National Library of Energy BETA

Sample records for malaysia gulf gateway

  1. Price of Gulf Gateway Natural Gas LNG Imports from Qatar (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Qatar (Dollars per Thousand Cubic Feet) Price of Gulf Gateway Natural Gas LNG Imports from Qatar (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 9.47 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas

  2. Price of Gulf Gateway Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Trinidad and Tobago (Dollars per Thousand Cubic Feet) Price of Gulf Gateway Natural Gas LNG Imports from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 7.31 7.30 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  3. Price of Gulf of Mexico Natural Gas LNG Imports from Malaysia (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Malaysia (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports from Malaysia (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 6.67 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of

  4. Science Gateways

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Science Gateways A science gateway is a web-based interface to access HPC computers ... perform shared computations, and generally interact with NERSC resources over the web. ...

  5. GATEWAY ENTERPRISES

    Office of Legacy Management (LM)

    C GATEWAY ENTERPRISES October 30, 2007 Stephen F. Tarlton, P.E., Unit Leader Hazardous Materials & Waste Management Dept. of Public Health & Environment 4300 Cherry Creek Drive South Radioactive Materials Management Unit Denver, CO 80246-1530 RE: DOE Computer Model, Rulison Dear Mr. Tarlton: This letter provides our general thoughts about the recently-reported DOE mathematical simulation of the Rulison site (1). We were retained to review the DOE report by the Danielson Law Firm, and our

  6. Category:Gateways | Open Energy Information

    Open Energy Info (EERE)

    Low Emissions Assistance Network (CLEAN) E Gateway:ECOWAS Clean Energy Gateway G Gateway:Geothermal H Gateway:Hydrogen I Gateway:Incentives and Policies Gateway:International...

  7. Your GatewaY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nle Your GatewaY to InformatIon across the Department of enerGY Energy and Technology for Industry and Homeowners Energy Market Information and Analysis Nuclear Security and...

  8. Science Gateways : Demos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demos Science Gateways : Demos Most science gateway services require authentication to access compute and data resources. If you're not a NERSC user this will limit the scope of the examples below. If you are a NERSC user please login with your NERSC username and password to enable the examples below. demo set 1 Last edited: 2016-02-01 08:06:05

  9. gateway | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 28 March, 2013 - 15:16 OpenEI launches new Water Power Gateway and Community Forum community forum gateway OpenEI Water power OpenEI...

  10. GATEWAY Demonstrations | Department of Energy

    Office of Environmental Management (EM)

    GATEWAY Demonstrations GATEWAY Demonstrations DOE GATEWAY demonstrations enable detailed LED product evaluation and hands-on experience that cannot be replicated in a lab. High-performance LED products are selected and installed in real-world applications, providing valuable data and experience on product performance and cost effectiveness. The results often reveal important issues related to installation, interface, and control. Results DOE shares the results of completed GATEWAY demonstration

  11. Science Gateway: The Materials Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of pre-computed properties comprises some 35,000 materials, all accessible through a web-based NERSC Science Gateway: The Materials Project (https:materialsproject.org)....

  12. Gateway Energy (formerly Econnergy) | Open Energy Information

    Open Energy Info (EERE)

    ineLabel":"","visitedicon":"" Hide Map References: Gateway Energy (formerly Econnergy) Web Site1 This article is a stub. You can help OpenEI by expanding it. Gateway Energy...

  13. A Science Data Gateway for Environmental Management

    SciTech Connect (OSTI)

    Agarwal, Deborah, A; Faybishenko, Boris; Freedman, Vicky, L; Krishnan, Harinarayan; Kushner, Gary; Lansing, Carina; Porter, Ellen; Romosan, Alexandru; Shoshani, Arie; Wainwright, Haruko; Weidmer, Arthur; Wu, Kesheng

    2015-10-12

    Science data gateways are effective in providing complex science data collections to the world-wide user communities. In this paper we describe a gateway for the Advanced Simulation Capability for Environmental Management (ASCEM) framework. Built on top of established web service technologies, the ASCEM data gateway is specifically designed for environmental modeling applications. Its key distinguishing features include: (1) handling of complex spatiotemporal data, (2) offering a variety of selective data access mechanisms, (3) providing state of the art plotting and visualization of spatiotemporal data records, and (4) integrating seamlessly with a distributed workflow system using a RESTful interface. ASCEM project scientists have been using this data gateway since 2011.

  14. ARM-UAV Mission Gateway System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM-UAV Mission Gateway System S. T. Moore and S. Bottone Mission Research Corporation Santa Barbara, California Introduction The Atmospheric Radiation Measurement-unmanned...

  15. ScienceGatewaysNUG-20091007.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 2 Science Gateways at NERSC * Web access methods to NERSC resources - Much is possible beyond yesterday's "ssh+pbs" computing - Today web interfaces expected for everything - ...

  16. T-663: Cisco Content Services Gateway ICMP Processing Flaw Lets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Cisco Content Services Gateway ICMP Processing Flaw Lets Remote Users Deny Service T-663: Cisco Content Services Gateway ICMP Processing Flaw Lets Remote Users Deny Service July...

  17. Gateway:Low Emission Development Strategies | Open Energy Information

    Open Energy Info (EERE)

    Gateway Edit History Gateway:Low Emission Development Strategies (Redirected from LEDS) Jump to: navigation, search Leds-Graphics 03.PNG Low Emission Development Strategies...

  18. Gateway:Low Emission Development Strategies | Open Energy Information

    Open Energy Info (EERE)

    Edit History Gateway:Low Emission Development Strategies Jump to: navigation, search Leds-Graphics 03.PNG Low Emission Development Strategies (LEDS) Gateway Hello why do you...

  19. T-701: Citrix Access Gateway Enterprise Edition Input Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks T-701: Citrix Access Gateway Enterprise Edition Input...

  20. Global Science Gateway Agreement Signed in London | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Science Gateway Agreement Signed in London Global Science Gateway Agreement Signed in London January 22, 2006 - 10:15am Addthis DOE Partners With British Library on...

  1. V-153: Symantec Brightmail Gateway Input Validation Flaw Permits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting Attacks V-153: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting...

  2. ECOWAS Clean Energy Gateway-Help | Open Energy Information

    Open Energy Info (EERE)

    ECOWAS Clean Energy Gateway-Help Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries...

  3. ECOWAS Clean Energy Gateway-Links | Open Energy Information

    Open Energy Info (EERE)

    ECOWAS Clean Energy Gateway-Links Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries...

  4. ECOWAS Clean Energy Gateway-About | Open Energy Information

    Open Energy Info (EERE)

    ECOWAS Clean Energy Gateway-About Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries...

  5. New GATEWAY Report Monitors LED System Performance in a High...

    Office of Environmental Management (EM)

    GATEWAY Report Monitors LED System Performance in a High-Temperature Environment New GATEWAY Report Monitors LED System Performance in a High-Temperature Environment May 11, 2015 - ...

  6. Wind Energy Data and Information Gateway (WENDI) | Open Energy...

    Open Energy Info (EERE)

    Information Gateway (WENDI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Data and Information Gateway (WENDI) AgencyCompany Organization: United...

  7. Solid State Lighting: GATEWAY and CALiPER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marc Ledbetter Pacific Northwest National Laboratory Marc.Ledbetter@pnnl.gov 503.417.7557 April 3, 2013 Solid State Lighting: GATEWAY & CALiPER Solid State Lighting: GATEWAY & CALiPER 2 | Building Technologies Office eere.energy.gov GATEWAY Problem Statement GATEWAY includes Muni Consortium Multi-Year Market Development Support Plan * IDs 5 key market barriers. Most relevant to GATEWAY are: - Lack of information for buyers and lighting professionals - High transaction costs * IDs 10 key

  8. Gateway for Accelerated Innovation in Nuclear

    Broader source: Energy.gov [DOE]

    In November 2015, DOE announced it is establishing the Gateway for Accelerated Innovation in Nuclear (GAIN) to provide the nuclear energy community with access to the technical, regulatory, and...

  9. SSL GATEWAY UNIVERSITY OF FLORIDA DANCE SHOWCASE

    Broader source: Energy.gov [DOE]

    View the video showing side-by-side dance performances with halogen and LED sidelighting as part of the Solid-State Lighting GATEWAY demonstration at the University of Florida.

  10. NERSC Gateways Pave Way for 'Team Science'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC's Science Gateways Pave Way for 'Team Science' NERSC Gateways Pave Way for 'Team Science' Computational scientists at NERSC work with researchers around the globe to develop online tools that are changing the way they compute and collaborate March 12, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov For nearly a decade, computational scientists at the Department of Energy's National Energy Scientific Research Computing Center (NERSC) have been working with researchers around

  11. GATEWAY Demonstration Indoor Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Indoor Projects GATEWAY Demonstration Indoor Projects DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs. Completed Indoor Projects photo of a large atrium LED Wall Washer Retrofit: College Park, Maryland At the

  12. GATEWAY Demonstration Outdoor Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Projects GATEWAY Demonstration Outdoor Projects DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs. Completed Outdoor Projects Photo of an airport apron. Philadelphia International Airport Apron Lighting: LED System

  13. GATEWAY Demonstration Special Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Special Reports GATEWAY Demonstration Special Reports DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs. Completed Special Reports dunedin-thumb.jpg SSL Adoption by Museums: Survey Results, Analysis, and Recommendations A

  14. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has published a new GATEWAY report entitled Pedestrian Friendly Outdoor Lighting. Recognizing that pedestrian lighting has different criteria for success than street and area lighting, GATEWAY followed t

  15. Text-Alternative Version: Smithsonian GATEWAY Demonstration Video

    Broader source: Energy.gov [DOE]

    Following is a text version of a video about the GATEWAY demonstration project at the Smithsonian American Art Museum.

  16. The Smithsonian American Art Museum GATEWAY Demonstration | Department of

    Energy Savers [EERE]

    Energy Videos » The Smithsonian American Art Museum GATEWAY Demonstration The Smithsonian American Art Museum GATEWAY Demonstration View the video about using LEDs in a GATEWAY demonstration at the Smithsonian American Art Museum in Washington, DC, including an interview with lighting designer Scott Rosenfeld. View the text-alternative version.

  17. U-173: Symantec Web Gateway Multiple Vulnerabilities

    Broader source: Energy.gov [DOE]

    Several vulnerabilities were reported in Symantec Web Gateway. A remote user can include and execute arbitrary code on the target system. A remote user can conduct cross-site scripting attacks. A remote user can view/delete/upload files on the target system.

  18. BASSET: Scalable Gateway Finder in Large Graphs

    SciTech Connect (OSTI)

    Tong, H; Papadimitriou, S; Faloutsos, C; Yu, P S; Eliassi-Rad, T

    2010-11-03

    Given a social network, who is the best person to introduce you to, say, Chris Ferguson, the poker champion? Or, given a network of people and skills, who is the best person to help you learn about, say, wavelets? The goal is to find a small group of 'gateways': persons who are close enough to us, as well as close enough to the target (person, or skill) or, in other words, are crucial in connecting us to the target. The main contributions are the following: (a) we show how to formulate this problem precisely; (b) we show that it is sub-modular and thus it can be solved near-optimally; (c) we give fast, scalable algorithms to find such gateways. Experiments on real data sets validate the effectiveness and efficiency of the proposed methods, achieving up to 6,000,000x speedup.

  19. GATEWAY DEMONSTRATION MUSEUM REPORTS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEMONSTRATION MUSEUM REPORTS GATEWAY DEMONSTRATION MUSEUM REPORTS It's hard to find a lighting application with aesthetic standards higher than those of museums, where success depends upon showing the artifacts and works of art in the best possible light - literally speaking. DOE has conducted several demonstrations of LED lighting in museums, providing valuable data and experience on product performance in this highly demanding environment. In addition, DOE conducted a survey regarding LED

  20. GATEWAY DEMONSTRATION UNIVERSITY PROJECTS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEMONSTRATION UNIVERSITY PROJECTS GATEWAY DEMONSTRATION UNIVERSITY PROJECTS A college campus features a wide range of lighting applications under one administrative "rooftop" - classrooms, offices, theaters, labs, libraries, dining halls, dormitories, museums, chapels, walkways, parking lots, parking garages, lecture halls, arenas, and outdoor stadiums. Campuses are ideal testing grounds in which to study lighting in its many forms, and they provide unique opportunities for broad

  1. DOE Announces International Agreement on Global Science Online Gateway |

    Energy Savers [EERE]

    Department of Energy International Agreement on Global Science Online Gateway DOE Announces International Agreement on Global Science Online Gateway June 12, 2008 - 1:30pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the establishment of a multilateral alliance to govern the rapidly growing online gateway to international scientific research information--WorldWideScience.org. Officials from organizations representing 38 countries formalized their commitment

  2. Frequently Asked Questions About the Technology Demonstration GATEWAY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy Frequently Asked Questions About the Technology Demonstration GATEWAY Program Frequently Asked Questions About the Technology Demonstration GATEWAY Program This page addresses many of the questions about the DOE Solid-State Lighting Technology Demonstration GATEWAY program raised by potential eligible participants, such as manufacturers, demonstration host sites, utilities, and energy efficiency organizations. What is the DOE Solid-State Lighting (SSL)

  3. State, Local and Tribal Technical Assistance Gateway | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State, Local and Tribal Technical Assistance Gateway State, Local and Tribal Technical Assistance Gateway The State, Local and Tribal Technical Assistance Gateway provides an access point to DOE's technical assistance and cooperative activities with state, local and tribal officials. Through its program and staff offices, DOE has engaged extensively with various levels of state, local and tribal governments, providing technical assistance on a range of energy issues. Our existing technical

  4. Gateway Ethanol LLC formerly Wildcat Bio Energy LLC | Open Energy...

    Open Energy Info (EERE)

    Ethanol LLC formerly Wildcat Bio Energy LLC Jump to: navigation, search Name: Gateway Ethanol LLC (formerly Wildcat Bio-Energy LLC) Place: Pratt, Kansas Zip: 67124 Product:...

  5. Gateway:América Latina/Rendimiento, costos y más información...

    Open Energy Info (EERE)

    Rendimiento, costos y ms informacin sobre las tecnologas limpias Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleGateway:AmricaLatina...

  6. V-106: Citrix Access Gateway Unspecified Security Bypass Vulnerability

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in Citrix Access Gateway, which can be exploited by malicious people to bypass certain security restrictions.

  7. Open MSI : a Mass Spectrometry Imaging Science Gateway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gateway NERSC OSF Room 238 April 11, 2013 Ben Bowen Berkeley Lab Metabolite and protein analysis is vital to understanding the phenotype of a biological sample....

  8. Gateway:Incentives and Policies | Open Energy Information

    Open Energy Info (EERE)

    Gateway:Incentives) Jump to: navigation, search Incentives and Policies for Renewable Energy and Energy Efficiency Renewables & Energy Efficiency Incentives and Policies by State...

  9. REEGLE - Clean Energy Information Gateway | Open Energy Information

    Open Energy Info (EERE)

    Gateway (Redirected from Reegle Search Engine for Renewable Energy and Energy Efficiency) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: reegle.info - clean...

  10. Gateway:Low Emission Development Strategies | Open Energy Information

    Open Energy Info (EERE)

    search Leds-Graphics 03.PNG Low Emission Development Strategies (LEDS) Gateway Hello why do you have 2 pficial LEDS pages? This website supports the creation and...

  11. Northeast Gateway Natural Gas Liquefied Natural Gas Imports from...

    Gasoline and Diesel Fuel Update (EIA)

    Release Date: 10302015 Next Release Date: 11302015 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Northeast Gateway LNG Imports from TrinidadTobago...

  12. Northeast Gateway Natural Gas Liquefied Natural Gas Imports ...

    Gasoline and Diesel Fuel Update (EIA)

    data. Release Date: 10302015 Next Release Date: 11302015 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Northeast Gateway LNG Imports from All Countries...

  13. LEDs Go Ivy League: Princeton University and DOE GATEWAY Demonstrations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Princeton University and DOE GATEWAY Demonstrations LEDs Go Ivy League: Princeton University and DOE GATEWAY Demonstrations View the video about LED lighting at Princeton University, which has dramatically reduced energy costs in a number of installations around campus. William Evans, electrical engineer, describes the uses, benefits, and progress of LED lighting at Princeton

  14. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, W.B.; DuBois, D.H.

    1996-12-03

    Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

  15. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, Wallace B. (Los Alamos, NM); DuBois, David H. (Los Alamos, NM)

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  16. LEDs Go Ivy League: Princeton University and DOE GATEWAY Demonstrations |

    Energy Savers [EERE]

    Department of Energy Princeton University and DOE GATEWAY Demonstrations LEDs Go Ivy League: Princeton University and DOE GATEWAY Demonstrations View the video about LED lighting at Princeton University, which has dramatically reduced energy costs in a number of installations around campus. William Evans, electrical engineer, describes the uses, benefits, and progress of LED lighting at Princeton

  17. Alaska Gateway School District Adopts Combined Heat and Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the economic impact of high fuel prices was crippling the community's economy€, especially for the Alaska Gateway School District, with staff laid off and double duties assigned to many. To help offset high energy costs, the school district decided to replace its separated diesel heat and power systems with a

  18. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has published a new GATEWAY report entitled Pedestrian Friendly Outdoor Lighting. Recognizing that pedestrian lighting has different criteria for success than...

  19. GATEWAY Demonstrations: Exploring SSL Product Performance in the Real World

    SciTech Connect (OSTI)

    2013-10-01

    Fact sheet that outlines DOE's GATEWAY technology demonstration program, which evaluates high-performance SSL products for general illumination in a variety of real-world exterior and interior applications.

  20. Price of Northeast Gateway Natural Gas LNG Imports from Trinidad...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Tobago (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr...

  1. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per...

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015...

  2. DOE Publishes GATEWAY Report on Portland's LED Streetlight Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland's LED Streetlight Conversion DOE Publishes GATEWAY Report on Portland's LED Streetlight Conversion October 5, 2015 - 11:08am Addthis The U.S. Department of Energy has ...

  3. DOE Publishes GATEWAY Report on LED Lighting in a Performing...

    Energy Savers [EERE]

    LED Lighting in a Performing Arts Setting DOE Publishes GATEWAY Report on LED Lighting in a Performing Arts Setting August 6, 2014 - 2:46pm Addthis The U.S. Department of Energy ...

  4. Gateway:América Latina/Energías Renovables | Open Energy Information

    Open Energy Info (EERE)

    HidraulicaLA.jpg Energa Hidrulica BiomasaLA.jpg Biomasa MarinaLA.jpg Energa Marina Pgina principal Retrieved from "http:en.openei.orgwindex.php?titleGateway:Amr...

  5. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, Wallace B. (Los Alamos, NM); DuBois, David H. (Los Alamos, NM)

    1998-08-11

    A digital system provides sending and receiving gateways for HIPPI interfaces. Electronic logic circuitry formats data signals and overhead signals in a data frame that is suitable for transmission over a connecting fiber optic link. Multiplexers route the data and overhead signals to a framer module. The framer module allocates the data and overhead signals to a plurality of 9-byte words that are arranged in a selected protocol. The formatted words are stored in a storage register for output through the gateway.

  6. DOE Publishes GATEWAY Report on Exterior Lighting at Princeton University |

    Energy Savers [EERE]

    Department of Energy Exterior Lighting at Princeton University DOE Publishes GATEWAY Report on Exterior Lighting at Princeton University October 30, 2015 - 1:46pm Addthis The U.S. Department of Energy's GATEWAY program has released a report describing four exterior SSL projects that have been completed at Princeton University, which has long recognized SSL's potential benefits. These projects show how the school's approach to solid-state lighting has evolved as its knowledge has broadened

  7. DOE Publishes GATEWAY Report on Successful LED Wall Washer Retrofit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Successful LED Wall Washer Retrofit DOE Publishes GATEWAY Report on Successful LED Wall Washer Retrofit August 5, 2015 - 1:00pm Addthis The U.S. Department of Energy has released a report on a GATEWAY demonstration, in which maintenance and energy costs were significantly reduced while retaining the quality of light when LED modules replaced 87 halogen lamps in existing wall washers at the University of Maryland's (UMD) Clarice Smith Performing Arts Center. The project

  8. Solar Voltaic Malaysia Sdn Bhd | Open Energy Information

    Open Energy Info (EERE)

    Voltaic Malaysia Sdn Bhd Jump to: navigation, search Name: Solar Voltaic (Malaysia) Sdn Bhd Place: Kuala Lumpur, Malaysia Zip: 58200 Sector: Solar Product: Solar Voltaic is a...

  9. U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerabilit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability October 26, 2011 - 9:00am Addthis ...

  10. V-225: McAfee Email Gateway SMTP Processing Flaw Lets Remote...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: McAfee Email Gateway SMTP Processing Flaw Lets Remote Users Deny Service V-225: McAfee Email Gateway SMTP Processing Flaw Lets Remote Users Deny Service August 23, 2013 - 1:26am...

  11. OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 Contact: Linda Vu, +1...

  12. Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...

    Open Energy Info (EERE)

    Trmica Retrieved from "http:en.openei.orgwindex.php?titleGateway:AmricaLatinaAprendermssobrelasERNCSelecciondeWebinarsPuestaenMarcha,OperacinyComercia...

  13. Western Gulf Coast Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsWestern Gulf Coast Analysis content top Western Gulf Coast Analysis One focus area for NISAC is the importance of local and regional infrastructures-understanding their interactions and importance to our overall national economic health. In 2004 and 2005, NISAC evaluated the western Gulf Coast region. NISAC developed a National Petroleum System Simulator to evaluate the potential short-term effects of disruptions in the western Gulf Coast petroleum infrastructure operations on the rest of

  14. T-663: Cisco Content Services Gateway ICMP Processing Flaw Lets Remote Users Deny Service

    Broader source: Energy.gov [DOE]

    The Cisco Content Services Gateway: Second Generation provides intelligent network capabilities such as flexible policy management and billing based on deep-packet inspection, as well as subscriber and application awareness capabilities that enable mobile operators to quickly and easily offer value-added, differentiated services over their mobile data networks. A DoS vulnerability exists in the Cisco Content Services Gateway: Second Generation could allow an unauthenticated attacker to cause a device reload by sending crafted ICMP messages to the affected device. Note: The Cisco Gateway GPRS Support Node (GGSN), the Cisco Mobile Wireless Home Agent (HA), the Cisco Wireless Security Gateway (WSG), the Cisco Broadband Wireless Gateway and Cisco IP Transfer Point (ITP), and the Cisco Long Term Evolution (LTE) Gateway are not affected. This vulnerability is documented in Cisco bug ID CSCtl79577 ( registered customers only) and has been assigned CVE ID CVE-2011-2064.

  15. V-153: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    Symantec’s Brightmail Gateway management console is susceptible to stored cross-site scripting (XSS) issues found in some of the administrative interface pages.

  16. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities

    Broader source: Energy.gov [DOE]

    Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system.

  17. New GATEWAY Report Monitors LED System Performance in a High-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment | Department of Energy GATEWAY Report Monitors LED System Performance in a High-Temperature Environment New GATEWAY Report Monitors LED System Performance in a High-Temperature Environment May 11, 2015 - 4:31pm Addthis The U.S. Department of Energy has released a follow-up GATEWAY report on LED system performance at the Yuma (Arizona) Sector Border Patrol Area. Six LED luminaires - installed on three poles as part of a trial installation detailed in a prior GATEWAY report -

  18. Gateway:América Latina/Aprender más sobre las ERNC/Construcción...

    Open Energy Info (EERE)

    Gateway:Amrica LatinaAprender ms sobre las ERNCConstruccin y MontajeEolica Jump to: navigation, search Construction of the foundation Fuente: Vestas Idioma: Ingls How...

  19. Malaysia-ClimateWorks Low Carbon Growth Planning Support | Open...

    Open Energy Info (EERE)

    Malaysia-ClimateWorks Low Carbon Growth Planning Support Jump to: navigation, search Name Malaysia-Low Carbon Growth Planning Support AgencyCompany Organization ClimateWorks,...

  20. T-701: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks.

  1. Solid State Lighting: GATEWAY and CALiPER | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting: GATEWAY and CALiPER Solid State Lighting: GATEWAY and CALiPER Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech08_ledbetter_040313.pdf More Documents & Publications FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications Emerging Lighting Technology Guiding Market Introduction of High-Performance SSL Products

  2. Gulf Powerbeat | Open Energy Information

    Open Energy Info (EERE)

    Powerbeat Place: Bahrain Product: Bahrain-based Gulf Powerbeat manufactures long life batteries and was acquired by Time Technoplast, through Time's subsidiary NED Energy....

  3. Gulf Ethanol Corp | Open Energy Information

    Open Energy Info (EERE)

    Gulf Ethanol Corp Jump to: navigation, search Name: Gulf Ethanol Corp Place: Houston, Texas Zip: 77055 Sector: Biomass Product: Focused on developing biomass preprocessing...

  4. Gulf Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  5. Fact #672: April 25, 2011 Freight Gateways in the U.S. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2: April 25, 2011 Freight Gateways in the U.S. Fact #672: April 25, 2011 Freight Gateways in the U.S. The top 25 places (in terms of freight value) that freight is shipped into and out of the U.S. are listed on the map below. Import values are shown by the gray bar, while export values are shown by the blue bar. Of the top 25 places, twelve are water ports, five are land-border crossings, and eight are air gateways. In most cases, the value of the imports exceeds the exports. Top 25

  6. International Clean Energy Analysis Gateway: Assisting Developing Countries with Clean Energy Deployment (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The International Clean Energy Analysis Gateway seeks to enhance developing country access to energy efficiency and renewable energy analysis tools, databases, methods, and other technical resources in a dynamic user interaction environment. In addition to providing information on available tools, the gateway also is a platform for Web seminars, online training, peer networks, and expert assistance. The gateway is sponsored by the U.S. Department of Energy (DOE) and the United Nations Industrial Development Organization (UNIDO) and managed by the National Renewable Energy Laboratory (NREL). Further cooperation is desired with organizations that can help expand the information presented in the portal and assist with outreach and training.

  7. EERE Success Story-Alaska Gateway School District Adopts Combined Heat

    Office of Environmental Management (EM)

    and Power | Department of Energy Alaska Gateway School District Adopts Combined Heat and Power EERE Success Story-Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the economic impact of high fuel prices was crippling the community's economy€, especially for the Alaska Gateway School District, with staff laid off and double duties assigned to many. To help offset high energy costs, the school district decided to replace its

  8. Malaysia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Malaysia Population 28,334,135 GDP Unavailable Energy Consumption 2.45 Quadrillion Btu 2-letter ISO code MY 3-letter ISO code MYS Numeric ISO...

  9. DOE Publishes GATEWAY Report on LED Lighting in a Performing Arts Setting

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has released a report on a GATEWAY demonstration of LED lighting at the University of Florida's Nadine McGuire Theatre and Dance Pavilion in Gainesville. Four interior...

  10. DOE Publishes GATEWAY Report on High-Luminous-Flux LED Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Luminous-Flux LED Lighting in a High-Temperature Environment DOE Publishes GATEWAY Report on High-Luminous-Flux LED Lighting in a High-Temperature Environment December 17, ...

  11. OpenEI launches new Water Power Gateway and Community Forum ...

    Open Energy Info (EERE)

    OpenEI launches new Water Power Gateway and Community Forum Home > Groups > Water Power Forum Graham7781's picture Submitted by Graham7781(2017) Super contributor 28 March, 2013 -...

  12. DOE Publishes GATEWAY Report on High-Mast Lighting at Philadelphia International Airport

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's GATEWAY program has released a report on a trial installation of LED apron lighting at Philadelphia International Airport (PHL). In addition to reducing energy, PHL...

  13. DOE Publishes GATEWAY Report on Portland’s LED Streetlight Conversion

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has released a GATEWAY report on the experiences of the City of Portland, OR, in converting its street lighting from high-pressure sodium to LED. Such largescale...

  14. Microsoft Word - DOE Announces International Agreement on Global Science Online Gateway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR IMMEDIATE RELEASE Jeff Sherwood, (202) 586-5806 Thursday June 12, 2008 Cathey Daniels, (865) 576-9539 DOE Announces International Agreement on Global Science Online Gateway WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the establishment of a multilateral alliance to govern the rapidly growing online gateway to international scientific research information--WorldWideScience.org. Officials from organizations representing 38 countries formalized their commitment today in

  15. TIS (Technology Information System): The Intelligent Gateway Processor (IGP)

    SciTech Connect (OSTI)

    Hampel, V.E.; Barker, R.; Berch, M.; Kawin, R.; Lann, N.; McGrogan, S.; Sharpe, N.; Winiger, G.

    1984-10-01

    The Technology Information System (TIS) is an Intelligent Gateway Processor (IGP) capable of interconnecting heterogeneous information resources at geographically distributed locations in an automated, unified, and controlled manner. It augments the capabilities of personal computers and workstations of scientists and engineers by providing a shared directory to worldwide bibliographic and numeric resources and a library of self-guided procedures by which test, data, and graphs can be downloaded, reformatted, aggregated, analyzed, and shared among users and different host machines. The TIS link capability is used routinely for transcontinental tutorials and as a proactical means for the audiovisual linking of TIS users with experts at their respective locations. The IGP universal user interface permits changes and additions of available resources while running non-stop. The TIS/IGP at th Lawrence Livermore National Laboratory (LLNL) serves as the host system for several different communities of users who develop integrated information systems for personal and shared programmatic resources. The TIS local area network utilizes a 10 Mbps Ethernet which serves as a testbed for high-technology hardware and software.

  16. Gulf Power Co | Open Energy Information

    Open Energy Info (EERE)

    Gulf Power Co Place: Florida Phone Number: 1-800-225-5797 Website: www.gulfpower.com Facebook: https:www.facebook.comGulfPowerCompany Outage Hotline: 1-800-487-6937 Outage Map:...

  17. Gulf Petro Initiative

    SciTech Connect (OSTI)

    Fathi Boukadi

    2011-02-05

    In this report, technologies for petroleum production and exploration enhancement in deepwater and mature fields are developed through basic and applied research by: (1) Designing new fluids to efficiently drill deepwater wells that can not be cost-effectively drilled with current technologies. The new fluids will be heavy liquid foams that have low-density at shallow dept to avoid formation breakdown and high density at drilling depth to control formation pressure. The goal of this project is to provide industry with formulations of new fluids for reducing casing programs and thus well construction cost in deepwater development. (2) Studying the effects of flue gas/CO{sub 2} huff n puff on incremental oil recovery in Louisiana oilfields bearing light oil. An artificial neural network (ANN) model will be developed and used to map recovery efficiencies for candidate reservoirs in Louisiana. (3) Arriving at a quantitative understanding for the three-dimensional controlled-source electromagnetic (CSEM) geophysical response of typical Gulf of Mexico hydrocarbon reservoirs. We will seek to make available tools for the qualitative, rapid interpretation of marine CSEM signatures, and tools for efficient, three-dimensional subsurface conductivity modeling.

  18. Learning from Gulf Coast Community Leaders

    Broader source: Energy.gov [DOE]

    After hearing the stories about the work that leaders from the gulf coast and their organizations have done, it’s clear to me that they are changing the paradigm of gulf coast recovery -- changing the way buildings are developed in the gulf and creating a generation of green builders in New Orleans who work closely with low-income communities.

  19. A Path Forward for the Gulf Coast

    Broader source: Energy.gov [DOE]

    Our country has made a promise to the people and small businesses of the Gulf Coast to restore their environment, economy and health, and continue a conversation with the fisherman, environmental workers, elected officials, health officials, scientists and Gulf residents on how to restore the Gulf.

  20. OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov OpenMSINERSC.jpg This overlay of mass spectrometry images shows the spatial distribution of three different kind of lipids across a whole mouse cross-section. Lipids act as the structural components of cell membranes and are responsible for energy storage, among other things. Image credit:

  1. Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand Cubic Feet) Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.38 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  2. DOE Publishes 20K Hour Testing Results for 2008 GATEWAY Bridge Installation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 20K Hour Testing Results for 2008 GATEWAY Bridge Installation DOE Publishes 20K Hour Testing Results for 2008 GATEWAY Bridge Installation October 9, 2014 - 12:00pm Addthis The U.S. Department of Energy has released a report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country's oldest continuously operated exterior LED lighting installations. The report is a

  3. DOE Publishes GATEWAY Report on High-Luminous-Flux LED Lighting in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Environment | Department of Energy High-Luminous-Flux LED Lighting in a High-Temperature Environment DOE Publishes GATEWAY Report on High-Luminous-Flux LED Lighting in a High-Temperature Environment December 17, 2014 - 1:19pm Addthis The U.S. Department of Energy has released a GATEWAY report on a trial demonstration in which the incumbent quartz metal halide (QMH) area lighting was replaced with LED at three pole locations along a 7.2-mile stretch of the Yuma (Arizona)

  4. GATEWAY Demonstrations: Trial Demonstration of Area Lighting Retrofit, Yuma Border Patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, A. M.; McCullough, J. J.

    2014-12-31

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments.

  5. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM ...

  6. DOE_Gulf_Response.pdf | Department of Energy

    Office of Environmental Management (EM)

    Gulf_Response.pdf DOE_Gulf_Response.pdf PDF icon DOE_Gulf_Response.pdf More Documents & Publications Deepwater_Response.pdf UDAC Meeting - September 2012 April 30, 2010 Situation Report

  7. Crude Oil Imports From Persian Gulf

    Gasoline and Diesel Fuel Update (EIA)

    Company Level Imports Crude Oil Imports From Persian Gulf January - December 2015 | Release Date: February 29, 2016 | Next Release Date: August 31, 2016 2015 Crude Oil Imports From Persian Gulf Highlights It should be noted that several factors influence the source of a company's crude oil imports. For example, a company like Motiva, which is partly owned by Saudi Refining Inc., would be expected to import a large percentage from the Persian Gulf, while Citgo Petroleum Corporation, which is

  8. Gulf Coast Green Energy | Open Energy Information

    Open Energy Info (EERE)

    Green Energy Jump to: navigation, search Name: Gulf Coast Green Energy Place: Bay City, Texas Zip: 77414 Product: The Texas-based company is the exclusive distributor of...

  9. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

  10. EECBG Success Story: Gulf Coast's Texas City Sees Easy Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gulf Coast's Texas City Sees Easy Energy Savings EECBG Success Story: Gulf Coast's Texas ... of the Cape Coral Youth Center EECBG Success Story: Cape Coral Youth Center Helps ...

  11. GATEWAY Demonstrations: LED System Performance in a Trial Installation--One Year Later, Yuma Border Patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, A. M.; Davis, R. G.

    2015-04-01

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This report follows the GATEWAY Yuma Phase 1.0 Report and reflects LED system results documented one year after the demonstration began.

  12. Gulf of Mexico Federal Offshore Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Offshore Gulf of Mexico production volumes are presented as a separate data series beginning in 2001. Production data for the Gulf of Mexico for years prior to 2001 are presented as part of the production volumes for the States of Alabama, Louisiana

  13. Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-06-01

    The U.S. Department of Energy (DOE) is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service (NPS) views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other NPS tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr for this tunnel to a much larger figure national

  14. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,251","9,643",88.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,251","9,643",88.0 "Data for 2010" "BWR = Boiling Water Reactor."

  15. Thorium: Issues and prospects in Malaysia

    SciTech Connect (OSTI)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-04-29

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  16. 20K Hour GATEWAY Testing Results for I-35W Bridge Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy released a GATEWAY Demonstration report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country’s oldest continuously operated exterior LED lighting installations. Prior to installation, two of the LED luminaires were tested, along with a third luminaire that was not installed on the bridge but was tested for 6,000 hours in a laboratory for comparison purposes.

  17. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 12.54 6.71 2010's 5.41 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas Imports by

  18. Price of Northeast Gateway Natural Gas LNG Imports from Egypt (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 6.71 2010's 5.11 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  19. Price of Northeast Gateway Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Trinidad and Tobago (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 12.54 -- 2010's 4.45 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Webinar: 20K Hour GATEWAY Testing Results for I-35W Bridge | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy The U.S. Department of Energy has released a GATEWAY Demonstration report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country's oldest continuously operated exterior LED lighting installations. Prior to installation, two of the LED luminaires were tested, along with a third luminaire that was not installed on the bridge but was tested for 6,000 hours in a laboratory for

  1. SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE...

    Energy Savers [EERE]

    GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 PDF icon ...

  2. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per...

  3. A Preliminary Regional Geothermal Assessment Of The Gulf Of Suez...

    Open Energy Info (EERE)

    along its eastern margin. The most promising areas for geothermal development in the NW Red Sea-Gulf of Suez rift system are locations along the eastern shore of the Gulf of Suez...

  4. Final Strategic Plan Released by Gulf Coast Ecosystem Restoration Taskforce

    Broader source: Energy.gov [DOE]

    Today (December 5) the Gulf Coast Ecosystem Restoration Task Force released its final strategy for long-term restoration in the Gulf, a path forward based on input from states, tribes, federal...

  5. Gulf of Mexico Fact Sheet - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Fact Sheet Overview Data Petroleum and Other Liquids Crude Oil, Condensate and NGL Proved Reserves Natural Gas Natural Gas Proved Reserves Refinery Capacity Natural Gas Processing Plants The Gulf of Mexico area, both onshore and offshore, is one of the most important regions for energy resources and infrastructure. Gulf of Mexico federal offshore oil production accounts for 17% of total U.S. crude oil production and federal offshore natural gas production in the Gulf accounts for

  6. Gulf Coast Clean Energy Application Center

    SciTech Connect (OSTI)

    Dillingham, Gavin

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  7. EIA - Gulf of Mexico Energy Data

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Fact Sheet Overview Data Petroleum and Other Liquids Crude Oil, Condensate and NGL Proved Reserves Natural Gas Natural Gas Proved Reserves Refinery Capacity Natural Gas Processing Plants Release Date: July 2, 2015 Energy Data all tables + EXPAND ALL U.S. Petroleum and Other Liquid Fuels Facts for 2014 million barrels per day Share of Total U.S. Liquid Fuels Consumed Liquid Fuels Production 14.3 75% U.S. Crude Oil Production 8.7 46% Total U.S. Federal Offshore 1.4 8% Gulf of Mexico

  8. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  9. ORISE: Incident Management Training Put to Test in Gulf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incident Management Training Put to Test in Gulf ORISE emergency management staff provided critical support during Deepwater Horizon disaster On April 20, 2010, an explosion on the Deepwater Horizon oil rig in the Gulf of Mexico killed 11 people and touched off a massive offshore oil spill that continued for more than 12 weeks. U.S. Department of Energy and the Oak Ridge Institute for Science and Education emergency management personnel were among those who traveled to the Gulf to assist

  10. Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan |

    Office of Environmental Management (EM)

    Department of Energy Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan The natural resources of the Gulf's ecosystem are vital to many of the region's industries that directly support economic progress and job creation, including tourism and recreation, seafood production and sales, energy production and navigation and commerce. Among the key priorities of the strategy are: 1) Stopping the Loss of Critical

  11. Gulf of Mexico Regional Collaborative Final Report

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Judd, Chaeli; Engel-Cox, Jill A.; Gulbransen, Thomas; Anderson, Michael G.; Woodruff, Dana L.; Thom, Ronald M.; Guzy, Michael; Hardin, Danny; Estes, Maury

    2007-12-01

    This report presents the results of the Gulf of Mexico Regional Collaborative (GoMRC), a year-long project funded by NASA. The GoMRC project was organized around end user outreach activities, a science applications team, and a team for information technology (IT) development. Key outcomes are summarized below for each of these areas. End User Outreach; Successfully engaged federal and state end users in project planning and feedback; With end user input, defined needs and system functional requirements; Conducted demonstration to End User Advisory Committee on July 9, 2007 and presented at Gulf of Mexico Alliance (GOMA) meeting of Habitat Identification committee; Conducted significant engagement of other end user groups, such as the National Estuary Programs (NEP), in the Fall of 2007; Established partnership with SERVIR and Harmful Algal Blooms Observing System (HABSOS) programs and initiated plan to extend HABs monitoring and prediction capabilities to the southern Gulf; Established a science and technology working group with Mexican institutions centered in the State of Veracruz. Key team members include the Federal Commission for the Protection Against Sanitary Risks (COFEPRIS), the Ecological Institute (INECOL) a unit of the National Council for science and technology (CONACYT), the Veracruz Aquarium (NOAA’s first international Coastal Ecology Learning Center) and the State of Veracruz. The Mexican Navy (critical to coastal studies in the Southern Gulf) and other national and regional entities have also been engaged; and Training on use of SERVIR portal planned for Fall 2007 in Veracruz, Mexico Science Applications; Worked with regional scientists to produce conceptual models of submerged aquatic vegetation (SAV) ecosystems; Built a logical framework and tool for ontological modeling of SAV and HABs; Created online guidance for SAV restoration planning; Created model runs which link potential future land use trends, runoff and SAV viability; Analyzed SAV cover change at five other bays in the Gulf of Mexico to demonstrate extensibility of the analytical tools; and Initiated development of a conceptual model for understanding the causes and effects of HABs in the Gulf of Mexico IT Tool Development; Established a website with the GoMRC web-based tools at www.gomrc.org; Completed development of an ArcGIS-based decision support tool for SAV restoration prioritization decisions, and demonstrated its use in Mobile Bay; Developed a web-based application, called Conceptual Model Explorer (CME), that enables non-GIS users to employ the prioritization model for SAV restoration; Created CME tool enabling scientists to view existing, and create new, ecosystem conceptual models which can be used to document cause-effect relationships within coastal ecosystems, and offer guidance on management solutions; Adapted the science-driven advanced web search engine, Noesis, to focus on an initial set of coastal and marine resource issues, including SAV and HABs; Incorporated map visualization tools with initial data layers related to coastal wetlands and SAVs; and Supported development of a SERVIR portal for data management and visualization in the southern Gulf of Mexico, as well as training of end users in Mexican Gulf States.

  12. Continuity and internal properties of Gulf Coast sandstones and...

    Office of Scientific and Technical Information (OSTI)

    properties of Gulf Coast sandstones and their implications for geopressured fluid production Morton, R.A.; Ewing, T.E.; Tyler, N. 15 GEOTHERMAL ENERGY; GEOPRESSURED...

  13. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  14. ,"Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  15. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  16. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  17. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  18. ,"Federal Offshore, Gulf of Mexico, Texas Nonassociated Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  19. ,"Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981" ,"Release...

  20. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  1. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  2. ,"Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  3. Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the flow of excess nutrients into the Gulf by supporting state nutrient reduction frameworks, new nutrient reduction approaches, and targeted watershed work to reduce ...

  4. Malaysia-NIES Low-Carbon Society Scenarios 2050 | Open Energy...

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name Malaysia-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  5. Municipal solid waste management in Malaysia: Practices and challenges

    SciTech Connect (OSTI)

    Manaf, Latifah Abd Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-15

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  6. Federal Offshore Gulf of Mexico Proved Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Offshore Gulf of Mexico Proved Reserves Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series 2002 2003 2004 2005 2006 2007 View History Dry Natural Gas (billion cubic feet) 24,689 22,059 18,812 17,007 14,549 13,634 1992-2007 Depth Less Than 200 Meters 14,423 12,224 10,433 8,964 8,033 NA 1992-2007 Depth Greater Than 200 Meters 10,266 9,835 8,379 8,043 6,516 NA 1992-2007 Percentage from Depth Greater

  7. Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-06-28

    The U.S. Department of Energy is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr to a much larger figure nationally. Most of the energy savings in this application is attributable to the instant-restrike capability of LED products and to their high tolerance for frequent on/off switching, used here to separately control either end of the tunnel during daytime hours. Some LED luminaires rival or outperform their high-intensity discharge (HID) counterparts in terms of efficacy, but options are limited, and smaller lumen packages preclude true one-for-one equivalence. However, LED products continue to improve in efficacy and affordability at a rate unmatched by other light source technologies; the estimated simple payback period of eight years (excluding installation costs and maintenance savings) can be expected to improve with time. The proposed revisions to the existing high-pressure sodium (HPS) lighting system would require slightly increased controls complexity and significantly increased luminaire types and quantities. In exchange, substantial annual savings (from reduced maintenance and energy use) would be complemented by improved quantity and quality of illumination. Although advanced lighting controls could offer additional savings, it is unclear whether such a system would prove cost-effective; this topic may be explored in future work.

  8. SU-D-BRD-03: A Gateway for GPU Computing in Cancer Radiotherapy Research

    SciTech Connect (OSTI)

    Jia, X; Folkerts, M; Shi, F; Yan, H; Yan, Y; Jiang, S; Sivagnanam, S; Majumdar, A

    2014-06-01

    Purpose: Graphics Processing Unit (GPU) has become increasingly important in radiotherapy. However, it is still difficult for general clinical researchers to access GPU codes developed by other researchers, and for developers to objectively benchmark their codes. Moreover, it is quite often to see repeated efforts spent on developing low-quality GPU codes. The goal of this project is to establish an infrastructure for testing GPU codes, cross comparing them, and facilitating code distributions in radiotherapy community. Methods: We developed a system called Gateway for GPU Computing in Cancer Radiotherapy Research (GCR2). A number of GPU codes developed by our group and other developers can be accessed via a web interface. To use the services, researchers first upload their test data or use the standard data provided by our system. Then they can select the GPU device on which the code will be executed. Our system offers all mainstream GPU hardware for code benchmarking purpose. After the code running is complete, the system automatically summarizes and displays the computing results. We also released a SDK to allow the developers to build their own algorithm implementation and submit their binary codes to the system. The submitted code is then systematically benchmarked using a variety of GPU hardware and representative data provided by our system. The developers can also compare their codes with others and generate benchmarking reports. Results: It is found that the developed system is fully functioning. Through a user-friendly web interface, researchers are able to test various GPU codes. Developers also benefit from this platform by comprehensively benchmarking their codes on various GPU platforms and representative clinical data sets. Conclusion: We have developed an open platform allowing the clinical researchers and developers to access the GPUs and GPU codes. This development will facilitate the utilization of GPU in radiation therapy field.

  9. The Gulf War and the environment

    SciTech Connect (OSTI)

    El-Baz, F. (ed.) (Boston Univ., MA (United States). Center for Remote Sensing); Makharita, R.M. (ed.) (World Bank, Washington, DC (United States))

    1994-01-01

    The Gulf War inflicted dramatic environmental damage upon the fragile desert and shore environments of Kuwait and northeastern Saudi Arabia. Coastal and marine environments experienced oil spills of more than 8 million barrels, which killed wildlife and damaged the fishing industry. In inland Kuwait, hundreds of oil lakes are scattered across the desert surface: these lakes emit noxious gases, drown insects and birds, and may seep to pollute groundwater. Exploding and burning oil wells released soot particles, oil droplets, and noxious chemicals into the atmosphere, spreading air pollution, acid rain, and respiratory problems. Military diggings, constructions, and vehicles have destroyed much of the desert pavement, resulting in increased dust storms and large, moving dunes.

  10. Oil Production Capacity Expansion Costs for the Persian Gulf

    Reports and Publications (EIA)

    1996-01-01

    Provides estimates of development and operating costs for various size fields in countries surrounding the Persian Gulf. In addition, a forecast of the required reserve development and associated costs to meet the expected demand through the year 2010 is presented.

  11. Gulf County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Gulf County, Florida Port St. Joe, Florida Wewahitchka, Florida Retrieved from "http:en.openei.orgw...

  12. Entergy Gulf States Louisiana LLC | Open Energy Information

    Open Energy Info (EERE)

    States Louisiana LLC Jump to: navigation, search Name: Entergy Gulf States Louisiana LLC Place: Louisiana Phone Number: 1-800-368-3749 Website: www.entergy-louisiana.com Twitter:...

  13. Gulf Stream, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gulf Stream is a town in Palm Beach County, Florida. It falls under Florida's 22nd...

  14. Gulf Coast Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop, Inc Jump to: navigation, search Name: Gulf Coast Electric Coop, Inc Place: Florida Phone Number: 1-800-568-3667 Website: www.gcec.com Outage Hotline: 1-800-568-3667...

  15. Entergy (Louisiana and Gulf States)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Residential customers of Entergy Louisiana, and Entergy Gulf States Louisiana can participate in energy efficiency programs designed to help offset cost of installing energy efficient equipment and...

  16. Gulf Coast's Texas City Sees Easy Energy Savings

    Broader source: Energy.gov [DOE]

    In Texas City, an Energy Efficiency and Conservation Block Grant (EECBG) awarded last year has already been utilized to start saving the Texas Gulf Coast city money by installing more efficient lights and applying UV reduction films to windows.

  17. Gulf of California Rift Zone Geothermal Region | Open Energy...

    Open Energy Info (EERE)

    Projects (0) Techniques (0) Map: Name The Gulf of California rift zone is a complex transition zone between the dextral (right-lateral) motion of the San Andreas transform...

  18. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  19. Gulf Of Mexico Natural Gas Plant Liquids Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

  20. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  1. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Pollen morphology of Rhizophora L. in Peninsular Malaysia

    SciTech Connect (OSTI)

    Mohd-Arrabe', A. B.; Noraini, Talip Noraini

    2013-11-27

    Rhizophora L. are common mangrove genus in Peninsular Malaysia, it contains 3 species and 1 hybrid (R. apiculata Blume, R. mucronata Lam., R. stylosa Griff., R. x lamarckii Montrouz). This genus has some unique adaptation towards extreme environment. Rhizophora has looping aerial stilt-root and uniformly viviparous. The aim of this study is to investigate the variation in the pollen morphology of Rhizophora that can be related to their habitat. Methods include in this study is pollen observation under light and acetolysis method under scanning electron microscope. Pollen type of Rhizophora species studied except hybrid species is classified tricolporate, shape spheroidal based on ratio of length polar axis/ length of equatorial axis (1.03 - 1.09). The exine ornamentation is perforate-reticulate for R. apiculata and R. mucronata, while R. stylosa is perforate. For the only hybrid in Peninsular Malaysia, R. x lamarckii (R. apiculata x R. stylosa) differs from others, tricolpate with the absence of porate, shape is subprolate and exine ornamentation is reticulate and striate in equatorial region. Pollenkitt is present due to the salty and extreme environment. This may enhance the volume of pollenkitt present surrounding the pollen grains in Rhizophora for protection and adaptation purposes. Based on these findings, it is evident that pollen morphology is somehow related to its natural habitat.

  4. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect (OSTI)

    Othman, Jamal Jafari, Yaghoob

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  5. Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas |

    Energy Savers [EERE]

    Department of Energy Approves Gulf Coast Exports of Liquefied Natural Gas Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas May 20, 2011 - 12:00am Addthis Washington, D.C. - The U.S. Department of Energy today issued a conditional authorization approving an application to export liquefied natural gas (LNG) from the Sabine Pass LNG Terminal in Louisiana, paving the way for thousands of new construction and domestic natural gas production jobs in Louisiana, Texas, and

  6. Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas |

    Office of Environmental Management (EM)

    Department of Energy Approves Gulf Coast Exports of Liquefied Natural Gas Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas May 20, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy today issued a conditional authorization approving an application to export liquefied natural gas (LNG) from the Sabine Pass LNG Terminal in Louisiana, paving the way for thousands of new construction and domestic natural gas production jobs in Louisiana, Texas, and several

  7. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi |

    Office of Environmental Management (EM)

    Department of Energy 4: Gulf LNG Liquefaction Project, Jackson County, Mississippi EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi SUMMARY The Federal Energy Regulatory Commission (FERC) announced its intent to prepare an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Jackson County Mississippi and modify related facilities to enable the terminal to liquefy natural gas for export. DOE

  8. Gulf of Mexico pipelines heading into deeper waters

    SciTech Connect (OSTI)

    True, W.R.

    1987-06-08

    Pipeline construction for Gulf of Mexico federal waters is following drilling and production operations into deeper waters, according to U.S. Department of Interior (DOI) Minerals Management Service (MMS) records. Review of MMS 5-year data for three water depth categories (0-300 ft, 300-600 ft, and deeper than 600 ft) reveals this trend in Gulf of Mexico pipeline construction. Comparisons are shown between pipeline construction applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed. This article is the first of annual updates of MMS gulf pipeline data. Future installments will track construction patterns in water depths, diameter classifications, and mileage. These figures will also be evaluated in terms of pipeline-construction cost data.

  9. Gulf Of Mexico Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,317,031 1,002,608 1,000,964 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico Natural Gas Plant Processing Natural Gas Processed (Summary)

  10. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 590 605 603 630 753 906 919 994 2000's 1,074 967 965 717 713 688 649 620 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Federal Offshore Gulf

  11. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves

  12. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,954 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG Imports from Egypt

  13. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG

  14. Proceedings of the Gulf Coast Cogeneration Association spring conference

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This book contains the proceedings of the Gulf Coast Cogeneration Association cogeneration conference held March 23, 1993. The topics of the papers contained in the conference proceedings include planning for additional capacity by electric utilities, fuel selection, fuel supply, competition and market pressures, power transmission and access to power transmission facilities, case studies of successful cogeneration projects.

  15. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect (OSTI)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  16. Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 267 266 265 292 303 342 372 421 2000's 419 459 451 485 467 409 406 414

  17. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44 46 47 49 60 70 72 87 2000's 106 101 90 78 74 62 58

  18. Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91 97 98 85 101 140 139 167 2000's 199 192 184 148 155 123 125

  19. Price of Lake Charles, LA Natural Gas LNG Imports from Malaysia (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Malaysia (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from Malaysia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.36 2000's NA NA 3.43 4.97 4.93 10.00 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price

  20. Other Locales Gulf Stream Locale -A Field Laboratory for Cloud Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gulf Stream Locale -A Field Laboratory for Cloud Process S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8028 Clouds associated with the Gulf Stream Locale, (Figure 1) are in general due to the cyclogenesis or redevelopments of the storms off the east coast of the United States in winters, movement along the coast of the storms that are generated over the Gulf of Mexico in the spring and fall and mesoscale convective circulations

  1. Pipelines following exploration in deeper Gulf of Mexico

    SciTech Connect (OSTI)

    True, W.R.

    1988-07-04

    Gulf of Mexico pipeline construction has been falling of sharply to shallow-water (less than 300 ft) areas, while construction for middle depth (300 - 600 ft) and deepwater (600 + ft) areas as been holding steady. These trends are evident from analyses of 5-year data compiled by the U.S. Department of Interior (DOI) Minerals Management Service (MMS). This article continues a series of updates based on MMS gulf pipeline data (OGJ, June 8, 1987, p. 50). These installments track construction patterns in water depths, diameter classifications, and mileage. The figures are also evaluated in terms of pipeline-construction cost data published in Oil and Gas Journal's annual Pipeline Economics Reports.

  2. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2 3 3 7 8 8 13 27 2000's 45 51 38 30 27 26 23

  3. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate

    Gasoline and Diesel Fuel Update (EIA)

    Production from Less than 200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 42 43 44 42 52 62 59 60 2000's 61 50 52 48 47 36 35

  4. Location of Natural Gas Production Facilities in the Gulf of Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Location of Natural Gas Production Facilities in the Gulf of Mexico 2014 U.S. Energy Information Administration | Natural Gas Annual 102 1,179,714 4.6 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2010-2014 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  5. Impact of Tropical Cyclones on Gulf of Mexico Crude Oil and Natural Gas Production, The

    Reports and Publications (EIA)

    2006-01-01

    This is a special analysis report on hurricanes and their effects on oil and natural gas production in the Gulf of Mexico region.

  6. MHK Projects/Gulf of Mexico Ocean test | Open Energy Information

    Open Energy Info (EERE)

    Gulf of Mexico Ocean test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  7. Microsoft Word - Accessing Gulf Resources article.doc

    Broader source: Energy.gov (indexed) [DOE]

    New Orleans, LA May 27, 2014 Testimony by Ted M Falgout Having had the opportunity to be Port Director of Port Fourchon for 31 years, and to participate in the Port's evolution from a place where mostly muskrats and mosquitoes were the main inhabitants, to what now is the most significant intermodal transfer facility for energy support in the World, has given me a perspective that I hope you will find informative. We all know that the Gulf of Mexico has evolved into this country's premiere

  8. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,875 1990's 5,098 5,085 4,637 4,570 4,982 5,385 5,492

  9. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec.

  10. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22,897 1990's 17,952 16,943 15,369 15,181 16,226 16,279 16,627 16,241 15,427 14,950 2000's

  11. Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois Basin Forest City Basin Northern Appalachian Basin Powder River Basin Uinta Basin Cherokee Platform San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin Southwestern Coal Region Piceance Basin Big Horn Basin Wind River Basin Raton Basin Black Mesa Basin Terlingua Field Kaiparowits Basin Deep River Basin SW Colorado

  12. Recent Gulf of Mexico pipeline activity reflects industry's recovery

    SciTech Connect (OSTI)

    True, W.R.

    1990-08-27

    Pipeline construction in the U.S. Gulf of Mexico has improved considerably in recent years, especially activity in shallow water (less than 300 ft). Construction for middle depths (300-600 ft) has been flat, while deepwater (600+ ft) projects have held firm or increased slightly. Overall pipeline mileage constructed in federal waters 1985-89 period showed a strengthening industry, especially during the 1988-89 period. These trends are evident from analyses of 5-year data. The author tracks comparisons between applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed.

  13. Subsea technology progress buoys Gulf of Mexico deepwater action

    SciTech Connect (OSTI)

    Koen, A.D.

    1996-09-02

    This paper reviews the technological advances in subsea oil and gas equipment to drive a new era of exploration and development in the outer continental shelf and other areas considered to complex to economically pursue. As subsea technology expands into deep waters, operators in the Gulf are using subsea production systems based on template and well cluster designs. Subsea cluster systems are gaining favor among operators because they allow more flexibility with shallow water flow which occurs during the first 1,000 feet of clay formations below the seabed. The paper also provides insight into deep water drilling, remote operated vehicles, deep water umbilicals, and other deep water production equipment.

  14. DOE Announces Three Projects to Help the Gulf Coast Recover and Rebuild |

    Energy Savers [EERE]

    Department of Energy Three Projects to Help the Gulf Coast Recover and Rebuild DOE Announces Three Projects to Help the Gulf Coast Recover and Rebuild January 20, 2006 - 10:52am Addthis ROBINSONVILLE, MS - Energy Secretary Samuel W. Bodman today announced three Department of Energy (DOE) initiatives to help the people in the Gulf coast region recover from the hurricanes in 2005, as well as prevent loss of life and damage in the future. During his speech to the Energy Leadership Forum, the

  15. Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico May 14, 2013 - 10:00am Addthis USGS technicians Eric Moore and Jenny White deploy instruments at the start of a seismic survey to explore gas hydrates in the deepwater Gulf of Mexico from April to May 2013 | Photo courtesy of USGS USGS technicians Eric Moore and Jenny White deploy instruments at the start of a seismic survey to explore gas

  16. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Wednesday, 24 November 2010 00:00 Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary

  17. A coastal hazards data base for the US Gulf Coast

    SciTech Connect (OSTI)

    Daniels, R.C.; Gornitz, V.M.; White, T.W.

    1994-06-01

    This document describes the contents of a digital data base that may be used to identify coastlines along the US Gulf Coast at risk to sea-level rise. The data base integrates point, line, and polygon data for the US Gulf Coast into 0.25{degree} latitude by 0.25{degree} longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data base systems. Each coastal grid cell and line segment contains data on elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. To allow for the identification of coastlines at risk from sea-level rise, 7 of the 22 original data variables in this data base were classified by vulnerability and used to create 7 relative risk variables. These relative risk variables range in value from 1 to 5 and may be used to calculate a coastal vulnerability index for each grid cell and/or line segment. The data for these 29 variables (i.e., the 22 original variables and 7 risk variables) have been placed into the following data formats: (1) Gridded polygon data for the 22 original data variables. Data include elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. (2) Gridded polygon data for the seven classified risk variables. The risk variables are classified versions of: mean coastal elevation, geology, geomorphology, local subsidence trend, mean shoreline displacement, maximum tidal range, and maximum significant wave height. (3) 1:2,000,000 line segment data containing the 29 data variables (the 22 original data variables and the seven classified risk variables). (4) Supplemental point data for the stations used in calculating the sea-level trend and tidal range data sets. (5) Supplemental line segment data containing a 1:2,000,000 digitized coastline of the US Gulf Coast as defined by this document.

  18. Recent ooids from Mesopotamian shallow shelf, northwest Arabian Gulf

    SciTech Connect (OSTI)

    Aqrawi, A.A.M.; Sadooni, F.N.

    1987-05-01

    Petrographic and mineralogical analyses of available oolitic samples from Khor Abdulla and Khor Al-Umaya, Mesopotamian shallow shelf of the northwest Arabian Gulf, showed that the ooids exhibit extensive variations in their forms according to their nuclei shapes. The ooids cortices are usually of radial structure and are formed mainly of high magnesium calcite. The sediment distribution of the studied area revealed the existence of an oolitic zone extending NW-SE from east of Bubiyan Island toward the open sea. It is believed that these ooids are usually formed in sheltered environments by direct precipitation of high magnesium-calcite around any available nuclei. Then they are concentrated by agitation on small shoal-margins located to the east of Bubiyan Island. At these shoals they attained their final shapes and then dispersed through the studied area. It is thought that these ooids represent a peculiar example of ooid formation in quiet shallow-water environments.

  19. Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet

    Gasoline and Diesel Fuel Update (EIA)

    After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,411 6,191 6,956 6,739 6,745 6,504 1990's 6,884 6,305 6,353 6,138 5,739 5,674 5,240 4,799 4,452 4,507 2000's 5,030 5,404 4,967

  20. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Percent) Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Production from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.4 6.2 6.1 14.1 12.9 12.1 18.7 30.5 2000's 42.2 50.0 36.0 37.2 40.9 35.8 39.6 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  1. Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 5,066,015 4,547,627 4,447,348 4,000,685 3,150,818 2,914,131 2,813,197 2,329,955 2,444,102 2010's 2,259,144 1,830,913 1,527,875 1,326,697 1,275,213 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  2. DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas Hydrate Deposits

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has established that gas hydrate can and does occur at high saturations within reservoir-quality sands in the Gulf of Mexico.

  3. Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements)...

  4. Landslide hazard mapping with selected dominant factors: A study case of Penang Island, Malaysia

    SciTech Connect (OSTI)

    Tay, Lea Tien; Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum; Lateh, Habibah

    2015-05-15

    Landslide is one of the destructive natural geohazards in Malaysia. In addition to rainfall as triggering factos for landslide in Malaysia, topographical and geological factors play important role in the landslide susceptibility analysis. Conventional topographic factors such as elevation, slope angle, slope aspect, plan curvature and profile curvature have been considered as landslide causative factors in many research works. However, other topographic factors such as diagonal length, surface area, surface roughness and rugosity have not been considered, especially for the research work in landslide hazard analysis in Malaysia. This paper presents landslide hazard mapping using Frequency Ratio (FR) and the study area is Penang Island of Malaysia. Frequency ratio approach is a variant of probabilistic method that is based on the observed relationships between the distribution of landslides and each landslide-causative factor. Landslide hazard map of Penang Island is produced by considering twenty-two (22) landslide causative factors. Among these twenty-two (22) factors, fourteen (14) factors are topographic factors. They are elevation, slope gradient, slope aspect, plan curvature, profile curvature, general curvature, tangential curvature, longitudinal curvature, cross section curvature, total curvature, diagonal length, surface area, surface roughness and rugosity. These topographic factors are extracted from the digital elevation model of Penang Island. The other eight (8) non-topographic factors considered are land cover, vegetation cover, distance from road, distance from stream, distance from fault line, geology, soil texture and rainfall precipitation. After considering all twenty-two factors for landslide hazard mapping, the analysis is repeated with fourteen dominant factors which are selected from the twenty-two factors. Landslide hazard map was segregated into four categories of risks, i.e. Highly hazardous area, Hazardous area, Moderately hazardous area and Not hazardous area. The maps was assessed using ROC (Rate of Curve) based on the area under the curve method (AUC). The result indicates an increase of accuracy from 77.76% (with all 22 factors) to 79.00% (with 14 dominant factors) in the prediction of landslide occurrence.

  5. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    SciTech Connect (OSTI)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    2014-12-04

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.

  6. Geologic development and characteristics of continental margins, Gulf of Mexico

    SciTech Connect (OSTI)

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-09-01

    The continental slope of the Gulf basin covers more than 500,000 km/sup 2/ and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200-m isobath, to the upper limit of the continental rise at a depth of 2800 m. The most complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 km/sup 2/ and in which bottom slopes range from less than 1/sup 0/ to greater than 20/sup 0/ around the knolls and basins. The near-surface geology and topography of the slope is a function of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depocenters throughout the Neogene results in rapid shelf-edge progradation, often exceeding 15-20 km/m.y. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Slope oversteepening, high pore pressures in rapidly deposited soft sediments, and changes in eustatic sea level cause subaqueous slope instabilities such as landslides and debris flows. Large-scale features such as shelf-edge separation scars and landslide-related canyons often result from such processes.

  7. The oil policies of the Gulf Arab Nations

    SciTech Connect (OSTI)

    Ripple, R.D.; Hagen, R.E.

    1995-03-01

    At its heart, Arab oil policy is inseparable from Arab economic and social policy. This holds whether we are talking about the Arab nations as a group or each separately. The seven Arab nations covered in this report-Bahrain, Iraq, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates--participate in several organizations focusing on regional cooperation regarding economic development, social programs, and Islamic unity, as well as organizations concerned with oil policies. This report focuses on the oil-related activities of the countries that may reveal the de facto oil policies of the seven Persian Gulf nations. Nevertheless it should be kept in mind that the decision makers participating in the oil policy organizations are also involved with the collaborative efforts of these other organizations. Oil policies of five of the seven Arab nations are expressed within the forums of the Organization of Petroleum Exporting Countries (OPEC) and the Organization of Arab Petroleum Exporting Countries (OAPEC). Only Oman, among the seven, is not a member of either OAPEC or OPEC; Bahrain is a member of OAPEC but not of OPEC. OPEC and OAPEC provide forums for compromise and cooperation among their members. Nevertheless, each member state maintains its own sovereignty and follows its own policies. Each country deviates from the group prescription from time to time, depending upon individual circumstances.

  8. Identification of geopressured occurrences outside of the Gulf Coast. Final report, Phase I

    SciTech Connect (OSTI)

    Strongin, O.

    1980-09-30

    As an extension of its efforts in the development of the geopressured resources of the Gulf Coast, the Division of Geothermal Energy of the US Department of Energy is interested in determining the extent and characteristics of geopressured occurrences in areas outside the Gulf Coast. The work undertaken involved a literature search of available information documenting such occurrences. Geopressured reservoirs have been reported from various types of sedimentary lithologies representing virtually all geologic ages and in a host of geologic environments, many of which are unlike those of the Gulf Coast. These include many Rocky Mountain basins (Green River, Big Horn, Powder River, Wind River, Uinta, Piceance, Denver, San Juan), Mid-Continent basins (Delaware, Anadorko, Interior Salt, Williston, Appalachian), California basins (Sacramento, San Joaquin, Los Angeles, Ventura, Coast Ranges), Alaskan onshore and offshore basins, Pacific Coast offshore basins, and other isolated occurrences, both onshore and offshore.

  9. Produced water discharges to the Gulf of Mexico: Background information for ecological risk assessments

    SciTech Connect (OSTI)

    Meinhold, A.F.; Holtzman, S.; DePhillips, M.P.

    1996-06-01

    This report reviews ecological risk assessment concepts and methods; describes important biological resources in the Gulf of Mexico of potential concern for produced water impacts; and summarizes data available to estimate exposure and effects of produced water discharges. The emphasis is on data relating to produced water discharges in the central and western Gulf of Mexico, especially in Louisiana. Much of the summarized data and cited literature are relevant to assessments of impacts in other regions. Data describing effects on marine and estuarine fishes, mollusks, crustaceans and benthic invertebrates are emphasized. This review is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico. These assessments will provide input to regulators in the development of guidelines and permits, and to industry in the use of appropriate discharge practices.

  10. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  11. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  12. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  13. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 117,738 96,587 95,078 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Alabama

  14. Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 988,219 719,435 696,242 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Louisiana

  15. Gulf Of Mexico Natural Gas Processed in Mississippi (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 91,618 74,637 98,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Mississippi

  16. Gulf Of Mexico Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 119,456 111,949 111,147 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Texas

  17. SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12-47-LNG - ORDER 3104 | Department of Energy REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 PDF icon October 2012 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 SEMI-ANNUAL

  18. Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption Gulf of Mexico Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  19. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1997" ,"Release Date:","2/29/2016" ,"Next Release

  20. Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.93 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas

  1. EECBG Success Story: Gulf Coast's Texas City Sees Easy Energy Savings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Gulf Coast's Texas City Sees Easy Energy Savings EECBG Success Story: Gulf Coast's Texas City Sees Easy Energy Savings July 26, 2010 - 10:00am Addthis By replacing T-12 lights with more efficient T-8 units, Texas City will save 65.5 kW each year. | Courtesy of the City of Texas City, Texas By replacing T-12 lights with more efficient T-8 units, Texas City will save 65.5 kW each year. | Courtesy of the City of Texas City, Texas To start saving money, Texas City installed

  2. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  3. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  4. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  5. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  6. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 310 316 311 412 527 527 557 567 2000's 560 482 454 353 290 272 249

  7. Recovery sequences for a station blackout accident at the Grand Gulf Nuclear Station

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    Recovery sequences for a low-pressure, short term, station blackout severe accident at the Grand Gulf power plant have been investigated using the computer code MELCOR, version 1.8.3 PN. This paper investigates the effect of reflood timing and mass flow rate on accident recovery.

  8. Biogenic silica fluxes and accumulation rates in the Gulf of California

    SciTech Connect (OSTI)

    Thunell, R.C.; Pride, C.J.; Tappa, E. ); Muller-Karger, F.E. )

    1994-04-01

    The Gulf of California, though small in size, plays an important role in the global silica cycle. The seasonal pattern of biogenic silica flux in the gulf is closely related to that of phytoplankton biomass levels and is controlled by changes in weather and hydrographic conditions. The highest opal fluxes ([approximately] 0.35 g[center dot]m[sup [minus]2][center dot]d[sup [minus]1]) occur during winter and spring, and they are comparable to those measured in some of the most productive ecosystems of the world. Approximately 15%-25% of the biogenic silica produced in surface waters is preserved in gulf sediments, a figure significantly higher than the average global ocean preservation rate. However, the flux of opal at 500 m water depth is less than 25% of that being produced at the surface, suggesting that most of the recycling of biogenic silica in the Gulf of California occurs in the upper water column. 28 refs., 3 figs.

  9. SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ORDER 3163 | Department of Energy GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 PDF icon October 2014 - February 2015 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL

  10. Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia

    SciTech Connect (OSTI)

    Md Yunus, Sabarina Hamzah, Zaini; Wood, Ab. Khalik; Ahmad

    2015-04-29

    This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia’s major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly, in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985). Therefore, it is safe for human consumption. Moreover, the pollution levels of these heavy metals were also compared with other studies. This present study can also be used to evaluate the safety dose uptake level of marine biota as well as to monitor environmental health.

  11. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    SciTech Connect (OSTI)

    Chen, Kho Chia; Kane, Ibrahim Lawal; Rahman, Haliza Abd; Bahar, Arifah; Ting, Chee-Ming

    2015-02-03

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.

  12. Using a contingent valuation approach for improved solid waste management facility: Evidence from Kuala Lumpur, Malaysia

    SciTech Connect (OSTI)

    Afroz, Rafia; Masud, Muhammad Mehedi

    2011-04-15

    This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation is not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.

  13. Gateway:ECOWAS Clean Energy Gateway | Open Energy Information

    Open Energy Info (EERE)

    Policy Organizations (3) add West African Companies (4) add West African Programs (76The part "|Programs and Projects" of the query was not understood. Results might not...

  14. H. R. 5441: A Bill to establish a Gulf of Mexico environmental and economic restoration and protection program. Introduced in the House of Representatives, One Hundred Second Congress, Second Session, June 18, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This Act may be cited as the [open quotes]Gulf of Mexico Environmental and Economic Restoration and Protection Act of 1992[close quotes]. The purpose of this Bill is to establish a Gulf of Mexico environmental and economic restoration and protection program. Definitions used in this Bill are presented. The findings and purposes and provisions for the Gulf of Mexico Program; Gulf of Mexico program office; Gulf of Mexico executive board; functions, powers, and duties of the Board; coordinated comprehensive joint plan; funding of the Gulf Restoration Project; grant program; and authorization of appropriations are described.

  15. Coal underlying Federal lands in the Gulf of Mexico coastal plain

    SciTech Connect (OSTI)

    Alex W. Karlsen; John R. SanFilipo; Peter D. Warwick

    2002-09-01

    About 6% of the total coa resource was selected for assessment in the Gulf of Mexico Coastal Plain region of the NCRA project underlies federally proclaimed management areas. Of the approximately 11 billion short tons of coal in this category, approximately 37 percent are estimated to be federally owned. Much of the coal in these categories may not be available for mining, and much of it is probably not economically recoverable. The dispersed nature of Federal holdings, the complicated nature of surface and mineral estate ownership, and the existence of various legal and technological restrictions may remove a significant portion of this coal resource from consideration for development. Continuing work by USGS scientists suggests that potentially viable energy resources of coal-bed methane are present within both Federal and non-Federal areas of the Gulf of Mexico Coastal Plain coal-bearing region. 3 refs., 3 figs.

  16. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,508 4,577 4,725 4,627 4,991 5,133 4,872 4,885 2000's 4,773 4,913 4,423 4,306 3,874 2,906 2,738 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Gulf of

  17. Cleaning of the ocean floor near offshore platforms in the Gulf coast

    SciTech Connect (OSTI)

    Fang, C.S.; Smith, S.A. Jr.

    1986-03-01

    For decades in offshore drilling, the drill cuttings were separated from the circulating drilling fluid by the shale shaker and hydrocyclone, and discharged to the ocean. The drilling fluid itself was discharged to the ocean intermittently to maintain its required properties during the drilling process. These discharges contain many environmentally undesirable chemicals, such as hydrocarbons chemical additives and heavy metals. As a result, the ocean floor near some of the offshore platforms in the Gulf of Mexico are covered by contaminated sediment. Ocean current is not as effective in washing out the discarded ocean muds as previously believed. An attempt was made to clean some of the offshore platforms in the Gulf of Mexico. The quantity and characteristics of the drilling discharges are estimated the technology used to clean the ocean floor near platforms is described, and advanced treatments for hydrocarbon removal, chemical oxidation and activated carbon adsorption, are discussed. 8 references.

  18. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    SciTech Connect (OSTI)

    Zullo, V.A.; Harris, W.B.; Price, V. [eds.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  19. Gulf of Mexico miocene CO₂ site characterization mega transect

    SciTech Connect (OSTI)

    Meckel, Timothy; Trevino, Ramon

    2014-09-30

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO₂ storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO₂ injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial-scale CCS will require storage capacity utilizing well-documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine-filled) closures. No assessment was made of potential for CO₂ utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO₂ leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably a surface associated with the last Pleistocene glacial lowstand. The identification of a previously unrecognized (in commercial seismic data) gas chimney that was clearly defined in the 2013 HR3D survey, indicates that HR3D surveys may be useful as both a characterization tool for the overburden of a potential carbon sequestration site and as an additional monitoring tool for future engineered injection sites. Geochemical modeling indicated that injection of CO₂ would result in minor dissolution of calcite, K-feldspar and albite. In addition, modeling of typical brines in Miocene age rocks indicate that approximately 5% of injection capacity would result from CO₂ dissolution into the brine. After extensive searches, no rock samples of the Marginulina A and Amphistegina B seals (“caprocks”) were obtained, but analyses of available core samples of other Miocene age mudrocks (seals or caprocks) indicate that they have sealing ability sufficient for potential CO2 storage in underlying sandstone units.

  20. Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200

    Gasoline and Diesel Fuel Update (EIA)

    Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46 46 53 77 90 123 171 228 2000's 234 286 288 336 310 305 318 313

  1. Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200

    Gasoline and Diesel Fuel Update (EIA)

    Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 221 220 212 215 213 219 201 193 2000's 185 173 163 149 157 104 87 101

  2. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves from Greater than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 48 51 57 192 210 203 234 234 2000's 244 221 195 135 103 104 90

  3. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves from Less than 200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 262 265 254 220 317 324 323 333 2000's 316 261 259 218 187 168 159

  4. Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4 6 6 12 13 17 26 51 2000's 84 96 66 55 51 44 50

  5. Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87 91 92 73 88 123 113 116 2000's 115 96 118 93 104 79 75

  6. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91 97 110 294 300 349 387 411 2000's 468 443 407 262 292 248 291

  7. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 499 508 493 336 456 557 532 583 2000's 606 524 558 455 421 440 358

  8. Gulf Stream Locale R. J. Alliss and S. Raman Department of Marine, Earth and Atmospheric Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. J. Alliss and S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8208 Introduction Clouds have long been recognized as having a major impact on the radiation budget in the earth's climate system. One of the preferred areas for the production of clouds is off the east coast of the United States. The formation of clouds in this region, particularly during the winter months, is caused predominately by the presence of the Gulf Stream,

  9. Egypt`s first remotely controlled subsea completion -- A Gulf of Suez case history

    SciTech Connect (OSTI)

    El Hawary, A.; Hoffman, J.G.

    1995-11-01

    A case history of the Gulf of Suez Petroleum Company`s (GUPCO) first remotely controlled subsea completion is provided. The first completion was for well GS 373-2, a previously drilled and tested exploration well located in the south portion of the Gulf of Suez. Subsea technology was utilized to economically justify development of this one well marginal field which was discovered in 1978. Traditional methods proved to be too costly for development, therefore application of a low cost subsea tree was utilized to capture the resources. In the Gulf of Suez many fields have been discovered by have not been developed due to low reserves. These marginal projects can have a profound impact on the revenue and shareholder value if any economic method is used to exploit these opportunities. Platform installation was not feasible due to reserve size, hence the well has remained abandoned until recently. Capturing the experience of Amoco in the Gulf of Mexico and in the Dutch North Sea, GUPCO was able to build a low cost subsea system which would allow for the economic development of the marginal fields discovered in the past. This paper presents a summarized look at subsea completion technology. The cost comparison of traditional development methods will be made, given the local cost structure in Egypt. The application of this technology has some limitations and constraints which will be discussed in the paper. Furthermore the actual field installation of Egypt`s first remotely controlled subsea tree will be summarized. Also included is a discussion on simple remote controls,and offshore installation operations.

  10. Energy investment advisory series No. 3: Investment opportunities in the Persian Gulf energy sector

    SciTech Connect (OSTI)

    Hadgen, R.E.

    1994-12-01

    Sometimes the greatest investment opportunities are in those areas where the least progress seems to be taking place. This report describes energy-based developments taking place in the Persian/Arabian Gulf. The 8 Gulf states are building their nations; each has large minority groups and swelling populations; their economies are built on one product (hydrocarbons). Large expatriate populations, being integrated into local societies and economies, have led to hostility and guarded access to contacts with the outside world. Gulf nations cannot benefit from any oil price rise as they did in the past, as their populations have grown too rapidly. Policies change daily and can be changed back to original ones as well as into new ones. Since the oil and gas industries are the primary source of government revenue, oil and gas are likely to remain longest under government control. A breakdown of energy-base investment potentials in the Middle East is tabulated: upstream oil, refining, domestic oil marketing, upstream gas, LNG, electricity, petrochemical.

  11. Egypt`s first subsea completion: A Gulf of Suez case history

    SciTech Connect (OSTI)

    El Hawary, A.; Hoffman, J.G.

    1996-06-01

    A case history of the Gulf of Suez Petroleum Co.`s (Gupco) first subsea completion is provided. The first completion was for Well GS 373-2, a previously drilled and tested exploration well located in the south portion of the gulf of Suez. Subsea technology was used to economically justify development of this one-well marginal field, which was discovered in 1978. Traditional methods proved to be too costly for development, therefore application of a low-cost subsea tree was used to capture the resources. In the Gulf of Suez, many fields have been discovered but have not been developed because of low reserves. These marginal projects can have a profound impact on the revenue and shareholder value if an economic method is used to exploit these opportunities. Platform installation was not feasible because of reserve size, hence the well has remained abandoned until recently. This paper presents a summarized look at subsea completion technology. The cost comparison of traditional development methods will be made, given the local cost structure in Egypt. The application of this technology has some limitations and constraints that will be discussed in the paper. Furthermore, the actual field installation of Egypt`s first subsea tree will be summarized. Also included is a discussion on simple remote controls and offshore installation operations.

  12. GATEWAY Demonstrations: LED Street Lighting

    SciTech Connect (OSTI)

    Cook, Tyson; Shackelford, Jordan; Pang, Terrance Pang

    2008-12-01

    This report summarizes an assessment project conducted to study the performance of light emitting diode (LED) luminaires in a street lighting application in San Francisco, CA.

  13. Predicted impacts from offshore produced water discharges on hypoxia in the Gulf of Mexico.

    SciTech Connect (OSTI)

    Bierman, V. J.; Hinz, S.C.; Justic, D.; Scavia, D.; Veil, J. A.; Satterlee, K.; Parker, M. E.; Wilson, S.; Environmental Science Division; LimnoTech.; Louisiana State Univ.; Univ of Michigan; Shell E&P Co.; Exxon Mobil Production Co.; U.S. EPA

    2008-06-01

    Summer hypoxia (dissolved oxygen < 2 mg/L) in the bottom waters of the northern Gulf of Mexico has received considerable scientific and policy attention because of potential ecological and economic impacts. This hypoxic zone forms off the Louisiana coast each summer and has increased from an average of 8,300 km{sup 2} in 1985-1992 to over 16,000 km{sup 2} in 1993-2001, reaching a record 22,000 km{sup 2} in 2002. The almost threefold increase in nitrogen load from the Mississippi River Basin (MRB) to the Gulf since the middle of the last century is the primary external driver for hypoxia. A goal of the 2001 Federal Action Plan is to reduce the 5-year running average size of the hypoxic zone to below 5,000 km{sup 2} by 2015. After the Action Plan was developed, a new question arose as to whether sources other than the MRB may also contribute significant quantities of oxygen-demanding substances. One very visible potential source is the hundreds of offshore oil and gas platforms located within or near the hypoxic zone, many of which discharge varying volumes of produced water. The objectives of this study were to assess the incremental impacts of produced water discharges on dissolved oxygen in the northern Gulf of Mexico, and to evaluate the significance of these discharges relative to loadings from the MRB. Predictive simulations were conducted with three existing models of Gulf hypoxia using produced water loads from an industry study. Scenarios were designed that addressed loading uncertainties, settleability of suspended constituents, and different assumptions on delivery locations for the produced water loads. Model results correspond to the incremental impacts of produced water loads, relative to the original model results, which included only loads from the MRB. The predicted incremental impacts of produced water loads on dissolved oxygen in the northern Gulf of Mexico from all three models were small. Even considering the predicted ranges between lower- and upper-bound results, these impacts are likely to be within the errors of measurement for bottomwater dissolved oxygen and hypoxic area at the spatial scale of the entire hypoxic zone.

  14. S. 83: A Bill to ensure the preservation of the Gulf of Mexico by establishing within the Environmental Protection Agency a Gulf of Mexico Program. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, January 21, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    S. 83 may be cited as the [open quotes]Gulf of Mexico Preservation Act of 1993.[close quotes] This Bill discusses findings pertaining to resources in the Gulf of Mexico, describes the establishment of the Gulf of Mexico Program, defines the establishment and duties of the Gulf of Mexico Program Office, and proposes a study of international issues. This Bill also includes an assessment to be prepared by the Administrator, a monitoring, management, protection and restoration plan, a grant program, authorization of appropriations, administrative provisions, and the relationship of the Bill to existing federal and state laws and international treaties.

  15. Oil, shrimp, mangroves: an evaluation of contingency planning for the Gulf of Guayaquil, Ecuador. Technical report

    SciTech Connect (OSTI)

    Filho, I.P.

    1983-10-01

    The possibility of finding oil in the Gulf of Guayaquil has led several Ecuadorian agencies to prepare contingency plans to deal with the eventuality of an oil spill in the area. This report characterizes the importance of the oil and fisheries industries to the Ecuadorian economy, and describes the region where these activities may conflict. It also elaborates on the biological effects of oil in tropical environments, and on aspects of prevention, control/clean- up and oil spill contingency planning. Compensation for oil pollution damages and methods for damage assessment are also discussed herein.

  16. Potential Economic Impacts from Offshore Wind in the Gulf of Mexico Region (Fact Sheet)

    SciTech Connect (OSTI)

    Flores, F.; Keyser, D.; Tegen, S.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Gulf of Mexico region.

  17. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Gasoline and Diesel Fuel Update (EIA)

    Condensate Proved Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,704 2010's 4,043 4,567 4,602 4,591 4,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 614 566 532 512 575 1990's 519 545 472 490 500 496 621 785 776 833 2000's 921 785 783 598 615 603 575 528 464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas,

    Gasoline and Diesel Fuel Update (EIA)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 474 320 541 522 532 494 1990's 446 407 691 574 679 891 794 1,228 1,224 1,383 2000's 1,395 1,406 1,267

  20. Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 303 2010's 304 252 354 359 352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  1. Gulf of Mexico Federal Offshore - Texas Crude Oil Reserves in Nonproducing

    Gasoline and Diesel Fuel Update (EIA)

    Reservoirs (Million Barrels) Reserves in Nonproducing Reservoirs (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 215 207 2000's 222 180 154 147 72 64 68 53 56 125 2010's 102 52 34 33 84 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 62 66 64 88 80 100 89 89 78 1990's 82 79 118 115 103 134 132 121 143 161 2000's 153 182 182 119 98 85 74 92 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,835 2,072 2,127 2,518 2,567 2,949 2,793 2,744 2000's 3,174 4,288 4,444 4,554 4,144 4,042 3,655 3,464

  4. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Greater than

    Gasoline and Diesel Fuel Update (EIA)

    200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 557 824 877 1,241 1,311 1,682 1,611 1,626 2000's 2,021 3,208 3,372 3,627 3,280 3,272 2,983 2,836

  5. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Less than

    Gasoline and Diesel Fuel Update (EIA)

    200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,278 1,248 1,250 1,277 1,256 1,267 1,182 1,118 2000's 1,153 1,080 1,072 927 864 770 672 628

  6. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Billion Cubic Feet) Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 162 224 288 361 544 565 711 1,099 2000's 1,165 1,334 1,328 1,513 1,222 1,069 1,086

  7. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than

    Gasoline and Diesel Fuel Update (EIA)

    200 Meters Deep (Billion Cubic Feet) Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,346 4,353 4,437 4,266 4,447 4,568 4,161 3,786 2000's 3,608 3,578 3,095 2,793 2,652 1,837 1,652

  8. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Billion Cubic Feet) Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,225 3,438 4,709 5,751 6,322 7,343 7,425 7,533 2000's 8,506 10,943 10,266 9,835 8,379 8,043 6,516

  9. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Less

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Billion Cubic Feet) Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23,424 22,606 22,509 22,166 21,530 20,579 18,997 17,918 2000's 17,666 15,513 14,423 12,224 10,433 8,964 8,033

  10. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,576 4,651 4,797 4,679 5,045 5,230 4,967 5,000 2000's 4,901 5,027 4,544 4,397 3,967 2,968 2,805 2,762

  11. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Billion Cubic Feet) Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 166 229 294 354 549 577 724 1,124 2000's 1,196 1,367 1,365 1,545 1,251 1,070 1,112 1,050

  12. Bird Movements and Behaviors in the Gulf Coast Region: Relation to Potential Wind-Energy Developments

    SciTech Connect (OSTI)

    Morrison, M. L.

    2006-06-01

    The purpose of this paper is to discuss the possible impacts of wind development to birds along the lower Gulf Coast, including both proposed near-shore and offshore developments. The report summarizes wind resources in Texas, discusses timing and magnitude of bird migration as it relates to wind development, reviews research that has been conducted throughout the world on near- and offshore developments, and provides recommendations for research that will help guide wind development that minimizes negative impacts to birds and other wildlife resources.

  13. Price of Gulf of Mexico Natural Gas LNG Imports (Nominal Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 8.87 7.31 8.36 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied

  14. Price of Gulf of Mexico Natural Gas LNG Imports from Nigeria (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Nigeria (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports from Nigeria (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 11.11 -- 8.29 -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  15. Pipeline transportation of natural gas from the Gulf Coast to the Northeast

    SciTech Connect (OSTI)

    Boehm, J.C.

    1980-01-01

    Transcontinental Gas Pipe Line Corp.'s national gas pipeline system from the Gulf Coast producing area (where 75% of its supply lies offshore) extends for 1832 mi along the Gulf Coast through the southeastern Piedmont and north to terminate in New York City. It serves high-priority markets in 11 southern and Atlantic seaboard states with a daily flowing capacity of 3.0 billion cu ft/day and an additional 1.5 billion cu ft/day available from storage. Also discussed are gas conditioning for the removal of hydrogen sulfide, carbon dioxide, water vapor and entrained salt water and solids, and measurement of gas volume with a meter and gravitometer and of heating value with a calorimeter; gas transmission through 9,295 mi of pipeline, made up mostly of four, 30-42 in. dia parallel pipelines with 1,062,452 hp of compression capacity; LNG storage, including unique facilities at the Eminence, Miss., Salt Dome Storage facility and the Carlstadt, N.J., LNG plant; odorization; operations; and pipeline protection against third-party damage and against corrosion.

  16. Gulf of Mexico Sales 147 and 150: Central and Western planning areas. Final environmental impact statement, Volume 1: Sections 1 through 4.C

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This Final Environmental Impact Statement (EIS) covers the proposed 1994 Gulf of Mexico OCS oil and gas lease sales [Central Gulf of Mexico Sale 147 (March 1994) and Western Gulf of Mexico Sale 150 (August 1994)]. This document includes the purpose and background of the proposed actions, the alternatives, the descriptions of the affected environment, and the potential environmental impacts of the proposed actions and alternatives. Proposed mitigating measures and their effects are analyzed, in addition to potential cumulative impacts resulting from proposed activities.

  17. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and thermally; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

  18. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,260 1990's 22,679 21,611 19,653 19,383 20,835 21,392 21,856 21,934 20,774 19,598 2000's 19,788 19,721 18,500 16,728 14,685 13,665 11,824 11,090 10,450 9,362 2010's 8,896 8,156

  19. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet

    Gasoline and Diesel Fuel Update (EIA)

    After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,772 1990's 23,050 22,028 20,006 19,751 21,208 21,664 22,119 22,428 21,261 20,172 2000's 20,466 20,290 19,113 17,168 15,144 14,073 12,201 11,458

  20. Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,878 6,493 7,444 7,219 7,241 6,968 1990's 7,300 6,675 6,996 6,661 6,383 6,525 5,996 5,988 5,648 5,853 2000's 6,384 6,775 6,189 5,331 4,127 3,342 2,725 2,544 2,392 2,451 2010's 2,145 1,554 1,450 1,450 1,397 - =

  1. Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,885 6,511 7,497 7,261 7,277 6,998 1990's 7,330 6,712 7,044 6,712 6,418 6,565 6,034 6,027 5,676 5,890 2000's 6,425 6,810 6,234 5,354 4,144 3,354 2,738 2,550 2,402 2,451 2010's

  2. Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26,649 26,044 27,218 27,917 27,852 27,922 26,422 25,451 2000's 26,172 26,456 24,689 22,059 18,812 17,007 14,549 13,634 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  3. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Production from Less than 200 Meters Deep (Billion Cubic Feet) Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,410 4,422 4,503 4,315 4,496 4,653 4,243 3,876 2000's 3,705 3,660 3,180 2,852 2,716 1,898 1,692 1,712

  4. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27,050 26,463 27,626 28,229 28,153 28,455 26,937 26,062 2000's 26,891 27,100 25,347 22,522 19,288 17,427 14,938 14,008 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  5. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves from Greater than 200 Meters Deep (Billion Cubic Feet) Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,273 3,495 4,772 5,811 6,389 7,491 7,575 7,726 2000's 8,731 11,229 10,540 10,041 8,591 8,042 6,690 4,120

  6. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves from Less than 200 Meters Deep (Billion Cubic Feet) Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23,777 22,968 22,854 22,418 21,764 20,964 19,362 18,336 2000's 18,160 15,871 14,807 12,481 10,698 9,385 8,248 9,888

  7. Gulf of Mexico Federal Offshore Percentage of Crude Oil Production from

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Percent) Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Crude Oil Production from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 17.2 17.3 20.1 26.4 29.7 36.0 46.0 54.2 2000's 55.8 62.2 63.9 69.3 66.4 75.0 78.5 76.0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  8. Gulf of Mexico Federal Offshore Percentage of Crude Oil Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    from Greater than 200 Meters Deep (Percent) Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Crude Oil Proved Reserves from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 30.4 39.8 41.2 49.3 51.1 57.0 57.8 59.3 2000's 63.7 74.8 75.9 79.6 79.2 81.0 81.6 82.0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production

    Gasoline and Diesel Fuel Update (EIA)

    from Greater than 200 Meters Deep (Percent) Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.6 4.9 6.1 7.8 10.9 11.0 14.6 22.5 2000's 24.4 27.4 30.0 35.1 31.5 36.8 39.6 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves from Greater than 200 Meters Deep (Percent) Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.1 13.2 17.3 20.6 22.7 26.3 28.1 29.6 2000's 32.5 41.4 41.6 44.6 44.5 47.3 44.8 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Lease

    Gasoline and Diesel Fuel Update (EIA)

    Condensate Production from Greater than 200 Meters Deep (Percent) Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Lease Condensate Production from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.4 6.2 6.1 14.1 12.9 12.1 18.7 30.5 2000's 42.2 50.2 42.2 38.5 36.2 41.9 40.1 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Lease

    Gasoline and Diesel Fuel Update (EIA)

    Condensate Proved Reserves from Greater than 200 Meters Deep (Percent) Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Lease Condensate Proved Reserves from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 15.4 16.0 18.2 46.7 39.8 38.5 42.1 41.3 2000's 43.6 45.8 43.0 38.2 35.6 38.2 36.2 NA - = No Data Reported; -- = Not Applicable; NA = Not

  13. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves from Greater than 200 Meters Deep (Percent) Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Proved Reserves from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 15.4 16.0 18.2 46.7 39.8 38.5 42.1 41.3 2000's 43.6 45.8 42.2 36.5 40.9 36.0 44.8 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Production from Greater than 200 Meters Deep (Percent) Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.6 4.9 6.1 7.8 10.9 11.0 14.6 22.5 2000's 24.4 27.2 30.0 35.1 31.5 36.1 39.6 29.8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  15. Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves from Greater than 200 Meters Deep (Percent) Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.1 13.2 17.3 20.6 22.7 26.3 28.1 29.6 2000's 32.5 41.4 41.6 44.6 44.5 46.1 44.8 29.4 - = No Data Reported; -- = Not Applicable; NA

  16. The Gulf Oil Spill: Ecogenomics and Ecoresilience (Keynote - 2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Hazen, Terry [LBNL] [LBNL

    2011-03-22

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Berkeley Lab microbial ecologist Terry Hazen delivers a keynote on "The Gulf Oil Spill: Ecogenomics and Ecoresilience" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011.

  17. Oil, Water, and Wildlife: The Gulf of Mexico Disaster and Related Environmental Issues

    SciTech Connect (OSTI)

    Bickman, John W.

    2010-08-04

    The BP Macondo oil field spill in the Gulf of Mexico is the largest oil spill in U.S. history and has the potential to impact sea turtle and marine mammal populations, and others. This presentation will review the genotoxic effects of oil exposure in wildlife and discuss the potential for an oil spill to impact wildlife populations. Whereas some aspects of a spill are predictable, each spill is different because oils are highly variable, as are the environments in which they occur. The presentation will discuss what has been learned from previous spills, including the Exxon Valdez and the soviet oil legacy in Azerbaijan, and the potential dangers of offshore oil development in the Arctic. Related Purdue University research efforts in oil-spill related engineering and science also will be highlighted.

  18. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 432,713 396,681 438,926 423,131 435,592 426,888 434,325 439,712 428,689 440,668 425,849 441,756 1998 443,757 398,519 448,486 438,144 457,815 435,237 439,093 443,144 336,241 421,315 414,058 434,518 1999 436,171 395,293 435,012 424,724 432,489 414,495 431,981 424,513 408,237 421,312 409,660 419,049 2000

  19. Federal Offshore--Gulf of Mexico Natural Gas Marketed Production (Million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Feet) Marketed Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Marketed Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 429,954 394,104 436,222 420,503 432,864 423,879 431,157 436,557 425,610 437,613 422,552 438,287 1998 441,123 396,059 445,905 435,635 455,211 432,364 436,068 440,131 333,302 418,456 410,971 431,271 1999 434,362 393,604 433,239 423,001 430,700 412,522 429,904 422,444 406,218 419,349 407,540 416,820

  20. The Gulf Oil Spill: Ecogenomics and Ecoresilience (Keynote - 2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Hazen, Terry [LBNL

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Berkeley Lab microbial ecologist Terry Hazen delivers a keynote on "The Gulf Oil Spill: Ecogenomics and Ecoresilience" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011.

  1. Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Natural Gas Lease Fuel Consumption (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 114,017 109,277 98,372 90,025 78,139 102,242 115,528 102,389 103,976 2010's 108,490 101,217 93,985 95,207 93,855 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  2. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Dry Natural Gas Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 244,584 213,829 239,860 238,542 256,010 247,754 256,378 250,819 238,653 242,261 235,960 237,319 2007 235,396 213,877 238,889 232,357 242,298 228,908 231,048 228,054 221,195 238,095 231,929 256,671 2008 241,064 228,507 239,263 209,165 208,428 219,044 230,193 211,888 61,961 133,579 157,377 173,874 2009

  3. Oil, Water, and Wildlife: The Gulf of Mexico Disaster and Related Environmental Issues

    ScienceCinema (OSTI)

    Bickman, John W. [Purdue University, West Lafayette, Indiana, United States

    2010-09-01

    The BP Macondo oil field spill in the Gulf of Mexico is the largest oil spill in U.S. history and has the potential to impact sea turtle and marine mammal populations, and others. This presentation will review the genotoxic effects of oil exposure in wildlife and discuss the potential for an oil spill to impact wildlife populations. Whereas some aspects of a spill are predictable, each spill is different because oils are highly variable, as are the environments in which they occur. The presentation will discuss what has been learned from previous spills, including the Exxon Valdez and the soviet oil legacy in Azerbaijan, and the potential dangers of offshore oil development in the Arctic. Related Purdue University research efforts in oil-spill related engineering and science also will be highlighted.

  4. Summary Report on Information Technology Integration Activities For project to Enhance NASA Tools for Coastal Managers in the Gulf of Mexico and Support Technology Transfer to Mexico

    SciTech Connect (OSTI)

    Gulbransen, Thomas C.

    2009-04-27

    Deliverable to NASA Stennis Space Center summarizing summarizes accomplishments made by Battelle and its subcontractors to integrate NASA's COAST visualization tool with the Noesis search tool developed under the Gulf of Mexico Regional Collaborative project.

  5. Review of the NURE Assessment of the U.S. Gulf Coast Uranium Province

    SciTech Connect (OSTI)

    Hall, Susan M.

    2013-09-15

    Historic exploration and development were used to evaluate the reliability of domestic uranium reserves and potential resources estimated by the U.S. Department of Energy national uranium resource evaluation (NURE) program in the U.S. Gulf Coast Uranium Province. NURE estimated 87 million pounds of reserves in the $30/lb U{sub 3}O{sub 8} cost category in the Coast Plain uranium resource region, most in the Gulf Coast Uranium Province. Since NURE, 40 million pounds of reserves have been mined, and 38 million pounds are estimated to remain in place as of 2012, accounting for all but 9 million pounds of U{sub 3}O{sub 8} in the reserve or production categories in the NURE estimate. Considering the complexities and uncertainties of the analysis, this study indicates that the NURE reserve estimates for the province were accurate. An unconditional potential resource of 1.4 billion pounds of U{sub 3}O{sub 8}, 600 million pounds of U{sub 3}O{sub 8} in the forward cost category of $30/lb U{sub 3}O{sub 8} (1980 prices), was estimated in 106 favorable areas by the NURE program in the province. Removing potential resources from the non-productive Houston embayment, and those reserves estimated below historic and current mining depths reduces the unconditional potential resource 33% to about 930 million pounds of U{sub 3}O{sub 8}, and that in the $30/lb cost category 34% to 399 million pounds of U{sub 3}O{sub 8}. Based on production records and reserve estimates tabulated for the region, most of the production since 1980 is likely from the reserves identified by NURE. The potential resource predicted by NURE has not been developed, likely due to a variety of factors related to the low uranium prices that have prevailed since 1980.

  6. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daigle, Hugh; Cook, Ann; Malinverno, Alberto

    2015-10-14

    Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeabilitymore » measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.« less

  7. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico

    SciTech Connect (OSTI)

    Daigle, Hugh; Cook, Ann; Malinverno, Alberto

    2015-10-14

    Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeability measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.

  8. Slide 1

    Energy Savers [EERE]

    America LNG Import Terminals Status: Existing Source: Various Public Sources Everett Cove Point Lake Charles Elba Island Gulf Gateway (*Decommissioning) Altamira Existing Terminals - U.S. Existing Terminals - non U.S. Northeast Gateway Freeport LNG Sabine Pass Energia Costa Azul Cameron Canaport Neptune LNG Golden Pass Gulf LNG Energy Manzanillo North America LNG Import Terminals Status: Approved, Under Construction* Source: Various Public Sources Approved Terminals, Under Construction - non

  9. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect (OSTI)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  10. Short-Term Energy Outlook Supplement: 2014 Outlook for Gulf of Mexico Hurricane-Related Production Outages

    Gasoline and Diesel Fuel Update (EIA)

    4 Outlook for Gulf of Mexico Hurricane-Related Production Outages June 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: 2014 Hurricane Outlook i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other

  11. Short-Term Energy Outlook Supplement: 2013 Outlook for Gulf of Mexico Hurricane-Related Production Outages

    Gasoline and Diesel Fuel Update (EIA)

    3 Outlook for Gulf of Mexico Hurricane-Related Production Outages June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: 2013 Hurricane Outlook i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other

  12. Summary of Training Workshop on the Use of NASA tools for Coastal Resource Management in the Gulf of Mexico

    SciTech Connect (OSTI)

    Judd, Chaeli; Judd, Kathleen S.; Gulbransen, Thomas C.; Thom, Ronald M.

    2009-03-01

    A two-day training workshop was held in Xalapa, Mexico from March 10-11 2009 with the goal of training end users from the southern Gulf of Mexico states of Campeche and Veracruz in the use of tools to support coastal resource management decision-making. The workshop was held at the computer laboratory of the Institute de Ecologia, A.C. (INECOL). This report summarizes the results of that workshop and is a deliverable to our NASA client.

  13. Selectively reducing offshore royalty rates in the Gulf of Mexico could increase oil production and federal government revenue

    SciTech Connect (OSTI)

    Bowsher, C.A.

    1985-05-10

    The US government leases large areas in the Outer Continental Shelf in the Gulf of Mexico for the development of oil resources and receives royalties on the oil produced. Conventional methods of oil recovery have recovered or are expected to recover about half of the 16 billion barrels of oil discovered in this area. Other oil recovery methods, collectively known as enhanced oil recovery (EOR), could potentially increase production by about 1 billion barrels of oil. EOR in the Gulf is expensive and does not appear to be economically justified in most cases. Under existing economic conditions and federal policies, GAO's review indicates that utilizing EOR methods will probably produce only about 10 percent of the additional recoverable oil. However, financial incentives in the form of royalty reductions could increase both oil production and federal government revenue if applied on a project-by-project basis. Universal applications of royalty reduction for EOR, however, while achieving increased oil production, would not increase federal government revenue. GAO recommends that the Department of the Interior's Minerals Management Service initiate action that would allow for selective royalty reductions for EOR projects in the Gulf in instances where both total oil production and federal government revenue will increase. 6 figs., 1 tab.

  14. Gulf Coast-East Coast magnetic anomaly I: Root of the main crustal decollement for the Appalachian-Ouachita orogen

    SciTech Connect (OSTI)

    Hall, D.J. (Total Minatome Corporation, Houston, TX (USA))

    1990-09-01

    The Gulf Coast-East Coast magnetic anomaly extends for at least 4000 km from south-central Texas to offshore Newfoundland as one of the longest continuous tectonic features in North America and a major crustal element of the entire North Atlantic-Gulf Coast region. Analysis of 28 profiles spaced at 100km intervals and four computed models demonstrate that the anomaly may be explained by a thick zone of mafic and ultramafic rocks averaging 13-15 km in depth. The trend of the anomaly closely follows the trend of main Appalachian features: in the Gulf Coast of Louisiana, the anomaly is as far south of the Ouachita front as it is east of the western limit of deformation through the central Appalachians. Because the anomaly continues across well-known continental crust in northern Florida and onshore Texas, it cannot plausibly be ascribed to an edge effect at the boundary of oceanic with continental crustal compositions. The northwest-verging, deep-crustal events discovered in COCORP data from the Ouachitas and Appalachians suggest an analogy with the main suture of the Himalayan orogen in the Tibetan Plateau. In this paper the anomaly is identified with the late Paleozoic Alleghenian megasuture, in which the northwest-verging crustal-detachment surfaces ultimately root.

  15. Characteristics of produced water discharged to the Gulf of Mexico hypoxiczone.

    SciTech Connect (OSTI)

    Veil, J. A.; Kimmell, T. A.; Rechner, A. C.

    2005-08-24

    Each summer, an area of low dissolved oxygen (the hypoxic zone) forms in the shallow nearshore Gulf of Mexico waters from the Mississippi River Delta westward to near the Texas/Louisiana border. Most scientists believe that the leading contributor to the hypoxic zone is input of nutrients (primarily nitrogen and phosphorus compounds) from the Mississippi and Atchafalaya Rivers. The nutrients stimulate growth of phytoplankton. As the phytoplankton subsequently die, they fall to the bottom waters where they are decomposed by microorganisms. The decomposition process consumes oxygen in the bottom waters to create hypoxic conditions. Sources other than the two rivers mentioned above may also contribute significant quantities of oxygen-demanding pollutants. One very visible potential source is the hundreds of offshore oil and gas platforms located within or near the hypoxic zone. Many of these platforms discharge varying volumes of produced water. However, only limited data characterizing oxygen demand and nutrient concentration and loading from offshore produced water discharges have been collected. No comprehensive and coordinated oxygen demand data exist for produced water discharges in the Gulf of Mexico. This report describes the results of a program to sample 50 offshore oil and gas platforms located within the Gulf of Mexico hypoxic zone. The program was conducted in response to a requirement in the U.S. Environmental Protection Agency (EPA) general National Pollutant Discharge Elimination System (NPDES) permit for offshore oil and gas discharges. EPA requested information on the amount of oxygen-demanding substances contained in the produced water discharges. This information is needed as inputs to several water quality models that EPA intends to run to estimate the relative contributions of the produced water discharges to the occurrence of the hypoxic zone. Sixteen platforms were sampled 3 times each at approximately one-month intervals to give an estimate of temporal variability. An additional 34 platforms were sampled one time. The 50 sampled platforms were scattered throughout the hypoxic zone to give an estimate of spatial variability. Each platform was sampled for biochemical oxygen demand (BOD), total organic carbon (TOC), nitrogen (ammonia, nitrate, nitrite, and total Kjeldahl nitrogen [TKN]), and phosphorus (total phosphorus and orthophosphate). In addition to these parameters, each sample was monitored for pH, conductivity, salinity, and temperature. The sampling provided average platform concentrations for each parameter. Table ES-1 shows the mean, median, maximum, and minimum for the sampled parameters. For some of the parameters, the mean is considerably larger than the median, suggesting that one or a few data points are much higher than the rest of the points (outliers). Chapter 4 contains an extensive discussion of outliers and shows how the sample results change if outliers are deleted from consideration. A primary goal of this study is to estimate the mass loading (lb/day) of each of the oxygen-demanding pollutants from the 50 platforms sampled in the study. Loading is calculated by multiplying concentrations by the discharge volume and then by a conversion factor to allow units to match. The loadings calculated in this study of 50 platforms represent a produced water discharge volume of about 176,000 bbl/day. The total amount of produced water generated in the hypoxic zone during the year 2003 was estimated as 508,000 bbl/day. This volume is based on reports by operators to the Minerals Management Service each year. It reflects the volume of produced water that is generated from each lease, not the volume that is discharged from each platform. The mass loadings from offshore oil and gas discharges to the entire hypoxic zone were estimated by multiplying the 50-platform loadings by the ratio of total water generated to 50-platform discharge volume. The loadings estimated for the 50 platforms and for the entire hypoxic zone are shown in Table ES-2. These estimates and the sampling data from 50 platfo

  16. Impact of induced seismic events on seal integrity, Texas Gulf Coast

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nicot, Jean-Philippe; Meckel, Timothy A.; Carr, David A.; Oldenburg, Curtis M.

    2014-12-31

    Recent publications have suggested that large-scale CO2 injection could trigger earthquakes and that even small- to moderate-sized earthquakes may threaten the seal integrity of the injection zone, and potentially damage buildings and other surface structures. In this study, we compared seal thickness to estimated fault displacement due to a single hypothetical seismic event in a selected area of the Texas Gulf Coast comprising an offshore strip of state waters along two Texas counties. To evaluate the slip generated by a single seismic event, we compiled well log information on shale/sand sequences and seismic information on fault geometric characteristics of amore » section of Lower Miocene age. The section is thousands of feet thick and is overlain and underlain by marine shales (Amph. B and Anahuac, respectively) that are relatively easy to correlate between wells. The Amph. B. shale is the secondary and ultimate seal for all injection intervals in the Lower Miocene. Given its thickness, no realistic seismic event or small series of seismic events will offset it significantly. However, this may not be true of smaller local primary seals. An analysis of geophysical logs of a total of 71 wells yielded a total of 2,871 sand / shale binary intervals. An analysis of the dedicated 3D seismic survey counted 723 fault traces at five roughly horizontal horizons within the Lower Miocene Fault displacement estimated using the product of the fault length times an uncertain multiplier coefficient assumed to follow a triangular distribution with a 10-3 to 10-5 range and a mode of 8 × 10-5. We then compared estimated single-event fault displacements to seal thicknesses by means of a Monte-Carlo analysis. Only 1.8% of thickness/displacement pairs display a displacement greater than 20% of the seal thickness. Only 0.26% of the pairs result in a displacement of half the seal thickness and only 0.05% of thickness/displacement pairs result in a clear seal rupture. The next step was to compare the magnitude of the event generated by such a displacement to documented magnitudes of “large” earthquakes generated by waterflooding and fluid disposal. Based on this analysis, we conclude that seismicity that may arise from CO2 injection appears not to be a serious complication for CO2 storage integrity, at least in the Gulf Coast area.« less

  17. Impact of induced seismic events on seal integrity, Texas Gulf Coast

    SciTech Connect (OSTI)

    Nicot, Jean-Philippe; Meckel, Timothy A.; Carr, David A.; Oldenburg, Curtis M.

    2014-12-31

    Recent publications have suggested that large-scale CO2 injection could trigger earthquakes and that even small- to moderate-sized earthquakes may threaten the seal integrity of the injection zone, and potentially damage buildings and other surface structures. In this study, we compared seal thickness to estimated fault displacement due to a single hypothetical seismic event in a selected area of the Texas Gulf Coast comprising an offshore strip of state waters along two Texas counties. To evaluate the slip generated by a single seismic event, we compiled well log information on shale/sand sequences and seismic information on fault geometric characteristics of a section of Lower Miocene age. The section is thousands of feet thick and is overlain and underlain by marine shales (Amph. B and Anahuac, respectively) that are relatively easy to correlate between wells. The Amph. B. shale is the secondary and ultimate seal for all injection intervals in the Lower Miocene. Given its thickness, no realistic seismic event or small series of seismic events will offset it significantly. However, this may not be true of smaller local primary seals. An analysis of geophysical logs of a total of 71 wells yielded a total of 2,871 sand / shale binary intervals. An analysis of the dedicated 3D seismic survey counted 723 fault traces at five roughly horizontal horizons within the Lower Miocene Fault displacement estimated using the product of the fault length times an uncertain multiplier coefficient assumed to follow a triangular distribution with a 10-3 to 10-5 range and a mode of 8 × 10-5. We then compared estimated single-event fault displacements to seal thicknesses by means of a Monte-Carlo analysis. Only 1.8% of thickness/displacement pairs display a displacement greater than 20% of the seal thickness. Only 0.26% of the pairs result in a displacement of half the seal thickness and only 0.05% of thickness/displacement pairs result in a clear seal rupture. The next step was to compare the magnitude of the event generated by such a displacement to documented magnitudes of “large” earthquakes generated by waterflooding and fluid disposal. Based on this analysis, we conclude that seismicity that may arise from CO2 injection appears not to be a serious complication for CO2 storage integrity, at least in the Gulf Coast area.

  18. Geologic development and characteristics of the continental margins, Gulf of Mexico. Research report, 1983-1986

    SciTech Connect (OSTI)

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-01-01

    The continental slope of the Gulf Basin covers more than 500,000 sq km and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200 m isobath, to the upper limit of the continental rise, at a depth of 2800 m. The most-complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 sq km and in which bottom slopes range from < 1 deg to > 20 deg around the knolls and basins. The near-surface geology and topography of the slope are functions of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depo-centers throughout the Neogene results in rapid shelf-edge progradation, often in excess of 15-20 km/my. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Oversteeping, high pore pressures in rapidly deposited soft sediments and changes in eustatic sea level cause subaqueous slope instabilities such as landsliding and debris flows. Large scale features such as shelf edge separation scars and landslide related canyons often results from such processes.

  19. Upper Pleistocene-to-Holocene depositional sequences in the north-central Gulf of Mexico

    SciTech Connect (OSTI)

    Bowland, C. ); Wood, L.J. )

    1991-03-01

    Upper Quaternary depositional sequences and their systems tracts can be delineated in the Main Pass area using minisparker seismic data. Core collected by the Gulf of Mexico Outer Shelf/Slope Research Consortium (Amoco, ARCO, BP, Chevron, Elf-Aquitaine, Exxon, Marathon, Mobil, and Texaco) sampled these systems tracts on one site in Main Pass 303. At the shelfbreak, a distinct change in depositional style occurs across the latest Wisconsinan sequence boundary. Widespread progradational systems (late highstand systems tract) below become focused into discrete depocenters with predominantly aggradational deposits (lowstand systems tract) above. Focusing was probably a result of localized high subsidence rates due to salt movement, progradation into rapidly deepening water, and, possibly, stabilization of sediment transport paths on the exposed shelf. No age-equivalent submarine canyons are present in this area. The oldest mappable systems tract is a highstand systems tract deposited during stage 3 interstadial and the early-to-middle stage 2 glacial. The overlying transgressive systems tract was deposited coeval with the stage 2-stage 1 transition. It thins in a land-ward direction, except where an updip depocenter was present. At the corehole site, the transgressive systems tract consists of fining-upward deposits ranging from medium-grained sands to clays. The transgressive systems tract includes small slope-front-fill lenses deposited on the uppermost slope above and adjacent to lowstand deltaic depocenters. These lenses likely comprise silt and clay derived from either reworking of lowstand deltas or sediment bypassing the outer shelf.

  20. Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Repressuring (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 2,759 2,577 2,704 2,628 2,728 3,009 3,168 3,155 3,079 3,055 3,298 3,469 1998 2,634 2,460 2,582 2,509 2,605 2,873 3,025 3,012 2,940 2,859 3,086 3,247 1999 1,809 1,689 1,773 1,723 1,789 1,973 2,077 2,068 2,019 1,963 2,119 2,230 2000 2,535 2,432 2,503 2,403 2,472 2,717 2,977 2,947 3,184 2,870 3,060 3,207 2001 1,207 1,359

  1. Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Vented and Flared (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 1,994 1,804 1,837 1,504 1,798 1,541 1,890 1,954 1,742 2,018 1,823 1,711 2002 1,661 1,512 1,693 1,728 1,794 1,738 1,809 1,820 1,523 1,433 1,667 1,714 2003 1,728 1,590 1,801 1,753 1,774

  2. Assessment of damage to the desert surfaces of Kuwait due to the Gulf War

    SciTech Connect (OSTI)

    El-Baz, F. . Center for Remote Sensing); Al-Ajmi, D. . Environmental and Earth Sciences Div.)

    1993-01-01

    This is a preliminary report on a joint research project by Boston University and the Kuwait Institute for Scientific Research that commenced in April 1992. The project aim is to establish the extent and nature of environmental damage to the desert surface and coastal zone of Kuwait due to the Gulf War and its aftermath. Change detection image enhancement techniques were employed to enhance environmental change by comparison of Landsat Thematic Mapper images obtained before the wars and after the cessation of the oil and well fires. Higher resolution SPOT images were also utilized to evaluate the nature of the environmental damage to specific areas. The most prominent changes were due to: (1) the deposition of oil and course-grained soot on the desert surface as a result of oil rain'' from the plume that emanated from the oil well fires; (2) the formation of hundreds of oil lakes, from oil seepage at the damaged oil well heads; (3) the mobilization of sand and dust and (4) the pollution of segments of the coastal zone by the deposition of oil from several oil spills. Interpretation of satellite image data are checked in the field to confirm the observations, and to assess the nature of the damage. Final results will be utilized in establishing the needs for remedial action to counteract the harmful effects of the various types of damage to the environment of Kuwait.

  3. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

  4. An analysis of uranium dispersal and health effects using a Gulf War case study.

    SciTech Connect (OSTI)

    Marshall, Albert Christian

    2005-07-01

    The study described in this report used mathematical modeling to estimate health risks from exposure to depleted uranium (DU) during the 1991 Gulf War for both U.S. troops and nearby Iraqi civilians. The analysis found that the risks of DU-induced leukemia or birth defects are far too small to result in an observable increase in these health effects among exposed veterans or Iraqi civilians. Only a few veterans in vehicles accidentally struck by U.S. DU munitions are predicted to have inhaled sufficient quantities of DU particulate to incur any significant health risk (i.e., the possibility of temporary kidney damage from the chemical toxicity of uranium and about a 1% chance of fatal lung cancer). The health risk to all downwind civilians is predicted to be extremely small. Recommendations for monitoring are made for certain exposed groups. Although the study found fairly large calculational uncertainties, the models developed and used are generally valid. The analysis was also used to assess potential uranium health hazards for workers in the weapons complex. No illnesses are projected for uranium workers following standard guidelines; nonetheless, some research suggests that more conservative guidelines should be considered.

  5. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    SciTech Connect (OSTI)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  6. Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout

    SciTech Connect (OSTI)

    Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; Romero, Isabel; Moore, Christopher; Reichart, Gert -Jan; Jilbert, Tom; Chanton, Jeff P.; Hastings, David W.; Overholt, Will A.; Marks, Kala P.; Kostka, Joel E.; Holmes, Charles W.; Hollander, David; Chin, Wei -Chun

    2015-07-14

    The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicates a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. In addition, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge.

  7. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    SciTech Connect (OSTI)

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  8. Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577

    SciTech Connect (OSTI)

    Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M.

    2013-07-01

    Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

  9. Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brooks, Gregg R.; Larson, Rebekka A.; Schwing, Patrick T.; Romero, Isabel; Moore, Christopher; Reichart, Gert -Jan; Jilbert, Tom; Chanton, Jeff P.; Hastings, David W.; Overholt, Will A.; et al

    2015-07-14

    The objective of this study was to investigate the impacts of the Deepwater Horizon (DWH) oil discharge at the seafloor as recorded in bottom sediments of the DeSoto Canyon region in the northeastern Gulf of Mexico. Through a close coupling of sedimentological, geochemical, and biological approaches, multiple independent lines of evidence from 11 sites sampled in November/December 2010 revealed that the upper ~1 cm depth interval is distinct from underlying sediments and results indicate that particles originated at the sea surface. Consistent dissimilarities in grain size over the surficial ~1 cm of sediments correspond to excess 234Th depths, which indicatesmore » a lack of vertical mixing (bioturbation), suggesting the entire layer was deposited within a 4–5 month period. In addition, a time series from four deep-sea sites sampled up to three additional times over the following two years revealed that excess 234Th depths, accumulation rates, and 234Th inventories decreased rapidly, within a few to several months after initial coring. The interpretation of a rapid sedimentation pulse is corroborated by stratification in solid phase Mn, which is linked to diagenesis and redox change, and the dramatic decrease in benthic formanifera density that was recorded in surficial sediments. Results are consistent with a brief depositional pulse that was also reported in previous studies of sediments, and marine snow formation in surface waters closer to the wellhead during the summer and fall of 2010. Although sediment input from the Mississippi River and advective transport may influence sedimentation on the seafloor in the DeSoto Canyon region, we conclude based on multidisciplinary evidence that the sedimentation pulse in late 2010 is the product of marine snow formation and is likely linked to the DWH discharge.« less

  10. Design and operating characteristics of cathodic protection systems associated with large seawater intake reinforced concrete structures in the Arabian Gulf

    SciTech Connect (OSTI)

    Ali, M.; Chaudhary, Z.; Al-Muhid, T.M.M.

    1999-07-01

    The large reinforced concrete seawater intake structures, which are part of a cooling system in several petrochemical plants located in the Arabian Gulf, have been catholically protected to arrest chloride-induced corrosion of the steel reinforcement. The cathodic protection systems have an operating history of 1--5 years. The design and operating features of the cathodic protection systems are described and discussed. Monitoring data of each system collected over the years since commissioning of the systems are described and discussed to evaluate performance of each system.

  11. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

    2006-06-01

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel, the M/V Ocean Quest and its two submersibles, but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

  12. ,"Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. Why the Gulf War still matters: Foreign perspectives on the war and the future of international security. Report No. 16

    SciTech Connect (OSTI)

    Garrity, P.J.

    1993-07-01

    This report summarizes the main findings of a Center for National Security Studies (CNSS) project that examined how a number of nations other than the United States have reacted to the course and outcome of the Persian Gulf War of 1991. The project was built around studies of key countries on which the Gulf War might reasonably be expected to have had a significant impact: Argentina, the ASEAN states, Brazil, China, Cuba, Egypt, France, Germany, India, Iran, Iraq, Israel, Italy, Japan, Jordan, Libya, North Korea, Russia, Saudi Arabia, South Korea, Spain, Syria, Taiwan, the United Kingdom, Vietnam, and the states of the former Yugoslavia. These country studies were written by well-recognized independent experts following a common set of guidelines provided by CNSS. When the country studies were completed, they were reviewed and supplemented through a series of peer assessments and workshops. The report represents a synthesis of material generated through this process, and is intended to stimulate thought and further analysis on the critical topics discussed herein.

  14. Gateway Energy Services Corporation (Pennsylvania) | Open Energy...

    Open Energy Info (EERE)

    Corporation Place: Pennsylvania Phone Number: (888) 601-2171 Website: www.gesc.comPA Outage Hotline: (888) 601-2171 References: EIA Form EIA-861 Final Data File for 2010 -...

  15. Gateway West Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    surveys and literature review; (b) the federal and state laws regarding protection of plants and wildlife; (c) the importance of these resources; (d) the purpose and necessity...

  16. Gateway:América Latina | Open Energy Information

    Open Energy Info (EERE)

    Haiti Haiti Honduras Honduras Mexico Mexico Nicaragua Nicaragua Panama Panama Paraguay Paraguay Peru Peru Republica Dominicana Dominican Republic Uruguay Uruguay Venezuela...

  17. PeopleSoft Candidate Gateway forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  18. Gateway:International/About | Open Energy Information

    Open Energy Info (EERE)

    information on renewable energy and energy efficiency analysis tools and models, databases, assessment methodologies, and other similar technical resources and emphasizes user...

  19. Energy Gateway South | Open Energy Information

    Open Energy Info (EERE)

    21 NEPA Schedule Comments Release of the Final EIS to the public is anticipated for late winter 2015. Relevant Numbers Lead Agency Doc Number BLMWYPL-14009+5001; Case File:...

  20. Oil and Gas Gateway | Open Energy Information

    Open Energy Info (EERE)

    States, oil and gas boards and commissions are the place for finding data related to oil and gas activities. These activities include well records, permitting, and production...

  1. NERSC Gateways Pave Way for 'Team Science'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The common platform available to everyone was the web browser. About this same time HTML5 and JavaScript were fostering advances in the front-end browser experience. "That was...

  2. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    SciTech Connect (OSTI)

    Bihani, Abhishek; Daigle, Hugh; Cook, Ann; Glosser, Deborah; Shushtarian, Arash

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  3. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-05-18

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being made to locate and retain the services of a replacement vessel and submersibles or Remotely Operated Vehicles (ROVs) but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in the previous report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs.

  4. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

    2007-03-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). The CMRET has conducted one very significant research cruise during this reporting period: a March cruise to perform sea trials of the Station Service Device (SSD), the custom Remotely Operated Vehicle (ROV) built to perform several of the unique functions required for the observatory to become fully operational. March's efforts included test deployments of the SSD and Florida Southern University's mass spectrometer designed to measure hydrocarbon gases in the water column and The University of Georgia's microbial collector. The University of Georgia's rotational sea-floor camera was retrieved as was Specialty Devices storm monitor array. The former was deployed in September and the latter in June, 2006. Both were retrieved by acoustic release from a dispensable weight. Cruise participants also went prepared to recover any and all instruments left on the sea-floor during the September Johnson SeaLink submersible cruise. One of the pore-fluid samplers, a small ''peeper'' was retrieved successfully and in fine condition. Other instrumentation was left on the sea-floor until modifications of the SSD are complete and a return cruise is accomplished.

  5. Natural sulfur flux from the Gulf of Mexico: dimethyl sulfide, carbonyl sulfide, and sulfur dioxide. Technical report

    SciTech Connect (OSTI)

    Van Valin, C.C.; Luria, M.; Wellman, D.L.; Gunter, R.L.; Pueschel, R.F.

    1987-06-01

    Atmospheric measurements of natural sulfur compounds were performed over the northern Gulf of Mexico during the late summer months of 1984. Air samples were collected with an instrumented aircraft at elevations of 30-3500 m, during both day and night. Most air samples were representative of the clean maritime atmosphere, although some were from continental contaminated air during periods of offshore flow at the coastline. In all samples, carbonyl sulfide concentrations were within the range of 400-500 pptv. Conversely, the dimethyl sulfide concentrations showed significant variability: during clean atmospheric conditions the average of all measurements was 27 pptv, whereas under polluted conditions the average was 7 pptv. Measureable quantities of dimethyl sulfide (>5 pptv) were not observed above the boundary layer. The average sulfur dioxide concentration measured in the marine (clean) atmosphere was 215 pptv, which is consistent with the oxidation of dimethyl sulfide being its major source.

  6. DEEPWATER SUBSEA LIQUID/GAS SEPARATION PROCESS UNDER LIVE OIL PRODUCTION CONDITIONS IN THE GULF OF MEXICO

    SciTech Connect (OSTI)

    E. T. Cousins

    2003-04-24

    This report includes technical progress made during the period October 2001 to October 2002. At the end of the first technical progress report the project was moving from feasibility of equipment design work to application of this equipment to the actual site for potential demonstration. The effort focuses on reservoir analysis cost estimations of not only the sub-sea processing unit but also the wells, pipelines, installation costs, operating procedures and economic modeling of the development scheme associated with these items. Geologic risk analysis was also part of the overall evaluation, which is factored into the probabilistic economic analysis. During this period two different potential sites in the Gulf of Mexico were analyzed and one site in Norway was initiated but not completed during the period. A summary of these activities and results are included here.

  7. Improved recovery from Gulf of Mexico reservoirs. Volume III (of 4): Characterization and simulation of representative resources. Final report, February 14, 1995--October 13, 1996

    SciTech Connect (OSTI)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1997-01-13

    Significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. In an effort to illustrate the impact that these new technologies and sources of information can have upon the estimates of recoverable oil in the Gulf of Mexico, additional and detailed data was collected for two previously studied reservoirs: a South March Island reservoir operated by Taylor Energy and Gulf of Mexico reservoir operated by Mobil, whose exact location has been blind-coded at their request, and an additional third representative reservoir in the Gulf of Mexico, the KEKF-1 reservoir in West Delta Block 84 Field. The new data includes reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data was used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation also provided additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressures, and water compatibility. Geologic investigations were also conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. These results were also used, in part, to assist in the recharacterization of these reservoirs.

  8. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic

  9. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Summary of results. Volume 1

    SciTech Connect (OSTI)

    Whitehead, D.W.; Staple, B.D.; Daniel, S.L.

    1995-07-01

    During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to examine the potential risks during low power and shutdown operations. Two plants, Surry and Grand Gulf, were selected as the plants to be studied by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). This report documents the work performed during the analysis of the Grand Gulf plant. A phased approach was used for the overall study. In Phase 1, the objectives were to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenario frequencies and risks, and to provide a foundation for a detailed Phase 2 analysis. It was in Phase 1 that the concept of plant operational states (POSs) was developed to allow the analysts to better represent the plant as it transitions from power operation to nonpower operation than was possible with the traditional technical specification divisions of modes of operation. This phase consisted of a coarse screening analysis performed for all POSs, including seismic and internal fire and flood for some POSs. In Phase 2, POS 5 (approximately cold shutdown as defined by Grand Gulf Technical Specifications) during a refueling outage was selected as the plant configuration to be analyzed based on the results of the Phase 1 study. The scope of the Level 1 study includes plant damage state analysis and uncertainty analysis and is documented in a multi-volume NUREG/CR report (i.e., NUREG/CR-6143). The internal events analysis is documented in Volume 2. Internal fire and internal flood analyses are documented in Volumes 3 and 4, respectively. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. The Level 2/3 study of the traditional internal events is documented in Volume 6, and a summary of the results for all analyses is documented in Volume 1.

  10. Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas McGee; Carol Lutken

    2008-05-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency documents including the Final Technical Report to DOE covering Cooperative Agreement DEFC26-00NT40920 and Semiannual Progress Reports for this award, DE-FC26-02NT41628. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in MC118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. SFO completion, now anticipated for 2009-10, has, therefore, been delayed. Although delays caused scheduling and deployment difficulties, many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). During the life of this Cooperative Agreement (CA), the CMRET conducted many cruises. Early in the program these were executed primarily to survey potential sites and test sensors and equipment being developed for the SFO. When MC118 was established as the observatory site, subsequent cruises focused on this location. Beginning in 2005 and continuing to the present, 13 research cruises to MC118 have been conducted by the Consortium. During September, 2006, the Consortium was able to secure 8 days aboard the R/V Seward Johnson with submersible Johnson SeaLink, a critical chapter in the life of the Observatory project as important documentation, tests, recoveries and deployments were accomplished during this trip (log appended). Consortium members have participated materially in a number of additional cruises including several of the NIUST autonomous underwater vehicle (AUV), Ea

  11. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    SciTech Connect (OSTI)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  12. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect (OSTI)

    Carol Lutken

    2006-09-30

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period: one in April, one in June, one in September. April's effort was dedicated to surveying the mound at MC118 with the Surface-Source-Deep-Receiver (SSDR) seismic surveying system. This survey was completed in June and water column and bottom samples were collected via box coring. A microbial filtering system developed by Consortium participants at the University of Georgia was also deployed, run for {approx}12 hours and retrieved. The September cruise, designed to deploy, test, and in some cases recover, geochemical and microbial instruments and experiments took place aboard Harbor Branch's Seward Johnson and employed the Johnson SeaLink manned submersible. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in a previously submitted report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs. In addition, Barrodale Computing Services Ltd. (BCS) completed their work; their final report is the bulk of the semiannual report that precedes (abstract truncated)

  13. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-03-01

    The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the construction, testing and deployment of the horizontal line arrays, not yet funded. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

  14. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production onmore » the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less

  15. Successful revegetation of a gas pipeline right-of-way in a Gulf Coast barrier island ecosystem

    SciTech Connect (OSTI)

    Hinchman, R.R.; George, J.F.; Gaynor, A.J.

    1987-01-01

    This study evaluates the revegetation of a 30-m-wide right-of-way (ROW) following construction of a 76-cm-diameter natural gas pipeline across Padre Island, Texas, a Gulf Coast barrier island. ROW construction activities were completed in 1979 and included breaching of the foredunes, grading, trenching, pipeline installation, and leveling - which effectively removed all existing vegetation from the full length of the ROW. Following construction, the foredunes were rebuilt, fertilized, and sprigged with Panicum amarum, a native dune grass known as bitter panicum. The remainder of the ROW across the mid-island flats was allowed to revegetate naturally. Plant cover by species and total vegetative cover was measured on paired permanent transects on the ROW and in the adjacent undisturbed vegetation. These cover data show that the disturbed ROW underwent rapid vegetative recovery during the first two growing seasons, attaining 54% of the cover on the undisturbed controls. By 1984, the percent vegetative cover and plant species diversity on the ROW and the adjacent undisturbed control area were not significantly different and the ROW vegetation was visually indistinguishable from the surrounding plant communities. 9 refs., 3 figs., 2 tabs.

  16. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Main report and appendices, Volume 6, Part 1

    SciTech Connect (OSTI)

    Brown, T.D.; Kmetyk, L.N.; Whitehead, D.; Miller, L.; Forester, J.; Johnson, J.

    1995-03-01

    Traditionally, probabilistic risk assessments (PRAS) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Recent studies and operational experience have, however, implied that accidents during low power and shutdown could be significant contributors to risk. In response to this concern, in 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The program consists of two parallel projects being performed by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). The program objectives include assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing the estimated risks with the risk associated with accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program is that of a Level-3 PRA. The subject of this report is the PRA of the Grand Gulf Nuclear Station, Unit 1. The Grand Gulf plant utilizes a 3833 MWt BUR-6 boiling water reactor housed in a Mark III containment. The Grand Gulf plant is located near Port Gibson, Mississippi. The regime of shutdown analyzed in this study was plant operational state (POS) 5 during a refueling outage, which is approximately Cold Shutdown as defined by Grand Gulf Technical Specifications. The entire PRA of POS 5 is documented in a multi-volume NUREG report (NUREG/CR-6143). The internal events accident sequence analysis (Level 1) is documented in Volume 2. The Level 1 internal fire and internal flood analyses are documented in Vols 3 and 4, respectively.

  17. A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Leung, Lai-Yung R.; Hibbard, Kathleen A.; Janetos, Anthony C.; Kraucunas, Ian P.; Rice, Jennie S.; Preston, Benjamin; Wilbanks, Thomas

    2013-12-10

    The northern coasts of the Gulf of Mexico are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks can be potentially exacerbated by land subsidence and global sea level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea level rise in the northern Gulf coast. An unstructured-grid Finite Volume Coastal Ocean Model was used to simulate tides and hurricane-induced storm surges in the Gulf of Mexico. Simulated distributions of co-amplitude and co-phase of semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea level rise on coastal inundation in the Louisiana coast were evaluated using a parameter “change of inundation depth” through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.

  18. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next

  19. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  20. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  1. ,"Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  2. ,"Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  3. ,"Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  4. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    SciTech Connect (OSTI)

    William L. Fisher; Eugene M. Kim

    2000-12-01

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  5. Studying methane migration mechanisms at Walker Ridge, Gulf of Mexico, via 3D methane hydrate reservoir modeling

    SciTech Connect (OSTI)

    Nole, Michael; Daigle, Hugh; Mohanty, Kishore; Cook, Ann; Hillman, Jess

    2015-12-15

    We have developed a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ microbial methanogenesis, the influence of pore size contrast on solubility gradients, and the impact of salt exclusion from the hydrate phase on dissolved methane equilibrium in pore water. Using environmental parameters from Walker Ridge in the Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. We find that with sufficient methane being supplied by organic methanogenesis in the clays, a 200x pore size contrast between clays and sands allows for a strong enough concentration gradient to significantly drop the concentration of methane hydrate in clays immediately surrounding a thin sand layer, a phenomenon that is observed in well log data. Building upon previous work, our simulations account for the increase in sand-clay solubility contrast with depth from about 1.6% near the top of the sediment column to 8.6% at depth, which leads to a progressive strengthening of the diffusive flux of methane with time. By including an exponentially decaying organic methanogenesis input to the clay lithology with depth, we see a decrease in the aqueous methane supplied to the clays surrounding the sand layer with time, which works to further enhance the contrast in hydrate saturation between the sand and surrounding clays. Significant diffusive methane transport is observed in a clay interval of about 11m above the sand layer and about 4m below it, which matches well log observations. The clay-sand pore size contrast alone is not enough to completely eliminate hydrate (as observed in logs), because the diffusive flux of aqueous methane due to a contrast in pore size occurs slower than the rate at which methane is supplied via organic methanogenesis. Therefore, it is likely that additional mechanisms are at play, notably bound water activity reduction in clays. Three-dimensionality allows for inclusion of lithologic heterogeneities, which focus fluid flow and subsequently allow for heterogeneity in the methane migration mechanisms that dominate in marine sediments at a local scale. Incorporating recently acquired 3D seismic data from Walker Ridge to inform the lithologic structure of our modeled reservoir, we show that even with deep adjective sourcing of methane along highly permeable pathways, local hydrate accumulations can be sourced either by diffusive or advective methane flux; advectively-sourced hydrates accumulate evenly in highly permeable strata, while diffusively-sourced hydrates are characterized by thin strata-bound intervals with high clay-sand pore size contrasts.

  6. HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Lutken, Carol

    2013-07-31

    A permanent observatory has been installed on the seafloor at Federal Lease Block, Mississippi Canyon 118 (MC118), northern Gulf of Mexico. Researched and designed by the Gulf of Mexico Hydrates Research Consortium (GOM-HRC) with the geological, geophysical, geochemical and biological characterization of in situ gas hydrates systems as the research goal, the site has been designated by the Bureau of Ocean Energy Management as a permanent Research Reserve where studies of hydrates and related ocean systems may take place continuously and cooperatively into the foreseeable future. The predominant seafloor feature at MC118 is a carbonate-hydrate complex, officially named Woolsey Mound for the founder of both the GOM-HRC and the concept of the permanent seafloor hydrates research facility, the late James Robert “Bob” Woolsey. As primary investigator of the overall project until his death in mid-2008, Woolsey provided key scientific input and served as chief administrator for the Monitoring Station/ Seafloor Observatory (MS-SFO). This final technical report presents highlights of research and accomplishments to date. Although not all projects reached the status originally envisioned, they are all either complete or positioned for completion at the earliest opportunity. All Department of Energy funds have been exhausted in this effort but, in addition, leveraged to great advantage with additional federal input to the project and matched efforts and resources. This report contains final reports on all subcontracts issued by the University of Mississippi, Administrators of the project, Hydrate research activities that both support and derive from the monitoring station/sea-floor Observatory, Mississippi Canyon 118, northern Gulf of Mexico, as well as status reports on the major components of the project. All subcontractors have fulfilled their primary obligations. Without continued funds designated for further project development, the Monitoring Station/Seafloor Observatory is in danger of lapsing into disuse. However, for the present, interest in the site on the continental slope is healthy and The Center for Marine Resources and Environmental Technology continues to coordinate all activity at the MS/SFO as arranged through the BOEM in 2005. Field and laboratory research projects and findings are reviewed, new technologies and tests described. Many new sensors, systems and two custom ROVs have been developed specifically for this project. Characteristics of marine gas hydrates are dramatically more refined than when the project was initiated and include appear in sections entitled Accomplishments, Products and Publications.

  7. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-09-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements six months into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: Analysis and repair attempts of the VLA used in the deep water deployment during October 2003 have been completed; Definition of an interface protocol for the VLA DATS to the SFO has been established; Design modifications to allow integration of the VLA to the SFO have been made; Experience gained in the deployments of the first VLA is being applied to the design of the next VLAs; One of the two planned new VLAs being modified to serve as an Oceanographic Line Array (OLA). (2) Progress on the Sea Floor Probe: The decision to replace the Sea Floor Probe technology with the borehole emplacement of a geophysical array was reversed due to the 1300m water depth at the JIP selected borehole site. The SFP concept has been revisited as a deployment technique for the subsea floor array; The SFP has been redesigned to include gravity driven emplacement of an array up to 10m into the shallow subsurface of the sea floor. (3) Progress on the Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been analyzed for effects of currents and temperature changes; Several acoustic monitoring system concepts have been evaluated for their appropriateness to MC118, i.e., on the deep sea floor; A mock-up system was built but was rejected as too impractical for deployment on the sea floor. (4) Progress on the Electromagnetic Bubble Detector and Counter: The initial Inductive Conductivity Cell has been constructed from components acquired during the previous reporting period; Laboratory tests involving measuring bubble volume as a component of conductivity have been performed; The laboratory tests were performed in a closed system, under controlled conditions; the relationship between voltage and bubble volume appears to be linear. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: Designs and construction schematics for all electronic mounting pieces and an electronics system baseplate were finalized after extensive modeling to facilitate the successful fabrication and implementation of electronic components into the deep-sea, glass instrument housing; Construction schematics and fabrication of an electronics system baseplate have been completed with successful integration of all currently fabricated electronic mounting pieces; Modeling and design of an optics platform complementary to the constructed electronics platform for successful incorporation into ''sphereIR'' has commenced; A second generation chemometric data evaluation software package for evaluating complex spectra including corrections for baseline drifts and spectral anomalies resulting from matrix substances has been developed and will be incorporated into an optimized ''deepSniff'' program upon c

  8. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2004-03-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments. (3) Electromagnetic bubble detector and counter: Initial tests performed with standard conductivity sensors detected nonconductive objects as small as .6mm, a very encouraging result, Components for the prototype are being assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed. (4) Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

  9. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-08-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. A year into the life of this cooperative agreement, we note the following achievements: (1) Progress on the vertical line array (VLA) of sensors: (A) Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, (B) Cabling upgrade to allow installation of positioning sensors, (C) Adaptation of SDI's Angulate program to use acoustic slant ranges and DGPS data to compute and map the bottom location of the vertical array, (D) Progress in T''0'' delay and timing issues for improved control in data recording, (E) Successful deployment and recovery of the VLA twice during an October, 2003 cruise, once in 830m water, once in 1305m water, (F) Data collection and recovery from the DATS data logger, (G) Sufficient energy supply and normal functioning of the pressure compensated battery even following recharge after the first deployment, (H) Survival of the acoustic modem following both deployments though it was found to have developed a slow leak through the transducer following the second deployment due, presumably, to deployment in excess of 300m beyond its rating. (2) Progress on the Sea Floor Probe: (A) The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed, (B) The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments, (C) The MPS has been adapted to serve as an energy source for both p- and s-wave studies at the station as well as to deploy the horizontal line arrays and the SFP. (3) Progress on the Electromagnetic Bubble Detector and Counter: (A) Components for the prototype have been assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed, (B) The prototype has been constructed and preliminary data collected, (C) The construction of the field system is underway. (4) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (A) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate. These measurements have been used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station, (B) Laboratory tests performed using the project prototype have produced a conductivity data set that is being used to refine parameters of the field model. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (A) Preliminary designs of mounting pieces for electrical components of ''sphereIR'' have been completed using AutoCAD software, (B) The preliminary design of an electronics baseplate has been completed and aided in the optimization of

  10. Long-term monitoring of reef corals at the Flower Garden Banks (northwest Gulf of Mexico): Reef coral population changes and historical incorporation of barium in Montastrea annularis

    SciTech Connect (OSTI)

    Deslarzes, K.J.P.

    1992-01-01

    Reef coral populations were monitored from 1988 to 1991 at the Flower Garden Banks located in the northwestern Gulf of Mexico. The status of reef coral populations, and natural or man-made factors potentially affecting their well-being were determined. Man-made chronic disturbances are degrading coral reef resources on a global scale. Yet, the Flower Garden coral reefs seem to have been sheltered from the effects of regional stresses generated by population growth and increased industrial activity. Since 1974, reef coral population levels have remained unchanged in the Montastrea-Diploria Zones at the Flower Garden Banks. Live coral cover ranges between 46 and 46.5%. Montastrea annularis and Diploria strigosa comprise 80% of the coral cover on either bank. The remainder of the cover is mostly shared by eight other taxa. Coral taxa appear to be more homogeneously distributed on the West Bank. The relatively greater number of Agaricia spp., Madracis decastis, and P. astreoides colonies on the East Bank may be the source of a decreased evenness. The health of reef corals was assessed using repetitive and non-repetitive photographic methods, and accretionary growth measurements of M. annularis. Reef corals have undergone small scale changes at the Flower Gardens probably reflecting natural disturbance, predation, disease, and inter-specific competition. White mat disease (ridge disease) is shown to generate more tissue loss than any of the three bleaching events that took place at the Flower Gardens (1989, 1990, and 1991). Advance to retreat linear ratios of encrusting growth revealed a net tissue gain on the East Bank and a net tissue loss on the West Bank. Growth rates of M. annularis were highly variable. The annual barium content from 1910 in 1989 in a M. annularis colony from the West Flower Garden did not reveal trends associated with the extensive oil and gas exploration in the northern Gulf of Mexico.

  11. Deep structure of the Texas Gulf passive margin and its Ouachita-Precambrian basement: Results of the COCORP San Marcos arch survey

    SciTech Connect (OSTI)

    Culotta, R.; Latham, T.; Oliver, J.; Brown, L.; Kaufman, S. (Cornell Univ., Ithaca, NY (United States)); Sydow, M. (Pennzoil, Houston, TX (United States))

    1992-02-01

    This COCORP deep seismic survey provides a comprehensive image of the southeast-Texas part of the Gulf passive margin and its accreted Ouachita arc foundation. Beneath the updip limit of the Cenozoic sediment wedge, a prominent antiformal structure is imaged within the interior zone of the buried late Paleozoic Ouachita orogen. The structure appears to involve Precambrian Grenville basement. The crest of the antiform is coincident with the Cretaceous-Tertiary Luling-Mexia-Talco fault zone. Some of these faults dip to the northwest, counter to the general regional pattern of down-to-the-basin faulting, and appear to sole into the top of the antiform, suggesting that the Ouachita structure has been reactivated as a hingeline to the subsiding passive margin. The antiform may be tied via this fault system and the Ouachita gravity gradient to the similar Devils River, Waco, and Benton uplifts, interpreted as Precambrian basement-cored massifs. Above the Paleozoic sequence, a possible rift-related graben is imaged near the updip limit of Jurassic salt. Paleoshelf edges of the major Tertiary depositional sequences are marked by expanded sections disrupted by growth faults and shale diapirs. Within the Wilcox Formation, the transect crosses the mouth of the 900-m-deep Yoakum Canyon, a principal pathway of sediment delivery from the Laramide belt to the Gulf. Beneath the Wilcox, the Comanchean (Lower Cretaceous) shelf edge, capped by the Stuart City reef, is imaged as a pronounced topographic break onlapped by several moundy sediment packages. Because this segment of the line parallels strike, the topographic break may be interpreted as a 2,000-m-deep embayment in the Cretaceous shelf-edge, and possibly a major submarine canyon older and deeper than the Yoakum Canyon.

  12. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 2, Part 1C: Analysis of core damage frequency from internal events for plant operational State 5 during a refueling outage, Main report (Sections 11--14)

    SciTech Connect (OSTI)

    Whitehead, D.; Darby, J.; Yakle, J.

    1994-06-01

    This document contains the accident sequence analysis of internally initiated events for Grand Gulf, Unit 1 as it operates in the Low Power and Shutdown Plant Operational State 5 during a refueling outage. The report documents the methodology used during the analysis, describes the results from the application of the methodology, and compares the results with the results from two full power analyses performed on Grand Gulf.

  13. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-11-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements one year into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: (1a) Repair attempts of the VLA cable damaged in the October >1000m water depth deployment failed; a new design has been tested successfully. (1b) The acoustic modem damaged in the October deployment was repaired successfully. (1c) Additional acoustic modems with greater depth rating and the appropriate surface communications units have been purchased. (1d) The VLA computer system is being modified for real time communications to the surface vessel using radio telemetry and fiber optic cable. (1e) Positioning sensors--including compass and tilt sensors--were completed and tested. (1f) One of the VLAs has been redesigned to collect near sea floor geochemical data. (2) Progress on the Sea Floor Probe: (2a) With the Consortium's decision to divorce its activities from those of the Joint Industries Program (JIP), due to the JIP's selection of a site in 1300m of water, the Sea Floor Probe (SFP) system was revived as a means to emplace arrays in the shallow subsurface until arrangements can be made for boreholes at >1000m water depth. (2b) The SFP penetrometer has been designed and construction begun. (2c) The SFP geophysical and pore-fluid probes have been designed. (3) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (3a) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been analyzed for effects of currents and temperature changes. (3b) Several acoustic monitoring system concepts have been evaluated for their appropriateness to MC118, i.e., on the deep sea floor. (3c) A mock-up system was built but was rejected as too impractical for deployment on the sea floor. (4) Progress on the Electromagnetic Bubble Detector and Counter: (4a) Laboratory tests were performed using bubbles of different sizes in waters of different salinities to test the sensitivity of the. Differences were detected satisfactorily. (4b) The system was field tested, first at the dock and then at the shallow water test site at Cape Lookout Bight where methane bubbles from the sea floor, naturally, in 10m water depth. The system successfully detected peaks in bubbling as spike decreases in conductivity. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (5a) Modeling and design of an optics platform complementary to the constructed electronics platform for successful incorporation into ''sphereIR'' continues. AutoCAD design and manual construction of mounting pieces for major optical components have been completed. (5b) Initial design concepts for IR-ATR sensor probe geometries have been established and evaluated. Initial evaluations of a horizontal ATR (HATR) sensing probe with fiber optic guiding light have been performed and validate the design concept as a potentially viable deep sea sensing pr

  14. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    SciTech Connect (OSTI)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10{sup {minus}7}/year.

  15. ECOWAS Clean Energy Gateway-Organizations and Networks | Open...

    Open Energy Info (EERE)

    countries that are driven by climate change, energy security, development and poverty alleviation. NCPV International PV Communications Hotline The National Renewable...

  16. Gateway:Incentives and Policies | Open Energy Information

    Open Energy Info (EERE)

    XML archive Browse by Type Renewables & Energy Efficiency Policies (4429) Energy Efficiency Policies Renewable Energy Policies Financial Incentives (2187) Corporate Tax...

  17. West African Clean Energy Gateway-Software Analysis Tools | Open...

    Open Energy Info (EERE)

    Power 1.0 Energy Efficiency Petroleum Reduction Planning Tool Biomass Energy Efficiency Hydrogen Fuels & Efficiency Transportation PlotWatt Energy Efficiency Policy Analysis...

  18. User:GregZiebold/Gateway test | Open Energy Information

    Open Energy Info (EERE)

    LatinaDiseo de polticas y programas Amrica LatinaEcuador Amrica LatinaEl Salvador Amrica LatinaEnergas Renovables Amrica LatinaEstadisticas de ERNC en...

  19. Alaska Gateway School District Adopts Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    savings, Tok School has been able to rehire three staff members for the school: music teacher, counselor, and boiler operator. Once more savings are realized and biomass...

  20. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting...

    Energy Savers [EERE]

    Heat and Moisture Exchange Technology Buildings Home About Emerging Technologies Residential Buildings Commercial Buildings Appliance & Equipment Standards Building Energy Codes...

  1. Gateway:Low Emission Development Strategies | Open Energy Information

    Open Energy Info (EERE)

    LEDS Inventory.png Greenhouse Gas Inventory LEDS CleanEnergy.png Clean Energy LEDS bioenergy.jpeg Bioenergy LEDS EnergyModeling.jpeg Energy Modeling LEDS LandUse.png Land Use...

  2. REEGLE - Clean Energy Information Gateway | Open Energy Information

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: reegle.info - clean energy information portal AgencyCompany Organization: Renewable Energy and Energy Efficiency Partnership...

  3. ECOWAS Clean Energy Gateway-Transportation | Open Energy Information

    Open Energy Info (EERE)

    threat to soil, surface water, or groundwater. Propane is produced as a by-product of natural gas processing and crude oil refining. Uses include home and water heating, cooking...

  4. Global Science Gateway Now Open | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis WorldWideScience.org opens public access to more than 200 million pages of ... much-needed access to smaller, less well-known sources of highly valuable science. ...

  5. OpenEI:OldGeoGateway | Open Energy Information

    Open Energy Info (EERE)

    Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource...

  6. OpenEI:Old Geothermal Gateway | Open Energy Information

    Open Energy Info (EERE)

    Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource...

  7. Secure Information Exchange Gateway for Electric Grid Operations

    SciTech Connect (OSTI)

    Robertson, F. Russell; Carroll, J. Ritchie; Sanders, William; Yardley, Timothy; Heine, Erich; Hadley, Mark; McKinnon, David; Motteler, Barbara; Giri, Jay; Walker, William; McCartha, Esrick

    2014-09-30

    The major objectives of the SIEGate project were to improve the security posture and minimize the cyber-attack surface of electric utility control centers and to reduce the cost of maintaining control-room-to-control-room information exchange. Major project goals included the design, development, testing, and commercialization of a single security-hardened appliance that could meet industry needs for resisting cyber-attacks while protecting the confidentiality and integrity of a growing volume of real-time information needed to ensure the reliability of the bulk electric system and interoperating with existing data formats and networking technologies. The SIEGate project has achieved its goals and objectives. The SIEGate Design Document, issued in March 2012, presented SIEGate use cases, provided SIEGate requirements, established SIEGate design principles, and prescribed design functionality of SIEGate as well as the components that make up SIEGate. SIEGate Release Version 1.0 was posted in January 2014. Release Version 1.0.83, which was posted on March 28, 2014, fixed many issues discovered by early adopters and added several new features. Release Candidate 1.1, which added additional improvements and bug fixes, was posted in June 2014. SIEGate executables have been downloaded more than 300 times. SIEGate has been tested at PJM, Entergy, TVA, and Southern. Security testing and analysis of SIEGate has been conducted at PNNL and PJM. Alstom has provided a summary of recommended steps for commercialization of the SIEGate Appliance and identified two deployment models with immediate commercial application.

  8. Gateway:América Latina/desarrollo proyectos | Open Energy Information

    Open Energy Info (EERE)

    desarrollo proyectos Jump to: navigation, search Dimensionamiento y Evaluacin de Proyectos Financiamiento Pgina principal Proyectos.jpg Retrieved from "http:en.openei.orgw...

  9. DOE Publishes GATEWAY Report on Exterior Lighting at Princeton...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacing seven high-pressure sodium (HPS) luminaires with LED luminaires along a pedestrian walkway in 2008 allowed the school to test the new LED technology in a small-scale ...

  10. Gateway:América Latina/Financiamiento | Open Energy Information

    Open Energy Info (EERE)

    sitio web provee publicaciones, una base de datos gratis de prestamistas en lnea, una red de alianza para intercambio de buenas prcticas y recursos compartidos, entrenamiento...

  11. Gateway:América Latina/Centros Latinoamericanos | Open Energy...

    Open Energy Info (EERE)

    do Biodiesel- Privado BColombia.jpg Colombia Ministerio de Minas y Energas- Pblico Red Energas Alternativas- Privado BCuba.jpg Cuba Centro de Gestin de la Informacin y...

  12. West African Clean Energy Gateway-Resource Assessment | Open...

    Open Energy Info (EERE)

    a grid cell. It follows then that each grid cell would only have one value for solar resource, which represents the annual average solar resource (GHI, for PV analysis)...

  13. Gateway:Coordinated Low Emissions Assistance Network (CLEAN)...

    Open Energy Info (EERE)

    Workshop Featured Partner Web Portals Click here to view LEDS-related portals Clean Energy Solutions Center ClimateTechWiki ESMAP Low Carbon Development Knowledge Products and...

  14. ECOWAS Clean Energy Gateway-News | Open Energy Information

    Open Energy Info (EERE)

    and production (SCP), disaster risk reduction (DRR), industrialization and the use of big data in Africa, among other issues. African Regional Coverage - IISD Reporting...

  15. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting...

    Energy Savers [EERE]

    lighting project is different, and tradeoffs between such factors as visual comfort, color, visibility, and efficacy are inevitable. There is no glare metric that works reliably...

  16. Sr2IrO4: Gateway to cuprate superconductivity?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mitchell, J. F.

    2015-06-05

    High temperature superconductivity in cuprates remains a defining challenge in condensed matter physics. Recently, a new set of related compounds based on Ir rather than Cu has been discovered that may be on the verge of superconductivity themselves or be able to shed new light on the underlying interactions responsible for superconductivity in the cuprates.

  17. GATEWAY Univ of Maryland Report | Department of Energy

    Energy Savers [EERE]

    August 2015 POSTINGS Next Generation Luminaire (NGL) Downlight Demonstration Project: St. Anthony's Hospital SSL Adoption by Museums: Survey Results, Analysis, and Recommendations...

  18. Gateway:Coordinated Low Emissions Assistance Network (CLEAN)...

    Open Energy Info (EERE)

    improve efficiency and enhance coordination of LEDS activities. CLEAN falls under the umbrella of the LEDS Global Partnership as a network of practitioners from around the world...

  19. T-544: Cisco Security Advisory: Cisco Content Services Gateway...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a single content service to be active on the Cisco CSG2 and can be exploited via crafted TCP packets. A three-way handshake is not required to exploit either of these...

  20. Gateway:Low Emission Development Strategies | Open Energy Information

    Open Energy Info (EERE)

    rigorous low emission development strategies (LEDS). LEDS will enable countries to transition to low carbon economic development resulting in sustained growth in employment and...

  1. Gateway:Coordinated Low Emissions Assistance Network (CLEAN)...

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Development Programme (UNDP) United Nations...

  2. Global Science Gateway Agreement Signed in London | Department...

    Energy Savers [EERE]

    Projects such as ITER, the large-scale international fusion energy research effort, and the particle accelerator known as the Large Hadron Collider are being conducted as major ...

  3. T-544: Cisco Security Advisory: Cisco Content Services Gateway Vulnerabilities

    Broader source: Energy.gov [DOE]

    Cisco IOS Software Release 12.4(24)MD1 on the Cisco CSG2 contains two vulnerabilities that can be exploited by a remote, unauthenticated attacker to create a denial of service condition that prevents traffic from passing through the CSG2. These vulnerabilities require only a single content service to be active on the Cisco CSG2 and can be exploited via crafted TCP packets. A three-way handshake is not required to exploit either of these vulnerabilities.

  4. Clyde Gateway (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Projects Map1 Overview To demonstrate the latest smart grid technology and use the learning to develop proposals for wider and larger scale smart grid applications across...

  5. Gateway:Coordinated Low Emissions Assistance Network (CLEAN)...

    Open Energy Info (EERE)

    Center ClimateTechWiki ESMAP Low Carbon Development Knowledge Products and E-Learning IEA Policies and Measures Database GEF-Knowledge Management Initiative REN21...

  6. DOE Publishes GATEWAY Report on Exterior Lighting at Princeton...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and day to replace 252 metal halide parking garage luminaires that only operated after dark showed that the inherent controllability of LEDs provides opportunities for multiple...

  7. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540

    SciTech Connect (OSTI)

    Alvarez, W.; Asaro, F. ); Smit, J. ); Lowrie, W. ); Asaro, F. ); Margolis, S.V.; Claeys, P. ); Kastner, M. ); Hildebrand, A.R. )

    1992-08-01

    Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.

  8. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    SciTech Connect (OSTI)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production on the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.

  9. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  10. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-05-20

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  11. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Supporting MELCOR calculations, Volume 6, Part 2

    SciTech Connect (OSTI)

    Kmetyk, L.N.; Brown, T.D.

    1995-03-01

    To gain a better understanding of the risk significance of low power and shutdown modes of operation, the Office of Nuclear Regulatory Research at the NRC established programs to investigate the likelihood and severity of postulated accidents that could occur during low power and shutdown (LP&S) modes of operation at commercial nuclear power plants. To investigate the likelihood of severe core damage accidents during off power conditions, probabilistic risk assessments (PRAs) were performed for two nuclear plants: Unit 1 of the Grand Gulf Nuclear Station, which is a BWR-6 Mark III boiling water reactor (BWR), and Unit 1 of the Surry Power Station, which is a three-loop, subatmospheric, pressurized water reactor (PWR). The analysis of the BWR was conducted at Sandia National Laboratories while the analysis of the PWR was performed at Brookhaven National Laboratory. This multi-volume report presents and discusses the results of the BWR analysis. The subject of this part presents the deterministic code calculations, performed with the MELCOR code, that were used to support the development and quantification of the PRA models. The background for the work documented in this report is summarized, including how deterministic codes are used in PRAS, why the MELCOR code is used, what the capabilities and features of MELCOR are, and how the code has been used by others in the past. Brief descriptions of the Grand Gulf plant and its configuration during LP&S operation and of the MELCOR input model developed for the Grand Gulf plant in its LP&S configuration are given.

  12. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.

  13. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internal events for Plant Operational State 5 during a refueling outage. Volume 2, Part 3: Internal Events Appendices I and J

    SciTech Connect (OSTI)

    Yakle, J.; Darby, J.; Whitehead, D.; Staple, B.

    1994-06-01

    This report provides supporting documentation for various tasks associated with the performance of the probablistic risk assessment for Plant Operational State 5 during a refueling outage at Grand Gulf, Unit 1 as documented in Volume 2, Part 1 of NUREG/CR-6143.

  14. MediaWiki:Sidebar | Open Energy Information

    Open Energy Info (EERE)

    search Browse width:20em Gateway:Amrica Latina|Latinoamrica Gateway:Buildings|Buildings Gateway:CleanEnergyEconomy|Clean Energy Economy Gateway:Coordinated Low...

  15. Evaluation of solitary waves as a mechanism for oil transport in poroelastic media: A case study of the South Eugene Island field, Gulf of Mexico basin

    SciTech Connect (OSTI)

    Joshi, Ajit; Appold, Martin S.; Nunn, Jeffrey A.

    2012-11-01

    Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E�¢����12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1E�¢����25 to 1E�¢����24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 105 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1E�¢����3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fluid, or where sudden fracturing of overpressured hydrocarbon source sediments would allow the solitary waves to propagate as shock waves. Hydrocarbons in shallow reservoirs of the Eugene Island 330 field in the Gulf of Mexico basin are thought to have migrated rapidly along low permeability sediments of the Red fault zone as discrete pressure pulses from source rocks at depths of about 4.5 km. The aim of this research was to evaluate the hypothesis that these pressure pulses represent solitary waves by investigating the mechanics of solitary wave formation and motion and wave oil transport capability. A two-dimensional numerical model of Eugene Island minibasin formation predicted overpressures at the hydrocarbon source depth to increase at an average rate of 30 Pa/yr, reaching 52 MPa by the present day and oil velocities of 1E�¢����12 m/yr, far too low for kilometer scale oil transport to fill shallow Plio-Pleistocene reservoirs within the 3.6 million year minibasin history. Calculations from a separate one-dimensional model that used the pressure generation rate from the two-dimensional model showed that solitary waves could only form and migrate within sediments that have very low permeabilities between 1E�¢����25 to 1E�¢����24 m2 and that are highly overpressured to 91-93% of lithostatic pressure. Solitary waves were found to have a maximum pore volume of 100,000 m3, to travel a maximum distance of 1-2 km, and to have a maximum velocity of 1E�¢����3 m/yr. Based on these results, solitary waves are unlikely to have transported oil to the shallowest reservoirs in the Eugene Island field in a poroelastic fault gouge rheology at the pressure generation rates likely to have been caused by disequilibrium compaction and hydrocarbon generation. However, solitary waves could perhaps be important agents for oil transport in other locations where reservoirs are closer to the source rocks, where the pore space is occupied by more than one fl

  16. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-05-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  17. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-12-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  18. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

  19. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.

  20. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    SciTech Connect (OSTI)

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  1. U.S. LNG Imports from Malaysia

    U.S. Energy Information Administration (EIA) Indexed Site

    9-2015 Liquefied Natural Gas Prices -- -- -- -- -- -- 1999

  2. CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 4, Ghana, Sierra Leone, Nigeria and the Gulf Cooperation Council (GCC) countries

    SciTech Connect (OSTI)

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world`s share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. A combined study was carried out for the countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates).

  3. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  4. Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico

    SciTech Connect (OSTI)

    Bureau of Economic Geology

    2009-04-30

    The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4C OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability zone.

  5. Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...

    Open Energy Info (EERE)

    Fuente: Forestry Webinar Portal Idioma: Ingls The South Rises Again: Industrial Forest Management in Chile Fuente: Forestry Webinar Portal Idioma: Ingls Residuos Orgnicos An...

  6. Gateway:América Latina/Diseño de políticas y programas | Open...

    Open Energy Info (EERE)

    para garantizar el desarrollo sostenible, teniendo en cuenta la equidad social, crecimiento econmico, la gobernabilidad y compatibilidad con el ambiente, de acuerdo con los...

  7. U-244: McAfee Email Gateway Lets Remote Users Bypass Authentication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    McAfee Security Bulletin ID: SB10026 SecurityTracker Alert ID: 1027444 Bugtraq ID: 55184 CVE-2012-4595, CVE-2012-4596, CVE-2012-4597 IMPACT ASSESSMENT: Medium Discussion A remote...

  8. Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...

    Open Energy Info (EERE)

    LatinaAprender ms sobre las ERNCSeleccion de WebinarsProspeccin y Estudios de Pre-InversionHidraulica Jump to: navigation, search Centrales Hidroelctricas...

  9. Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...

    Open Energy Info (EERE)

    LatinaAprender ms sobre las ERNCSeleccion de WebinarsProspeccin y Estudios de Pre-InversionEolica Jump to: navigation, search Finding the right spot for a...

  10. Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...

    Open Energy Info (EERE)

    Seleccion de WebinarsEstudios de Ingeniera y Seleccin de EquiposHidraulica Jump to: navigation, search Turbinas Francis Fuente: International Centre for Hydropower Idioma:...

  11. Gateway:América Latina/Aprender más sobre las ERNC/Estudios...

    Open Energy Info (EERE)

    Estudios de Ingeniera y Seleccin de EquiposEolica Jump to: navigation, search Wind turbine components Fuente: Vestas Idioma: Ingls Learn about the rotor Fuente: Vestas...

  12. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids

    SciTech Connect (OSTI)

    Zhang, Xuebin; Liu, Chang-Jun

    2014-12-11

    Phenylpropanoid biosynthesis in plants engenders a vast variety of aromatic metabolites critically important for their growth, development, and environmental adaptation. Some of these aromatic compounds have high economic value. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway; it diverts the central flux of carbon from primary metabolism to the synthesis of myriad phenolics. Over the decades, many studies have shown that exquisite regulatory mechanisms at multiple levels control the transcription and the enzymatic activity of PALs. In this review, we present a current overview on our understanding of the complicated regulatory mechanisms governing PAL's activity; we particularly highlight recent progresses in unraveling its post-translational modifications, its metabolite feedback regulation, and its enzyme organization.

  13. Gateway:U.S. OpenLabs/Research Groups | Open Energy Information

    Open Energy Info (EERE)

    Assisting Mexico in Developing Energy Supply and Demand Projections Brazil-NETL Advanced Fossil Fuels Partnerships Brazil-NREL Biofuels and EERE Cooperation Canada-NREL Energy...

  14. Gateway:América Latina/Aprender más sobre las ERNC/Estudios...

    Open Energy Info (EERE)

    Fuente: Leonardo Energy Idioma: Ingls Trmica Optimizacin econmica de plantas fotovoltaicas - Dimensionamiento del cableado Fuente: Leonardo Energy Idioma: Ingls...

  15. SBIR Phase II Final Report - Multi-Protocol Energy Management Gateway for Home-Area Networks

    SciTech Connect (OSTI)

    Hanna, Jason

    2015-02-06

    Significant amounts of electricity, natural gas, and heating oil are wasted by homeowners due to inefficient operation and inadequate maintenance of heating, ventilation, and air conditioning (HVAC) equipment. Coincident’s work under this award reduces energy waste, saves consumers money, and reduces carbon emissions. It does so in three ways: First, Coincident’s approach replaces the traditional thermostat with a wireless network of sensors and controllers that measure temperature, humidity and occupancy in multiple rooms in the house. The “Internet of Things” is a technology trend holding the promise of ubiquitous inexpensive sensors. The reality, however, is that energy and HVAC monitoring and management is a patchwork of incompatible protocols and expensive proprietary technologies. Coincident’s multi-protocol architecture, developed in part under this award tackles this problem and brings low cost interoperable sensor and control devices to market. Second, the Coincident system eliminates hard-to-program and rigid thermostat schedules and instead provides automatic operation of heating and cooling by combining individual temperature and comfort preferences with energy-saving targets, real-time utility use information, weather data, and room utilization patterns. Energy efficiency technology must be appealing to consumers otherwise it will not be used. The Coincident user interface has engaging features such as remote control from any smart phone or web browser and per-room performance breakdowns. Expected energy savings resulting from more efficient operation of heating and air conditioning equipment are in the range of 10-20%. Third, the Coincident system provides heating and air-conditioning contractors with fine-grained performance data for every residence they support (subject to customer privacy controls). This data is integrated from diverse networks within the residence and includes HVAC performance and fuel use data. This information allows the partner to validate energy savings and identify potential system faults (whether from installation problems or maintenance issues). When combined with professional installation as part of high-efficiency HVAC upgrade, energy savings levels of 20-30% can be achieved. Economic feasibility of energy efficiency technology is one of the key challenges addressed in this award. The Coincident system is engineered to be delivered at a disruptive price point, making the system financially feasible for new and retrofit homes of all types and sizes. The Coincident system is intended to be sold through the HVAC professional—the industry most capable of improving HVAC efficiency. Providing HVAC contractors with detailed home performance data motivates them to sell the product, provides them with maintenance and upgrade revenue opportunities, and therefore delivers customer savings and environmental benefits. Having demonstrated technical and financial feasibility, Coincident has won additional grants and awards, participated in pilot projects, started partnership discussions with several HVAC equipment vendors, and has lined up several large channel partners ready to participate in large pilot rollouts.

  16. ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments

    SciTech Connect (OSTI)

    De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jérôme [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Bowler, Matthew W. [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Ashton, Alun [DLS, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0QX (United Kingdom); Franke, Daniel; Svergun, Dmitri [European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Building 25A, Notkestrasse 85, 22603 Hamburg (Germany); McSweeney, Sean; Gordon, Elspeth [European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France); Round, Adam, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 avenue des Martyrs, CS 90181, 38042 Grenoble (France); European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38042 Grenoble (France)

    2015-01-01

    The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments. Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.

  17. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xuebin; Liu, Chang-Jun

    2014-12-11

    Phenylpropanoid biosynthesis in plants engenders a vast variety of aromatic metabolites critically important for their growth, development, and environmental adaptation. Some of these aromatic compounds have high economic value. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway; it diverts the central flux of carbon from primary metabolism to the synthesis of myriad phenolics. Over the decades, many studies have shown that exquisite regulatory mechanisms at multiple levels control the transcription and the enzymatic activity of PALs. In this review, we present a current overview on our understanding of the complicated regulatory mechanisms governing PAL's activity; we particularlymore » highlight recent progresses in unraveling its post-translational modifications, its metabolite feedback regulation, and its enzyme organization.« less

  18. Gateway:U.S. OpenLabs/Environmental and Economic Impacts | Open...

    Open Energy Info (EERE)

    Development based climate change adaptation and mitigation-conceptual issues and lessons learned in studies in developing countries LEDSGPanalysisimpactsDIAWebinar on...

  19. Gateway:América Latina/Aprender más sobre las ERNC/Estudios...

    Open Energy Info (EERE)

    Ingeniera y Seleccin de EquiposGeotermia Jump to: navigation, search Analisis de Proyectos de Bomba de Calor con Fuente Geotermica Fuente: Leonardo Energy Idioma: Espaol...

  20. Gateway:América Latina/Aprender más sobre las ERNC | Open Energy...

    Open Energy Info (EERE)

    search En esta seccin encontrar una seleccin de webcasts disponibles en la red, para aprender ms de cada etapa de la cadena de valor de un proyecto de ERNC. Etapas...

  1. DOE Publishes GATEWAY Report on High-Mast Lighting at Philadelphia...

    Office of Environmental Management (EM)

    on a trial installation of LED apron lighting at Philadelphia International Airport (PHL). ... An evaluation of an initial trial installation of three LED luminaires was conducted in ...

  2. DOE Publishes 20K Hour Testing Results for 2008 GATEWAY Bridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country's oldest continuously operated exterior LED ...

  3. Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...

    Open Energy Info (EERE)

    Jump to: navigation, search School on Geothermics Fuente: International Centre for Science and High Technology Idioma: Ingls Seminar on Innovative Ideas for Geothermal...

  4. Gateway:América Latina/Aprender más sobre las ERNC/Puesta en...

    Open Energy Info (EERE)

    Aprender ms sobre las ERNCPuesta en Marcha, Operacin y ComercializacinEolica Jump to: navigation, search Generate lift by pitching a blade Fuente: Vestas Idioma: Ingls...

  5. U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability

    Broader source: Energy.gov [DOE]

    Cross-Site Scripting vulnerabilities allow a third party to manipulate the content or behavior of a web application in a user's browser, without compromising the underlying system. Attackers can exploit this issue by enticing an unsuspecting user to follow a malicious URI.

  6. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sachet, Edward; Shelton, Christopher T.; Harris, Joshua S.; Gaddy, Benjamin E.; Irving, Douglas L.; Curtarolo, Stefano; Donovan, Brian F.; Hopkins, Patrick E.; Sharma, Peter A.; Sharma, Ana Lima; et al

    2015-02-16

    The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet–visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate ‘defect equilibrium engineering’. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomesmore » the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm2 V–1 s–1 for carrier densities above 1020 cm–3. As a result, our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.« less

  7. Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...

    Open Energy Info (EERE)

    Assesing Solar Resource for CSP plants Fuente: Leonardo Energy Idioma: Ingls Solar Water Heating Basics Fuente: AltE Store Idioma: Ingls Retrieved from "http:...

  8. HotPatch Web Gateway: Statistical Analysis of Unusual Patches on Protein Surfaces

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Pettit, Frank K.; Bowie, James U. [DOE-Molecular Biology Institute

    HotPatch finds unusual patches on the surface of proteins, and computes just how unusual they are (patch rareness), and how likely each patch is to be of functional importance (functional confidence (FC).) The statistical analysis is done by comparing your protein's surface against the surfaces of a large set of proteins whose functional sites are known. Optionally, HotPatch can also write a script that will display the patches on the structure, when the script is loaded into some common molecular visualization programs. HotPatch generates complete statistics (functional confidence and patch rareness) on the most significant patches on your protein. For each property you choose to analyze, you'll receive an email to which will be attached a PDB-format file in which atomic B-factors (temp. factors) are replaced by patch indices; and the PDB file's Header Remarks will give statistical scores and a PDB-format file in which atomic B-factors are replaced by the raw values of the property used for patch analysis (for example, hydrophobicity instead of hydrophobic patches). [Copied with edits from http://hotpatch.mbi.ucla.edu/

  9. Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...

    Open Energy Info (EERE)

    Prospeccin y Estudios de Pre-InversionMarina Jump to: navigation, search Marine Technology Industry Status Briefing Fuente: Clean Energy States Alliance Idioma: Ingls Marine...

  10. Gateway:América Latina/Aprender más sobre las ERNC/Estudios...

    Open Energy Info (EERE)

    Virginia Tech Univeristy Idioma: Ingls Economics of US Ethanol Production and Marketing Fuente: Univeristy of Nebraska Idioma: Ingls Biomasa Forestal Residuos Orgnicos...

  11. Geopressured-geothermal energy, US Gulf Coast

    SciTech Connect (OSTI)

    Bebout, D.G.; Bachman, A.L.

    1981-01-01

    Sixty-five papers are included. Eleven papers were entered into the data base previously. Separate abstracts were prepared for fifty-four. (MHR)

  12. Final Gulf Coast Hurricanes Situation Report #46

    SciTech Connect (OSTI)

    2006-01-26

    According to Entergy New Orleans, electricity has been restored to the vast majority of residents and businesses in the city, except in a few isolated areas that sustained severe devastation from Hurricane Katrina.

  13. Gulf Coast Hurricanes Situation Report #39

    SciTech Connect (OSTI)

    2005-11-09

    There are 49,300 customers without power in Florida as of 7:00 AM EST 11/9 due to Hurricane Wilma, down from a peak of about 3.6 million customers. Currently, less than 1 percent of the customers are without power in the state. This is the last report we will due on outages due to Hurricane Wilma.

  14. Gulf Coast Hurricanes Situation Report #40

    SciTech Connect (OSTI)

    2005-11-14

    On 11/12 Florida Power & Light (FPL) announced that crews had essentially completed Hurricane Wilma restoration efforts to all 3.2 million customers in South Florida who had been without power. Electricity restoration efforts are now essentially complete in Florida.

  15. Gulf Alternative Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Houston, Texas Zip: 77055 Product: Texas-based firm that has developed a cellulosic ethanol processing technology and plans to retrofit existing ethanol plants. Coordinates:...

  16. Gulf Power- Solar Thermal Water Heating Program

    Broader source: Energy.gov [DOE]

    A limited amount of funding is still available for 2015. The program website will be updated if more fund become available. 

  17. Gulf Coast (PADD 3) Imports & Exports

    Gasoline and Diesel Fuel Update (EIA)

    3,596 3,601 3,601 3,522 3,804 3,824 2008-2016 Commercial 2,831 2,838 2,872 2,891 3,172 3,257 1990-2016 Total Products 764 763 729 632 633 567 2008-2016 Total Motor Gasoline 6 7 7 4 7 17 2008-2016 Finished Motor Gasoline 0 0 0 0 0 0 2008-2016 Reformulated 0 0 0 0 0 0 2008-2016 Blended with Fuel Ethanol 0 0 0 0 0 0 2008-2016 Other 0 0 0 0 0 0 2010-2016 Conventional 0 0 0 0 0 0 2008-2016 Blended with Fuel Ethanol 0 0 0 0 0 0 2008-2016 Ed55 and Lower 0 0 0 0 0 0 2010-2016 Greater than Ed55 0 0 0 0 0

  18. Gulf of Mexico Federal Offshore Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Federal Offshore Alabama, Louisiana,

  19. Sandia Energy - Gulf Nuclear Energy Infrastructure Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    topics of nuclear safety, safeguards, and security. Read the rest of the article at AME Info.com. By Todd Heinrichs|2015-05-11T20:43:37+00:00March 7th, 2012|Energy Assurance,...

  20. Gulf of Mexico Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,317,031 1,002,608 1,000,964 2012-2014 Total Liquids Extracted (Thousand Barrels) 60,320 49,143 52,331 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 0 0 0 87,478 70,292 75,648 2007

  1. World crude output overcomes Persian Gulf disruption

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Several OPEC producers made good on their promises to replace 2.7 MMbpd of oil exports that vanished from the world market after Iraq took over Kuwait. Even more incredibly, they accomplished this while a breathtaking 1.2- MMbopd reduction in Soviet output took place during the course of 1991. After Abu Dhabi, Indonesia, Iran, Libya, Nigeria, Saudi Arabia and Venezuela turned the taps wide open, their combined output rose 2.95 MMbopd. Put together with a 282,000-bopd increase by Norway and contributions from smaller producers, this enabled world oil production to remain within 400,000 bopd of its 1990 level. The 60.5-MMbopd average was off by just 0.7%. This paper reports that improvement took place in five of eight regions. Largest increases were in Western Europe and Africa. Greatest reductions occurred in Eastern Europe and the Middle East. Fifteen nations produced 1 MMbopd or more last year, compared with 17 during 1990.

  2. EIA - Gulf of Mexico Energy Data

    Gasoline and Diesel Fuel Update (EIA)

    of Mexico Federal Offshore share of U.S. crude oil production 23% 1. Accounts for non-biofuel oxygenates, denaturants, other hydrocarbons, hydrogen, and crude oil adjustment. 2. ...

  3. EIA - Gulf of Mexico Energy Data

    Gasoline and Diesel Fuel Update (EIA)

    Co Baton Rouge LA 502,500 Marathon Petroleum Company LLC Garyville LA 490,000 Motiva Enterprises LLC Convent LA 235,000 Motiva Enterprises LLC Norco LA 233,500 Murphy Oil USA Inc...

  4. Gulf Hydrocarbon Inc | Open Energy Information

    Open Energy Info (EERE)

    Houston, Texas Zip: 77002 Region: Texas Area Sector: Biofuels Product: Wholesale marketing of biodiesel and ethanol to refiners, blenders and petroleum distributors Website:...

  5. Malaysia-Enhancing Capacity for Low Emission Development Strategies...

    Open Energy Info (EERE)

    illustrates the U.S. perspective on LEDS: Integrated development goals and objectives, national greenhouse gas inventory, and economic and resource data Long-term projections of...

  6. Malaysia-Lowering Emissions in Asia's Forests (LEAF) | Open Energy...

    Open Energy Info (EERE)

    assessing, improving, and implementing REDD+- related forest policies; improving forest management; and encouraging equitable sharing of REDD+ benefits. The program will tailor...

  7. Malaysia-EU-UNDP Low Emission Capacity Building Programme (LECBP...

    Open Energy Info (EERE)

    Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE),...

  8. Malaysia-The Mitigation Action Implementation Network (MAIN)...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  9. Malaysia-Low Emissions Asian Development (LEAD) Program | Open...

    Open Energy Info (EERE)

    the growth of greenhouse gas emissions. The LEAD program supports and enhances country-led development programs, plans, and policies, and complements efforts of other...

  10. Malaysia-NAMA Programme for the Construction Sector in Asia ...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market...

  11. 20th Century Reanalysis Project Ensemble Gateway: 56 Estimates of World Temperature, Pressure, Humidity, and Wind, 1871-2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site provides data from the 20th Century Reanalysis Project, offering temperature, pressure, humidity, and wind predictions in 200 km sections all around the earth from 1871 to 2010, every 6 hours, based on historical data. The ensemble mean and standard deviation for each value were calculated over a set of 56 simulations. Data for each of the 56 ensemble members are included here. The dataset consists of files in netCDF 4 format that are available for download from the National Energy Research. The goal of the 20th Century Reanalysis Project is to use a Kalman filter-based technique to produce a global trophospheric circulation dataset at four-times-daily resolution back to 1871. The only dataset available for the early 20th century consists of error-ridden hand-drawn analyses of the mean sea level pressure field over the Northern Hemisphere. Modern data assimilation systems have the potential to improve upon these maps, but prior to 1948, few digitized upper-air sounding observations are available for such a reanalysis. The global tropospheric circulation dataset will provide an important validation check on the climate models used to make 21st century climate projections....[copied from http://portal.nersc.gov/project/20C_Reanalysis/

  12. Category:En Español | Open Energy Information

    Open Energy Info (EERE)

    de recursos ERNC A cont. Gateway:Amrica LatinaModelos para desarrollar proyectos de ERNC Gateway:Amrica LatinaPotencial de recursos energticos renovables...

  13. NERSC Data Management Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Science Gateways page. Science Gateways For more complex collaborative data, analytics, and computing projects, NERSC promotes building scientific web apps that...

  14. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. Public Comment Opportunities No events...

  15. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 0 0 0 2005-2013 Adjustments 0 0 0 0 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  16. ,"Federal Offshore, Gulf of Mexico, Texas Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  17. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  18. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,242,169 5,110,327 5,052,936 2000's 4,967,694 5,066,015 4,547,627 4,447,348 4,000,685 3,150,818...

  19. Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and

    Gasoline and Diesel Fuel Update (EIA)

    Production 121,847 124,795 122,038 116,075 103,357 109,286 1997-2015 From Gas Wells NA NA NA NA NA NA 1997-2015 From Oil Wells NA NA NA NA NA NA 1997-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1997-2015 Vented and Flared NA NA NA NA NA NA 1997-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1997-2015 Marketed Production 120,019 122,924 120,208 114,334 101,806 107,646 1997-2015 Dry Production

  20. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  1. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  2. Gulf of California Rift Zone Geothermal Region | Open Energy...

    Open Energy Info (EERE)

    are located over a series of rifts in the Earth's crust which are filling with sediment from above, chiefly from the Colorado River, and magmatic material from below. The...

  3. Operational testing of geopressure geothermal wells on the Gulf Coast

    SciTech Connect (OSTI)

    Goldsberry, F.L.

    1983-01-01

    A combined-cycle electric-power and pipeline-gas production process is proposed for the exploitation of the geopressured geothermal resource. It allows the operator to shift a portion of the production between the electric grid and the gas pipeline markets. On-site equipment and operating labor requirements are minimized. Thermal efficiencies are based upon sound application of thermodynamic principles and are competitive with large-scale plant operations. The economics presented are based upon 1983 avoided power costs and NGPA Section 102 gas prices.

  4. ORISE: Incident Management Training Put to Test in Gulf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    response, was critical to a productive effort. Adhering to a common framework for command and control minimized confusion and allowed multiple agencies to work together. At...

  5. Federal Offshore, Gulf of Mexico, Texas Coalbed Methane Proved Reserves,

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Changes, and Production

  6. Gulf of Mexico-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    117,738 96,587 95,078 2012-2014 Total Liquids Extracted (Thousand Barrels) 5,783 5,035 5,105 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 7,442

  7. Gulf of Mexico-Louisiana Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    88,219 719,435 696,242 2012-2014 Total Liquids Extracted (Thousand Barrels) 41,882 33,146 35,187 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 51,010

  8. Gulf of Mexico-Mississippi Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    1,618 74,637 98,497 2012-2014 Total Liquids Extracted (Thousand Barrels) 6,008 5,009 6,741 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 9,793

  9. Gulf of Mexico-Texas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    119,456 111,949 111,147 2012-2014 Total Liquids Extracted (Thousand Barrels) 6,647 5,953 5,298 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 7,404

  10. Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Gross Withdrawals 2,259,144 1,830,913 1,527,875 1,326,697 1,275,213 1,346,074 1997-2015 From Gas Wells 1,699,908 1,353,929 1,013,914 817,340 706,413 1997-2014 From Oil Wells 559,235 476,984 513,961 509,357

  11. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves, Reserves Changes, and Production 0 0 0 0 0 0 2005-2014 Adjustments 0 0 0 0 0 0 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 0 0 0

  12. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Lease Condensate

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves, Reserve Changes, and Production 134 129 129 98 88 108 1981-2014 Adjustments -4 3 0 -3 -1 18 2009-2014 Revision Increases 40 44 30 30 23 23 2009-2014 Revision Decreases 31 28 26 43 14 16 2009-2014 Sales 5 13 8 7 18 10 2009-2014 Acquisitions 1 10 23 11 6 8 2009-2014 Extensions 5 4 2 1 5 3 2009-2014 New Field Discoveries 0 2 2 0 2 8 2009-2014 New Reservoir Discoveries in Old Fields 5 1 1 0 1 1 2009-2014 Estimated Production 28 28 24 20 14 15

  13. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Proved Reserves, Wet After Lease Separat 5,802 5,457 4,359 3,346 2,502 3,027 1981-2014 Adjustments -3 -25 72 -296 111 499 1981-2014 Revision Increases 997 1,814 740 866 443 561 1981-2014 Revision Decreases 1,021 1,000 1,219 1,161 467 420 1981-2014 Sales 108 697 243 339 597 202 2000-2014 Acquisitions 152 594 355 496 118 305 2000-2014 Extensions 189 139 53 106 18 90 1981-2014 New Field Discoveries 25 65 66 3 34 96 1981-2014 New Reservoir Discoveries in Old Fields 150 83 38 22 47 64

  14. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Proved Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves 2,013 1,595 2,597 2,130 2,406 2,204 1996-2014 Lease Condensate (million bbls) 66 60 57 39 47 42 1998-2014 Total Gas (billion cu ft) 4,446 3,882 4,290 3,466 3,360 3,275 1996-2014 Nonassociated Gas (billion cu ft) 2,660 2,367 1,975 1,515 1,238 1,308 1996-2014 Associated Gas (billion cu ft) 1,786 1,515 2,315 1,951 2,122 1,967

  15. Federal Offshore, Gulf of Mexico, Texas Lease Condensate Proved Reserves,

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserve Changes, and Production 92 83 64 51 51 65 1981-2014 Adjustments -3 -1 0 -2 1 0 2009-2014 Revision Increases 27 15 26 30 14 32 2009-2014 Revision Decreases 3 9 29 19 4 2 2009-2014 Sales 0 0 0 4 1 0 2009-2014 Acquisitions 0 0 0 2 1 1 2009-2014 Extensions 1 3 0 0 3 0 2009-2014 New Field Discoveries 9 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 5 3 0 0 2 0 2009-2014 Estimated Production 20 20 16 20 16 17

  16. Federal Offshore, Gulf of Mexico, Texas Nonassociated Natural Gas Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves, Wet After Lease Separation 1,822 1,456 1,015 643 535 607 1981-2014 Adjustments 6 -16 1 -65 110 94 1981-2014 Revision Increases 506 240 244 220 103 147 1981-2014 Revision Decreases 379 428 489 345 80 135 1981-2014 Sales 34 130 23 74 160 33 2000-2014 Acquisitions 13 190 63 37 31 66 2000-2014 Extensions 19 107 13 14 10 31 1981-2014 New Field Discoveries 71 0 0 19 0 0 1981-2014 New Reservoir Discoveries in Old Fields 36 12 0 6 18 26 1981-2014 Estimated Production 353 341 250 184 140

  17. Federal Offshore, Gulf of Mexico, Texas Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    125 102 52 34 33 84 1996-2014 Lease Condensate (million bbls) 35 29 20 8 11 21 1998-2014 Total Gas (billion cu ft) 1,557 874 561 296 320 487 1996-2014 Nonassociated Gas (billion cu ft) 1,096 502 368 235 231 273 1996-2014 Associated Gas (billion cu ft) 461 372 193 61 89 214

  18. Gulf of Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Total Consumption 103,976 108,490 101,217 93,985 95,207 93,855 1999-2014 Lease Fuel 103,976 108,490 101,217 93,985 95,207 93,855 1999-2014 Plant Fuel 0 2014-2014

  19. ,"Henry Hub Gulf Coast Natural Gas Spot Price ($/MMBTU)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...162013" ,"Release Date:","9182013" ,"Next Release Date:","9252013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http:tonto.eia.govdnav...

  20. Gulf Coast (PADD 3) Gasoline and Diesel Retail Prices

    Gasoline and Diesel Fuel Update (EIA)

    67 1.632 1.631 1.662 1.706 1.850 1993-2016 All Grades - Conventional Areas 1.673 1.638 1.641 1.666 1.705 1.854 1994-2016 All Grades - Reformulated Areas 1.646 1.610 1.599 1.648 1.710 1.839 1994-2016 Regular 1.561 1.528 1.526 1.559 1.603 1.746 1992-2016 Conventional Areas 1.568 1.536 1.536 1.565 1.603 1.751 1992-2016 Reformulated Areas 1.538 1.502 1.491 1.538 1.603 1.732 1994-2016 Midgrade 1.805 1.764 1.762 1.792 1.834 1.980 1994-2016 Conventional Areas 1.809 1.766 1.767 1.790 1.829 1.977