National Library of Energy BETA

Sample records for mali maurita nia

  1. Mali: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (SREP) Mali-Reducing the GHG Impacts of Sustainable Intensification Mali-UNEP Risoe Technology Needs Assessment Program Mali-UNEP Green Economy Advisory Services view all Add a...

  2. Mali: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    CIA World Factbook, Appendix D Reegle Clean Energy Datasets Mali is a country in Africa. External Links Mali Renewable Energy Data from IEA Mali Contacts from Climate-Eval...

  3. Mali-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    Development Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Agriculture Topics Background analysis Website http:www.usaid.govourwork Country Mali...

  4. Mali-UNEP Risoe Technology Needs Assessment Program | Open Energy...

    Open Energy Info (EERE)

    Risoe Technology Needs Assessment Program Jump to: navigation, search Name Mali-UNEP Risoe-Technology Needs Assessment Program AgencyCompany Organization UNEP-Risoe Centre Sector...

  5. Mali-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  6. Eletricidade da Amaz nia S A ELETRAM | Open Energy Information

    Open Energy Info (EERE)

    Amaz nia S A ELETRAM Jump to: navigation, search Name: Eletricidade da Amaznia SA (ELETRAM) Place: Cuiaba, Mato Grosso, Brazil Zip: 78040-570 Sector: Hydro Product: Small...

  7. Eletricidade de Rond nia S A ELETRON | Open Energy Information

    Open Energy Info (EERE)

    Rond nia S A ELETRON Jump to: navigation, search Name: Eletricidade de Rondnia S.A. (ELETRON) Place: Alta Floresta D'Oeste, Brazil Sector: Hydro Product: Brazilian small hydro...

  8. Tera-node Network Technology (TASK 4) Network Infrastructure Activities (NIA) final report

    SciTech Connect (OSTI)

    Postel, John; Bannister, Joe

    2000-03-15

    The TNT project developed software technologies in scalable personal telecommunications (SPT), Reservation Protocol 2 (RSVP2), Scalable Computing Infrastructure (SCOPE), and Network Infrastructure Activities (NIA). SPT = developed many innovative protocols to support the use of videoconferencing applications on the Internet. RSVP2 = developed a new reference model and further standardization of RSVP. SCOPE = developed dynamic resource discovery techniques and distributed directory services in support of resource allocation for large distributed systems and computations. NIA = provided policy, operational, and support to the transitioning Internet.

  9. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    SciTech Connect (OSTI)

    Osuka, Hisao; Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 ; Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki; Nagao, Satoshi; Higuchi, Yoshiki; CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076 ; Hirota, Shun; CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

  10. FPDS-NG National Interest Action (NIA) Code to Track Procurement Actions Made in Support of the Pacific Earthquake and Tsunami

    Broader source: Energy.gov [DOE]

    The purpose of this Policy Flash is to advise Contracting Officers of the establishment of a new National Interest Action (NIA) Code to track procurement actions made in support of the Pacific Earthquake and Tsunami. As explained below, this action does not trigger or otherwise authorize agencies to use any Emergency Acquisition Flexibilities in Federal Acquisition Regulation (FAR) 18.2. Effective immediately, procurement actions in direct response to the Pacific earthquake and tsunami should be reported in FPDS-NG using the NIA code "Pacific Earthquake/Tsunami 2011." The NIA value for Pacific Earthquake and Tsunami is currently valid from March 11, 2011, to September 12, 2011. Since responses to this incident may be conducted inside or outside the United States, Contracting Officers should ensure that "Place of Performance" data accurately reflects where the work will be performed. Note: This NIA Code should be used only to facilitate cost collection and reporting. Use of this NIA Code does not authorize or justify use of any Emergency Acquisition Flexibilities in FAR 18.2. However, the acquisition flexibilities described in FAR 18.1 may be available, as well as others in agency acquisition supplements, to support the response to the Pacific Earthquake and Tsunami.

  11. Biopalma da Amaz nia | Open Energy Information

    Open Energy Info (EERE)

    da Amaznia Place: Belem, Para, Brazil Product: Brazilian palm oil plantation for food industry developer company. Coordinates: -1.454426, -48.502537 Show Map Loading...

  12. Agricultural Progress in Cameroon, Mali and Ghana: Why it Happened...

    Open Energy Info (EERE)

    Development (IFAD). The purpose was to identify constraints to agricultural growth and poverty reduction that might be eased through better policy, both domestically and...

  13. Mali-Reducing the GHG Impacts of Sustainable Intensification...

    Open Energy Info (EERE)

    can benefit poor farmers and to understand trade-offs among different dimensions of poverty and different groups of the poor (including between men and women). Special attention...

  14. Mali-Program for Scaling Up Renewable Energy in Low Income Countries...

    Open Energy Info (EERE)

    number of low income countries for energy efficiency, renewable energy and access to modern sustainable energy. The SREP stimulates economic growth through the scaled-up...

  15. Mali-National Adaptation Plan Global Support Programme (NAP-GSP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  16. Materials Data on NiAs (SG:194) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Namibia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  18. UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  19. Indonesia-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  20. Ghana-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  1. Senegal-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  2. South Korea-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  3. Rwanda-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  4. Egypt-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  5. Morocco-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  6. Barbados-UNEP Green Economy Advisory Services | Open Energy Informatio...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  7. Peru-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  8. Armenia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  9. Serbia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  10. Philippines-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  11. Kenya-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  12. Moldova-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  13. Burkina Faso-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  14. Mexico-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  15. Russian-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  16. Mongolia-UNEP Green Economy Advisory Services | Open Energy Informatio...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  17. Jordan-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  18. Nepal-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  19. Ukraine-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  20. Montenegro-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  1. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    analysis includes an expectation that the current weak La Nia conditions will transition to neutral or perhaps weak El Nio conditions by this years hurricane season. The...

  2. --No Title--

    Energy Savers [EERE]

    Action (NIA) Code to Track Procurement Actions Made in Support of the Pacific Earthquake and Tsunami SUMMARY: The purpose of this Policy Flash is to advise Contracting...

  3. FLASH2011-52 | Department of Energy

    Office of Environmental Management (EM)

    Action (NIA) Code to Track Procurement Actions Made in Support of the Pacific Earthquake and Tsunami FLASH2011-52 More Documents & Publications Policy Flash 2011-77...

  4. Category:Economic Community of West African States | Open Energy...

    Open Energy Info (EERE)

    15 pages are in this category, out of 15 total. B Benin Burkina Faso C Cape Verde G Gambia Ghana G cont. Guinea Guinea-Bissau I Ivory Coast L Liberia M Mali N Niger Nigeria...

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    to Maldives of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Exports to Mali of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Exports to Malta of Crude...

  6. MEMORANDUM FOR J.E. SURASH FROM: SUBJECT: HEAD OF CONTRACTING...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    required before public release NameOrg: Thomas Johnson, Jr., EM-52 (Acting) Date: 3232015 Guidance (if applicable): NIA OFFICIAL USE ONLY Printed with soy ink on recycled paper...

  7. Quarterly Business Review FY 2009 3rd Quarter Financial Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1:55 15 Meteorologist Briefing (La Nia) 27-30 Chris Karafotias 2:10 20 Secondary Revenue Outlook 31-33 Eric Federovitch, Alex Spain 2:30 10 Break 2:40 5 FY 2010 IT Update...

  8. CRC handbook of agricultural energy potential of developing countries

    SciTech Connect (OSTI)

    Duke, J.A.

    1986-01-01

    The contents of this book are: Introduction; Kenya; Korea (Republic of); Lesotho; Liberia; Malagasy; Malawi; Mali; Mauritania; Mexico, Mozambique, Nepal; Nicaragua; Niger; Nigeria; Pakistan; Panama; Paraguay; Peru; Philippines; Rwanda; Senegal; Sierra Leone; Somalia; Sri Lanka; Sudana; Surinam; Swaziland; Tanzania; Thailand; Togo; Uganda; Uruguay; Venezuela; Zaire; Zambia; Appendix I. Conventional and Energetic Yields; Appendix II, Phytomass Files; and References.

  9. HTGR Economic / Business Analysis and Trade Studies Market Analysis for HTGR Technologies and Applications

    SciTech Connect (OSTI)

    Richards, Matt; Hamilton, Chris

    2013-11-01

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal to liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.

  10. ARM07Chang_poster.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii Fu-Lung Chang @ , Patrick Minnis # , Bing Lin # , Sunny Sun-Mack & , Mandana Khaiyer & @National Institute of Aerospace #NASA Langley Research Center &Science System Applications Inc The 17th ARM Science Team Meeting, Monterey, California, March 26-30, 2007 Contact: Dr. Fu-Lung Chang, National Institute of Aerospace (NIA) Email: f.chang@larc.nasa.gov  How different are the retrievals

  11. Scaling nitrogen and carbon interactions: What are the consequences of biological buffering?

    SciTech Connect (OSTI)

    Weston, David J.; Rogers, Alistair; Tschaplinski, Timothy J.; Gunter, Lee E.; Jawdy, Sara A.; Engle, Nancy L.; Heady, Lindsey E.; Tuskan, Gerald A.; Wullschleger, Stan D.

    2015-06-25

    Understanding the consequences of elevated CO2 (eCO2; 800 ppm) on terrestrial ecosystems is a central theme in global change biology, but relatively little is known about how altered plant C and N metabolism influences higher levels of biological organization. Here, we investigate the consequences of C and N interactions by genetically modifying the N-assimilation pathway in Arabidopsis and initiating growth chamber and mesocosm competition studies at current CO2 (cCO2; 400 ppm) and eCO2 over multiple generations. Using a suite of ecological, physiological, and molecular genomic tools, we show that a single-gene mutant of a key enzyme (nia2) elicited a highly orchestrated buffering response starting with a fivefold increase in the expression of a gene paralog (nia1) and a 63% increase in the expression of gene network module enriched for N-assimilation genes. The genetic perturbation reduced amino acids, protein, and TCA-cycle intermediate concentrations in the nia2 mutant compared to the wild-type, while eCO2 mainly increased carbohydrate concentrations. The mutant had reduced net photosynthetic rates due to a 27% decrease in carboxylation capacity and an 18% decrease in electron transport rates. The expression of these buffering mechanisms resulted in a penalty that negatively correlated with fitness and population dynamics yet showed only minor alterations in our estimates of population function, including total per unit area biomass, ground cover, and leaf area index. As a result, this study provides insight into the consequences of buffering mechanisms that occur post-genetic perturbations in the N pathway and the associated outcomes these buffering systems have on plant populations relative to eCO2.

  12. Scaling carbon and nitrogen interactions. What are the consequences of biological buffering?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weston, David; Rogers, Alistair; Tschaplinski, Timothy J.; Gunter, Lee E; Jawdy, Sara; Engle, Nancy L.; Heady, Lindsey E.; Tuskan, Gerald A.; Wullschleger, Stan D.

    2015-06-25

    Understanding the consequences of elevated CO2 (eCO2; 800 ppm) on terrestrial ecosystems is a central theme in global change biology, but relatively little is known about how altered plant C and N metabolism influences higher levels of biological organization. Here, we investigate the consequences of C and N interactions by genetically modifying the N-assimilation pathway in Arabidopsis and initiating growth chamber and mesocosm competition studies at current CO2 (cCO2; 400 ppm) and eCO2 over multiple generations. Using a suite of ecological, physiological, and molecular genomic tools, we show that a single-gene mutant of a key enzyme (nia2) elicited a highlymore » orchestrated buffering response starting with a fivefold increase in the expression of a gene paralog (nia1) and a 63% increase in the expression of gene network module enriched for N-assimilation genes. The genetic perturbation reduced amino acids, protein, and TCA-cycle intermediate concentrations in the nia2 mutant compared to the wild-type, while eCO2 mainly increased carbohydrate concentrations. The mutant had reduced net photosynthetic rates due to a 27% decrease in carboxylation capacity and an 18% decrease in electron transport rates. The expression of these buffering mechanisms resulted in a penalty that negatively correlated with fitness and population dynamics yet showed only minor alterations in our estimates of population function, including total per unit area biomass, ground cover, and leaf area index. This study provides insight into the consequences of buffering mechanisms that occur post-genetic perturbations in the N pathway and the associated outcomes these buffering systems have on plant populations relative to eCO2.« less

  13. Scaling carbon and nitrogen interactions. What are the consequences of biological buffering?

    SciTech Connect (OSTI)

    Weston, David; Rogers, Alistair; Tschaplinski, Timothy J.; Gunter, Lee E; Jawdy, Sara; Engle, Nancy L.; Heady, Lindsey E.; Tuskan, Gerald A.; Wullschleger, Stan D.

    2015-06-25

    Understanding the consequences of elevated CO2 (eCO2; 800 ppm) on terrestrial ecosystems is a central theme in global change biology, but relatively little is known about how altered plant C and N metabolism influences higher levels of biological organization. Here, we investigate the consequences of C and N interactions by genetically modifying the N-assimilation pathway in Arabidopsis and initiating growth chamber and mesocosm competition studies at current CO2 (cCO2; 400 ppm) and eCO2 over multiple generations. Using a suite of ecological, physiological, and molecular genomic tools, we show that a single-gene mutant of a key enzyme (nia2) elicited a highly orchestrated buffering response starting with a fivefold increase in the expression of a gene paralog (nia1) and a 63% increase in the expression of gene network module enriched for N-assimilation genes. The genetic perturbation reduced amino acids, protein, and TCA-cycle intermediate concentrations in the nia2 mutant compared to the wild-type, while eCO2 mainly increased carbohydrate concentrations. The mutant had reduced net photosynthetic rates due to a 27% decrease in carboxylation capacity and an 18% decrease in electron transport rates. The expression of these buffering mechanisms resulted in a penalty that negatively correlated with fitness and population dynamics yet showed only minor alterations in our estimates of population function, including total per unit area biomass, ground cover, and leaf area index. This study provides insight into the consequences of buffering mechanisms that occur post-genetic perturbations in the N pathway and the associated outcomes these buffering systems have on plant populations relative to eCO2.

  14. Scaling nitrogen and carbon interactions: What are the consequences of biological buffering?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weston, David J.; Rogers, Alistair; Tschaplinski, Timothy J.; Gunter, Lee E.; Jawdy, Sara A.; Engle, Nancy L.; Heady, Lindsey E.; Tuskan, Gerald A.; Wullschleger, Stan D.

    2015-06-25

    Understanding the consequences of elevated CO2 (eCO2; 800 ppm) on terrestrial ecosystems is a central theme in global change biology, but relatively little is known about how altered plant C and N metabolism influences higher levels of biological organization. Here, we investigate the consequences of C and N interactions by genetically modifying the N-assimilation pathway in Arabidopsis and initiating growth chamber and mesocosm competition studies at current CO2 (cCO2; 400 ppm) and eCO2 over multiple generations. Using a suite of ecological, physiological, and molecular genomic tools, we show that a single-gene mutant of a key enzyme (nia2) elicited a highlymore » orchestrated buffering response starting with a fivefold increase in the expression of a gene paralog (nia1) and a 63% increase in the expression of gene network module enriched for N-assimilation genes. The genetic perturbation reduced amino acids, protein, and TCA-cycle intermediate concentrations in the nia2 mutant compared to the wild-type, while eCO2 mainly increased carbohydrate concentrations. The mutant had reduced net photosynthetic rates due to a 27% decrease in carboxylation capacity and an 18% decrease in electron transport rates. The expression of these buffering mechanisms resulted in a penalty that negatively correlated with fitness and population dynamics yet showed only minor alterations in our estimates of population function, including total per unit area biomass, ground cover, and leaf area index. As a result, this study provides insight into the consequences of buffering mechanisms that occur post-genetic perturbations in the N pathway and the associated outcomes these buffering systems have on plant populations relative to eCO2.« less

  15. Policies to Spur Energy Access. Executive Summary; Volume 1, Engaging the Private Sector in Expanding Access to Electricity; Volume 2, Case Studies to Public-Private Models to Finance Decentralized Electricity Access

    SciTech Connect (OSTI)

    Walters, Terri; Rai, Neha; Esterly, Sean; Cox, Sadie; Reber, Tim; Muzammil, Maliha; Mahmood, Tasfiq; Kaur, Nanki; Tesfaye, Lidya; Mamuye, Simret; Knuckles, James; Morris, Ellen; de Been, Merijn; Steinbach, Dave; Acharya, Sunil; Chhetri, Raju Pandit; Bhushal, Ramesh

    2015-09-01

    Government policy is one of the most important factors in engaging the private sector in providing universal access to electricity. In particular, the private sector is well positioned to provide decentralized electricity products and services. While policy uncertainty and regulatory barriers can keep enterprises and investors from engaging in the market, targeted policies can create opportunities to leverage private investment and skills to expand electricity access. However, creating a sustainable market requires policies beyond traditional electricity regulation. The report reviews the range of policy issues that impact the development and expansion of a market for decentralized electricity services from establishing an enabling policy environment to catalyzing finance, building human capacity, and integrating energy access with development programs. The case studies in this report show that robust policy frameworks--addressing a wide range of market issues--can lead to rapid transformation in energy access. The report highlights examples of these policies in action Bangladesh, Ethiopia, Mali, Mexico, and Nepal.

  16. Enhancing the effectiveness of governmental and non-governmental partnership in natural resources management

    SciTech Connect (OSTI)

    McKay, K.L.; Gow, D.; Brown, C.; Christophersen, K.; Gaylord, E.

    1990-08-01

    The African sub-continent (Sub-Saharan Africa) is a vast continent of mangroves and deserts, rainforests, mountains and, miles upon thousands of miles of flat wooded plains. It is a continent whose people rely directly on its basic natural resources--land, water, soils, animals and vegetation--for their day-to-day subsistence and development. The effects of environmental degradation have taught bilateral and multilateral agencies, non-governmental organizations (NGOs), and national governments harsh lessons about the critical importance of natural resources management to food security and development. The report examines the role of NGO's as resource stewards and explores the relationship between NGO's and donors in the environmental field, with particular reference to experiences from the Natural Resources Management Support Project for Africa and from the literature. Practical guidelines for enhancing the effectiveness of donor- collaboration are suggested. Annexes present case studies of Cameroon, Madagascar, and Mali.

  17. Africa: the emphasis is exploration

    SciTech Connect (OSTI)

    Not Available

    1980-08-15

    Individual country reports on drilling, oil and gas production, and petroleum exploration and reserves are given for Africa. Nigeria was the continent's largest oil producer in 1979, averaging 2.3 million bpd, followed closely by Libya with 2.07 million bpd. Algeria cut production of crude oil in 1979 to a level of 1,194,350 bpd, and increased gas production to 2031 mmcfd. In Egypt, the return of Israeli-occupied oil fields and a surge in productive capacity enabled production averaging 524,000 bpd. Brief country reports are included for Gabon, Angola, Republic of the Congo, Cameroun, Tunisia, Morocco, Zaire, Ivory Coast, Ghana, Niger, Chad, Republic of South Africa, Sudan, Tanzania, Equatorial Guinea, Seychelles Islands, Mauritania, Republic of Mali, Benin, Kenya, Madagascar, Botswana, Gambia, Mozambique, and Senegal.

  18. Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)

    SciTech Connect (OSTI)

    Brown, S.

    2002-04-16

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  19. Spin correlations and electron transport in MnBi:Au films

    SciTech Connect (OSTI)

    Kharel, P.; Skomski, R.; Sellmyer, D. J.

    2011-04-01

    The structural, magnetic, and electron transport properties of Mn{sub 55-x}Au{sub x}Bi{sub 45} (x = 0, 4.5) thin films prepared by magnetron sputtering have been investigated. The magnetization of the MnBi films decreases and the coercivity increases due to Au doping. The temperature dependence of resistivity between 2 to 300 K shows that the films are metallic but the 4.5% Au-doped film shows a Kondo behavior with resistance minimum at 10.2 K. The magnetoresistance is anisotropic and the positive transverse magnetoresistance is significantly enhanced (16.3% at 70 kOe) by Au doping. We interpret these data in terms of a model in which Au atoms preferentially substitute for Mn atoms on the Mn lattice, and some Mn atoms are displaced to interstitial sites in the NiAs structure. These interstitial Mn atoms are coupled antiferromagnetically to the Mn atoms on the original Mn lattice leading to the large decrease in magnetization, Kondo effect, and the positive magnetoresistance.

  20. A comparative DFT study of the catalytic activity of the 3d transition metal sulphides surfaces

    SciTech Connect (OSTI)

    Gomez-Balderas, R.; Oviedo-Roa, R; Martinez-Magadan, J M.; Amador, C.; Dixon, David A. )

    2002-10-10

    The catalytic activity of the first transition metal series sulphides for hydrodesulfurization (HDS) reactions exhibits a particular behaviour when analysed as a function of the metal position in the Periodic Table. This work reports a comparative study of the electronic structure of the bulk and of the (0 0 1) metal surface (assumed to be the reactive surface) for the Sc-Zn monosulphides. The systems were modeled using the NiAs prototype crystal structure for the bulk and by applying the supercell model with seven atomic layers for (0 0 1) surfaces. The electronic structure of closed-packed solids code based on the density-functional theory and adopting the muffin-tin approximation to the potential was employed in the calculations of the electronic properties. For the Co and Ni sulphides, the density of states (DOS) variations between the metal atom present in the bulk and the ones exposed at the surface show that at the surface, there exists a higher DOS in the occupied states region just below the Fermi level. This feature might indicate a good performance of these two metal sulphides substrates in the HDS reactions favouring a donation, back-donation mechanism. In contrast, the DOS at the surface of Mn is increased in the unoccupied states region, just above the Fermi level. This suggests the possibility of a strong interaction with charge dontating sulphur adsorbate atoms poisoning the active substrate surface.

  1. Ceci n'est pas une micromachine.

    SciTech Connect (OSTI)

    Yarberry, Victor R.; Diegert, Carl F.

    2010-03-01

    The image created in reflected light DIC can often be interpreted as a true three-dimensional representation of the surface geometry, provided a clear distinction can be realized between raised and lowered regions in the specimen. It may be helpful if our definition of saliency embraces work on the human visual system (HVS) as well as the more abstract work on saliency, as it is certain that understanding by humans will always stand between recording of a useful signal from all manner of sensors and so-called actionable intelligence. A DARPA/DSO program lays down this requirement in a current program (Kruse 2010): The vision for the Neurotechnology for Intelligence Analysts (NIA) Program is to revolutionize the way that analysts handle intelligence imagery, increasing both the throughput of imagery to the analyst and overall accuracy of the assessments. Current computer-based target detection capabilities cannot process vast volumes of imagery with the speed, flexibility, and precision of the human visual system.

  2. Climate Induced Spillover and Implications for U.S. Security.

    SciTech Connect (OSTI)

    Tidwell, Vincent C.; Naugle, Asmeret Bier; Backus, George A.; Lott, Kathryn Marie; Keller, Elizabeth; Kobos, Peter H.; Villa, Daniel

    2015-11-01

    Developing nations incur a greater risk to climate change than the developed world due to poorly managed human/natural resources, unreliable infrastructure and brittle governing/economic institutions. These vulnerabilities often give rise to a climate induced “domino effect” of reduced natural resource production-leading to economic hardship, social unrest, and humanitarian crises. Integral to this cascading set of events is increased human migration, leading to the “spillover” of impacts to adjoining areas with even broader impact on global markets and security. Given the complexity of factors influencing human migration and the resultant spill-over effect, quantitative tools are needed to aid policy analysis. Toward this need, a series of migration models were developed along with a system dynamics model of the spillover effect. The migration decision models were structured according to two interacting paths, one that captured long-term “chronic” impacts related to protracted deteriorating quality of life and a second focused on short-term “acute” impacts of disaster and/or conflict. Chronic migration dynamics were modeled for two different cases; one that looked only at emigration but at a national level for the entire world; and a second that looked at both emigration and immigration but focused on a single nation. Model parameterization for each of the migration models was accomplished through regression analysis using decadal data spanning the period 1960-2010. A similar approach was taken with acute migration dynamics except regression analysis utilized annual data sets limited to a shorter time horizon (2001-2013). The system dynamics spillover model was organized around two broad modules, one simulating the decision dynamics of migration and a second module that treats the changing environmental conditions that influence the migration decision. The environmental module informs the migration decision, endogenously simulating interactions/changes in the economy, labor, population, conflict, water, and food. A regional model focused on Mali in western Africa was used as a test case to demonstrate the efficacy of the model.