National Library of Energy BETA

Sample records for making informed vehicle

  1. Vehicle Technologies Office: Information Resources

    Broader source: Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  2. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  3. Voltage Vehicles | Open Energy Information

    Open Energy Info (EERE)

    distributor specializing in the full spectrum of electric vehicles (EV) and full-performance alternative fuel vehicles (AFV). References: Voltage Vehicles1 This article is a...

  4. Making Vehicle Technology Deployment Scenarios More Robust

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Electric vehicles | Open Energy Information

    Open Energy Info (EERE)

    existence in the mid-19th century, when electricity was among the preferred methods for motor vehicle propulsion, providing a level of comfort and ease of operation that could not...

  6. American Electric Vehicles Inc | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Inc Jump to: navigation, search Name: American Electric Vehicles Inc Place: Palmer Lake, Colorado Zip: 80133 Sector: Vehicles Product: American Electric Vehicles (AEV)...

  7. Energy Information Administration/Household Vehicles Energy Consumptio...

    U.S. Energy Information Administration (EIA) Indexed Site

    , Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related...

  8. US Ethanol Vehicle Coalition | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition is the...

  9. EVI Electric Vehicles International | Open Energy Information

    Open Energy Info (EERE)

    EVI Electric Vehicles International Jump to: navigation, search Name: EVI (Electric Vehicles International) Place: Stockton, California Product: California-based Electric Vehicle...

  10. Miles Electric Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

  11. Solar Electrical Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electrical Vehicles Jump to: navigation, search Name: Solar Electrical Vehicles Place: Westlake Village, California Zip: 91361 Sector: Solar, Vehicles Product: US-based...

  12. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever December 29, 2014 ...

  13. Vehicle Technologies Office: Information for Members of Media | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy News » Vehicle Technologies Office: Information for Members of Media Vehicle Technologies Office: Information for Members of Media The Vehicle Technologies Office provides photos, videos, and contact information for members of the media to cover Vehicle Technologies Office-related news. Photos Members of the media may use the following photos. For low-resolution images, click on an image below. Photo of an engine. Photo of a hybrid electric bus. Photo of a man fueling a natural

  14. Alternative Fuels Vehicle Group | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Group Jump to: navigation, search Name: Alternative Fuels Vehicle Group Place: New York, New York Zip: 28 West 25th Street Sector: Vehicles Product: Focussed on news and...

  15. Hitachi Electric Vehicle Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Ltd Jump to: navigation, search Name: Hitachi Electric Vehicle, Ltd Place: Japan Product: String representation "A Japan-based c ... le automobiles." is too long....

  16. EKO Vehicles Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Pvt Ltd Place: Bangalore, Karnataka, India Product: India-based manufacturer of electric scooters. References: EKO Vehicles Pvt Ltd1 This article is a stub. You can...

  17. The Electric Vehicle Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: The Electric Vehicle Company Product: Holding company of battery-powered electric automobile manufacturers. References: The Electric Vehicle...

  18. Other Alternative Fuel Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Jump to: navigation, search TODO: Add description List of Other Alternative Fuel Vehicles Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherAlternati...

  19. List of Vehicles Incentives | Open Energy Information

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Fuels Loan Program (Kansas) State Loan Program Kansas...

  20. Australia's Green Vehicle Guide | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentaustralias-green-vehicle-guide,http: Language: English Policies: Regulations Regulations: Fuel Efficiency Standards Related Tools...

  1. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever

    Broader source: Energy.gov [DOE]

    The H2 Refuel H-Prize is challenging America’s innovators to develop systems that make it easier and convenient to fuel hydrogen powered vehicles.

  2. Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability NREL analyzed data from 500,000 individual vehicle trips covering 3.6 million miles August 10, 2012 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) recently completed a seven-year project to demonstrate and evaluate hydrogen fuel cell electric vehicles (FCEVs) and hydrogen fueling infrastructure in real-world settings. The National Fuel Cell Electric Vehicle Learning

  3. Vehicle Cost Calculator | Open Energy Information

    Open Energy Info (EERE)

    greenhouse gas emissions for alternative fuel and advanced technology vehicles. Visit the Alternative Fuels Data Center Widgets page, or copy the embed code below and paste it into...

  4. Leading by Example: Argonne Senior Management Makes "Green" Vehicle Choices

    ScienceCinema (OSTI)

    Peters, Mark; Kearns, Paul;

    2013-04-19

    Argonne's senior management shows leadership in the sustainability arena with their own personal choices in "green" vehicles. They don't just talk the talk ? they walk the walk.

  5. American Electric Vehicles, Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: American Electric Vehicles, Inc Address: P.O. Box 509 707 County Line Rd. Place: Palmer Lake, CO Zip: 80133 Region: Rockies Area...

  6. ORNL researchers aim to make big vehicles more efficient

    ScienceCinema (OSTI)

    None

    2010-01-08

    Researchers have partnered with Knoxville Area Transit and HT Hackney trucking to make buses and big rigs more fuel-efficient.

  7. Fact #901: November 30, 2015 States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue

  8. New Vehicle Initiative Aims to Make Fuel and Engines Work Together More

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiently | Department of Energy Vehicle Initiative Aims to Make Fuel and Engines Work Together More Efficiently New Vehicle Initiative Aims to Make Fuel and Engines Work Together More Efficiently February 24, 2016 - 11:35am Addthis Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. The measurements are used to help understand the flow features involved in the creation of in-cylinder carbon monoxide distributions in order to

  9. Climate Information Needs for Financial Decision Making

    SciTech Connect (OSTI)

    Higgins, Paul

    2013-11-19

    Climate Information Needs for Financial Decision Making (Final Report) This Department of Energy workshop award (grant #DE-SC0008480) provided primary support for the American Meteorological Society’s study on climate information needs for financial decision making. The goal of this study was to help advance societal decision making by examining the implications of climate variability and change on near-term financial investments. We explored four key topics: 1) the conditions and criteria that influence returns on investment of major financial decisions, 2) the climate sensitivity of financial decisions, 3) climate information needs of financial decision makers, and 4) potential new mechanisms to promote collaboration between scientists and financial decision makers. Better understanding of these four topics will help scientists provide the most useful information and enable financial decision makers to use scientific information most effectively. As a result, this study will enable leaders in business and government to make well-informed choices that help maximize long-term economic success and social wellbeing in the United States The outcomes of the study include a workshop, which brought together leaders from the scientific and financial decision making communities, a publication of the study report, and a public briefing of the results to the policy community. In addition, we will present the results to the scientific community at the AMS Annual Meeting in February, 2014. The study results were covered well by the media including Bloomberg News and E&E News. Upon request, we also briefed the Office of Science Technology Policy (OSTP) and the Council on Environmental Quality (CEQ) on the outcomes. We presented the results to the policy community through a public briefing in December on Capitol Hill. The full report is publicly available at www.ametsoc.org/cin. Summary of Key Findings The United States invests roughly $1.5 trillion U.S. dollars (USD) in capital assets each year across the public and private sectors (Orszag 2008; United States Census Bureau 2013). Extreme weather events create and exacerbate risks to these financial investments by contributing to: • Direct physical impacts on the investments themselves • Degradation of critical supporting infrastructure • Changes in the availability of key natural resources • Changes to workforce availability or capacity • Changes in the customer base • Supply chain disruptions • Legal liability • Shifts in the regulatory environment • Reductions in credit ratings Even small changes in weather can impact operations in critical economic sectors. As a result, maximizing returns on financial investments depends on accurately understanding and effectively accounting for these risks. Climate variability and change can either exacerbate existing risks or cause new sources of risk to emerge. Managing these risks most effectively will depend on scientific advances and increases in the capacity of financial decision makers to use the scientific knowledge that results. Barriers to using climate information must also be overcome. This study proposes three predefined levels of certainty for communicating about weather and climate risks: 1) possible (i.e., unknown likelihood or less than 50% chance of occurrence), 2) probable (greater than 50% chance of occurrence), and 3) effectively certain (at least 95% chance of occurrence). For example, it is effectively certain that a change in climate will alter weather patterns. It is probable that climate warming will cause increases in the intensity of some extreme events. It is possible that climate change will cause major and widespread disruptions to key planetary life-support services. Key recommendations of this study: 1) Identify climate-related risks and opportunities for financial decision making. 2) Create a framework to translate scientific information in clear and actionable terms for financial decision makers. 3) Analyze existing climate assessments and translate projected impacts into possible, probable, and effectively certain impacts. 4) Improve climate projections with respect to precipitation (timing, amount, and intensity), extreme events, and tails of probability distributions (i.e., low-probability but high-consequence events). 5) Increase spatial resolution of climate projections in order to provide climate information at the scale most relevant to financial investments. 6) Improve projections of the societal consequences of climate impacts through integrated assessments of physical, natural, and social sciences. 7) Create a user-friendly information repository and portal that provides easy access to information relevant to financial decision making. 8) Create and maintain opportunities to bring together financial decision makers, scientists, and service providers. Near-term financial decisions have long-term implications for the United States’ social and economic well-being that depend, in part, on climate variability and change. Investments will be most successful, and will advance the interests of society most effectively, if they are grounded in the best available knowledge & understanding.

  10. Alternative Fuel Vehicle Data - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    & Alternative Fuels - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade,

  11. INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SuperTruck is Making Heavy Duty Vehicles More Efficient INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient March 1, 2016 - 10:45am Addthis Our latest infographic explains how heavy-duty trucks are more getting more sustainable thanks to the Energy Department's SuperTruck initiative. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Our latest infographic explains how heavy-duty trucks are more

  12. Shanghai Fuel Cell Vehicle Powertrain Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Vehicle Powertrain Co Ltd Jump to: navigation, search Name: Shanghai Fuel Cell Vehicle Powertrain Co Ltd Place: Shanghai Municipality, China Sector: Vehicles Product: A...

  13. Wanxiang Electric Vehicle Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Electric Vehicle Co Ltd Jump to: navigation, search Name: Wanxiang Electric Vehicle Co., Ltd Place: Hangzhou, Zhejiang Province, China Zip: 311215 Sector: Vehicles Product: A...

  14. Natural Gas Vehicle Incentive Program | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Incentive Program Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Natural Gas Vehicle Incentive Program AgencyCompany Organization: Natural Gas Vehicles for...

  15. Modec Ltd formerly Electric Mercury Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Zip: CV3 2NT Sector: Vehicles Product: The company designs and develops electric delivery vehicles. It has a range of vehicles with an array of leasing and financing options....

  16. National Ethanol Vehicle Coalition NEVC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Vehicle Coalition NEVC Jump to: navigation, search Name: National Ethanol Vehicle Coalition (NEVC) Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol...

  17. Persu Mobility was Venture Vehicles Inc | Open Energy Information

    Open Energy Info (EERE)

    Persu Mobility was Venture Vehicles Inc Jump to: navigation, search Name: Persu Mobility (was Venture Vehicles Inc) Place: Los Angeles, California Zip: 90067 Product: Los Angeles...

  18. Texas Department of Motor Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Name: Texas Department of Motor Vehicles Abbreviation: TxDMV Address: 4000 Jackson Ave. Place: Austin, Texas Zip: 78731 Phone Number: 1-888-368-4689 Website:...

  19. Tianjin Qingyuan Electric Vehicle Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Tianjin Qingyuan Electric Vehicle Co Ltd Place: Tianjin Economic Development Area, Tianjin Municipality, China Zip: 300457 Sector: Vehicles Product:...

  20. Stimulating Low-Carbon Vehicle Technologies | Open Energy Information

    Open Energy Info (EERE)

    Stimulating Low-Carbon Vehicle Technologies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Stimulating Low-Carbon Vehicle Technologies AgencyCompany Organization: ITF...

  1. Natural Gas Vehicle Cost Calculator | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Natural Gas Vehicle Cost Calculator AgencyCompany Organization: United States Department of...

  2. Demonstrating Electric Vehicles in Canada | Open Energy Information

    Open Energy Info (EERE)

    Demonstrating Electric Vehicles in Canada Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demonstrating Electric Vehicles in Canada AgencyCompany Organization: Natural...

  3. Nevada Department of Motor Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Nevada Department of Motor Vehicles Name: Nevada Department of Motor Vehicles Address: 555 Wright Way Place: Carson City, Nevada Zip: 89711 Phone Number: 702-486-4368 Website:...

  4. List of Renewable Fuel Vehicles Incentives | Open Energy Information

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Fuels Loan Program (Kansas) State Loan Program Kansas...

  5. What Efficiency Information Do You Look for When You Buy a Vehicle...

    Energy Savers [EERE]

    impact. And these labels aren't just for gasoline-powered vehicles; plug-in hybrids and electric vehicles also will have this information. The labels will also provide an...

  6. Smith Electric Vehicles SEV Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    SEV Group Ltd Jump to: navigation, search Name: Smith Electric Vehicles (SEV) Group Ltd Place: Tyne & Wear, United Kingdom Zip: NE38 9DA Sector: Vehicles Product: UK-based...

  7. Environmental Decision Making and Information Technology: Issues Assessment

    SciTech Connect (OSTI)

    Barg, S.; Fletcher, T.; Mechling, J.; Tonn, B.; Turner, R.

    1999-05-01

    This report presents a summary of the Information Technology and Environmental Decision Making Workshop that was held at Harvard University, October 1-3, 1998. Over sixty participants from across the US took part in discussions that focused on the current practice of using information technology to support environmental decision making and on future considerations of information technology development, information policies, and data quality issues in this area. Current practice is focusing on geographic information systems and visualization tools, Internet applications, and data warehousing. In addition, numerous organizations are developing environmental enterprise systems to integrate environmental information resources. Plaguing these efforts are issues of data quality (and public trust), system design, and organizational change. In the future, much effort needs to focus on building community-based environmental decision-making systems and processes, which will be a challenge given that exactly what needs to be developed is largely unknown and that environmental decision making in this arena has been characterized by a high level of conflict. Experimentation and evaluation are needed to contribute to efficient and effective learning about how best to use information technology to improve environmental decision making.

  8. 2010 Vehicle Technologies Market Report | Open Energy Information

    Open Energy Info (EERE)

    them. The report opens with a summary of the economic sector, including sector-wide energy consumption trends. The second section includes a discussion on light-duty vehicles,...

  9. Smith Electric Vehicles US SEV US | Open Energy Information

    Open Energy Info (EERE)

    US SEV US Jump to: navigation, search Name: Smith Electric Vehicles US (SEV-US) Place: Kansas City, Missouri Zip: 64163 Product: Kansas-based company owned by US investors and the...

  10. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr.

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  11. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    SciTech Connect (OSTI)

    Zhu, Ming; Moorer, Richard

    2013-07-01

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in integrated risk assessment that could assist in the EM prioritization efforts. (authors)

  12. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect (OSTI)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  13. What Makes AMIE, the 3D printed home and vehicle, unique?

    Broader source: Energy.gov [DOE]

    AMIE, or the Additive Manufacturing Integrated Energy project, is one of the world’s first 3D printed houses. But it’s not just a house. It’s also a vehicle. It’s also solar panels, and energy storage, and intelligent controls. It’s an entire integrated energy system, and it’s changing how we think about generating, storing, and using energy.

  14. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  15. Generating Facility Rate-Making | Open Energy Information

    Open Energy Info (EERE)

    Generating Facility Rate-Making Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgw...

  16. Making Fast Start Finance Work | Open Energy Information

    Open Energy Info (EERE)

    major contributor countries. This information is clearly subject to change, but our hope is that these initial estimates can serve as the basis for discussion between different...

  17. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    SciTech Connect (OSTI)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine; LaChance, Jeffrey L.; Horne, Douglas B.

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazards from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.

  18. Determining the Effectiveness of Incorporating Geographic Information Into Vehicle Performance Algorithms

    SciTech Connect (OSTI)

    Sera White

    2012-04-01

    This thesis presents a research study using one year of driving data obtained from plug-in hybrid electric vehicles (PHEV) located in Sacramento and San Francisco, California to determine the effectiveness of incorporating geographic information into vehicle performance algorithms. Sacramento and San Francisco were chosen because of the availability of high resolution (1/9 arc second) digital elevation data. First, I present a method for obtaining instantaneous road slope, given a latitude and longitude, and introduce its use into common driving intensity algorithms. I show that for trips characterized by >40m of net elevation change (from key on to key off), the use of instantaneous road slope significantly changes the results of driving intensity calculations. For trips exhibiting elevation loss, algorithms ignoring road slope overestimated driving intensity by as much as 211 Wh/mile, while for trips exhibiting elevation gain these algorithms underestimated driving intensity by as much as 333 Wh/mile. Second, I describe and test an algorithm that incorporates vehicle route type into computations of city and highway fuel economy. Route type was determined by intersecting trip GPS points with ESRI StreetMap road types and assigning each trip as either city or highway route type according to whichever road type comprised the largest distance traveled. The fuel economy results produced by the geographic classification were compared to the fuel economy results produced by algorithms that assign route type based on average speed or driving style. Most results were within 1 mile per gallon ({approx}3%) of one another; the largest difference was 1.4 miles per gallon for charge depleting highway trips. The methods for acquiring and using geographic data introduced in this thesis will enable other vehicle technology researchers to incorporate geographic data into their research problems.

  19. Fleet Vehicles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Vehicles General Information: The Materials and Transportation Fleet Vehicle section provides acquisition, utilization and maintenance records, and disposal of vehicles used...

  20. Property:EIA/861/AltFuelVehicle | Open Energy Information

    Open Energy Info (EERE)

    Alt Fuel Vehicle Entity operated alternative-fueled vehicles during the year (Y or N) 1 References EIA Form EIA-861 Final Data File for 2008 - F861 File...

  1. Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards

    Broader source: Energy.gov [DOE]

    Autonomie, an advanced vehicle modeling and design software package created by Argonne National laboratory with EERE support, is helping U.S. auto manufacturers develop the next generation of hybrid and electric vehicles.

  2. Apps for Vehicles: What is the OBD port in my car and what information...

    Open Energy Info (EERE)

    connecting all of the sensors with the vehicles' on board computer. The CAN bus and signal protocols, "the language of communication", are also captured under the SAE's...

  3. DOE Makes Public Detailed Information on the BP Oil Spill | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Public Detailed Information on the BP Oil Spill DOE Makes Public Detailed Information on the BP Oil Spill June 8, 2010 - 12:00am Addthis WASHINGTON - As part of the Obama Administration's ongoing commitment to transparency surrounding the response to the BP oil spill, U.S. Energy Secretary Steven Chu announced today that Department is providing online access to schematics, pressure tests, diagnostic results and other data about the malfunctioning blowout preventer. Secretary Chu

  4. Property:EIA/861/AltFuelVehicle2 | Open Energy Information

    Open Energy Info (EERE)

    alternative-fueled vehicles next year (Y or N) 1 References EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA861...

  5. Promote the use of electric and hybrid vehicles through information dissemination & data collection through the NESEA American Tour de Sol. Final project report

    SciTech Connect (OSTI)

    2000-09-12

    A report on information dissemination on alternative fueled vehicles and on efficiency data collected at the NESEA American Tour de Sol is presented. Some of the latest advanced transportation technology vehicles were showcased. Numerous attachments are included, such as the post-event newsletter, press kit, publicity report, results table, technical workshop proceedings, NESEA tour rules and resources, and a paper titled ''Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid vehicles.''

  6. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  7. Plug-In Electric Vehicle Handbook for Consumers

    SciTech Connect (OSTI)

    2015-02-09

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  8. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  9. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  10. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  11. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Boundy, Robert Gary; Diegel, Susan W

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  12. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  13. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

  14. EERE Success Story—Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards

    Broader source: Energy.gov [DOE]

    Autonomie, an advanced vehicle modeling and design software package created by Argonne National laboratory with EERE support, is helping U.S. auto manufacturers develop the next generation of hybrid and electric vehicles.

  15. Environmental laws regulating chemicals: Uses of information in decision making under environmental statutes

    SciTech Connect (OSTI)

    Gaba, J.M.

    1990-12-31

    Three areas are addressed in this paper: generic issues that arise simply in the process of decision-making under environmental statutes; different decision-making standards under various environmental statutes; and efforts to legislate a {open_quotes}safe{close_quotes} or {open_quotes}acceptable{close_quotes} risk from exposure to carcinogenic chemicals.

  16. Clean Cities Now, Vol. 19, No. 2, Winter 2015 - Making the Cut: Alternative Fuel Vehicles Prove They Can Thrive in Extreme Conditions, Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    9, No. 2 Winter 2015 Inside: Airport Gets Greener with Electric Ground Support Equipment Coordinators Honored for Outstanding Efforts to Cut Petroleum Use Strategy Meeting Lays Groundwork for the Next Five Years How AFVs Must Measure Up to Federal Emissions Standards Making the Cut: Alternative Fuel Vehicles Prove They Can Thrive in Extreme Conditions In This Issue Ohio Stakeholder's Green Fleet Plan Becomes On-Road Reality: p. 14 Meet the 2015 Hall of Fame Inductees: p. 10 Arkansas Gets Rolling

  17. The price of commitment in online stochastic vehicle routing

    SciTech Connect (OSTI)

    Bent, Russell W; Van Hentenryck, Pascal

    2009-01-01

    This paper considers online stochastic multiple vehicle routing with time windows in which requests arrive dynamically and the goal is to maximize the number of serviced customers. Early work has focused on very flexible routing settings where the decision to assign a vehicle to a customer is delayed until a vehicle is actually deployed to the customer. Motivated by real applications that require stability in the decision making, this paper considers a setting where the decision to assign a customer request to a vehicle must be taken when that request is accepted. Experimental results suggest that this constraint severely degrades the performance of existing algorithms. However, the paper shows how the use of stochastic information for vehicle assignment and request acceptance improves decision quality considerably. Moreover, the use of resource augmentation quantifies precisely the cost of commitment in online vehicle routing.

  18. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect (OSTI)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  19. Vehicle Technologies Office Issues Notice of Intent for Program Wide Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office has issued a Notice of Intent (No. DE-FOA-0001462) to make interested parties aware of its plan to issue a Funding Opportunity Announcement (FOA) entitled “FY 2016 Vehicle Technologies Program Wide Funding Opportunity Announcement.” The information contained in the notice is subject to change.

  20. VEHICLE ACCESS PORTALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffc Lane 1: Closed except for emergencies and maintenance operations. Traffc Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identifcation to Protective Force offcers. Drivers may proceed upon direction of the offcers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs

  1. Bluebird Automotive | Open Energy Information

    Open Energy Info (EERE)

    Sector: Vehicles Product: Producer of electric vehicles for the delivery market and other cars, specialising in making fast electric vehicles. References: Bluebird Automotive1...

  2. Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Data and Reports | Department of Energy Community and Fleet Readiness Data and Reports Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge, requires understanding both their technical and market barriers. Municipalities and organizations are working to overcome

  3. Plug-In Electric Vehicle Handbook for Consumers (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language handbook designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  4. VEHICLE ACCESS PORTALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jemez Road (Map 2) VEHICLE ACCESS PORTALS Changes Effective January 11, 2010 Traffc Lane 1: No stop required. Drivers must slow down to 15 MPH while nearing and driving through the lane Traffc Lane 2: Closed except for random inspections. Note: All vehicles (commercial, private, government) are subject to random inspections while on Laboratory property. More Information: spp-questions@lanl.gov

  5. Vehicle Technologies Office Merit Review 2015: Fuel Economy Information Project- Research, Data Validation, and Technical Assistance Related to Collecting, Analyzing, and Disseminating Accurate Fuel Economy Information

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel economy...

  6. Vehicle Crashworthiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  7. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 43 Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994...

  8. Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint

    SciTech Connect (OSTI)

    Brooker, A.; Thornton, M.; Rugh, J.

    2010-02-01

    This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

  9. LD Vehicles AFDC 11 25 13 TC.xlsx

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Model Year 2014: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 11252013) MY FuelPowertrain Type Make Model Vehicle Type Engine SizeCylinders Transmission...

  10. Electric Vehicle Battery Testing: It's Hot Stuff! | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    precisely measure the heat generated by batteries for electric-drive vehicles, analyze ... To make electric-drive vehicles that are attractive to consumers, the batteries that power ...

  11. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  12. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  13. Vehicle Aerodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Aerodynamics Background Tougher emissions standards, as well as industry demands for more powerful engines and new vehicle equipment, continue to increase the heat rejection requirements of heavy-duty vehicles. However, changes in the physical configuration and weight of these vehicles can affect how they handle wind resistance and energy loss due to aerodynamic drag. Role of High-Performance Computing The field of computational fluid dynamics (CFD) offers researchers the ability to

  14. Vehicle purchase and use data matrices: J. D. Power/DOE New Vehicle Owner Surveys

    SciTech Connect (OSTI)

    Crawford, R.; Dulla, R.

    1981-04-01

    Vehicle purchase and use data collected in two recent surveys from buyers of new 1978 and 1979 cars and light-duty trucks are presented. The survey information is broad in scope, extending from the public awareness of fuel economy information to decision-making in the purchase process, to in-use fuel economy. The survey data consequently have many applications in transportation studies. The objective of this report is to make a general summary of the data base contents available to interested individuals and organizations.

  15. vehicle technologies office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Office The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the U.S. Department of Energy has reduced the costs of producing electric vehicle batteries by more than 35%. DOE has also pioneered better combustion engines that have saved billions of gallons of petroleum fuel, while making diesel vehicles as clean as

  16. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  17. Motor Carrier Management Information System Crash File, Phase...

    National Nuclear Security Administration (NNSA)

    ... because VINs contain a wealth of information about the truck, including make, model, model year, gross vehicle weight rating, number of axles (of the power unit), and cab style. ...

  18. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  19. Energy information needs for U. S. state-level policy making: Minimal data requirements during normal and emergency periods

    SciTech Connect (OSTI)

    Barkenbus, J.N.; Leff, H.S.

    1983-01-01

    Since the oil embargo of 1973, state governments have increased their efforts to track and understand energy flows within their boundaries. There is a commonly perceived need to comprehend the status of present and expected future energy availability, demand, and price and to be prepared to exercise responsible and effective management during energy emergencies. This responsibility has brought with it new needs for accurate and timely state-level information on energy transactions and the external parameters that effect energy availability and disposition. What energy data are needed by a state, regardless of its idiosyncracies, during both normal and energy emergency periods, and to what extent are these data available now. The authors find that needed ongoing (core) data are only partially available at present, and that emergency data can be obtained only with a carefully planned monitoring program that can be fitted to specific emergency conditions. Overall, this paper provides a realistic assessment of the state-level energy data needed to provide state policy makers with sufficient information to make considered judgments.

  20. Energy-information needs for US state-level policy making: minimal data requirements during normal and emergency periods

    SciTech Connect (OSTI)

    Barkenbus, J.N.; Leff, H.S.

    1983-01-01

    Since the oil embargo of 1973, state governments have increased their efforts to track and understand energy flows within their boundaries. There is a commonly perceived need to comprehend the status of present and expected future energy availability, demand, and price and to be prepared to exercise responsible and effective management during energy emergencies. This responsibility has brought with it new needs for accurate and timely state-level information on energy transactions and the external parameters that effect energy availability and disposition. Hence, we ask: what energy data are needed by a state, regardless of its idiosyncracies, during both normal and energy emergency periods, and to what extent are these data available now. We find that needed ongoing (core) data are only partially available at present, and that emergency data can be obtained only with a carefully planned monitoring program that can be fitted to specific emergency conditions. Overall, this paper provides a realistic assessment of the state-level energy data needed to provide state policy makers with sufficient information to make considered judgments. 7 references, 6 tables.

  1. Clean Cities 2014 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  2. Models Move Vehicle Design Forward

    Broader source: Energy.gov [DOE]

    These days, modeling software is as important to building a car as welding equipment. The Energy Department’s Vehicle Technologies Office is working to make these models as useful and accurate as possible so that manufacturers can build the next-generation of fuel efficient and advanced technology vehicles.

  3. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  4. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  5. EERE Success Story-Autonomie Modeling Tool Improves Vehicle Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards EERE Success Story-Autonomie Modeling Tool Improves Vehicle Design and Testing, ...

  6. Fact #633: July 26, 2010 Alternative Fuel Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: July 26, 2010 Alternative Fuel Vehicles Fact 633: July 26, 2010 Alternative Fuel Vehicles The Energy Information Administration publishes estimates of the number of alternative ...

  7. How Will You Shop for Your Next Vehicle?

    Broader source: Energy.gov [DOE]

    Are you starting to research vehicles, and if so, what tools are you using to help you make a decision?

  8. NNSS Cleanup Information Is Just a Click Away New Interactive Map Makes NNSS Data More Accessible to the Public

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumented Flight Tests | National Nuclear Security Administration Instrumented Flight Tests February 09, 2015 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful B61-12 Life Extension Program (LEP) Vibration Fly Around/ Instrumented Measurement Vehicle (VFA/IMV) tests at Eglin Air Force Base and Edwards Air Force Base during July to December 2014.The VFA/IMV test series collected and verified flight environment data

  9. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  10. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  11. Energy 101: Heavy Duty Vehicle Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty Vehicle Efficiency Energy 101: Heavy Duty Vehicle Efficiency Addthis Description Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time. Topic Vehicles Text Version Below is the text version for the Energy 101: Heavy Duty Vehicle Efficiency

  12. Vehicle Technologies Office Issues Notice of Intent for Medium and Heavy-Duty Vehicle Demonstration Funding Opportunity

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office has issued a Notice of Intent (No. DE-FOA-0001355) to make interested parties aware of its plan to issue a Funding Opportunity Announcement (FOA) entitled “Medium and Heavy Duty Vehicle Powertrain Electrification and Dual Fuel Fleet Demonstration.” The information contained in the notice is subject to change. As this is only a notice of intent, applications and questions are not currently being accepted for this FOA. It is anticipated that this FOA will be posted to the EERE Exchange website in August 2015.

  13. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  14. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  15. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  16. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  17. Apps for Vehicles Challenge Finalists Announced | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apps for Vehicles Challenge Finalists Announced Apps for Vehicles Challenge Finalists Announced February 5, 2013 - 12:14pm Addthis Apps for Vehicles Finalists Apps for Vehicles Finalists Ian Kalin Director of the Energy Data Initiative What does this project do? The Apps for Vehicles competition challenges entrepreneurs to use vehicle open data to make cars and drivers safer and more efficient. American innovators have once again responded to a national call to action. Nearly 40 teams submitted

  18. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  19. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C.

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  20. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries...

    Office of Environmental Management (EM)

    Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries ...

  1. Alternative Fuel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Vehicles Alternative Fuel Vehicles Check out our <a href="http://www.afdc.energy.gov/">Alternative Fuels Data Center</a> for information, maps, and tools related to all types of advanced vehicles. Check out our Alternative Fuels Data Center for information, maps, and tools related to all types of advanced vehicles. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on biodiesel, today's options for alternative fuel

  2. Introduction to LNG vehicle safety. Topical report

    SciTech Connect (OSTI)

    Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

    1994-03-01

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  3. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  4. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  5. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  6. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  7. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  8. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  9. Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011

    Broader source: Energy.gov [DOE]

    The vehicles making the list are mostly compact and midsized vehicles that are sold in multiple markets around the globe with minimal changes. In some instances, the vehicles listed below are...

  10. Vehicle & Systems Simulation & Testing

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary

  11. 2014 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary; Moore, Sheila A

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  12. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  13. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    DOE Patents [OSTI]

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  14. 2013 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary; Moore, Sheila A

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  15. Vehicle Energy Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Vehicle Energy Management Vehicles are complex systems with multiple power sources (such as an internal combustion engine and battery), multiple power conversion components (such as the motor and gearbox) and must satisfy numerous safety and comfort constraints, under various environmental constraints (such as temperature or grade). At Argonne, we explore how to control all these variables to make cars and trucks as energy-efficient as possible. Furthermore, vehicles are increasingly

  16. Vehicle barrier

    DOE Patents [OSTI]

    Hirsh, Robert A. (Bethel Park, PA)

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  17. Making a Solar Oven

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

  18. Curtis Instruments Inc | Open Energy Information

    Open Energy Info (EERE)

    Mount Kisco, New York Sector: Vehicles Product: They make motor speed controllers, battery measurement equipment and related equipment for electric vehicles of all types....

  19. Pihsiang Energy Technology PHET | Open Energy Information

    Open Energy Info (EERE)

    Energy Technology (PHET) Place: Taiwan Sector: Vehicles Product: Taiwanese LiFePO4 battery manufacture makes propulsion of vehicles. References: Pihsiang Energy Technology...

  20. Preliminary Assessment of Overweight Mainline Vehicles

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J; Lascurain, Mary Beth

    2011-11-01

    The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

  1. Electric and hybrid vehicles program. 5th annual report to Congress for Fiscal Year 1981

    SciTech Connect (OSTI)

    1982-03-01

    This fifth annual report on the implementation of the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (Public Law 94-413, as amended by Public Law 95-238, referred to as the Act) complies with the reporting requirements established in Section 14 of the Act. In addition to informing the Congress of the progress and plans of the Department of Energy Electric and Hybrid Vehicles Program, this report is intended to serve as a communication link between the Department and all of the public and private interests involved in making the program a success. The Annual Report represents the major summary of the Electric and Hybrid Vehicles Program activities; since July 1981, DOE has ceased publication of the EHV Quarterly Reports with Congressional approval. The fourth quarter activities for FY 1981 are included in this report. During FY 1981, significant progress was made toward implementing the policies established by Congress in the Act. There has been a noticeable increase in interest shown by both the automobile manufacturing and the supply sectors of our economy in electric and hybrid vehicles. This year, the emphasis in the Electric and Hybrid Vehicles Program shifted from vehicle demonstration and preparation for production readiness to research, development, test, and evaluation of advanced technologies to achieve the attributes necessary to make electric and hybrid vehicles a practical transportation alternative. Research and development efforts in batteries and propulsion components, as well as total vehicle systems, continue to reveal significant progress toward providing industry with technology options that will result in vehicles with greater public acceptance.

  2. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office FY 2016 Budget At-A-Glance Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Vehicle Technologies Office FY 2017 Budget ...

  3. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Wireless Charging Vehicle ...

  4. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems ...

  5. Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013

    Broader source: Energy.gov [DOE]

    For the 2013 model year, the Toyota Prius and smaller Prius c took the top spot with a combined average of 50 mpg. All vehicles making this list are hybrid vehicles, and six of the ten cars making...

  6. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  7. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Office of Environmental Management (EM)

    (all-electric, compressed natural gas, diesel, hybrid-electric, neighborhood-electric, plug-in hybrid electric, and stop-start vehicles) as well as medium- and heavy-duty vehicles. ...

  8. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles have a 27 percent lower fuel economy running on E85. Fortunately, designing flexible fuel vehicles to run specifically on E85 rather than gasoline can help close that gap. ...

  9. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Broader source: Energy.gov [DOE]

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles.

  10. Battery/Heat Engine Vehicle Analysis

    Energy Science and Technology Software Center (OSTI)

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore » to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.« less

  11. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blog Feed: Vehicles Blog Feed: Vehicles RSS March 1, 2016 Our latest infographic explains how heavy-duty trucks are more getting more sustainable thanks to the Energy Department's SuperTruck initiative. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient How the Energy Department's SuperTruck initiative is making America's heavy duty trucks more sustainable. December 30, 2015

  12. Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy has reduced the costs of producing electric vehicle batteries by more than 35%. ... EERE'S WORK IN VEHICLE TECHNOLOGIES Batteries and Energy Storage Addresses energy storage ...

  13. Vendor Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity & Fuel » Vehicles and Fuels Vehicles and Fuels You could be stuck in a traffic jam even while surrounded by beautiful wilderness. Make smart driving choices to reduce your environmental impact and reduce your fuel use and costs. | Photo courtesy of Melissa Howell/NREL. You could be stuck in a traffic jam even while surrounded by beautiful wilderness. Make smart driving choices to reduce your environmental impact and reduce your fuel use and costs. | Photo courtesy of Melissa

  14. Vehicle Systems Analysis Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Vehicle Systems Analysis Technical Team (VSATT) is to evaluate the performance and interactions of proposed advanced automotive powertrain components and subsystems, in a vehicle systems context, to inform ongoing research and development activities and maximize the potential for fuel efficiency improvements and emission reduction.

  15. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  16. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  17. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  18. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  19. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  20. Integrated risk information system (IRIS)

    SciTech Connect (OSTI)

    Tuxen, L.

    1990-12-31

    The Integrated Risk Information System (IRIS) is an electronic information system developed by the US Environmental Protection Agency (EPA) containing information related to health risk assessment. IRIS is the Agency`s primary vehicle for communication of chronic health hazard information that represents Agency consensus following comprehensive review by intra-Agency work groups. The original purpose for developing IRIS was to provide guidance to EPA personnel in making risk management decisions. This original purpose for developing IRIS was to guidance to EPA personnel in making risk management decisions. This role has expanded and evolved with wider access and use of the system. IRIS contains chemical-specific information in summary format for approximately 500 chemicals. IRIS is available to the general public on the National Library of Medicine`s Toxicology Data Network (TOXNET) and on diskettes through the National Technical Information Service (NTIS).

  1. Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Vehicles Watch this video to learn about the benefits of electric vehicles -- including improved fuel efficiency, reduced emissions and lower maintenance costs. Vehicles, and the fuel it takes to power them, are an essential part of our American infrastructure and economy, moving people and goods across the country. From funding research into technologies that will save Americans money at the pump to increasing the fuel economy of gasoline-powered vehicles to encouraging the development

  2. Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report PDF icon 2008_avtae_hvso.pdf More Documents & Publications Vehicle Technologies

  3. Energy 101: Heavy Duty Vehicle Efficiency

    SciTech Connect (OSTI)

    2015-05-14

    Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.

  4. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt072vssmackie2011

  5. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt072vssmackie2012

  6. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066vsskarner2011

  7. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066vsskarner2012

  8. Vehicle Technologies Office Merit Review 2014: Improving Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire ...

  9. Electric Vehicle Preparedness: Task 2, Identification of Vehicles for Installation of Data Loggers for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-02-01

    In Task 1, a survey was completed of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization was used to select vehicles for further monitoring, which involves data logging of vehicle movements in order to identify the vehicles mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the list of vehicles selected by MCBCL and Intertek for further monitoring and fulfills the Task 2 requirements.

  10. VEHICLE ACCESS PORTALS TA-48 Vicinity TA-36 Vicinity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pajarito Corridor (Map 4) VEHICLE ACCESS PORTALS TA-48 Vicinity TA-36 Vicinity Drivers of delivery vehicles entering Pajarito Road bounded by NM Highway 4 and Diamond Drive must stop at Post 10 for inspection passes. Protective Force offcers stationed at the Pajarito Corridor VAPs will turn away delivery vehicles that have not been inspected at Post 10. Note: All vehicles (commercial, private, government) are subject to random inspections while on Laboratory property. More Information:

  11. Lack of Familiarity with Infrequently Operated Vehicles Puts...

    Energy Savers [EERE]

    3-01 Lack of Familiarity with Infrequently Operated Vehicles Puts Drivers in Danger PURPOSE This Operating Experience Level 3 (OE-3) document provides information on a significant...

  12. Chapter 8: Advancing Clean Transportation and Vehicle Systems...

    Energy Savers [EERE]

    in vehicle petroleum use and greenhouse gas emissions if only benefits manifest, or a ... to be automated by 2035, 10 and III (Insurance Information Institute) (2013) claims ...

  13. Assessment of Future Vehicle Transportation Options and Their...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... CV Conventional vehicle DG Distributed generation DOE Department of Energy DR Demand response EIA Energy Information Agency EPRI Electric Power Research Institute ESPA Energy ...

  14. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  15. NREL: Transportation Research - Hybrid Electric Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Test & Evaluation Hybrid Electric Vehicles Electric & Plug-In Hybrid Vehicles Hydraulic Hybrid Vehicles Alternative Fuel Vehicles Vehicle Operating Data Truck...

  16. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  19. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. America Makes

    Broader source: Energy.gov [DOE]

    America Makes advances additive manufacturing technology and products, and serves as a nationally recognized additive manufacturing center of innovation excellence, working to transform the U.S. manufacturing sector and yield significant advancements throughout industry. America Makes was formerly called the National Additive Manufacturing Innovation Institute (NAMII).

  3. Vehicle Technologies Office: Exploratory Battery Materials R&D | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Technologies Office: Exploratory Battery Materials R&D Vehicle Technologies Office: Exploratory Battery Materials R&D Lowering the cost and improving the performance of batteries for plug-in electric vehicles (PEVs) requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV Everywhere Grand Challenge goal of making plug-in electric vehicles as affordable and practical as a 2012 baseline conventional vehicle by 2022, the

  4. Heavy and Overweight Vehicle Defects Interim Report

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J

    2012-12-01

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  5. Making History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YGG 05-0181 Making History It's hard to imagine . . . . . . an entire city existing in secret. . . . 60,000 acres set aside for one, top-secret purpose. . . . a discovery so huge...

  6. Multi-Material Lightweight Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Lightweight Vehicles Tim Skszek Jeff Conklin Vehma International June 17, 2014 Project ID # LM072 5/30/2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 Acknowledgement This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number No. DE-EE0005574. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the

  7. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt066karner2010p...

  8. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts PDF icon 2009_merit_review_1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials

  9. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation and Testing | Department of Energy 0 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development merit review results PDF icon 2010_amr_01.pdf More Documents & Publications 2010 Annual Merit Review Results Summary 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies DOE Vehicle

  10. Fiscal Year 2015 Vehicle Technologies Program Wide Funding Opportunity

    Broader source: Energy.gov (indexed) [DOE]

    Announcement Selections | Department of Energy The list of 24 awardees given funds to develop and deploy cutting-edge vehicle technologies that will strengthen the U.S. clean energy economy. These technologies will play a key role in increasing fuel efficiency and reducing petroleum consumption, while also supporting the Energy Department's EV Everywhere Grand Challenge to make plug-in electric vehicles as affordable to own and operate as today's gasoline-powered vehicles by 2022. PDF icon

  11. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T.; Guo Xiao Yan

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  12. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  13. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  14. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Advanced Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  16. Vehicle and Fuel Use

    Broader source: Energy.gov [DOE]

    The team evaluates and incorporates the requirements for vehicle and fuel use, as deemed appropriate for LM operations and approved by LM, as defined in:

  17. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  18. Energy 101: Electric Vehicles

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  19. Light Duty Vehicle Pathways

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

  20. Integrated Vehicle Thermal Management

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Railway vehicle body structures

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finite element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.

  2. Vehicle Model Validation

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  3. Ford's CNG vehicle research

    SciTech Connect (OSTI)

    Nichols, R.J.

    1983-06-01

    Several natural gas vehicles have been built as part of Ford's Alternative Fuel Demonstration Fleet. Two basic methods, compressed gas (CNG), and liquified gas (LNG) were used. Heat transfer danger and the expense and special training needed for LNG refueling are cited. CNG in a dual-fuel engine was demonstrated first. The overall results were unsatisfactory. A single fuel LNG vehicle was then demonstrated. Four other demonstrations, testing different tank weights and engine sizes, lead to the conclusion that single fuel vehicles optimized for CNG use provide better fuel efficiency than dual-fuel vehicles. Lack of public refueling stations confines use to fleet operations.

  4. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  5. Vehicle & Systems Simulation & Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Developed technologies to reduce parasitic loads (ANL, LLNL) - Continued to Build Fleet DNA Database to assist partners with vehicle technology adoption (NREL, ORNL) 15 ...

  6. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  7. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    SciTech Connect (OSTI)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  8. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  9. Literature review for vehicle correspondence and network modeling and analysis

    SciTech Connect (OSTI)

    Boakye, K; Kidwell, P; Konjevod, G; Lenderman, J

    2015-12-18

    The ability to recognize specific vehicle types (e.g., car make and model) is central to the correspondence task. Here we describe two recent efforts in this area.

  10. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown ... Population and Vehicle Growth Comparison, 1950-2012 Graph showing population and vehicle ...

  11. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY ...

  12. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY ...

  13. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY ...

  14. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 ...

  15. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  16. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  17. EV Everywhere: America’s Plug-In Electric Vehicle Market Charges Forward

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department, partnering with industry and national laboratories, is helping make plug-in electric vehicles more affordable and convenient for American families.

  18. Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report PDF icon 2009_avtae_hvso.pdf More Documents & Publications Well-to-Wheels Analysis of

  19. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Systems Annual Progress Report Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress Report The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric

  20. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced technology

  1. Vehicle Technologies Office: Key Activities in Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About the Vehicle Technologies Office » Vehicle Technologies Office: Key Activities in Vehicles Vehicle Technologies Office: Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean

  2. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program (VTP) (Fact Sheet) | Department of Energy Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are

  3. Vehicle Technologies Office: 2015 Vehicle Systems Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles. ...

  4. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles. ...

  5. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  6. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  7. Vehicle Technologies Office: Organization and Contacts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Organization and Contacts Vehicle Technologies Office: Organization and Contacts Vehicle Technologies Office: Organization and Contacts General Information Vehicle Technologies Office Telephone: (202) 586-8055 Fax: (202) 586-7409 Mailing Address: EE-3V Room 5G-030 1000 Independence Ave, SW Washington, DC 20585 Program Contacts Acting Director Christy Cooper christy.cooper@ee.doe.gov Operations Supervisor Christy Cooper christy.cooper@ee.doe.gov Analysis Jacob Ward

  8. AVTA: Vehicle to EVSE Smart Grid Communications Report | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy All Advanced Vehicle Testing Activity transit projects follow a rigorous data collection and analysis protocol. Refer to "General Evaluation Plan: Fleet Test and Evaluation Projects" for information about fleet selection, data collection, and products related to new evaluation projects. More Documents & Publications Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report AVTA HEV, NEV, BEV and HICEV Demonstrations and

  9. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect (OSTI)

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  10. EV Everywhere: Find Electric Vehicle Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find Electric Vehicle Models EV Everywhere: Find Electric Vehicle Models Search Car: Year: -- ALL -- Make: -- ALL -- Market Class: -- ALL -- All-Electric Range: Min -- ALL -- 10 miles 20 miles 30 miles 40 miles 50 miles 60 miles 70 miles 80 miles 90 miles 100 miles 110 miles 120 miles 130+ miles Gasoline Back-Up Available: -- ALL -- No Yes Reset To find out if a plug-in electric vehicle (EV) will work for you, use the menus to the left to sort the available EV models on the market by year, make,

  11. Vehicle Technologies Office: Propulsion Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  12. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    were imputed as disposed vehicles. To impute vehicle stock changes in the 1991 RTECS, logistic regression equations were used to compute a predicted probability (or propensity)...

  13. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    more fuel-efficient vehicles, and the implementation of Corporate Average Fuel Economy (CAFE) 6 standards. Figure 13. Average Fuel Efficiency of All Vehicles, by Model Year 6...

  14. Apparatus and method for optical guidance system for automatic guided vehicle

    SciTech Connect (OSTI)

    Lofgren, G.K.; Netzler, G.P.R.

    1986-12-02

    This patent describes a guided vehicle system which includes a vehicle freely maneuverable along a variable, pre-determined path by navigation means and computing the position of the vehicle relative to fixed points collectively defining a path. The navigation means comprises: (a) an off-board computer having: (i) a vehicle controller containing predetermined vehicle and traffic protocol information regarding vehicle speed, direction, priority, routing or scheduling and means for generating an information containing signal; (ii) a light source positioned respectively at each of the plurality of fixed points defining the path for receiving the information containing signal from the vehicle controller and emitting a light signal containing such information; (b) a computer on-board the vehicle having: (i) a light receiving lens for receiving the optical signal from one of the light sources the lens defining a field of view wherein any particular point within the field of view is represented by a X,Y coordinate wherein X, Y represents the displacement of the light source in respect to the axis of the light receiving lens; (ii) a central processing unit for receiving and processing all vehicle information and outputting vehicle control instruction signals; (iii) a power amplifier for outputting a vehicle control signal to vehicle maneuvering apparatus; and, (iv) a detector for segregating X-data and Y-data, outputting Y-data to the central processing unit for azimuth computation and outputting X-data to the central processing unit for vehicle direction computation and to the power amplifier.

  15. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  16. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  17. EV-Everywhere: Making Electric Vehicles More Affordable | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? One of 48 advanced battery and electric drive projects across the country funded by Recovery Act. U.S. will have increased capacity to produce

  18. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  19. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  20. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  1. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy is looking for a dynamic, innovative, and experienced executive to lead the efforts of the Vehicle...

  2. TRACKED VEHICLE Rev 75

    SciTech Connect (OSTI)

    Raby, Eric Y.

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parameters of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.

  3. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code

  4. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Annual Fuel Cost gal Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and ...

  5. TRACKED VEHICLE Rev 75

    Energy Science and Technology Software Center (OSTI)

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parametersmore » of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.« less

  6. Vehicle Technologies Program Overview

    SciTech Connect (OSTI)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  7. Hybrid vehicle control

    DOE Patents [OSTI]

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  8. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  9. Biotechnology for Clean Vehicles

    Broader source: Energy.gov [DOE]

    The Sustainable Transportation Summit session, Biotechnology for Clean Vehicles: Harnessing Synthetic Biology to Enable Next-Generation Biomaterials and Biofuels, will introduce transportation stakeholders to novel biomaterials and engineered biological systems with unique applicability to vehicle efficiency and sustainability. Further, it will illustrate how synthetic biology tools can be employed to enable the production of new biomaterials and advanced, low-carbon biofuel to benefit and promote a sustainable transportation sector.

  10. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking - Level 1 | Department of Energy Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 1 advanced technology vehicle lab benchmarking. PDF icon vss030_stutenberg_2014_o.pdf More Documents

  11. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Through Tire Design, Materials, and Reduced Weight | Department of Energy Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel

  12. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Testing | Department of Energy Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Vehicle & Systems Simulation & Testing Program. PDF icon vsst_overview_amr_2014_061114.pdf More Documents

  13. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon 2010_vsst_report.pdf

  14. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization. PDF icon

  15. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical

  16. Vehicle Technologies Office: Moving America Forward with Clean Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moving America Forward with Clean Vehicles Vehicle Technologies Office: Moving America Forward with Clean Vehicles The U.S. Department of Energy's Vehicle Technologies Office supports research, development (R&D), and deployment of efficient and sustainable highway transportation technologies that will improve fuel economy and enable America to use less petroleum. These technologies, which include plug-in electric vehicles (also known as PEVs or electric cars),

  17. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    E : C H R O N O L O G Y O F W O R L D O I L M A R K E T E V E N T S ENERGY INFORMATION ADMINISTRATIONHOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS 177 APPENDIX E A P P E N D...

  18. Renewable Fuel Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  19. European Green Vehicles Initiative | Open Energy Information

    Open Energy Info (EERE)

    infrastructure needed to achieve breakthroughs in the use of renewable and non-polluting energy sources, safety, and traffic fluidity. LEDSGP green logo.png This tool is included...

  20. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  1. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    SciTech Connect (OSTI)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand; Ivanic, Ziga; Francfort, James

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs and public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.

  2. NREL Makes Key Appointments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Makes Key Appointments Staffing for Distributed Energy and Tech Management Announced For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Feb. 28, 2001 - Two veterans of energy research have been named to newly created positions at the U.S. Department of Energy's National Renewable Energy Laboratory. Jack Darnell was named Deputy Associate Director for NREL's recently reorganized Planning and Technology Management Division. Anthony Schaffhauser has been

  3. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  4. Students To Race Solar-Powered Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Race Solar-Powered Vehicles For more information contact: e:mail: Public Affairs Golden, Colo., May 4 1999 — Middle school students from across the state next week will race model solar cars designed to tap into energy from the sun. Sponsored by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and Kaiser-Hill, the Junior Solar Sprint will give students the opportunity to show off their engineering and design skills by building and racing model solar-powered vehicles.

  5. A Comparative Study on Emerging Electric Vehicle Technology Assessments

    SciTech Connect (OSTI)

    Ford, Jonathan; Khowailed, Gannate; Blackburn, Julia; Sikes, Karen

    2011-03-01

    Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary steps: (1) Search Relevant Literature - An extensive search of recent analyses that address the environmental impacts, market penetration rates, and oil displacement potential of various EV technologies was conducted; (2) Consolidate Studies - Upon completion of the literature search, a list of analyses that have sufficient data for comparison and that should be included in the study was compiled; (3) Identify Key Assumptions - Disparity in conclusions very likely originates from disparity in simple assumptions. In order to compare 'apples-to-apples,' key assumptions were identified in each study to provide the basis for comparing analyses; (4) Extract Information - Each selected report was reviewed, and information on key assumptions and data points was extracted; (5) Overlay Data Points - Visual representations of the comprehensive conclusions were prepared to identify general trends and outliers; and (6) Draw Final Conclusions - Once all comparisons are made to the greatest possible extent, the final conclusions were draw on what major factors lead to the variation in results among studies.

  6. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect (OSTI)

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  7. Introduction to 'Make'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Make' Introduction to 'Make' Introduction The UNIX make utility facilitates the creation and maintenance of executable programs from source code. make keeps track of the commands...

  8. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  9. AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

  10. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    SciTech Connect (OSTI)

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  11. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H.; McCallen, David B.

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  12. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

    SciTech Connect (OSTI)

    Brooker, A.; Gonder, J.; Wang, L.; Wood, E.; Lopp, S.; Ramroth, L.

    2015-05-04

    The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy’s Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery batches of real-world drive cycles. FASTSim’s calculation framework and balance among detail, accuracy, and speed enable it to simulate thousands of driven miles in minutes. The key components and vehicle outputs have been validated by comparing the model outputs to test data for many different vehicles to provide confidence in the results. A graphical user interface makes FASTSim easy and efficient to use. FASTSim is freely available for download from the National Renewable Energy Laboratory’s website (see www.nrel.gov/fastsim).

  13. Lifecycle-analysis for heavy vehicles.

    SciTech Connect (OSTI)

    Gaines, L.

    1998-04-16

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants.

  14. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S.; Hodgson, Jeffrey W.

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  15. Consumer Views on Transportation and Advanced Vehicle Technologies

    SciTech Connect (OSTI)

    Singer, Mark

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to researchers, policy makers, and the public. Planned reports will follow detailing data from new studies targeting the primary challenges to and opportunities for advanced vehicle technology deployment. The effort continually refines study content to maintain and improve the relevance and validity of results.

  16. Safer Vehicles for People and the Planet: Letter to the Editor

    SciTech Connect (OSTI)

    Wenzel, Thomas P; Wenzel, Thomas P; Ross, Marc

    2008-05-01

    Letter to the Editors from Leonard Evans, Bloomfield Hills, MI: Single-vehicle crashes, which account for half of occupant fatalities, are not mentioned in 'Safer Vehicles for People and the Planet', by Thomas P. Wenzel and Marc Ross (March-April). Simple physics shows that in such crashes risk declines as vehicle mass increases. The authors write 'driving imported luxury cars carries extremely low risk, for reasons that are not obvious'. The reasons are obvious--the cars are purchased by low-risk drivers. If they swapped vehicles with drivers of sports cars (which have high risk), the risks would stick with the drivers, not the vehicles. The article reflects the American belief that death on our roads can be substantially reduced by making vehicles in which it is safer to crash. From 1979 through 2002, Great Britain, Canada and Australia reduced fatalities by an average of 49 percent, compared with 16 percent in the U.S. Accumulating the differences over this time shows that by merely matching the safety performance of these other countries, about 200,000 fewer Americans would have died. These trends continue. In 2006 the U.S. recorded 42,642 traffic deaths, a modest 22 percent decline from our all-time high. Sweden recorded 445, a reduction of 66 percent from their all-time high. The obsessive focus on vehicles rather than on countermeasures that scientific research shows substantially reduce risk is at the core of our dramatic safety failure. The only way to substantially reduce deaths is to reduce the risk of crashing, not to make it safer to crash. The response from Drs. Wenzel and Ross: Of course Dr. Evans is correct in stating that driver behavior influences crash risk. In our article we made clear that our estimates of risk include how well a vehicle/driver combination avoids a crash, as well as how crash-worthy a vehicle (and robust a driver) is once a crash occurs. We also analyzed two variables that can account for driver behavior: the fraction of all driver fatalities that are young men, and a 'bad driver' rating that combines information about the current crash (drug or alcohol involvement, driving without a license, or reckless driving) as well as the operator's driving record for the previous three years. For example, the high risks of sports cars, and the low risks of minivans, are clearly influenced by who drives these types of vehicles (36 percent young males and 0.77 bad driver rating for sports cars, vs. 4 percent and 0.21 for minivans; the average values for all types of cars are 20 percent and 0.50). On the other hand, we were surprised to find that the imported luxury cars, with the lowest risks, have only average drivers (21 percent young males, 0.57 bad driver rating). That is the basis for our conclusion that the design of imported luxury vehicles, or at least specific safety features on them, overcome risky behavior taken by their drivers. The safety of vehicles has greatly improved over the years. In our studies we have found several examples of models that greatly reduced their risks over time; for example, the Ford Focus has a much better risk to its drivers (118) than the Ford Escort it replaced (148). Our data indicate that more young males drive the Focus (21 percent) than the Escort (15 percent), and that Focus drivers are perhaps slightly more risky (0.50 vs. 0.44 bad driver rating). Clearly vehicle design does not play as small a role in vehicle safety as Dr. Evans suggests. Dr. Evans asserts that we ignore single-vehicle crashes and that simple physics dictates that vehicle mass provides safety in single-vehicle crashes. By itself, additional vehicle mass does provide some protection from rapid deceleration in crashes with a movable object, particularly for an unbelted occupant. However, when it comes to vehicle safety, our research by vehicle model indicates that there is essentially no relationship between car mass and risk, even in frontal crashes. In his own papers, Dr. Evans appears to admit that it is not clear whether mass, or size (specifically crush space) is inherent to vehi

  17. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    SciTech Connect (OSTI)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  18. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  19. Commuter Cars Corporation | Open Energy Information

    Open Energy Info (EERE)

    99202 Product: Commuter Cars Corporation makes the Tango 4-wheel full-highway-speed Battery Electric Vehicle. References: Commuter Cars Corporation1 This article is a stub....

  20. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Paul Machiele, Center Director for Fuel Programs, Office of Transportation & Air Quality, U.S. Environmental Protection Agency PDF icon b13_machiele_2-b.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels The

  1. NNSS Alternative Fuel Vehicle Management Program receives federal award |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Alternative Fuel Vehicle Management Program receives federal award Wednesday, December 10, 2014 - 2:41pm The Nevada National Security Site (NNSS), Nevada Field Office recently earned the 2014 Federal Energy and Water Management Award for the Alternative Fuel Vehicle (AFV) Management Program-making it the only U.S. Department of Energy recipient of this distinguished award. The NNSS increased its renewable fuel use by 195 percent from its 2005

  2. Electric Vehicle Charging Stations, Coming Soon to a City Near You

    Broader source: Energy.gov [DOE]

    From concerns about the availability of charging stations, to enthusiasm for the growing market, there's a demand for information about Electric Vehicles.

  3. DOE Webinar on Alternative Fuel and Advanced Vehicle Procurement Aggregating Initiatives FOA

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy, this informational webinar will cover details of the Alternative Fuel and Advanced Vehicle Procurement Aggregating Initiatives funding opportunity.

  4. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  11. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data Book, Vehicle ...

  12. hybrid vehicle systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicles systems perspective to the technology research and development (R&D) activities of...

  13. Vehicles Data Challenge | OpenEI Community

    Open Energy Info (EERE)

    Apps for Vehicles Challenge has begun contest data fuel efficiency launch Obama Administration OpenEI Vehicles Data Challenge **Update: Visit the Apps for Vehicles page for all...

  14. Permit for Charging Equipment Installation: Electric Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Where electric vehicle nonvented storage batteries are used or where the electric vehicle supply equipment is listed or labeled as suitable for charging electric vehicles indoors ...

  15. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  16. Vehicle fuel system

    DOE Patents [OSTI]

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  17. Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  18. Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  19. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  20. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing ...

  1. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  2. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  4. Idling Reduction for Personal Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    - Idling Reduction for Personal Vehicles Idling your vehicle-running your engine when you're not driving it-truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does. Researchers estimate that idling from heavy-duty and light- duty vehicles combined wastes about 6 billion gallons of

  5. Chapter 3. Vehicle-Miles Traveled

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important...

  6. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  7. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  8. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  9. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  10. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  11. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (OSTI)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  12. Vehicle Technologies' Fact of the Week 2012

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Moore, Sheila A; Boundy, Robert Gary

    2013-02-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2012. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  13. Vehicle Technologies Fact of the Week 2013

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E; Moore, Sheila A; Boundy, Robert Gary

    2014-03-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2013. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  14. Vehicle Technologies' Fact of the Week 2011

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2012-04-01

    Each week the U.S. Department of Energy s Vehicle Technology Program (VTP) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/. These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current Fact is available Monday through Friday on the VTP homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2011. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  15. Vehicle Technologies’ Fact of the Week 2013

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W.; Moore, Sheila A.; Boundy, Robert Gary

    2014-04-01

    Each week the U.S. Department of Energy’s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week’s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2013. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  16. Electric Vehicle Battery Performance

    Energy Science and Technology Software Center (OSTI)

    1992-02-20

    DIANE is used to analyze battery performance in electric vehicle (EV) applications. The principal objective of DIANE is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. Two releases are included with the package. Diane21 has a graphics capability; DIANENP has no graphics capability.

  17. Unmanned Aerospace Vehicle Workshop

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  18. Alternative Fuel Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle & Fueling Infrastructure Deployment Barriers & the Potential Role of Private Sector Financial Solutions April 2014 ACKNOWLEDGEMENTS The Center for Climate and Energy Solutions (C2ES) and the National Association of State Energy Officials (NASEO) would like to thank the U.S. Department of Energy for providing financial support for this report. C2ES would also like to thank the following for their substantial input: Jay Albert, Ken Berlin, Ken Brown, David Charron,

  19. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  20. Automated-In-Motion Vehicle Evaluation Environment (AIMVEE)

    Energy Science and Technology Software Center (OSTI)

    2006-05-04

    The AIMVEE/WIM system electronically retrieves deployment information, identifies vehicle automatically, and determines total weight, individual wheel weight, individual axle weights, axle spacing, and center-of-balance for any wheeled vehicle in motion. The AIMVEE/WIM system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE/WIM system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information ismore » stored, it electronically links to data collection and dissemination systems to provide “actual” weight and measurement information for planning, deployment, and in-transit visibility. The Static Scale Conversion (SSC) system is an unique enhancement to the AIMVEE/WIM system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale and is included in the AIMVEE computer code base. The material to be copyrighted is the Automated-In-Motion Vehicle Evaluation Environment (AIMVEE)/Weigh-In-Motion User Training and Testing material. It includes instructional material in the set-up, operation and tear-down of the AIMVEE/WIM system. It also includes a final exam associated with the training.« less

  1. Analysis of data from electric and hybrid electric vehicle student competitions

    SciTech Connect (OSTI)

    Wipke, K.B.; Hill, N.; Larsen, R.P.

    1994-01-01

    The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  2. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

  3. NREL: Energy Analysis - Vehicles and Fuels Research Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Research Analysis NREL offers online resources for information, data, and publications related to advanced transportation technologies and fuels. These easy-to-use resources help industry, fleet managers, and the public understand alternative fuel and advanced vehicle issues, technologies, regulations, incentives, and more. Fleet DNA: Commercial Fleet Vehicle Operating Data Online tool providing data summaries and visualizations similar to real-world "genetics" for

  4. Workplace Charging Challenge Plug-In Electric Vehicle Support Networks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicle Support Networks Workplace Charging Challenge Plug-In Electric Vehicle Support Networks When promoting PEV deployment, it can be helpful to tap into existing networks. The DOE Clean Cities program, along with Workplace Charging Challenge ambassadors and partners, have a wealth of knowledge on PEVs and workplace charging that can help inform your employees. These groups can also provide assistance in operating an effective workplace charging

  5. The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations

    Energy Savers [EERE]

    Department's Fleet Vehicle Sustainability Initiatives at Selected Locations DOE/IG-0896 October 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 24, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations" BACKGROUND In Fiscal Year (FY) 2012, the

  6. NNSA Provides Tajikistan Specialized Vehicles to Transport Radiological

    National Nuclear Security Administration (NNSA)

    Materials | National Nuclear Security Administration Library / Press Releases NNSA Provides Tajikistan Specialized Vehicles to Transport Radiological Materials October 07, 2015 NNSA Program Manager Nick Cavellero, right, and NRSA Director of the Department of Information and International Relations Ilkhom Mirsaidov, left, with two specialized vehicles purchased by NNSA for Tajikistan. WASHINGTON - The Department of Energy's National Nuclear Security Administration (DOE/NNSA), the United

  7. Finding the Right Filling Station for Alternative Vehicles Now Easier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Right Filling Station for Alternative Vehicles Now Easier For more information contact: e:mail: Public Affairs Golden, Colo., May 5, 1999 — A new online interactive computer program is taking the guesswork out of finding the fuel needed by the thousands of alternative vehicles on the road today in the United States. The program, called the Alternative Fuel Refueling Station Locator, was developed by the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC). The AFDC

  8. Use of automatic vehicle identification techniques for measuring traffic

    Office of Scientific and Technical Information (OSTI)

    performance and performing incident detection. Final report (Technical Report) | SciTech Connect Technical Report: Use of automatic vehicle identification techniques for measuring traffic performance and performing incident detection. Final report Citation Details In-Document Search Title: Use of automatic vehicle identification techniques for measuring traffic performance and performing incident detection. Final report Traffic performance information is an integral part of traffic control

  9. Alternative Fuel Vehicles: How Do They Really Measure Up?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do They Really Measure Up? For more information contact: e:mail: Public Affairs Golden, Colo., Sept. 8, 1997 -- What do the people who actually use alternative fuel vehicles really think about their performance? The National Renewable Energy Laboratory (NREL) asked that question in a 1996 nationwide survey of federal fleet managers and alternative fuel vehicle drivers. Perspectives on AFVs: 1996 Federal Fleet Managers Survey presents the results of the survey, conducted by Dwights Energydata

  10. Vehicle Technologies Office Issues Notice of Intent for Multi-Topic Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Announcement | Department of Energy Multi-Topic Funding Opportunity Announcement Vehicle Technologies Office Issues Notice of Intent for Multi-Topic Funding Opportunity Announcement April 26, 2016 - 10:16am Addthis The Vehicle Technologies Office has issued a Notice of Intent (No. DE-FOA-0001534) to make interested parties aware of its plan to issue a Funding Opportunity Announcement (FOA) entitled "FY 2016 Vehicle Technologies Multi-Topic Funding Opportunity

  11. Vehicle Technologies Office FY 2015 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Office FY 2015 Budget At-A-Glance Vehicle Technologies Office FY 2015 Budget At-A-Glance Transportation accounts for two-thirds of U.S. petroleum use, and on-road vehicles are responsible for 80% of this amount. Our dependence on petroleum creates significant national security and environmental challenges, limits our potential for economic growth, and hits our individual wallets - making it a high-value opportunity for change. The Vehicle Technologies Office develops and deploys

  12. #LabChat Recap: Innovations Driving More Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy LabChat Recap: Innovations Driving More Efficient Vehicles #LabChat Recap: Innovations Driving More Efficient Vehicles December 21, 2012 - 10:47am Addthis Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs [storify:http://storify.com/ENERGY/labchat-recap-innovations-driving-more-efficient] Addthis Related Articles #LabChat Recap: The Future of Biofuels #LabChat Recap: What is Dark Energy What improvements are making vehicles drive

  13. Design and development of a walking robotic vehicle

    SciTech Connect (OSTI)

    Shkolnik, N.

    1990-01-01

    Quest Systems, Inc., sponsored by DARPA, is developing a low-cost, high-efficiency walking robotic vehicle (WRV). This vehicle will be targeted for a variety of applications in waste management, hazardous materials transport and handling, nuclear plant operations, maintenance and decontamination, security, mining, and other areas in industrial and military sectors. The purpose of the development is twofold. The first goal is to demonstrate that, in spite of common beliefs, legged locomotion can be as efficient as wheeled (at low velocities), which could make a walking vehicle a prime candidate for an autonomously operated platform. The second goal is to show that this type of vehicle can be built rather inexpensively (below $100,000), which would allow it to compete on a cost/functionality basis with wheeled and tracked ones.

  14. PHEVs are More about the grid than the vehicles

    SciTech Connect (OSTI)

    2009-01-15

    Plug-in hybrid electric vehicles (PHEVs) could be used as an effective storage medium to absorb intermittent renewable energy when it is available. Charged vehicles can run on the stored energy when needed. A recent study by the Pacific Northwest National Laboratory concluded that some 73 percent of U.S. light vehicles can be supplied with the existing utility infrastructure in place, provided the charging was restricted to off-peak periods. That would reduce U.S. oil imports by 6.2 million barrels per day, roughly 52 percent of U.S. oil imports. The limiting factors increasingly appear to be on the utility side, for example, making sure that the vehicles are charged during off-peak hours at discounted prices.

  15. NOVA-NREL Optimal Vehicle Acquisition Analysis (Brochure)

    SciTech Connect (OSTI)

    Blakley, H.

    2011-03-01

    Federal fleet managers face unique challenges in accomplishing their mission - meeting agency transportation needs while complying with Federal goals and mandates. Included in these challenges are a variety of statutory requirements, executive orders, and internal goals and objectives that typically focus on petroleum consumption and greenhouse gas (GHG) emissions reductions, alternative fuel vehicle (AFV) acquisitions, and alternative fuel use increases. Given the large number of mandates affecting Federal fleets and the challenges faced by all fleet managers in executing day-to-day operations, a primary challenge for agencies and other organizations is ensuring that they are as efficient as possible in using constrained fleet budgets. An NREL Optimal Vehicle Acquisition (NOVA) analysis makes use of a mathematical model with a variety of fleet-related data to create an optimal vehicle acquisition strategy for a given goal, such as petroleum or GHG reduction. The analysis can helps fleets develop a vehicle acquisition strategy that maximizes petroleum and greenhouse gas reductions.

  16. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These properties can include higher octane ratings and cetane numbers than conventional petroleum-based fuels, which can help an engine run more smoothly.

  17. Vehicle Technologies Office- AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  18. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  19. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  20. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  1. Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan

    Broader source: Energy.gov [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness.

  2. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    evaluating the electrification of heavy-duty vehicles and the accompanying infrastructure with Smith Electric, Navistar, Cascade Sierra on truck stop electrification, and the South ...

  4. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This Project Program Area Average Vehicle & System Simulation PHEV Engine and ... Biofuel effect on emissions and emission equipment needs to be reviewed (some work being ...

  5. Advanced Vehicle Testing Activity (AVTA)- Vehicle Testing and Demonstration Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  6. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA PHEV Demonstrations and Testing Advanced Vehicle Benchmarking of HEVs and PHEVs

  7. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  8. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  9. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  10. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle...

    Energy Savers [EERE]

    Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  11. Mack LNG vehicle development

    SciTech Connect (OSTI)

    Southwest Research Institute

    2000-01-05

    The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

  12. Hybrid vehicle motor alignment

    DOE Patents [OSTI]

    Levin, Michael Benjamin (Ann Arbor, MI)

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  13. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to share

  14. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC » Tools » Vehicle Search Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Vehicle Search on Google Bookmark Alternative Fuels Data Center: Vehicle Search on Delicious Rank Alternative Fuels Data Center: Vehicle Search on Digg Find More places to

  15. Alternative Fuels Data Center: Vehicle Conversion Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle

  16. Vehicle Cooling Systems - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Vehicle Cooling Systems Improvements to efficiently, safely, and inexpensively cool vehicles during prolonged sun exposure National Renewable Energy Laboratory Contact NREL About This Technology Vehicles can heat up quickly when parked in sunny locations. Vehicles can heat up quickly when parked in sunny locations. Technology Marketing SummaryVehicles left in sunny areas can quickly heat up to temperatures as high as

  17. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  18. Idling Reduction for Personal Vehicles

    SciTech Connect (OSTI)

    2015-05-07

    Fact sheet on reducing engine idling in personal vehicles. Idling your vehicle--running your engine when you're not driving it--truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does.

  19. Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Chevrolet Spark EV 2015 Kia Soul Electric 2014 BMW i3 BEV 2014 Smart Electric Drive 2013 Ford Focus Electric 2013 Nissan Leaf SV 2012 Mitsubishi I-MiEV 2012 Nissan Leaf Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities Publications News Research Advanced Materials and Manufacturing

  20. Vehicle Technologies Program Merit Review

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    a comparison between the 1991 and previous years RTECS designs; (2) the sample design; (3) the data-collection procedures; (4) the Vehicle Identification Number (VIN); (5)...

  2. Plug IN Hybrid Vehicle Bus

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. AVTA Vehicle Component Cost Model

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  5. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  6. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  7. economic hydrogen fuel cell vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  8. Method of making gas diffusion layers for electrochemical cells

    DOE Patents [OSTI]

    Frisk, Joseph William; Boand, Wayne Meredith; Larson, James Michael

    2002-01-01

    A method is provided for making a gas diffusion layer for an electrochemical cell comprising the steps of: a) combining carbon particles and one or more surfactants in a typically aqueous vehicle to make a preliminary composition, typically by high shear mixing; b) adding one or more highly fluorinated polymers to said preliminary composition by low shear mixing to make a coating composition; and c) applying the coating composition to an electrically conductive porous substrate, typically by a low shear coating method.

  9. Vehicle Technologies Office: AVTA- Compressed Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the 2012 Honda Civic CNG is available in downloadable form.

  10. Introduction to 'Make'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Make' Introduction to 'Make' Introduction The UNIX make utility facilitates the creation and maintenance of executable programs from source code. make keeps track of the commands needed to build the code and when changes are made to a source file, recompiles only the necessary files. make creates and updates programs with a minimum of effort. A small initial investment of time is needed to set up make for a given software project, but afterward, recompiling and linking is done consistently and

  11. DOE Issues Request for Information on Fuel Cells for Continuous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for Information on Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles DOE Issues Request for Information on Fuel Cells for...

  12. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  13. List of Other Alternative Fuel Vehicles Incentives | Open Energy...

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana)...

  14. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  15. Fact #831: July 28, 2014 Top Ten States with Diesel Light Vehicles

    Broader source: Energy.gov [DOE]

    In Wyoming, more than 10% of registered light vehicles are fueled by diesel making their State number one in terms of diesel share. All other States on the top ten list are also western States. The...

  16. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008

    Broader source: Energy.gov [DOE]

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown nearly 6-fold and vehicle travel even more than that. The number of vehicles and vehicle travel peaked in 2007...

  17. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-01-01

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  18. Energy Information Administration - Energy Efficiency, energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and...

  19. Energy Information Administration - Transportation Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

  20. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  1. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    U.S. Energy Information Administration (EIA) Indexed Site

    Provider Fleet Vehicles Fleet Vehicle Miles Traveled Propane Provider Survey In the analysis of annual vehicle miles traveled, the diesel vehicles tended to stand out. On...

  2. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  3. Vehicle Technologies Office FY 2017 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About Us » Vehicle Technologies Office FY 2017 Budget At-A-Glance Vehicle Technologies Office FY 2017 Budget At-A-Glance Transportation accounts for two-thirds of U.S. petroleum use, and on-road vehicles are responsible for nearly 85% of this amount. U.S. dependence on petroleum affects the national economy and potential for future growth-making it a high-value opportunity for change. The Vehicle Technologies Office (VTO) develops and overcomes barriers to the widespread use of

  4. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  5. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  6. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  7. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies. Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  8. U31: Vehicle Stability and Dynamics: Electronic Stability Control

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Delorenzis, Damon; LaClair, Tim J; Lim, Alvin; Pape, Doug

    2011-01-01

    A team led by NTRCI is working to improve the roll and yaw stability of heavy duty combination trucks through developing stability algorithms, assembling demonstration hardware, and investigating robust wireless communication. Modern electronic stability control (ESC) products automatically slow a vehicle rounding a corner too quickly or apply individual brakes when necessary to improve the steering characteristics of a vehicle. Air brake systems in North America provide no electronic communication between a tractor and semitrailer, limiting the degree to which control systems can be optimized. Prior research has demonstrated stability improvements where dynamic measurements and control commands are communicated between units of a vehicle. Three related activities were undertaken: (1) Develop an algorithm for the optimum yaw and roll control of a combination vehicle. Vehicle state parameters needed to control the vehicle and the proper brake response were determined. An integrated stability control for the tractor and semitrailer requires communication between the two units. Dynamic models were used to assess the algorithm. (2) Implement the ESC algorithm in the laboratory. Hardware components suitable for the harsh environment for measurement, sensor-to-controller communication, and semitrailer-to-tractor communication and brake actuation were specified and assembled as a working system. The goal was to collect the needed vehicle state information, transmit the information to the ESC system, and then actuate the brakes in response to controller commands. (3) Develop a wireless network with the data rate and reliability necessary to communicate dynamic signals for a vehicle stability control system. Adaptive connectivity-aware, multi-hop routing was selected because it can perform in the harsh environment where packet collisions and fading often will exist. The protocol is to give high priority to urgent messages.

  9. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  10. E One Moli Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Place: Tainan, Taiwan Sector: Vehicles Product: They make rechargeable Lithium Ion batteries for cell phones, laptop computers, higher-power batteries for power...

  11. Laboratory to change vehicle traffic-screening regimen at vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inspection station Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and won't be staffed by a Laboratory protective force officer. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  12. Vehicle Technologies Office: Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: Events Vehicle Technologies Office: Events The Vehicle Technologies Office holds a number of events to advance research, development and deployment of vehicles that can reduce the use of petroleum in transportation. The Vehicle Technologies Office holds an Annual Merit Review and Peer Evaluation each year, where advanced vehicle technologies projects funded by VTO are presented and reviewed for their merit. The Merit Review presentations and reports from past years

  13. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  14. NREL: Transportation Research - Vehicle Thermal Management Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Thermal Management Facilities Image of a building with two semi truck cabs in front of it. The VTIF is used for thermal testing of every class of on-road vehicle. Photo by Dennis Schroeder, NREL The National Renewable Energy Laboratory (NREL) uses research and testing facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and Integration Facility The Vehicle Testing and Integration Facility features a test pad to conduct vehicle thermal soak testing

  15. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  16. Alternative Fuels Data Center: Natural Gas Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles on Digg Find

  17. Alternative Fuels Data Center: Propane Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share

  18. Alternative Fuels Data Center: Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on

  19. Alternative Fuels Data Center: Biodiesel Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center:

  20. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center:

  1. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle

  2. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on

  3. Alternative Fuels Data Center: Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More

  4. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer A. Meintz, T. Markel, E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan Work sponsored by United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicles Technologies Office, Vehicle Systems Program The information contained in this poster is subject to a government license. 2015 IEEE PELS Workshop on

  5. The Department of Energy Vehicle Technologies Program's $135 Million in Funding to Ecotality, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicle Technologies Program's $135 Million in Funding to Ecotality, Inc. OAS-RA-13-29 July 2013 Department of Energy Washington, DC 20585 July 25, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy Vehicle Technologies Program's $135 Million in Funding to Ecotality, Inc." BACKGROUND The Department of Energy's Vehicle Technologies Program aims to decrease U.S. oil dependence by developing

  6. S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

  7. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Infrastructure Meeting | Department of Energy 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting This agenda provides information about the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon scenario_analysis_agenda1_07.pdf More Documents & Publications 2010 - 2025 Scenario Analysis

  8. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  9. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption ... 7:09:42 AM" "Back to Contents","Data 1: Minnesota Natural Gas Vehicle Fuel Consumption ...

  10. Vehicle Technologies Office: 2015 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2015 ... low emissions advanced internal combustion engines for passenger and commercial vehicles. ...

  11. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 ... low emissions advanced internal combustion engines for passenger and commercial vehicles. ...

  12. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  13. ,"Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Consumption ... 12:00:27 PM" "Back to Contents","Data 1: Virginia Natural Gas Vehicle Fuel Consumption ...

  14. NREL: Learning - Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like...

  15. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures PDF icon HICEV ...

  16. Vehicle Technologies Office: Parasitic Loss Reduction Research...

    Energy Savers [EERE]

    resistance can account for up to a 45% decrease in efficiency for heavy-duty vehicles. ... Vehicle & Systems Simulation and Testing Overview Class 8 Truck Freight Efficiency ...

  17. Biodiesel Basics (Fact Sheet), Vehicle Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Fact sheet providing questions and answers on ...

  18. Vehicle Technologies Office News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    winners of the Energy Department's latest advanced vehicle technology competition. Meet five of the teams and learn about their unique approaches to building innovative vehicles...

  19. Urban Electric Vehicle (UEV) Technical Specifications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a converted vehicle, both the OEM, and Converter Manufacturer Certification labels, shall ... a converted vehicle, both the OEM, and Converter Manufacturer Certification labels, shall ...

  20. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  1. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  2. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    vehicle type, and vehicle model year. "600" - represents a "match" based on EIA expert analysis using subject matter experience, in conjunction with past RTECS. Additionally,...

  3. Vehicle Technologies Office Battery Research Partner Requests...

    Office of Environmental Management (EM)

    (Li-ion) batteries used in vehicle applications while still meeting the USABC goals. ... Management System for Lithium-ion Batteries Used in Vehicle Applications," visit the ...

  4. 2015 Annual Merit Review, Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act ASTM American Society for Testing and Materials ... Automotive Technology Education GCI Gasoline compression ... Low-Emission Vehicle SUV Sport utility vehicle SXAS Soft ...

  5. NDMV - Longer Combination Vehicle (LCV) Permit Application |...

    Open Energy Info (EERE)

    Vehicle (LCV) Permit Application Abstract This form is the Nevada Department of Motor Vehicles LCV Application. Form Type ApplicationNotice Form Topic Longer Combination...

  6. Vehicle Technologies Office: Education and Workforce Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education and Workforce Development Vehicle Technologies Office: Education and Workforce Development The Vehicle Technologies Office (VTO) offers a variety of resources and ...

  7. Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John F

    2014-01-01

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  8. Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, John

    2014-10-13

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine asmore » a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.« less

  9. Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John

    2014-10-13

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  10. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Advanced Vehicles Data Center (AFDC) Web site at www.afdc.energy.gov. ... Fuel Converters on its Web site at www.epa.govotaqcertdearmfr cisd0602.pdf. ...

  11. Vehicle Technologies Office- AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The following set of reports describes performance data collected from hybrid-electric heavy-duty tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  12. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The following set of reports (part of the medium and heavy-duty truck data) describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was ...

  13. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel ...

  14. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt066_vss_karner_2012

  15. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt066_vss_karner_2011

  16. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect (OSTI)

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.

  17. All-terrain vehicle

    SciTech Connect (OSTI)

    Somerton-Rayner, M.

    1986-12-16

    This patent describes an all-terrain vehicle comprising: a chassis; four road wheel axles equally spaced along the chassis; suspension means mounting the axles on the chassis; wheels mounted adjacent both ends of each of the axles, the wheels on the foremost and the rearmost axles being steerably mounted; propulsion and driving means including a single internal combustion engine and gearbox, and first and second transfer boxes both coupled to be driven by the engine through the gearbox; the first transfer box driving the first and third axles and the second transfer box driving the second and fourth axles; means for driving in the alternative all four wheels and only the center two wheels; power-assisted steering gear means operatively connected to the steerably-mounted wheels of the foremost axle; and steering coupling means extending between the steerably-mounted wheels on the foremost and rearmost axles so dimensioned that upon steering of the front wheels, the rear wheels perform castoring constrained to a smaller turning angle and a lower rate of angular movement than the front wheels.

  18. Deputy Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy within the U.S. Department of Energy is looking for a dynamic, innovative, and experienced executive to help lead the efforts of the Vehicle...

  19. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing ...

  20. Cover Page of Household Vehicles Energy Use: Latest Data & Trends

    Gasoline and Diesel Fuel Update (EIA)

    Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

  1. Renewable Fuels and Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels & Vehicles Overview Dale Gardner Associate Director, Renewable Fuels S&T 12 August 2008 State Energy Advisory Board to 2 National Renewable Energy Laboratory Innovation for Our Energy DOE Programs Supported 3 National Renewable Energy Laboratory Innovation for Our Energy Advanced Energy Initiative * Develop advanced battery technologies that allow plug-in hybrid electric vehicles to have a 40 mile range operating solely on battery charge. * Accelerate progress towards the

  2. NREL Evaluates Performance of Hydraulic Hybrid Refuse Vehicles

    SciTech Connect (OSTI)

    2015-09-01

    This highlight describes NREL's evaluation of the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation (model year 2013) HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. Launched in March 2015, the on-road portion of this 12-month evaluation focuses on collecting and analyzing vehicle performance data - fuel economy, maintenance costs, and drive cycles - from the HHVs and the conventional diesel vehicles. The fuel economy of heavy-duty vehicles, such as refuse trucks, is largely dependent on the load carried and the drive cycles on which they operate. In the right applications, HHVs offer a potential fuel-cost advantage over their conventional counterparts. This advantage is contingent, however, on driving behavior and drive cycles with high kinetic intensity that take advantage of regenerative braking. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs. Based on the field data, NREL will develop a validated vehicle model using the Future Automotive Systems Technology Simulator, also known as FASTSim, to study the impacts of route selection and other vehicle parameters. NREL is also analyzing fueling and maintenance data to support total-cost-of-ownership estimations and forecasts. The study aims to improve understanding of the overall usage and effectiveness of HHVs in refuse operation compared to similar conventional vehicles and to provide unbiased technical information to interested stakeholders.

  3. Hotel Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Logistics Hotel Information Location The review was held at the Hilton Washington DC/Rockville Executive Meeting Center. Address is 1750 Rockville Pike, Rockville, Maryland, 20852. Hotel Information Home Page Maps and Transportation Area Information Sleeping Room Block A block of rooms at $183 + 15% tax per night (single or double) has been reserved for the nights of November 26 & 27, 2012. Making Your Reservation To reserve your room, please call 1-800-HILTONS (445-8667) and refer to the

  4. Highway vehicle MPG and market shares report: Model year 1990

    SciTech Connect (OSTI)

    Williams, L.S. ); Hu, P.S. )

    1991-04-01

    This issue of Highway Vehicle MPG and Market Shares Report: Model Year 1990 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of new automobiles and light trucks. The estimates are made on a make and model basis (e.g., Chevrolet is a make and Corsica is a model), from model year 1976 to model year 1990. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on fuel economy changes to determine what caused the changes. The new automobile fleet experienced a fuel economy loss of 0.4 mpg from the previous model year, dropping to 27.6 mpg. This is the second consecutive decline in the fuel economy of new automobiles since model year 1983. The main reason for the fuel economy decline in automobiles was that the compact, midsize, and large size classes, which together claimed more than 75% of the new automobile market, each experienced fuel economy declines of 0.4 mpg or more. In contrast, the new light truck fleet showed an increase of 0.3 mpg from the previous year to a current mpg of 20.5. The fuel economy increase in light trucks was primarily due to the fact that the large pickup class, which represents 35.0% of the new 1990 light truck market experienced a gain of 0.7 mpg in its fuel economy. Overall, the sales-weighted fuel economy of the new light-duty vehicle fleet (automobiles and light trucks) dropped to 24.8 mpg in model year 1990, a reduction of 0.2 mpg from model year 1989. 9 refs., 29 figs., 55 tabs.

  5. Method and system for vehicle refueling

    DOE Patents [OSTI]

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  6. Explosion proof vehicle for tank inspection

    DOE Patents [OSTI]

    Zollinger, William T.; Klingler, Kerry M.; Bauer, Scott G.

    2012-02-28

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  7. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  8. Advanced Electric Drive Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt039_ti_schwendeman_2011_p.pdf More Documents & Publications Advanced Electric Drive Vehicles Advanced Electric Drive Vehicles 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology Integration

  9. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt071_vss_cesiel_2011_o.pdf More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  10. Optical guidance system for industrial vehicles

    DOE Patents [OSTI]

    Dyer, Robert D.; Eschbach, Eugene A.; Griffin, Jeffrey W.; Lind, Michael A.; Buck, Erville C.; Buck, Roger L.

    1990-01-01

    An automatically guided vehicle system for steering a vehicle. Optical sensing detects an image of a segment of track mounted above the path of the vehicle. Electrical signals corresponding to the position of the track are generated. A control circuit then converts these signals into movements for the steering of the vehicle.

  11. Flex Fuel Vehicle Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ft_13_yilmaz.pdf More Documents & Publications Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

  12. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  13. Flexible Fuel Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Flexible Fuel Vehicle Basics Flexible Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) have an internal combustion engine and are capable of operating on gasoline, E85 (a high-level blend of gasoline and ethanol), or a mixture of both. There are more than 10.6 million flexible fuel vehicles on U.S. roads today. However, many flexible fuel vehicle owners don't realize

  14. Develop Improved Methods for Making Intermetallic Anodes | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es022_jansen_2011_p.pdf More Documents & Publications Improved Methods for Making Intermetallic Anodes Develop Improved Methods of

  15. Develop Improved Methods of Making Intermetallic Anodes | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_16_jansen.pdf More Documents & Publications Improved Methods for Making Intermetallic Anodes Develop Improved Methods for

  16. Vehicle Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency Read more Energy Department Announces $58 Million to Advance Fuel-Efficient Vehicle Technologies Energy Department Announces $58 Million to Advance Fuel-Efficient Vehicle Technologies Read more News from the Vehicles Technologies Office News from the Vehicles Technologies Office Read more Find a Charging or Alternative Fueling

  17. Vehicles Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation » Vehicles Success Stories Vehicles Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing energy-efficient and environmentally friendly vehicle and fuel technologies translate into cleaner cars on the road today and more efficient cars in the years to come. Explore EERE's vehicle technologies success stories below. March 28, 2016 Tractor belly pan helps to improve under-body flow. EERE Success Story-Heavy Vehicle

  18. Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Honda Accord Hybrid 2013 Chevrolet Malibu Eco 2013 Ford Cmax Hybrid 2013 Honda CIvic Hybrid 2013 Volkswagen Jetta Hybrid 2011 Hyundai Sonata 2010 Ford Fusion Hybrid 2010 Honda CR-Z 2010 Honda Insight 2010 Mercedes S400h BlueHybrid 2010 Toyota Prius Plug-In Hybrid Electric Vehicles Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory

  19. Vehicle Emission Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles that use internal combustion engines. These vehicles can run on gasoline, diesel, biofuels, natural gas, or propane. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs)

  20. Vehicle Technologies Office: Lubricants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Lubricants Vehicle Technologies Office: Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet

  1. Vehicle Technologies Office: Transportation System Analytical Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Transportation System Analytical Tools Vehicle Technologies Office: Transportation System Analytical Tools The Vehicle Technologies Office (VTO) has supported the development of a number of software packages and online tools to model individual vehicles and the overall transportation system. Most of these tools are available for free or a nominal charge. Modeling tools that simulate entire vehicles and

  2. Alternative Fuels Data Center: Propane Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane

  3. U32: Vehicle Stability and Dynamics: Longer Combination Vehicles

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Broshears, Eric; Chitwood, Caleb; Colbert, Jameson; Hathaway, Richard; Keil, Mitch; LaClair, Tim J; Pape, Doug; Patterson, Jim; Pittro, Collin

    2011-01-01

    This study investigated the safety and stability of longer combination vehicles (LCVs), in particular a triple trailer combination behind a commercial tractor, which has more complicated dynamics than the more common tractor in combination with a single semitrailer. The goal was to measure and model the behavior of LCVs in simple maneuvers. Example maneuvers tested and modeled were single and double lane changes, a gradual lane change, and a constant radius curve. In addition to test track data collection and a brief highway test, two computer models of LCVs were developed. One model is based on TruckSim , a lumped parameter model widely used for single semitrailer combinations. The other model was built in Adams software, which more explicitly models the geometry of the components of the vehicle, in terms of compliant structural members. Among other results, the models were able to duplicate the experimentally measured rearward amplification behavior that is characteristic of multi-unit combination vehicles.

  4. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  5. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  6. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, J.T.

    1996-02-13

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  7. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    SciTech Connect (OSTI)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  8. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    Estimates from the GREET model (see Argonne National Laboratory's information on GREET) show that passenger car PHEV10s produce about 29% fewer carbon emissions than a conventional vehicle, when...

  9. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity....

  10. Fact #743: September 3, 2012 Used Vehicle Sales are Three Times Higher than New Vehicle Sales

    Broader source: Energy.gov [DOE]

    From 1990 to 2008, the number of used vehicles sold was between 2.5 and 3 times higher than new vehicle sales. During the recent recession, both new and used vehicle sales declined to sales volumes...

  11. Vehicle Technologies Office: AVTA – Medium and Heavy Duty Vehicle Data and Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office supports work to collect extensive data on light-duty, medium-duty and heavy-duty vehicles through the Advanced Vehicle Testing Activity  (AVTA). Idaho National...

  12. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 (Continued) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor:...

  13. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight

    Office of Energy Efficiency and Renewable Energy (EERE)

    The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference...

  14. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

  15. Vehicle Technologies Office: Workplace Charging Challenge Progress Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 - Employers Take Charge | Department of Energy Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In the 2014 Workplace Charging Challenge annual survey, partners shared for the first time how their efforts were making an impact in their communities and helped identify best practices for workplace charging. The Workplace Charging Challenge Progress Update

  16. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  17. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  18. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  19. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  20. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Data | Department of Energy Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and Reinvestment Act, the Vehicle Technologies Office (VTO) accelerated the electrification of the nation's vehicle fleet. VTO invested $400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10

  1. Vehicle Technologies Office: AVTA- Evaluating Military Bases and Fleet Readiness for Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. Through the AVTA, Idaho National Laboratory also does fleet and other analysis to evaluate readiness for plug-in electric vehicles and other advanced technology vehicles. The following reports describe analysis studies Idaho National Laboratory conducted for the military to evaluate readiness for plug-in electric vehicles.

  2. Methods of making pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2004-03-16

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  3. Methods of making pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-08-05

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  4. Methods of making pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-10-14

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  5. Methods Of Making Pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-12-30

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  6. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C.

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  7. Vehicle Technologies Program Funding Opportunities

    SciTech Connect (OSTI)

    2011-12-13

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) provides funding opportunities for advanced vehicle technology projects that are aimed at removing technical and cost barriers. Much of the funding available to the Vehicle Technologies Program is distributed to private firms, educational institutions, nonprofit organizations, state and local governments, Native American organizations, and individuals, through competitive solicitations. DOE is strongly committed to partnerships to help ensure the eventual market acceptance of the technologies being developed. New solicitations are announced regularly.

  8. Micro-unmanned aerodynamic vehicle

    DOE Patents [OSTI]

    Reuel, Nigel; Lionberger, Troy A.; Galambos, Paul C.; Okandan, Murat; Baker, Michael S.

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  9. Low floor mass transit vehicle

    DOE Patents [OSTI]

    Emmons, J. Bruce; Blessing, Leonard J.

    2004-02-03

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  10. Vehicle barrier with access delay

    DOE Patents [OSTI]

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  11. Advanced Technology Vehicles Manufacturing Loan Program | Department of

    Energy Savers [EERE]

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter Energy

    Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles

  12. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  13. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David; Gibson, Robert

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  14. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  15. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office recently recognized 10 leaders in research, development and deployment for their contributions to the DOE's efforts to improve advanced technology and alternative fuel vehicles.

  16. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  17. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  18. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  19. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  20. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

    2009-02-01

    Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.