wide. Overview

  10. Lessons Learned From a Decade of Design, Construction, and Operations of the Environmental Management Waste Management Facility in Oak Ridge, Tennessee - 12062

    SciTech Connect (OSTI)

    Williams, Joe

    2012-07-01

    The Environmental Management Waste Management Facility (EMWMF) is the Department of Energy's on-site disposal facility for radioactive and hazardous waste generated by the CERCLA cleanup of the Oak Ridge Reservation (ORR). EMWMF recently completed building out to its maximum site capacity and is approaching a decade of operating experience. In meeting the challenges of design, construction, and operation of a mixed waste and low-level radioactive waste disposal facility within the framework of CERCLA, the Bechtel Jacobs Company LLC (BJC) project team learned valuable lessons that may be beneficial to other disposal facilities. Since project inception in 1998, the scope of the effort includes five regulator-approved designs, four phases of construction, and utilization of half of EMWMF's 1.63 M m{sup 3} of airspace during disposal of waste streams from across the ORR. Funding came from the broadest possible range of sources - privatization, American Recovery and Reinvestment Act, and two funding appropriation accounts. In the process of becoming the cost effective disposal outlet for the majority of the ORR cleanup waste, EMWMF overcame numerous challenges. Lessons learned were a key factor in achieving that success. Many of EMWMF's challenges are common to other disposal facilities. Sharing the successes and lessons learned will help other facilities optimize design, construction, and operations. (author)

  11. Environmental Management Richland Operations Office FY 2014 President's Budget FY 2015 Budget Request Regulator Briefing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Briefing FY 2013 Appropriations FY 2014 President's Budget FY 2015 Budget Request Jon Peschong, Richland Operations Office Central Plateau and River Corridor May 8, 2013 Draft Pre-Decisional Information Public Briefing - Richland Operations Office May 2013 Draft Pre-Decisional Information 2 "Complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development, production, and Government-sponsored nuclear energy research" EM

  12. Managing steam: An engineering guide to industrial, commercial, and utility systems

    SciTech Connect (OSTI)

    Makansi, J.

    1985-01-01

    This book is a guide to steam production, utilization, handling, transport, system optimization, and condensation and recovery. This book incudes a description of how steam, condensate, and hot water are used in various industrial, commercial, institutional, and utility sectors and explains how steam is generated and distributed. Waste-heat recovery, fluidized-bed boilers, and cogeneration systems and boiler control theory are discussed. The book also describes different types of valves, valve components, regulators, steam traps, and metering devices available for managing steam and condensate and discusses maintaining steam systems for optimum service and longer life.

  13. Finding of no significant impact for the interim action for cleanup of Pit 9 at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0854, for an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The proposed action would be conducted at Pit 9, Operable Unit 7--10, located at the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The proposed action consists of construction of retrieval and processing buildings, excavation and retrieval of wastes from Pit 9, selective physical separation and chemical extraction, and stabilization of wastes either through thermal processing or by forming a stabilized concentrate. The proposed action would involve limited waste treatment process testing and full-scale waste treatment processing for cleaning up pre-1970 Transuranic (TRU) wastes in Pit 9. The purpose of this interim action is to expedite the overall cleanup at the RWMC and to reduce the risks associated with potential migration of Pit 9 wastes to the Snake River Plain Aquifer.

  14. Recent Graduate- Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Engineering (J4200) 5555...

  15. Engineering Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  16. Instrumentation & Controls Electrical Engineer | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation & Controls Electrical Engineer Department: Engineering Supervisor(s): Tim ... Perform role of COG engineer in PMO system to perform project management jobs. Generates ...

  17. Hydrologic resources management program and underground test area operable unit fy 1997

    SciTech Connect (OSTI)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  18. Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Emergency Operations Center training manual

    SciTech Connect (OSTI)

    Not Available

    1990-02-28

    The objective of this training is to: describe the responsibilities, resources, and goals of the Emergency Operations Center and be able to evaluate and interpret this information to best direct and allocate emergency, plant, and other resources to protect life and the Paducah Gaseous Diffusion Plant.

  19. Environmental Management Richland Operations Office FY 2014 President's Budget FY 2015 Budget Request Regulator Briefing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulator Briefing FY 2017 President's Budget FY 2018 Estimated Requirements Delmar Noyes, Waste Treatment Plant Start-Up and Commissioning Integration March 15, 2016 Office of River Protection March 2016 2 Hanford Cleanup Work - Office of River Protection (ORP)  Manage 56 million gallons of waste in single-shell and double-shell tanks  Construct Waste Treatment and Immobilization Plant (WTP)  Treat tank waste for disposition Single Shell Tank C-102 after retrieval Office of River

  20. EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam

    Broader source: Energy.gov [DOE]

    Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

  1. EIS-0348 and EIS-0236-S3: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL), which is critical to the National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. This document is also Supplement 3 to the Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (EIS-0236) for use of proposed materials at the National Ignition Facility (NIF). This combination ensures timely analysis of the reasonably foreseeable environmental impact of NIF experiments using the proposed materials concurrent with the environmental analyses being conducted for the site-wide activities.

  2. A sensor management architecture concept for monitoring emissions from open-air demil operations.

    SciTech Connect (OSTI)

    Johnson, Michael M.; Robinson, Jerry D.; Stoddard, Mary Clare; Horn, Brent A.; Lipkin, Joel; Foltz, Greg W.

    2005-09-01

    Sandia National Laboratories, CA proposed a sensor concept to detect emissions from open-burning/open-detonation (OB/OD) events. The system would serve two purposes: (1) Provide data to demilitarization operations about process efficiency, allowing process optimization for cleaner emissions and higher efficiency. (2) Provide data to regulators and neighboring communities about materials dispersing into the environment by OB/OD operations. The proposed sensor system uses instrument control hardware and data visualization software developed at Sandia National Laboratories to link together an array of sensors to monitor emissions from OB/OD events. The suite of sensors would consist of various physical and chemical detectors mounted on stationary or mobile platforms. The individual sensors would be wirelessly linked to one another and controlled through a central command center. Real-time data collection from the sensors, combined with integrated visualization of the data at the command center, would allow for feedback to the sensors to alter operational conditions to adjust for changing needs (i.e., moving plume position, increased spatial resolution, increased sensitivity). This report presents a systems study of the problem of implementing a sensor system for monitoring OB/OD emissions. The goal of this study was to gain a fuller understanding of the political, economic, and technical issues for developing and fielding this technology.

  3. Low-level waste management program and interim waste operations technologies

    SciTech Connect (OSTI)

    Mezga, L.J.

    1983-01-01

    The Department of Energy currently supports an integrated technology development and transfer program aimed at ensuring that the technology necessary for the safe management and disposal of LLW by the commercial and defense sectors is available. The program focuses on five technical areas: (1) corrective measures technology, (2) improved shallow land burial technology, (3) greater confinement disposal technology, (4) model development and validation, and (5) treatment methods for problem wastes. The results of activities in these areas are reported in the open literature and the Proceedings of the LLWMP Annual Participants Information Meeting.

  4. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  5. 5 Questions for a Scientist: Materials Engineer David Forrest | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 5 Questions for a Scientist: Materials Engineer David Forrest 5 Questions for a Scientist: Materials Engineer David Forrest July 24, 2014 - 9:38am Addthis Flash Ironmaking is a project to develop a fully operational iron making system that captures exhaust gases, eliminates ash, cuts energy, reduces greenhouse gas emissions. This project is managed by AMO Technology Manager Dr. David Forrest who was recently selected as a fellow by ASM International. | Graphic image courtesy

  6. Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory

    Broader source: Energy.gov [DOE]

    OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility....

  7. microbial engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microbial engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  8. structured engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  9. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect (OSTI)

    Mancaruso, E.; Vaglieco, B.M.

    2010-04-15

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  10. Method and apparatus utilizing valve throttling and charge stratification in the operation of an internal combustion engine

    SciTech Connect (OSTI)

    Burandt, C.O.

    1988-02-16

    In an internal combustion engine this patent describes means forming a combustion chamber, a spark plug in the chamber, a piston disposed in the chamber for reciprocable movement toward and away from the spark plug, a valve member, circular seat means for the valve member, means for varying the lift of the valve member, a generally cylindrical shroud corresponding generally to the size of the seat means. The cylindrical shroud is relieved only in the direction of the spark plug so that, when the valve member is moved relative to the shroud by the lift-varying means, a stratified mixture of air and fuel is directed toward the spark plug until the lift-varying means causes the valve member to pass beyond the shroud so that during the initial lift of the valve member the stratified air and fuel mixture is directed solely toward the spark plug until the valve member passes beyond the shroud and the air and fuel mixture is directed generally through a 360/sup 0/ arc after the valve member passes beyond the shroud, and means limiting the lift of the valve member so that it does not pass the shroud during lighter loads, whereby the air and fuel mixture is directed primarily toward the spark plug until the valve member passes beyond the shroud.

  11. Applying value engineering and modern assessment tools in managing NEPA: Improving effectiveness of the NEPA scoping and planning process

    SciTech Connect (OSTI)

    ECCLESTON, C.H.

    1998-09-03

    While the National Environmental Policy Act (NEPA) implementing regulations focus on describing ''What'' must be done, they provide surprisingly little direction on ''how'' such requirements are to be implemented. Specific implementation of these requirements has largely been left to the discretion of individual agencies. More than a quarter of a century after NEPA's enactment, few rigorous tools, techniques, or methodologies have been developed or widely adopted for implementing the regulatory requirements. In preparing an Environmental Impact Statement, agencies are required to conduct a public scoping process to determine the range of actions, alternatives, and impacts that will be investigated. Determining the proper scope of analysis is an element essential in the successful planning and implementation of future agency actions. Lack of rigorous tools and methodologies can lead to project delays, cost escalation, and increased risk that the scoping process may not adequately capture the scope of decisions that eventually might need to be considered. Recently, selected Value Engineering (VE) techniques were successfully used in managing a prescoping effort. A new strategy is advanced for conducting a pre-scoping/scoping effort that combines NEPA with VE. Consisting of five distinct phases, this approach has potentially wide-spread implications in the way NEPA, and scoping in particular, is practiced.

  12. Career Map: Quality Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality engineers need a bachelor's degree in an engineering field, plus experience. ... Ethics. Quality engineers must be able to operate under pressure and still ensure that ...

  13. Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2004-02-27

    This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

  14. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  15. HANFORD ENGINEER WORKS

    Office of Legacy Management (LM)

    HANFORD ENGINEER WORKS IJd *P-t - - ~~~ssiticatiC+n cwcetted rat G.E. NUCLEONICS PROJECT xi I ~@L.%&~--G-ENERAI,@ ELECTRIC z ,m ._.__.-. _ I--..-. By Authority of. COMPANY ._ Atmic Energy Commission Office of Hanford Dire&xl Operations Riohland, Washington Attention; Mr. Carleton Shugg, Manager ./ ALPKA-ROLLED EL'GIL%I jw -879 ' . *_ a. f' Richland, Washington February 6, 1948 , Thla Dclc.Jv-<en! :-; . ' - -*...-- f_ ~~~.s No .__. ._. .s / ~. - J-LccIp%. Fr:*? fi This will con&rm

  16. ARM - AMF2 Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Contacts Management and Operations Operations Overview ARM Links BCR | ECR ECO, EWO Extraview PIF, CAR, DQR & DQPR Operations Status System i.arm.gov AMF2 Deployment...

  17. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is often fragmented, does not cover the full system lifecycle * Reliability needs to be addressed in design, development, and operational life * Reliability analysis should integrate information from components and systems Integrate proven reliability methods with world-class statistical science * Use methods and tools

  18. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    SciTech Connect (OSTI)

    Simiele, Connie J.; Blackford, L. Ty; West, Lori D.

    2013-07-01

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource scarcity; limited cross-training capability; and reduced capability to respond to changes in DOE priorities. Finally, there are many challenges to achieving these cost savings. With a workforce nearing retirement effective succession planning becomes critical to success and requires establishing a balance between the cost of hiring and training and cost-saving activities. With six active waste management facilities spread across nearly 15 square miles, scheduling and deploying cross-trained surveillance and maintenance teams is a logistical challenge, particularly as the loss of funding has not diminished emphasis by regulatory agencies placed on the safe and compliant performance of DOE and its contractors. As reflected in Table I, efficiencies are currently being implemented on the Hanford Plateau Remediation Contract (PRC) that deliver cost savings that align with the current site budget while maintaining critical capabilities. It is currently estimated that these efficiencies will result in a cost savings of approximately $9 million for FY13 in base and minimum safe operations on the PRC - a cost reduction of more than 13 percent over FY12 and nearly 30 percent over FY09 levels. (authors)

  19. CHART SUPPLEMENT TO ACQUISTION GUIDE CHAPTER 42.101, AUDIT REQUIREMENTS FOR NON-MANAGEMENT AND OPERATING CONTRACTS

    Broader source: Energy.gov [DOE]

    The attached chart supplements the guidance in Acquisition Guide Chapter 42.101, Audit Requirements for Non-Management and Operating Contracts. The chart presents the audit services requirements discussed in Acquisition Guide Chapter 42.101 in a series of tables arranged by contract type. The order of the tables follows the order used in the Subparts of FAR Part 16—TYPES OF CONTRACTS, which is: Fixed-Price, Cost-Reimbursement, Incentive, Indefinite-Delivery, Time-and-Materials, and Labor-Hour Contracts. Each table provides when the requirement arises (pre-award or post-award), how often, what the requirement is, and the source of the requirement (FAR, DEAR, or DOE Policy), including specific references.

  20. Principles of models based engineering

    SciTech Connect (OSTI)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  1. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long-term management of the high-level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. The project was cancelled after the Draft Environmental Impact Statement was produced.

  2. Quantifiably secure power grid operation, management, and evolution : a study of uncertainties affecting the grid integration of renewables.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Watson, Jean-Paul; Silva Monroy, Cesar Augusto; Gramacy, Robert B.

    2013-09-01

    This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency - the grid's ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability - especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this concern, powerful filtering techniques for spatio-temporal measurement assimilation were used to develop short-term predictive stochastic models. To achieve uncertaintytolerant solutions, very large numbers of scenarios must be simultaneously considered. One focus of this work was investigating ways of reasonably reducing this number.

  3. Career Map: Research Engineer

    Broader source: Energy.gov [DOE]

    Research engineers work with government, academic institutions, manufacturers and others to plan, manage and conduct projects to develop and assess new wind turbine technologies and processes that...

  4. Facilities Program Manager | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations » Facilities Management Facilities Management INL is a multiprogram, federally funded research and development center (FFRDC) emphasizing applied engineering to provide solutions for use across the DOE complex, as well as regionally, nationally, and world wide. INL is a multiprogram, federally funded research and development center (FFRDC) emphasizing applied engineering to provide solutions for use across the DOE complex, as well as regionally, nationally, and world wide. Overview

  5. NREL: Wind Research - NWTC Engineer Wins Prestigious International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrotechnical Commission Award NWTC Engineer Wins Prestigious International Electrotechnical Commission Award Group photo of members of the IEC Renewable Energy Wind Energy Operational Management Committee with snow-capped mountains in the background. Members of the IEC Renewable Energy Wind Energy Operational Management Committee led by Jeroen van Dam at NREL. Photo by Bachmann Electronics April 5, 2016 Jeroen van Dam is proving that a single person can have a global impact. A principal

  6. integrated-planning-and-operational-tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcement Presentation at Argonne TRACC March 29, 2011 11:00 AM(CST) Dr. Yue Liu Assistant Professor Department of Civil Engineering University of Wisconsin - Milwaukee Integrated planning and operational tools for emergency evacuation traffic management: case studies and system application in Washington DC Metropolitan Area ABSTRACT The evacuation of large municipal areas in an efficient manner during emergencies and disasters is one of the critical tasks faced by emergency management

  7. The Role of the Engineered Barrier System in Safety Cases for Geological Radioactive Waste Repoitories: An NEA Initiaive in Co-Operations with the EC, Process Issues and Modeling

    SciTech Connect (OSTI)

    D.G. Bennett; A.J. Hooper; S. Voinis; H. Umeki; A.V. Luik; J. Alonso

    2006-02-07

    The Integration Group for the Safety Case (IGSC) of the Nuclear Energy Agency (NEA) Radioactive Waste Management Committee in co-operation with the European Commission (EC) is conducting a project to develop a greater understanding of how to achieve the necessary integration for successful design, construction, testing, modeling, and assessment of engineered barrier systems. The project also seeks to clarify the role that the EBS plays in assuring the overall safety of a repository. A framework for the EBS Project is provided by a series of workshops that allow discussion of the wide range of activities necessary for the design, assessment and optimization of the EBS, and the integration of this information into the safety case. The topics of this series of workshops have been planned so that the EBS project will work progressively through the main aspects comprising one cycle of the design and optimization process. This paper seeks to communicate key results from the EBS project to a wider audience. The paper focuses on two topics discussed at the workshops: process issues and the role of modeling.

  8. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Strategies and Design Recommendations for Mitigating Local Damage Effects in Offshore Turbine Blades Phillip W. Richards phillip@gatech.edu Graduate Research Assistant Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA D. Todd Griffith dgriffi@sandia.gov Principal Member of the Technical Staff Sandia National Laboratories Albuquerque, New Mexico, USA Dewey H. Hodges dhodges@gatech.edu Professor Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA

  9. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  10. Operations Program Management Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  11. Supervisory Electrical Engineer- Supervisory Power System Real Time Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Engineering, (J4200) 5555...

  12. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  13. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study has been carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from Syncrude. The findings from the search are presented and discussed in detail, conclusions reached and recommendations made.

  14. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - MILWAUKEE WORM DRIVE CIRCULAR SAW OENHP{number_sign}: 2001-02, VERSION A

    SciTech Connect (OSTI)

    Unknown

    2002-01-05

    Florida International University's (FIU) Hemispheric Center for Environmental Technology (HCET) evaluated five saws for their effectiveness in cutting specially prepared fiberglass-reinforced plywood crates. These crates were built as surrogates for crates that presently hold radioactively contaminated glove boxes at the Department of Energy's (DOE) Los Alamos facility. The Milwaukee worm drive circular saw was assessed on August 14, 2001. During the FIU test of efficacy, a team from the Operating Engineers National Hazmat Program (OENHP) evaluated the occupational safety and health issues associated with this technology. The Milwaukee worm drive circular saw is a hand-held tool with a 7 1/4-inch diameter circular blade for cutting wood. The saw contains a fixed upper and a retractable lower blade guard to prevent access to the blade during use. The unit is operated with an on/off guarded trigger switch; and is supported with a handgrip mounted on top of the saw. An adjustable lever sets the depth of cut. The retractable blade guard permits blind or plunge cuts and protects from blade access during shutdown and blade coast. Kickback, the sudden reaction to a pinched blade, is possible when using this saw and could cause the saw to lift up and out of the work piece toward the operator. Proper work position and firm control of the saw minimizes the potential for a sprain or strain. Care needs to be exercised to support the work piece properly and to not force the tool. Personal noise sampling indicated that one worker was near the Occupational Safety and Health Administration's (OSHA) Action Level of 85 decibels (dBA) while the other was at the Action Level with time-weighted averages (TWA's) of 82.7 and 84.6 dBA, respectively. These data are not entirely representative as they were gathered during a simulation and not at the actual worksite. Additional sampling should be conducted on-site, but the workers should wear hearing protection until it is determined that it is no longer necessary. Air sampling was performed while the workers dismantled the fiberglass-reinforced crates. The total nuisance dust sample for the Milwaukee circular saw was 36.07 milligrams per cubic meter (mg/m{sup 3}), which is much higher than the OSHA Permissible Exposure Limit (PEL) of 15 mg/m{sup 3} and the American Conference of Governmental Industrial Hygienists' (ACGIH) Threshold Limit Value (TLV) of 10 mg/m{sup 3}. Galson Laboratories considered the fiber analysis void due to the overloading of the filter. The PEL for fiberglass is 1 fiber per cubic centimeter (f/cc).

  15. acquisition management

    National Nuclear Security Administration (NNSA)

    the science, technology, and engineering base; and,

  16. Continue NNSA management reforms.


    • Our Values:<...

    • Perturbing engine performance measurements to determine optimal engine control settings

      DOE Patents [OSTI]

      Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

      2014-12-30

      Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

    • Development of the Cummins L10 engine to operate on natural gas for heavy duty transit bus applications. Final report, August 1988-December 1991

      SciTech Connect (OSTI)

      Welliver, D.R.

      1993-07-01

      This report covers all of the activities of a program undertaken to develop a natural gas fueled engine using the Cummins L10 diesel engine as the base engine. The base diesel engine is a 10 liter turbocharged jacket water aftercooled carcass that develops 270 hp at 2100 rpm. The design goals included developing a natural gas version at 240 hp with 750 lb-ft of peak torque with exhaust emission level demonstration meeting the 1991 EPA Urban Bus Emission Mandate. Additional goals included demonstrating diesel like vehicle performance and diesel like reliability and durability. Two fuel delivery systems were evaluated, one mechanical and the other electronic closed loop. Field and laboratory test engines were utilized to document reliability. Results of this program led to the production release of the gas engine for transit bus applications and California Air Resources Board certification during 1992.

    • Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint

      SciTech Connect (OSTI)

      Riley, C.; Sandor, D.; Simpkins, P.

      2006-11-01

      This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

    • EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Hanford Site, Richland, Washington

      Broader source: Energy.gov [DOE]

      The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

    • NIF & Photon Science Management

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Program Director, Laser S&T and Systems Engineering NIF Mark Herrmann Director, National Ignition Facility Doug Larson NIF Facility Manager and Chief Engineer, NIF & Photon Science ...

  1. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. SRNS signs on as industry partner for Nuclear Engineering Technology

    National Nuclear Security Administration (NNSA)

    Education | National Nuclear Security Administration SRNS signs on as industry partner for Nuclear Engineering Technology Education Tuesday, August 12, 2014 - 12:08pm Augusta Technical College recently announced a formal Agreement of Understanding with Georgia Power and Savannah River Site management and operating contractor Savannah River Nuclear Solutions (SRNS) in support of the College's Nuclear Engineering Technology Program. The agreement recognizes SRNS as an industry partner, which

  5. Corporate Systems Engineering | Open Energy Information

    Open Energy Info (EERE)

    Systems Engineering Jump to: navigation, search Name: Corporate Systems Engineering Place: Indianapolis, Indiana Product: Indiana-based energy management company. Coordinates:...

  6. Engine intake system

    SciTech Connect (OSTI)

    Kanesaka, H.

    1989-02-07

    An intake system is described for an internal combustion engine, the system comprising: an intake passage having an intake port and an inertial supercharging intake pipe leading to the intake port; an intake valve mounted in the intake port and operatively connected to the engine for alternately opening and closing the intake port; a rotary valve operatively connected to the engine and disposed in the intake passage intermediate the inertial supercharging intake pipe and the intake port. The rotary valve is rotatable for opening and closing the intake passage, and timing adjusting means operatively connected to the engine and to the rotary valve for retarding the opening of the rotary valve relative to the opening of the intake valve at low engine speeds, and for advancing the opening of the rotary valve at high engine speeds, whereby the retarding and advancing of the opening of the rotary valve enables inertial supercharging in the intake pipe at both low and high engine speeds.

  7. Rotary engine

    SciTech Connect (OSTI)

    Meyman, U.

    1987-02-03

    A rotary engine is described comprising: two covers spaced from one another; rotors located between the covers and rotating and planetating in different phases; the rotors interengaging to form working chambers therebetween; means to supply fluid to the working chambers and means to exhaust fluid from the working chambers during the operating cycle of the engine; gearing for synchronizing rotation and planetation of the rotors and each including first and second gears arranged so that one of the gears is connected with the rotors while the other of the gears is connected with an immovable part of the engine and the gears engage with one another; carriers interconnecting the rotors and planetating in the same phase with the planetation of the rotors for synchronizing the rotation and planetation of the rotors; shafts arranged to support the carriers during their planetations; and elements for connecting the covers with one another.

  8. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the flying brick technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  9. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:www.nnsa.energy.govaboutusouroperationsmanagementandbudget

  10. Review of Beryllium Management Practices at Rocky Flats During Closure

    Energy Savers [EERE]

    Operations | Department of Energy Review of Beryllium Management Practices at Rocky Flats During Closure Operations Review of Beryllium Management Practices at Rocky Flats During Closure Operations Administrative and engineering controls, along with detailed medical and training programs and strict adherence to all characterization, sampling, and work procedures ensured that exposure to beryllium by RFETS employees was minimized to the highest extent possible. PDF icon Review of Beryllium

  11. 2014-02 Acquistion Letter 2014-01: Management and Operating Contractors' Audit Coverage of Cost-Reimbursement Subcontracts

    Broader source: Energy.gov [DOE]

    Questions concerning this policy flash should be directed to Michael Righi of the Contract and Financial Assistance Policy Division, Office of Policy, Office Acquisition and Project Management at ...

  12. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect (OSTI)

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  13. CRAD, Engineering- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Engineering program at the Idaho Accelerated Retrieval Project Phase II.

  14. Neutral Beam Mechanical Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Engineer Department: Engineering Supervisor(s): Tim Stevenson Staff: ENG 04 Requisition Number: 1500578 Provides general Mechanical Engineering and operations support...

  15. Advanced Tissue-engineered Human Ectypal Networks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Tissue-engineered Human Ectypal Networks Analyzer (ATHENA) March 30, 2016 Request for Information Los Alamos National Security, LLC (LANS) is the manager and operator of Los Alamos National Laboratory (Los Alamos) for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. Los Alamos is a mission- centric Federally Funded Research and Development Center focused on solving critical national security challenges through science and

  16. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOE Patents [OSTI]

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  17. Battery/Heat Engine Vehicle Analysis

    Energy Science and Technology Software Center (OSTI)

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore » to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.« less

  18. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:nnsa.energy.govaboutusouroperationsmanagementandbudget

    P...

  19. Engineering evaluation/cost analysis for the proposed management of 15 nonprocess buildings (15 series) at the Weldon Spring Site Chemical Plant, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    MacDonell, M M; Peterson, J M

    1989-05-01

    The US Department of Energy, under its Surplus Facilities Management Program (SFMP), is responsible for cleanup activities at the Weldon-Spring site, located near Weldon Spring, Missouri. The site consists of two noncontiguous areas: (1) a raffinate pits and chemical plant area and (2) a quarry. This engineering evaluation/cost analysis (EE/CA) report has been prepared to support a proposed removal action to manage 15 nonprocess buildings, identified as the 15 Series buildings, at the chemical plant on the Weldon Spring site. These buildings have been nonoperational for more than 20 years, and the deterioration that has occurred during this time has resulted in a potential threat to site workers, the general public, and the environment. The EE/CA documentation of this proposed action is consistent with guidance from the US Environmental Protection Agency (EPA) that addresses removal actions at sites subject to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986. Actions at the Weldon Spring site are subject to CERCLA requirements because the site is on the EPA`s National Priorities List. The objectives of this report are to (1) identify alternatives for management of the nonprocess buildings; (2) document the selection of response activities that will mitigate the potential threat to workers, the public, and the environment associated with these buildings; and (3) address environmental impacts associated with the proposed action.

  20. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels, executive summary

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study was carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from syncrude. The findings from the search were presented and discussed in detail in the main report (Ricardo DP.81/539). In this executive summary, the conclusions and recommendations from the main report are presented.

  1. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT TO SAFELY AND EFFECTIVELY COMPLETE NUCLEAR CONSTRUCTION WORK

    SciTech Connect (OSTI)

    LESO KF; HAMILTON HM; FARNER M; HEATH T

    2010-01-14

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business construction subcontractors while performing high hazard work in a safe and productive manner. Previous to the Washington River Protection Solutions, LLC contract, Construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper describes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method. This method was implemented in the first quarter of Fiscal Year (FY) 2009, where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by DRS personnel. Each small contractor is mentored and supported utilizing the principles of the Construction Industry Institute (CII) Partnering process. Some of the key mentoring and partnering areas that are explored in this paper are, internal and external safety professional support, subcontractor safety teams and the interface with project and site safety teams, quality assurance program support to facilitate compliance with NQA-1, construction, team roles and responsibilities, work definition for successful fixed price contracts, scheduling and interface with project schedules and cost projection/accruals. The practical application of the CII Partnering principles, with the Construction Management expertise of URS, has led to a highly successful construction model that also meets small business contracting goals.

  2. Acquisition Letter 11- Non-Management and Operating (Non-M&O) Contractor Business Systems Clauses for Section H

    Broader source: Energy.gov [DOE]

    This Acquisition Letter (AL) implements compliance enforcement mechanisms in the form of business systems clause and related clauses that requires the contractor to have acceptable business systems that comply with system criteria. The contractor will be required to have acceptable business systems for cost estimating, accounting, earned value management, purchasing and property management. When a contractor's business system contains identified significant deficiencies, the contracting officer will be able to withhold a percentage of payments in accordance with the applicable system clause.

  3. Tank waste remediation system configuration management implementation plan

    SciTech Connect (OSTI)

    Vann, J.M.

    1998-03-31

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from the life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.

  4. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Presentation: North East States for Coordinated Air Use Management

  5. Systems Engineer | Department of Energy

    Energy Savers [EERE]

    disruptions in oil supplies. Organizational Structure: This position is located in the Office of the Assistant Project Manager for Systems & Projects, Systems Engineering and...

  6. Revised Acquisition Letter 2013-11- Non-Management and Operating (Non-M&O) Contractor Business Systems Clauses for Section H – Earned Value Management Clause

    Broader source: Energy.gov [DOE]

    The attached Acquisition Letter (AL) 2013-11 (originally released in Policy Flash 2013-71 on August 5, 2013) revises one Section H Clause – DOE-H-1075 Earned Value Management System. A summary of the clause revisions follow: System criteria - Paragraph (b) (2)(ii) states that the contractor shall use Department of Energy's (DOE) modified version of Department of Defense's Data Item Description Integrated Program Management Report, DI-MGMT-81861, (DOE version, current version at time of award); Significant deficiencies - Paragraph (i) (3)(iv) is deleted regarding system disapproval; and Withholding payments - Paragraph (j), as part of the contracting officer final determination, it clarifies that significant deficiencies are part of the final determination which starts withholding of payments.

  7. Rotary engine

    SciTech Connect (OSTI)

    Larson, T. G.

    1985-10-22

    The rotary engine has a circumferential main chamber and at least one smaller combustion chamber spaced from the main chamber. The rotor includes a plurality of radially-projecting sealing members in spaced relationship thereabout for maintaining a fluid-sealed condition along a single fixed transverse strip area on the interior surface of the main chamber. A single radially-oriented axially-parallel piston vane is also carried by the rotor and moves through the fixed strip area of the main chamber at each revolution of the rotor. Plural passages for intake, compression, expansion, and exhaust are ported into the main chamber at locations proximate to the fixed strip area. Valve means in the passages selectively open and close the same for a cycle of engine operation involving intake, compression, burning, and exhaust.

  8. Understanding Stirling engines. Technical paper

    SciTech Connect (OSTI)

    Beale, W.

    1984-01-01

    The paper describes the basic Stirling engine, as well as some of the most promising modern varieties. The intent is to familiarize people in developing countries with the engine's operation and range of applications.

  9. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    SciTech Connect (OSTI)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  10. Particulate Produced from Advanced Combustion Operation in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produced from Advanced Combustion Operation in a Compression Ignition Engine Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Determine ...

  11. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    SciTech Connect (OSTI)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab.

  12. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  13. Operation Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation Schedule Daily Hours of Operation

  14. Visual Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visual Engineering Visual Engineering At the Ames Laboratory we are working with Iowa State Image University to create an interactive visual engineering environment to design new products, better power plants, or any other engineering products. In addition, Mark Bryden and Doug McCorkle, along with collaborators at NETL and Reaction Engineering International have developed open-source software to look at the physics behind power plant operation within this visual environment. Image Their VE-PSI

  15. Ceramic Automotive Stirling Engine Program

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  16. Waste management project technical baseline description

    SciTech Connect (OSTI)

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  17. Test Site Operations & Maintenance Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  18. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

    SciTech Connect (OSTI)

    Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

    2005-11-01

    Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

  19. ADMINISTRATIVE SUPPORT INFORMATION MANAGEMENT ADMINISTRATIVE...

    National Nuclear Security Administration (NNSA)

    ... HEALTH PHYSICS TECHNOLOGY R&D S&E, CHEMICAL ENGINEERING INDUSTRIAL HYGIENE R&D S&E, ... AIDED DESIGN AND DRAFTING TECHNOLOGIST CHEMICAL ENGINEERING CONSTRUCTION MANAGER ...

  20. Free piston stirling engines

    SciTech Connect (OSTI)

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  1. Waste Technology Engineering Laboratory (324 building)

    SciTech Connect (OSTI)

    Kammenzind, D.E.

    1997-05-27

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.

  2. Management and Operating Contract for the Los Alamos National Laboratory, NNSA contract No. DE-AC52-06NA25396

    National Nuclear Security Administration (NNSA)

    MANAGEMENT AND OPERATING CONTRACT FOR THE LOS ALAMOS NATIONAL LABORATORY NATIONAL NUCLEAR SECURITY ADMINISTRATION CONTRACT No. DE-AC52-06NA25396 DECEMBER 21, 2005 1943 Today Blank Page Blank Page Request for Proposal No. DE-RP52-05NA25396 LANS Contract DE-AC52-06NA25396.doc Section B - H, Page 2 Part I - The Schedule Sections B through H TABLE OF CONTENTS STANDARD FORM 33 SOLICITATION, OFFER AND AWARD....................................... 1 Section B - SUPPLIES OR SERVICES AND PRICES/COSTS

  3. LES Modeling for IC Engines

    Broader source: Energy.gov [DOE]

    Large eddy simulation offers better accuracy and sensitivity to study cyclic variability, mode transition and mixing effects in engine design and operation

  4. Free-piston Stirling engine

    SciTech Connect (OSTI)

    Berggren, R.W.; Moynihan, T.M.

    1982-09-01

    A free-piston Stirling engine/linear alternator system (FPSE-010-3), developed under previous Department of Energy (DOE) funding, has been used as a test bed for evaluating selected Stirling engine loss mechanisms. The engine is particularly suited to test-bed operation because engine performance can be evaluated over a wide range of operating conditions; system instrumentation is capable of measuring the effects of system component changes; and modular engine design facilitates the evaluation of alternate component configurations. Extensive testing was performed to establish the operating characteristics of a base-line engine configuration and to characterize specific losses within a Stirling engine. Significant variations in engine performance were observed as the displacer seal clearance was varied. This paper presents selected results from the base-line and displacer seal clearance tests.

  5. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  6. Office of Business Operations

    Broader source: Energy.gov [DOE]

    The Office of Business Operations manages financial and acquisition management programs throughout the Associate Under Secretary for the Office of Environment, Health, Safety and Security (AU), including the formulation and execution of the AU budget; funding control and accounting activities; preparation of management studies; and provision of acquisition management support.

  7. Annual Site Environmental Report, Department of Energy Operations at the Energy Technology Engineering Center – Area IV, Santa Susana Field Laboratory

    SciTech Connect (OSTI)

    Frazee, Brad; Hay, Scott; Wondolleck, John; Sorrels, Earl; Rutherford, Phil; Dassler, David; Jones, John

    2015-05-01

    This Annual Site Environmental Report (ASER) for 2014 describes the environmental conditions related to work performed for the DOE at Area IV of the Santa Susana Field Laboratory (SSFL). The ETEC, a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  8. Enterprise Assessments Operational Awareness Record for the Review of the WTP Low-Activity Waste Facility Preliminary Documented Safety Analysis Change Package for the Effluent Management Facility (OAR # EA-WTP-LAW-2016-01-25)

    Broader source: Energy.gov [DOE]

    Operational Awareness Record for the Review of the Waste Treatment and Immobilization Plant Low-Activity Waste Facility Preliminary Documented Safety Analysis Change Package for the Effluent Management Facility

  9. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect (OSTI)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  10. Management control system description

    SciTech Connect (OSTI)

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  11. TYPE OF OPERATION

    Office of Legacy Management (LM)

    & RESIDUE 0 AECMED INVOLVEME?JT AT SITE ...----------- Control a Health Physics Protection 0 AECfMED managed operations G Little or None 0 AEUMED respansible far C ...

  12. TYPE OF OPERATION

    Office of Legacy Management (LM)

    . .' .,Ec-itkED I' NVULVEFY l- AT SITE '---------... .Control c Health Physics Protection 0 AECMED managed operations G Little or None :kf AECMED responsible for ...

  13. Conference Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-03

    To establish requirements and responsibilities with respect to managing conferences sponsored by the Department of Energy (DOE) or by DOE management and operating contractors and other contractors who perform work at DOE-owned or -leased facilities, including management and integration contractors and environmental restoration management contractors (when using funds that will be reimbursed by DOE). Cancels DOE N 110.3.

  14. Westinghouse Again Recognized For Safe Underground Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and operating contractor for DOE at WIPP. The company's underground operations include mining, hoisting, maintenance, engineering and other related activities. The Certificate of...

  15. Accelerator Operations and Technology, AOT: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADE Accelerator and Operations Technology, AOT About Us AOT Home Groups High Power Electrodynamics Instrumentation, Controls Mechanical Design Engineering Operations Radio...

  16. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  17. General Engineers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    areas: statics, dynamics, strength of circuits, chemical engineering, refinery engineering, nature and property of materials, optics, heat transfer, soil mechanics, or electronics. ...

  18. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is often fragmented, ...

  19. SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Checklist | Department of Energy SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management Checklist The following checklist is intended to provide system owners, project managers, configuration managers, and other information system development and maintenance professionals with guidance in identifying and planning software configuration management (SCM)

  20. Fuel quantity modulation in pilot ignited engines

    DOE Patents [OSTI]

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  1. Operating Experience Committee Charter

    Broader source: Energy.gov [DOE]

    The Operating Experience Committe Charter explains the purpose of the Department of Energy (DOE) Operating Experience Committee (OEC), which is to support line management within DOE and the DOE community in developing and sustaining effective oeprating experience programs so that lessons from inernal and external operating experience lead to improvement in future operational and safety performance.

  2. Defining a region of optimization based on engine usage data

    DOE Patents [OSTI]

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-08-04

    Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.

  3. E-Alerts: Energy (engine studies (energy related)). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Operation and design of engines when related to energy conservation and energy use. Covers turbine, rotary, and reciprocating engines.

  4. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  5. Predictive Simulation of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  6. SCADA Engineering Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Solutions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. stochastic unit commitment engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unit commitment engine - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  8. Publication in Ocean Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication in Ocean Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  9. UNM School of Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School of Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  10. Project Management Career Development Program | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are here Home Operational Management Certifications and Professional Development Project Management Career Development Program Project Management Career Development...

  11. MORE operating system: a message oriented resource environment

    SciTech Connect (OSTI)

    Cabral, B.; Poggio, M.

    1986-07-15

    The operating system, MORE (Message Oriented Resource Environment), is designed for a software engineering environment built on the VAXstation II micro-computer. The MORE operating system is based on the message passing model. The hardware configuration of the VAXstation II is described, including a thorough discussion of the hardware operating system support features of the VAX architecture. The software engineering environment that MORE will provide for the user is discussed. The operating system as the application programmer will see it is presented in the form of a system services manual for MORE. The concept of a server in MORE and the objects or resources manipulated by the servers are included. The high level implementation and organization of MORE, the device managers and drivers, and the kernel of MORE are detailed. 17 refs., 17 figs.

  12. Impact of operating parameters changing on energy, environment and economic efficiencies of a lean burn gas engine used in a cogeneration plant

    SciTech Connect (OSTI)

    Lemoult, B.; Tazerout, M.; Rousseau, S.

    1998-07-01

    The facts that national electrical company Electricite de France (EDF) has a monopoly on electrical power production in France and an extensive installed base of nuclear power plants, explain the difficulty encountered in developing cogeneration technology in France. Cogeneration only really first appeared in this country in the early 1990's, with the liberalization of energy markets and the government's encouragement. Since then, the number of cogeneration plants has continuously increased and electrical generating capacity is now approximately 1,200 MWe. Turbine and reciprocating engines (most of which are natural gas fired) account respectively for about 55% and 45% of the installed power. Unlike other countries, such as Germany--which has about two thousand 500 kWe and smaller units--the future of low-power cogeneration in France is far from assured, and there are currently less than 10 such plants. To help develop this efficient technology for producing electrical power and hot water, the Ecole des Mines de Nantes purchased a 210 kWe cogeneration generator set in 1996. This facility provides all or part of the school's electrical and heat requirements during five months between November and March. This cogeneration facility is also used during the rest of the year to perform research experiments in the field of lean-burn natural gas combustion. Lastly, it is also used to provide training for industry in cogeneration technology. Within this context, work was undertaken to study the set's energy and emissions performance, in relation to such parameters as spark advance and air factor, and at various loads.

  13. Best Management Practice #1: Water Management Planning

    Broader source: Energy.gov [DOE]

    A successful water management program starts with developing a comprehensive water management plan. This plan should be included within existing facility operating plans.

  14. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOE Patents [OSTI]

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  15. Business Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Business Operations The Office of Business Operations is the central organization for all Office of Energy Efficiency and Renewable Energy (EERE) organizational products and services, processes, and systems. The four main offices and managers of Business Operations - the Project Management Coordination Office, the Information Technology and Services Office, Workforce Management Office and the Golden Field Office - are outlined in the Business Operations organization chart. Offices

  16. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  17. CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  18. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  19. Savannah River Site Contractor Endows Professorship to Help Grow Local Engineers

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Savannah River Site (SRS) management and operating contractor Savannah River Nuclear Solutions has given $550,000 to the University of South Carolina Aiken (USCA) to endow its faculty professorship as part of a new bachelor’s degree program in industrial process engineering.

  20. Stirling engines

    SciTech Connect (OSTI)

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  1. Operations and Maintenance Best Practices Guide | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations and Maintenance Best Practices Guide Operations and Maintenance Best Practices Guide The Federal Energy Management Program's Operations and Maintenance (O&M) Best ...

  2. Operational Pause at Savannah River Site Benefits Safety Culture, Operations

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – EM and the Savannah River Site (SRS) management and operations contractor are seeing positive impacts on safety culture as the site works to restore operations following last year’s operational pause.

  3. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  4. Environmental, safety, and health engineering

    SciTech Connect (OSTI)

    Woodside, G.; Kocurek, D.

    1997-12-31

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics.

  5. APS Engineering Support Division (AES) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) The APS Engineering Support Division provides reliable operations and technical support to the Advanced Photon Source user community. AES...

  6. Improved Engine Design Concepts Using the Second Law of Thermodynamics

    SciTech Connect (OSTI)

    2009-09-30

    This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ({approx}21%) for a range of operating and design parameters. Further, to achieve high efficiency engines requires that the exergy be managed and not necessarily reduced. The overall thermodynamics is the final discriminator regarding high efficiency engines.

  7. Externally heated valve engine -- An alternative to the Stirling engine

    SciTech Connect (OSTI)

    Kazimierski, Z.; Brzeski, L.

    1996-12-31

    A new concept of the Externally Heated Valve (EHV) engine is presented. The principle of the engine operation is described in the introduction to the paper. Heat delivered to the working medium (air) in the heater, or several heaters working commutatively, can come from a combustion chamber or other heat generator such as nuclear reactors or solar collectors. The engine construction is original entirely different from the well-known Stirling engine. New results of the EHV engine computer modeling are presented. This is connected with a new kind of the annular heater applied to the EHV engine. A whirl motion inside the heater is caused to ensure the proper condition of the heat exchanger during the whole engine cycle. Three heaters working commutatively have been considered in this model. Comparisons between the power and efficiency of the Stirling engine and EHV engine have been performed for the same engine capacity, rotational frequency, maximum and minimum temperatures of the working gas and for the same mean pressures of both the engine cycles. The power of the EHV engine is in this case over three times higher than the Stirling engine power, while the efficiency of both the engines is almost the same.

  8. M E Environmental Management Environmental Management

    Energy Savers [EERE]

    safety  performance  cleanup  closure M E Environmental Management Environmental Management safety  performance  cleanup  closure M E Environmental Management Environmental Management M E Environmental Management Environmental Management Office of Site Restoration, EM-10 Office of D&D and Facility Engineering, EM-13 Facility Deactivation & Decommissioning (D&D) D&D Program Map Addendum: Impact of American Recovery and Reinvestment Act (ARRA) on EM's D&D

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    SciTech Connect (OSTI)

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  10. DOE Oak Ridge Operations managers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons production, and basic scientific research. Additional responsibilities have been placed on the federal offices in Oak Ridge during the years. It can be said, if the...

  11. Instrumentation and control for resource management at the INEL

    SciTech Connect (OSTI)

    Polk, R.E.

    1988-01-01

    Resource management at facilities dealing with nuclear reactors and waste processing includes the conservation of storage space, reduction of radiation exposure, and improvement of operational efficiency. The application of current control and display technology is a significant asset in the performance improvement of these facilities. Four examples of such applications at the Idaho National Engineering Laboratory (INEL) are presented.

  12. Geo-Engineering through Internet Informatics (GEMINI)

    SciTech Connect (OSTI)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.; Bohling, Goeffrey C.; Bhattacharya, Saibal; Byers, Alan P.; Carr, Timothy R.; Dubois, Martin K.; Gagnon, Glen; Guy, Willard J.; Look, Kurt; Magnuson, Mike; Moore, Melissa; Olea, Ricardo; Pakalapadi, Jayprakash; Stalder, Ken; Collins, David R.

    2002-06-25

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and region (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.

  13. U.S. Department of Energy Office of Inspector General report on inspection of Westinghouse Savannah River Company fees for managing and operating the Savannah River Site

    SciTech Connect (OSTI)

    1995-08-03

    During the first five years of its contract with the Department of Energy, Westinghouse Savannah River Company was paid over $130 million in fees to manage and operate the Savannah River Site. Fees paid to Westinghouse steadily increased over the five year period. For example, fees paid for the last six months of this five year period were over three times as large as fees paid for the first six months. The purpose of this inspection was to review the Department`s annual negotiation of total available fees with Westinghouse, and to examine the reasons for the growth in fees over this five year period. The review disclosed that, after Fiscal Year 1989, the Department used an increasing number of fee bases in calculating Westinghouse Savannah River Company`s fixed-fee-equivalents from the maximum fee schedules within the Department of Energy Acquisition Regulation. The authors found that the Department had significantly increased the percentage of the dollar value of subcontracts being placed in Westinghouse`s fee bases for fee calculation purposes. They found that the Department had effectively increased Westinghouse`s fixed-fee-equivalents by approximately $3 million in both Fiscal Year 1993 and 1994 to, in large part, fund an unallowable employee incentive compensation program. They found that Westinghouse`s total paid fees for the five year period increased significantly over what they would have been had the terms resulting from the original competitive negotiations been maintained. The authors recommended that the Deputy Assist Secretary for Procurement and Assistance Management require that changes in either the number or composition of fee bases used in calculating fees from the maximum fee schedules be submitted to the Department`s Procurement Executive for approval.

  14. Proceedings of the 31. intersociety energy conversion engineering

    Office of Scientific and Technical Information (OSTI)

    conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management (Conference) | SciTech Connect Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management Citation Details In-Document Search Title: Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies,

  15. Daewoo Engineering Company | Open Energy Information

    Open Energy Info (EERE)

    service provider offering R&D, engineering, design, procurement, construction, and project management; involved in building a 3MW solar power plant in South Jeolla....

  16. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-30

    To establish Department of Energy (DOE) value engineering policy that establishs and maintains cost-effective value procedures and processes.

  17. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect (OSTI)

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units demonstrated an IME of 64% at stationary idle for the test period. The data collected during calendar year 2004 demonstrated that 707,600 gallons of fuel were saved and 285 tons of NOX were not emitted as a result of idle management in stationary idle, which translates to 12,636 gallons and 5.1 tons of NOx per unit respectively. The noise reduction capabilities of the APU demonstrated that at 150 feet from the locomotive the loaded APU with the main engine shut down generated noise that was only marginally above ambient noise level.

  18. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  19. Facility Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Engineering Facility Engineering Facility Engineering (FE) programmatic element efforts within EM encompasses real property asset management across the EM complex as well as the transfers of real property to Community Reuse Organizations and other entities for asset revitalization and/or economic development. In addition, FE coordinates, analyzes, and concurs on EM site submission for infrastructure reporting, such as, in the Integrated Facilities and Infrastructure crosscut and the

  20. Supervisory Electronics Engineer

    Broader source: Energy.gov [DOE]

    This position is located in an Operations and Maintenance (O&M;) District under one of the three Senior O&M; Managers, Transmission Field Services (TF), Transmission Services. Transmission...

  1. Supervisory Electrical Engineer

    Broader source: Energy.gov [DOE]

    This position is located in an Operations and Maintenance (O&M;) District under one of the three Senior O&M; Managers, Transmission Field Services (TF), Transmission Services. Transmission...

  2. Engineering approaches to ecosystem restoration

    SciTech Connect (OSTI)

    Hayes, D.F.

    1998-07-01

    This proceedings CD ROM contains 127 papers on developing and evaluating engineering approaches to wetlands and river restoration. The latest engineering developments are discussed, providing valuable insights to successful approaches for river restoration, wetlands restoration, watershed management, and constructed wetlands for stormwater and wastewater treatment. Potential solutions to a wide variety of ecosystem concerns in urban, suburban, and coastal environments are presented.

  3. BPM Diesel Engineering | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: WR12 7NL Product: Converts diesel engines to operate on Dual Fuel using a digital generic system. References: BPM Diesel Engineering1 This article is a stub. You can...

  4. Nanocatalysts for Diesel Engine Emissions Remediation

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop durable zeolite nanocatalysts with broad temperature operating windows to treat diesel engine emissions, thus enabling diesel engine equipment and vehicles to meet regulatory requirements.

  5. Evolution of a Unique Systems Engineering Capability

    SciTech Connect (OSTI)

    Robert M. Caliva; James A. Murphy; Kyle B. Oswald

    2011-06-01

    The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INLs Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INLs Systems Engineering Department has chosen to focus on customer intimacy where the customers needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

  6. Enterprise Assessments Operational Awareness Record, Waste Isolation Pilot Plant- March 2015

    Broader source: Energy.gov [DOE]

    Review of the Waste Isolation Pilot Plant Limited Review of Engineering Configuration Management Processes

  7. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  8. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  9. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  10. Deputy Director, Chief Operating Officer | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directors, Department Heads and other designated personnel. She is responsible for continuous assessment and improvement of safety, project management, engineering,...

  11. Multicylinder compound engine

    SciTech Connect (OSTI)

    Paul, M.A.; Paul, A.

    1990-10-23

    This patent describes a compound, rotary-reciprocal engine. It comprises: a two-cycle reciprocator having cylinders, each cylinder having at least one piston arranged for reciprocation in the cylinder in a cycled operation with a timed air input to the cylinder and a timed exhaust from the cylinder; a compressed air intake and combustion gas exit in each cylinder of the reciprocator; fuel injection means for injecting fuel into the cylinders at appropriate times in the cycled operation; and, a rotocharger.

  12. Engine control techniques to account for fuel effects

    DOE Patents [OSTI]

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  13. Shockwave Engine: Wave Disk Engine

    SciTech Connect (OSTI)

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  14. Management and integration of engineering and construction activities: Lessons learned from the AP1000{sup R} nuclear power plant China project

    SciTech Connect (OSTI)

    McCullough, M. C.; Ebeling-Koning, D.; Evans, M. C.

    2012-07-01

    The lessons learned during the early phase of design engineering and construction activities for the AP1000 China Project can be applied to any project involving multiple disciplines and multiple organizations. Implementation of a first-of-a-kind design to directly support construction activities utilizing resources assigned to design development and design delivery creates challenges with prioritization of activities, successful closure of issues, and communication between site organizations and the home office. To ensure successful implementation, teams were assigned and developed to directly support construction activities including prioritization of activities, site communication and ensuring closure of site emergent issues. By developing these teams, the organization is better suited to meet the demands of the construction schedule while continuing with design evolution of a standard plant and engineering delivery for multiple projects. For a successful project, proper resource utilization and prioritization are key for overcoming obstacles and ensuring success of the engineering organization. (authors)

  15. Radio Frequency Engineering, MDE, Accelerator Operations and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RF Technology & Electronics, RFE About Us AOT Home Teams Low-Level Radio Frequency Magnet Power Supplies, Pulsed Power Radio Frequency, High Voltage Technologies Radio Frequency...

  16. Doug Shoop, Deputy Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Waste Operations drivers since 2005 2015 2005 River Corridor Progress 10 324 Chemical Engineering Laboratory Contaminated soil beneath B-cell discovered just prior to...

  17. Operating Reserves and Variable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Kirby, B.

    2011-08-01

    This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

  18. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new developments in information technology. May 14, 2013 Los Alamos Research Park Los Alamos Research Park, the home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505)

  19. Shasta/Mustique subsea equipment platform interface and operability

    SciTech Connect (OSTI)

    Jefferies, A.T.; Loegering, C.; Steib, D.; Schlater, D.

    1996-12-31

    The economic benefits of all inclusive systems engineering approach is now recognized in the offshore industry. Nowhere is this more evident than in the area of deepwater subsea tiebacks to existing facilities. This type of development requires effective management of the interfaces between personnel on the existing facility and the new project team, the interfaces between the new subsea facilities and the existing platform, and the interface of the new operating procedures with the existing platform daily routine. A second factor in the economic viability of many of these projects is the need to minimize operating costs by avoiding the need for subsea system repair intervention. An operability analysis focusing on the subsea system and platform interface engineering was used on the Hardy projects to address the concerns with the potential for interventions. With minimum operating costs as a primary goal, Hardy encouraged participation from both host platform operating groups from the outset of both projects. This cooperation was critical since both projects were planned to more than double the throughput for both host platforms without adding platform operating personnel. The approach of operator involvement also ensured a safe, reliable, and economic transition between the installation and operating phases of the developments.

  20. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-14

    This Order establishes requirements for the management and operation of the Department of Energy (DOE) Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE.

  1. TYPE OF OPERATION

    Office of Legacy Management (LM)

    WASTE G RESIDUE a i-CtlED INVOLVE"ENT-AT SITE -'---... Control ci Health Physics Protection 0 AECtlED managed operations c Little or None G AECMED rea' poneible for ...

  2. TYPE OF OPERATION

    Office of Legacy Management (LM)

    181 WASTE & RESIDUE q ,r . ,, A&MED I NVOLVEMENI-AT SITE I - . : Control 1 Health Physics Protection ' I, 0 AEWHED managed operations 0 Little or None 13 AEWHED responsible for ...

  3. TYPE OF OPERATION

    Office of Legacy Management (LM)

    b RESIDUE q GOUT LECISED CONTReCTOR CONTRCICTOR -EEL ---LEeSED Control Health Physics 0 AEWMED managed operations q Little or No 0 AECMED responsible for AEWMED resp ...

  4. Mechanical Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Engineering Services (PEJD) organization of Program Implementation Energy Efficiency, Power Services, Bonneville Power Administration (BPA). As part of the Power...

  5. Environmental Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be an environmental technical expert and advisor to integrate science and engineering principles to improve the natural environment and direct and...

  6. Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with the U.S. automotive and heavy-duty diesel engine industries, energy companies, and other ... The strategies include: ultra-low-emission, low-temperature combustion; ...

  7. Rotary engine

    SciTech Connect (OSTI)

    Leas, A. M.; Leas, L. E.

    1985-02-12

    Disclosed are an engine system suitable for use with methyl alcohol and hydrogen and a rotary engine particularly suited for use in the engine system. The rotary engine comprises a stator housing having a plurality of radially directed chamber dividers, a principal rotor, a plurality of subordinate rotors each having an involute gear in its periphery mounted on the principal rotor, and means for rotating the subordinate rotors so that their involute gears accept the radially directed dividers as the subordinate rotors move past them.

  8. Human Factors Aspects of Operating Small Reactors

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins, J.; Deem, R.; Xing, J.; DAgostino, A.

    2010-11-07

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. They are considering small modular reactors (SMRs) as one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants, and so may require a concept of operations (ConOps) that also is different. The U.S. Nuclear Regulatory Commission (NRC) has begun examining the human factors engineering- (HFE) and ConOps- aspects of SMRs; if needed, they will formulate guidance to support SMR licensing reviews. We developed a ConOps model, consisting of the following dimensions: Plant mission; roles and responsibilities of all agents; staffing, qualifications, and training; management of normal operations; management of off-normal conditions and emergencies; and, management of maintenance and modifications. We are reviewing information on SMR design to obtain data about each of these dimensions, and have identified several preliminary issues. In addition, we are obtaining operations-related information from other types of multi-module systems, such as refineries, to identify lessons learned from their experience. Here, we describe the project's methodology and our preliminary findings.

  9. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

  10. Notice of Intent to Revise DOE O 350.2B, Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-03-20

    The objective of this revision is to incorporate a more performance based risk management approach into the oversight and management of these assignments. The revision will result in a reduction of DOE requirements, increased delegation of management responsibilities to sponsoring program organizations, elimination of reporting requirements and institutionalizing DOE-wide cost constraints for contractor domestic assignments. Approved 3-20-15.

  11. Notice of Intent to Revise DOE O 350.2B, Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The objective of this revision is to incorporate a more performance based risk management approach into the oversight and management of these assignments. The revision will result in a reduction of DOE requirements, increased delegation of management responsibilities to sponsoring program organizations, elimination of reporting requirements and institutionalizing DOE-wide cost constraints for contractor domestic assignments. Approved 3-20-15.

  12. Independent Oversight Review, Richland Operations Office and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and work management and control processes in the areas of conduct of operations, quality assurance, and integrated safety management. Independent Oversight Review, Richland...

  13. Enfinity Management BVBA | Open Energy Information

    Open Energy Info (EERE)

    Management BVBA Jump to: navigation, search Name: Enfinity Management BVBA Place: Ghent, Belgium Zip: 9051 Sector: Renewable Energy Product: Belgium-based financial engineer in...

  14. Department of Energy Idaho - Environmental Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final...

  15. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-03-23

    The Order establishes requirements for the management and operation of the DOE Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE. Supersedes DOE O 473.3. NOTE: Safeguards and Security Alarm Management and Control Systems, of DOE O 473.3, is retained as Attachment 3, Annex 1.

  16. Starting of turbine engines

    SciTech Connect (OSTI)

    Shekleton, J.R.

    1990-05-01

    This patent describes a relatively small turbine engine. It comprises: a rotary turbine wheel; a rotary compressor coupled to the turbine wheel; an annular combustor for receiving air from the compressor and fuel from a fuel source combusting the same and providing gases of combustion to the turbine wheel to drive the same; substantially identical main fuel injectors including fuel injecting nozzles angularly spaced about the compressor; fuel and air from the compressor being introduced into the combustor generally in the tangential direction; a fuel pump; a control schedule valve; and first and second main fuel solenoid valves. The first valve being operable to connect a minority of the injectors to the control schedule valve and the fuel pump for starting the engine, there being an even number of the injectors and the minority of injectors consisting of two diametrically opposite injectors; the first and second valves being operable to connect all of the injectors to the control schedule valve and the pump for causing normal operation of the engine; the engine further being characterized by the absence of start fuel injectors for the combustor.

  17. Project Analysis Standard Operating Procedure

    Office of Environmental Management (EM)

    Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project...

  18. Field Operations Program Activities Status Report

    SciTech Connect (OSTI)

    J. E. Francfort; D. V. O'Hara; L. A. Slezak

    1999-05-01

    The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

  19. Needle Federated Search Engine

    Energy Science and Technology Software Center (OSTI)

    2009-12-01

    The Idaho National Laboratory (INL) has combined a number of technologies, tools, and resources to accomplish a new means of federating search results. The resulting product is a search engine called Needle, an open-source-based tool that the INL uses internally for researching across a wide variety of information repositories. Needle has a flexible search interface that allows end users to point at any available data source. A user can select multiple sources such as commercialmore » databases (Web of Science, Engineering Index), external resources (WorldCat, Google Scholar), and internal corporate resources (email, document management system, library collections) in a single interface with one search query. In the future, INL hopes to offer this open-source engine to the public. This session will outline the development processes for making Needle™s search interface and simplifying the federation of internal and external data sources.« less

  20. Knock-free engine control system for turbocharged automotive engine

    SciTech Connect (OSTI)

    Hirabayashi, Y.

    1985-04-09

    In a turbocharged internal combustion engine, in order to optimize engine torque output spark timing control and boost pressure control are coordinated in such a manner that spark advance angle is adjusted only when the measured boost pressure equals a predetermined value and is allowed to vary only within a specified range advanced from a reference value derived from an empirical memory table on the basis of engine speed and boost pressure. When engine operating conditions are such that spark advance angle would fall outside of the specified range, spark advance angle is then held at the empirical value and boost pressure is adjusted in order to optimize engine torque. The coordinated control system can also be designed to respond to exhaust gas temperature on a first-priority basis, i.e., when exhaust temperature is sensed to be dangerously high, boost pressure is reduced regardless of other engine conditions.